Faculty Mentor

Dr. Jenifer Walke

Document Type

Poster

Publication Date

Spring 5-27-2020

Department

Biology

Abstract

According to the Centers for Disease Control and Prevention, a US citizen is infected by an antibiotic-resistant pathogen every 11 seconds, and every 15 minutes, a patient dies as a result of these infections. Due to the increasing incidence of antibiotic-resistant pathogenic microbes, the study and exploration of novel antibiotics from novel environments are imperative as infectious diseases are the second leading cause of death in the United States. The purpose of this research is to investigate and analyze antibiotic-producing soil microbes in Spokane County, WA, with hopes of discovering novel antibiotic-producing microbes, specifically Streptomyces species, and explore some of the variables that influence the production of secondary metabolites. My hypotheses are as follows: Soil microbes existing in Spokane County will include Streptomyces spp. capable of producing secondary metabolites suitable to combat selected Gram-negative or Gram-positive bacterial ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and pathogenic fungi such as Candida albicans. Additionally, modifying laboratory variables such as incubation temperature, time in incubation, and the type of media will influence the production of metabolites produced by Streptomyces isolates. Modifying these variables will impact the inhibitory capabilities of these isolates against Gram-negative, Gram-positive, and pathogenic fungal microbes. Cell-free supernatants of secondary metabolites on disk diffusion and 96 well plate assays will be utilized to measure zones of inhibition and inhibitory capabilities with absorbance measured at 600nm using a spectrophotometer.

COinS