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ABSTRACT 

 

EFFECTS OF NUTRITION ON HONEY BEE GUT MICROBIOLOGY, DISEASE 

OCCURRENCE, AND HIVE GROWTH 

By 

Shelby P. Fettig 

Spring 2021 

 

Honey bees (Apis mellifera) are major pollinators of many food crops, but unfortunately, 

population declines are threatening global food security and ecosystem health. Honey bees are 

under multiple stressors, such as poor nutrition, parasitic mites, and pathogens. Similar to 

human health, the gut microbiome of the honey bee is hypothesized to affect bee’s overall 

health by supporting host metabolism and immune system. However, it’s not clear how 

stressors impact gut microbiome, and thus health, of bees. Nutritional supplementation could 

mitigate negative effects of stressors, particularly for bees that don’t have access to diverse 

floral resources. In this study, I conducted a one-year field experiment on 16 honey bee hives at 

two locations in eastern Washington to evaluate how nutritional supplementation impacts gut 

bacterial community structure and function, disease occurrence, and overall colony health. The 

supplementation was mixed in 1:1 sugar-water and mimicked nectar and pollen, consisting of 

protein, vitamins, and minerals. Control hives were fed 1:1 sugar-water only. To assess gut 

bacterial community structure before, during, and after feeding treatments, I used 16S rRNA 
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gene amplicon sequencing on the Illumina MiSeq using primers 515F+barcode and 926R. The 

bioinformatic programs Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) were used to 

analyze how nutritional supplementation affected gut microbiome community structure and 

predicted function, respectively. Additionally, hives were weighed routinely to determine 

colony growth/productivity. For a subset of timepoints, I screened for Varroa mites and 

microsporidian pathogen Nosema.  

While supplemental nutrition did not have an overall impact on hive health or gut 

microbiome, the gut microbiome present at the beginning of experiment correlated with hive 

survival, suggesting presence/abundance of bacteria present before hives established may have 

a long-term impact on surviving stressors (i.e. overwintering). Additionally, the gut microbiome 

was significantly different between hives that survived and those that died at the timepoint 

before death, further suggesting the microbiome may play a role in hive survival.  

With further exploration of bacteria associated with survival (i.e. knockout or 

inoculation study), a probiotic mixture could be developed and examined for positive influence 

over hive survival. 
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INTRODUCTION 

Significance: What Bees Do for Us 

The honey bee (Apis mellifera) is a major pollinator of important food crops such as 

almonds, coffee, and many types of beans, herbs, fruits, and vegetables (McGregor 1976, Stein 

et al. 2017, Garratt et al. 2018, Geslin et al. 2017, Pisanty et al. 2016, Suso et al. 2016, 

Monasterolo et al. 2015, Benjamin and Winfree 2014, Klatt et al. 2014). These food crops 

represent a multi-billion-dollar food industry and a major part of global diet; around 75% of 

agricultural crops rely on pollination by animals such as honey bees (Klein et al. 2007, Gallai et 

al. 2009). The estimated value for insect pollination in the US is more than $15 billion per year 

and nearly twelve times that globally (approx. $172 billion) (Gallai et al. 2009). More 

specifically, almond pollination relies completely on honey bees and almond production is 

valued around $5.3 billion alone (USDA, National Agricultural Statistics Service 2016).  

Without honey bees, many major food crops would be negatively affected. 

Consequently, the population decline of the honey bee also puts humans in jeopardy in both 

cultures that rely heavily on small farms kept by families and in industry-owned farms with a 

prescribed number of managed bee hives per acre. 

In addition to our dependence on bees for food crops, bees provide innumerable 

pollination services to the ecosystem. Honey bees pollinate many types of flowers all over the 

world; these pollination services are incredibly important for maintaining plant biodiversity 

(McGregor 1976).  

Lastly, honey bees serve as an opportune model organism to study the relationship 

between the host and its gut microbiome because the honey bee has a relatively simple 
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community with only eight core bacteria types in the gut (Kwong and Moran 2016, Moran 

2015). These eight types of bacteria do not vary with hive location globally and are all 

culturable, unlike human gut microbiome (Hamdi et al. 2011, Kuwahara et al. 2011, Kwong and 

Moran 2016) . Additionally, honey bees gain their gut microbiome through social contact, and 

while humans gain their first microbes during birth, human also gain microbes via social 

contact; this, in addition to the culturability of their simple gut community, the honey bee is a 

prime model organism for host, microbiome, and pathogen interaction studies (Kwong and 

Moran 2016, Moran 2015, Raymann et al. 2017). 

