Date of Award

Fall 2019

Rights

Access is available to all users

Document Type

Thesis

Degree Name

Master of Science (MS) in Computer Science

Department

Computer Science

Abstract

Influenza has been identified by the World Health Organization as a global issue that could be more effectively served through an accelerated and widely-accessible public health surveillance tracking process. The ability to map and predict influenza outbreaks in a real-time heat map would be invaluable to health care systems to prepare for influenza outbreaks. In this study, the Twitter stream data is filtered to identify potential influenza-like illness (ILI) cases. Then the tracking of real-time influenza cases is further explored and analyzed through various machine-learning models. Among seven learning models developed to identify ILI tweets, the ELMo deep neural network model outperforms others regarding model accuracy and F-score. A heat map is generated to visualize real-time outbreaks of ILI in the U.S.A.

Share

COinS