Hive Losses Increase Annually 

Unfortunately, bee populations are rapidly declining. According to a survey published in 

2007, honey bee populations in the United States have decreased by more than half since 1947, 

from 5.5 million managed colonies to 2.4 million (Mazer 2007). This decline is not due to lack of 

demand of honey bee pollination services; in fact, pollination needs have risen 300% since 1947 

(Potts et al. 2010) . Almond farmers are becoming concerned with honey bee population 

declines and are quickly trying to find a back-up plan, such as managed native bee hives for 

pollination (Koh et al. 2018). 

This decline in honey bee populations is influenced by a multitude of factors. Honey 

bees are under several stressors, such as malnutrition, harmful pesticides, side effects of 

antibiotics, pathogenic bacteria and fungi, and parasitic mites (Raymann et al. 2017, Carina 

Audisio 2017, Pettis et al. 2013, Erban et al. 2017, Moreira et al. 2012, Le Conte, Yves et al. 

2010). These stressors can cause widespread colonial death or colony collapse disorder (CCD) 

(Dennis and Kemp 2016). 
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Colony collapse disorder (CCD) is a condition of the colony in which the majority of the 

worker bees disappear, abandoning their queen behind with the hive (vanEngelsdorp et al. 

2009). The actual causation of CCD is unknown, but current research shows its likely a 

combination of these stressors that weakens honey bee colonies (vanEngelsdorp et al. 2009, 

Dennis and Kemp 2016). 

Since CCD was first described in 2006, populations have drastically declined even further 

annually (Kulhanek et al. 2017). During 2015-2016, annual hive loss was estimated 40.5% of 

hives, with winter at 26.9% and summer loss at 23.6%; this is the third year in a row where 

summer losses are valued close to winter losses (Kulhanek et al. 2017). This year represents one 

of the lowest hive loss years in the last decade; 2012-2013 estimated 44.8% mortality during 

winter and 25.4% summer loss with a total annual loss of 45.2%, 2013-2014 estimated 23.7% 

over winter, 19.8% over summer, and 34.1% annually, and 2014-2015 estimated 43.7% over 

winter, 43.7% over summer, and 49% annually (Seitz et al. 2016, Lee et al. 2015b, Steinhauer et 

al. 2014). Short term, hive losses fluctuate; this is thought to be due to fluctuating 

environmental conditions such as weather between different years (Potts et al. 2010). 

However, there is a long-term trend of increasing honey bee hive losses (Seitz et al. 2016).  

Major Factors of Population Declines 

Pathogens 

Honey bees are also threatened by many pathogens and parasites; these can be broken 

into four groups: bacterial diseases such as American foulbrood and European foulbrood (AFB, 

EFB), fungal diseases such as Nosema and chalk brood, parasitic mites (Varroa), and viruses like 

deformed wing virus (DWV). Here I will discuss major diseases of these categories. 
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Bacteria: 

American Foulbrood (AFB) is a highly contagious and widespread disease in honey bees 

caused by Paenibacillus larvae, a spore-forming gram-positive bacterium (Erban et al. 2017). 

This bacterium infects and kills larvae bees, digests them for nutrients, and releases spores in 

the process that nurse bees pick up when clearing the brood cell (Pellegrini et al. 2017). 

Because this can quickly wipe out an entire colony, many beekeepers attempt to use antibiotics 

such as tetracycline preventatively (Pellegrini et al. 2017).  

Fungus: 

Nosema is a parasitic microsporidian fungus that infects the gut of honey bees, causing 

increased mortality, especially in the winter, and is transmitted to other bees in the colony 

through feces and contaminated food or water (Webster et al. 2004). Nosema has shown to 

suppress honey bee immune system and change foraging behavior; this could implicate that 

Nosema increases susceptibility to other diseases (Moreira et al. 2012, Ferguson et al. 2018).  

Mites and Viruses: 

Varroa destructor is an invasive species of parasitic mites from Asia (Sammataro et al. 

2000). Alone, this mite can cause considerable damage to a honey bee colony (Le Conte et al. 

2010, Brettell and Martin 2017). V. destructor feeds on the lipids of the bee body and can cause 

a comprised immune system and, therefore, infections by secondary pathogens 

(Hamiduzzaman et al. 2017, Ramsey et al. 2019). Additionally, V. destructor acts as a vector for 

a wide range of devastating of viruses such as Deformed Wing Virus (DWV) (Le Conte et al. 

2010). Combined, V. destructor and associated viruses are grievously destructive and cause the 

death of millions of honey bee colonies worldwide (Brettell and Martin 2017). 
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Environmental changes 

Climate change: 

As climate changes globally to become warmer and drier, honey bees face several 

challenges (Le Conte and Navajas 2008). Late spring and early summertime are peak foraging 

seasons (Núñez 1976). However, with this time of year getting hotter, honey bees have to 

dedicate more time to collecting water to bring into the hive to cool by evaporation (Le Conte 

and Navajas 2008). This is problematic because spring and summer are also becoming drier. If 

there is not a good water source near the hives, bees may need to fly for miles to collect 

enough water to effectively cool the hive. This leaves less time and bees to forage for nectar 

and pollen. As a result, the hive ends up with less food hoarded for wintertime and can lead to 

overwintering starvation. 

A hot and dry climate can also halt nectar flow (Le Conte and Navajas 2008). Not only is 

this an issue for food supply, but this can also cause an increase in yellow jacket pressure 

because they, too, are desperate for a new food source; yellow jackets are aggressive honey 

robbers and can predate on honey bees (Le Conte and Navajas 2008).  

Poor nutrition: 

Bees require a complex combination of nutrients and forage for pollen, nectar, and resin 

to fulfill this nutrient need (Wright et al. 2018). Adult bees need carbohydrates and sugars 

found in nectar for foraging and thermoregulation. Nectar is stored in the hive long-term as 

honey. Larvae and developing bees need protein, fats, vitamins, and minerals, mainly found in 

pollen; however, both nectar and pollen contain a mixture of micronutrients (e.g. vitamins, 

minerals) and antimicrobial compounds (Wright et al. 2018). Pollen is stored in the hive as bee 
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bread. Plant resin is collected to make propolis, a material used for increased structural support 

and its antimicrobial properties within the hive (Wright et al. 2018).  

Poor nutrition is mainly the result of a decrease in biodiversity of plant life (Brown and 

Paxton 2009). This decrease in biodiversity is caused by a combination of environmental factors 

(e.g. climate change, urbanization, deforestation, farming monocultures, etc) (Foley et al. 

2005). In addition to decrease in biodiversity, dry weather due to climate change can halt 

nectar flow and cause a decrease in nutrient availability (Le Conte and Navajas 2008).  

Besides the obvious concern of starvation, poor nutritional availability can alter other 

factors of bee health. For example, honey bees that received pollen from a single source 

(mono-floral) were shown to have a significant decrease in immunocompetency in comparison 

to bees fed poly-floral pollen (Alaux et al. 2010). This is a significant problem when considering 

the magnitude of hives that are leased to pollinate monocultures of almonds and other crop 

foods. Furthermore, bees prefer fresh pollen sources over artificially preserved pollen sources 

(Anderson et al. 2014). A separate study showed a potential mechanism for this preference: 

pollen allowed to age can cause dysbiosis, decreased development, and increased mortality 

(Maes et al. 2016). Nutrition, commensal gut microbes, and general health of honey bees seem 

to be highly connected in relation to survival and susceptibility to disease.  

Gut Microbiome in Relation to Health and Nutrition 

We know microbes are essential to nearly all animal life (Zilber-Rosenberg and 

Rosenberg 2008). Commensal microbes play many different roles in health overall such as 

protection against pathogens (directly by taking up space and producing antimicrobial 

compounds and indirectly by stimulating host immune system), protection from allergies and 
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auto immune diseases by training the immune system, metabolizing food products into usable 

nutrients, producing chemicals to stimulate metabolic rates, detoxifying metabolic biproducts, 

and synthesizing vitamins and other molecules such as neurotransmitters (Dorrestein et al. 

2014, Flint et al. 2012).  

Just as we have found it so in animal health, the gut microbiome of honey bees affects 

the honey bee’s overall health, immune system, and efficiency as a hive (Kwong and Moran 

2016, Engel and Moran 2013). Worker honey bees have eight core bacterial groups living in 

their gut that do not change with hive location globally (Kwong and Moran 2016, Schwarz et al. 

2015, Hamdi et al. 2011). Honey bee gut microbes are transmitted through socialization with 

other bees in the colony or picked up from outside environments (i.e. flowers) (Kwong and 

Moran 2016). Because of these similarities between human and honey bee gut microbiome and 

due to the simple community that colonizes honey bees, honey bees can be used as a model 

organism for better understanding host-microbiome interactions (Zheng et al. 2018). 

The eight core bacterial groups consist of Bartonella apis, Parasaccharibacter apium, 

Frischella perrara, Snodgrella alvi, Gilliamella apicola, Bifidobacterium spp., and two groups of 

Lactobacillus (Firm-4 and Firm-5). G. apicola is the most abundant bacterium in honey bee guts 

and is important for metabolism of important nutrients; this bacterium is able to degrade and 

process carbohydrates, including pectin found in pollen cell walls and complex carbohydrates 

that would otherwise become toxic for bees (Kwong et al. 2014, Zheng et al. 2016). S. alvi also 

aids in metabolism of nutrients; it processes the bi-products from G. apicola’s metabolism of 

complex carbohydrates. Additionally, S. alvi secretes a biofilm that prevents occupation of the 

gut by potential pathogens (Kwong and Moran 2016). B. apis, first described in 2016, has an 
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unknown function to honey bee health (Kekerova et al. 2016). P. apium and F. perrara are both 

bacteria that can be found within the hive environment; function of P. apium is not well 

understood but F. perrara is believed to be an opportunistic pathogen correlated with a 

decrease in S. alvi, increased Nosema infection, and immune-linked scabbing of the midgut 

(Maes et al. 2016, Engel et al. 2015, Engel and Moran 2013). Bifidobacterium and Lactobacillus 

are also found in human gut microbiome and are commonly found in probiotic mixtures; in 

honey bees, Bifidobacterium is associated with an increase in host-derived signaling molecules 

such as prostaglandins, potentially stimulating inflammation or regulating growth hormones 

(Kesnerova et al. 2017, Zheng et al. 2017). Lastly, Lactobacillus is a lactic acid fermenter that is 

helpful for metabolism of nutrients and secretion of enzymes and vitamins (Kesnerova et al. 

2017). 

Because so many bacterial groups of the honey bee core gut microbiome assist with 

metabolism of nutrients, disturbance to this core (i.e. dysbiosis) can potentially facilitate poor 

nutrition conditions by lack of metabolic support and nutrient synthesis. Furthermore, dysbiosis 

has been shown to occur with each stressor (described in above section) that honey bees face 

(Hamdi et al. 2011, Raymann et al. 2017, Erban et al. 2017, Moreira et al. 2012, Kakumanu et al. 

2016, Maes et al. 2016). 

Gut Microbiome supports metabolism and synthesizes nutrients 

Microbes have been shown to digest materials that bees are not able to, such as the cell 

wall of pollen spores and sugars that can be toxic to bees when built up in the body (Kwong and 

Moran 2016, Zheng et al. 2016, Engel et al. 2012). Honey bee gut microbiome also assists with 

metabolism of saccharides, a major part of honey bee diet found in nectar and honey (Lee et al. 
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2015a). Furthermore, the gut microbiome has been found to promote host weight gain through 

metabolism of nutrients and hormone-mediated changes in the host’s metabolism (Zheng et al. 

2017). Specific bacterial groups such as Bifidobacterium asteroides have been identified to 

promote these hormone-mediated changes while groups such as Lactobacilli are associated 

with high metabolic output; both are associated with host weight gain (Kesnerova et al. 2017). 

Honey bee gut microbes secrete important micronutrients such B vitamins that support 

metabolism (Wright et al. 2018). Additionally, gut microbes help with processing foraged 

materials such as nectar and pollen into more nutritious materials for long-term storage. 

Specifically, Lactobacillus regurgitated with pollen and nectar into storage cells enrich the food 

with vitamin K (Arathi et al. 2018). 

Gut Microbiome supports immune system 

Gut microbiome helps educate immune system to better identify future pathogens and 

amount a good immune response (Kwong et al. 2017). This is thought to be similar to the 

education of mammal’s immune system by pathogen-associated molecular patterns (PAMPs), 

suggesting convergent evolution of the immune system between insects and mammals, 

although the mechanism in insects is still poorly understood (Kwong et al. 2017, Schmid-

Hempel 2005). Presence of commensal microbes also helps stimulate the production of 

antimicrobial peptides (AMPs) and other major host immune responses (e.g. lysozyme, 

proteolytic, hydrolytic enzymes, etc) (Kwong et al. 2017, Schmid-Hempel 2005). Interestingly, 

the majority of these immune response molecules are produced in the fat bodies of the bees, 

which has remarkable implications regarding immunocompetence during Varroa mite 
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infestation now that we know the Varroa mite feeds mainly on fat bodies (Schmid-Hempel 

2005, Ramsey et al. 2019).    

Several studies have shown a correlation between higher infection rates of various 

pathogens and an alteration gut microbiome, either in number or species. For example, both 

diet-related and pesticide-related dysbiosis have been shown to correlate with increased 

Nosema susceptibility and mortality rates (Pettis et al. 2013, Maes et al. 2016f). The mechanism 

of protection that the gut microbiome confers to honey bees against Nosema is not yet 

understood, but since Nosema induces immunosuppression in honey bees, it is likely that the 

gut microbiomes help stimulate the host’s innate immune system to recognize Nosema 

(Glavinic et al. 2017). Another explanation could be provided by two core bacterial groups, 

Snodgrassella and Gilliamella. These two bacterial groups are both sugar fermenters, facilitating 

in host’s metabolism of nutrients, but they may also confer pathogen resistance by secreting a 

biofilm within the honey bee midgut, likely preventing gut pathogens from growing and causing 

disease (Kwong and Moran 2016, Engel et al. 2012). 

Combined Effects of Poor Nutrition and Dysbiosis 

Poor nutrient availability or quality can lead to a decrease in available energy, time, and 

resources for honey bees. This creates an intricate feedback loop with many factors. 

Malnourished bees would not have the energy required for sufficient immune response to 

pathogens (Alaux et al. 2010). Bees would not have the nutrients needed to develop to a proper 

body size, which creates weak bees that often are cannibalized as larvae or die under frequent 

stressors (Brodschneider and Crailsheim 2010). Productivity would potentially be decreased 

among all social castes without energy (queen does not lay enough brood, nurse bees do not 
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feed enough bees, cell cleaners fail at keeping up basic hygiene standards, foragers do not 

collect enough food, guards cannot keep out robbers, etc), although productivity and 

nutritional stress has not been explored exclusively (Wright et al. 2018, Brodschneider and 

Crailsheim 2010). The hive would not be able to properly regulate temperature in the hive; in 

the summer, bees would not have the time or energy to collect water to cool the hive without 

proper nutrition and in the winter, bees would not have the energy to “shiver” wings to warm 

the winter cluster (Wright et al. 2018). Poor nutrition can also lead to dysbiosis; gut microbes 

therefore will not be able to supplement metabolism, stimulate the host immune system, or 

inhibit pathogens. Therefore, dysbiosis feeds back into this cycle of malnutrition and 

susceptibility to disease (Maes et al. 2016). All of these factors work together and cause enough 

stress for a colony to collapse.  

Nutritional Supplementation 

 Nutrition supplementation could be the solution to breaking this cycle of malnutrition 

and disease. Beekeepers commonly feed their hives a sugar-water mixture during times of 

nutrient stress, but a simple sugar mixture doesn’t include all the complex micronutrients that 

nectar contains (Wright et al. 2018). Similarly, a common pollen substitute that contains only 

protein cannot provide for all nutritional needs (DeGrandi-Hoffman et al. 2016). For a nutrient 

supplement to protect and fortify bees against the variety of stressors they encounter, the 

supplement needs to contain all the micronutrients they would gather from nectar and pollen 

in the wild (Dolezal and Toth 2018). There has been some research done regarding health 

benefits of nutritional supplements, but no one nutritional supplementation is the same 

between these projects (Dolezal and Toth 2018). With this in mind, as a broad statement, 
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nutritional supplements have shown to mitigate effects of some of the many of the stressors 

bees face.  

Protein supplementation in general seems to increase immunocompetency in insects 

(Lee et al. 2008). For example, one study showed that an amino acid and vitamin 

supplementation stimulated the immune system against Nosema, quantified by measuring 

immune-related peptides and number of Nosema spores (Glavinic et al. 2017). Another study 

showed that a nutritional supplement with pollen applied over winter increased queen 

productivity and the amount of brood laid in early spring in comparison to a nutritional 

supplement without pollen (Ricigliano et al. 2018).  

How does nutrient supplementation affect the gut microbiome? 

 In human systems, we know that healthy, diverse diets correlate with a functionally 

diverse microbiome (Flint et al. 2012). A functionally diverse microbiome would be expected to 

be beneficial in regard to disease susceptibility either (1) indirectly by increasing nutrient 

uptake to support a more robust immune system or (2) directly by increasing bacterial groups 

that inhibit pathogens and parasites and/or educates the immune system (Dorrestein et al. 

2014).  

There are only a few studies that examine at how various nutritional supplementation 

changes the structure of the gut microbiome in honey bees. For example, one study tested 

different syrup mixtures against honey and found an increase in Rhizobiales (the order that 

contains B. apium) and Bifidobacteria in honey and wheat starch syrup treatments in 

comparison to standard sugar water (D'Alvise et al. 2018). Another study compared foraging 

draught and supplemental flower forage during winter months and found a slight difference in 
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several bacterial taxa at one timepoint (Rothman et al. 2018). Outside of honey bees, a recent 

study using frogs showed that dietary stress early on in life only temporarily affected host 

microbiome structure but permanently affected susceptibility to parasites (Knutie et al. 2017). 

No honey bee microbiome-nutrition studies that I am aware of also include whole bacterial 

community functional diversity. 
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OBJECTIVES 

This study aimed to understand the effects of nutrient supplementation on several 

factors of honey bee health. The first chapter will focus on factors of overall hive health, such as 

honey production and hive growth, disease susceptibility, and hive survival. The second chapter 

will focus on how nutrient supplementation affects the structure and function of the honey bee 

gut microbiome. 

The first objective of chapter one is to test the effects of nutrient supplementation on 

hive efficiency and growth. My hypothesis was that supplementing hive colonies with synthetic 

nectar and pollen would increase honey production and population growth because bees would 

have direct access to nutrients that help build up honey stores, support larvae growth, and 

potentially minimize time and energy foraging for external food resources.  

My second objective of chapter one was to test the effects of nutrient supplementation 

on disease occurrence and survival rates. In fall and spring, I measured Varroa mite counts and 

Nosema levels in the hives to determine correlation of disease occurrence with treatment. 

Based on the BeeInformed US survey mentioned in the introduction, I expected hive losses over 

summer and winter, so I compared nutrient supplementation to survival rate to determine if 

supplemental nutrients would help boost overall hive strength and survival (Lee et al. 2015a). I 

hypothesized that hives fed with synthetic nectar would have a decreased susceptibility to 

disease (i.e. Varroa mites, Nosema) in hives fed synthetic nectar because additional amino acids 

and vitamins have been shown to stimulate immune function and decrease Nosema spore 

numbers (Glavinic et al. 2017). I also expected that hives fed synthetic nectar would have higher 
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survival rates during times of environmental stress (i.e. overwintering) because these hives 

would have more energy stores and a strong population in comparison to sugar-water control.  

In chapter 2, the goal was to understand the effects of nutrient supplementation on the 

structure and function of honey bee gut microbes. To do so, I examined changes in overall gut 

microbiome structure within and between samples as well as changes in the presence and 

abundance of key microbes that differ in previous nutrition and disease studies and are 

theorized to provide beneficial functions, such as decreased disease susceptibility either (1) 

indirectly by increasing nutrient uptake to support a more robust immune system or (2) directly 

by increasing bacterial groups that inhibit pathogens and parasites (i.e. Lactobacillus, 

Snodgrasella, Gilliamella, Frischella) (Kwong and Moran 2016, Lee et al. 2018, Lee et al. 2015a, 

Zheng et al. 2016, Kwong et al. 2017). I also compared changes in these key microbes against 

survival rates and hive productivity (see chapter 1 objectives). Lastly, I used predictive 

metagenomics to evaluate how the theoretical function of the microbiome changes across the 

experiment (Langille et al. 2013). I hypothesized that supplementing hive colonies with a 

mixture of sugar, water, and a select group of amino acids and vitamins that mimic naturally 

occurring pollen and nectar would have a beneficial effect on the function of the gut 

microbiome of honey bees as opposed to hives supplemented with solely sugar and water, 

specifically increasing microbial gene functions related to increased metabolism of nutrients 

and competition with pathogenic microbes. 
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CHAPTER ONE: EFFECTS OF NUTRITION ON HONEY BEE HIVE HEALTH 

Methods 

 For chapter one, I hypothesized that supplementing hive colonies with a mixture of 

sugar, water, and a select group of amino acids and vitamins that mimic naturally occurring 

pollen and nectar would one, increase honey productivity and population growth and two, 

decrease susceptibility to diseases such as Nosema and Varroa destructor mites. 

Hive set up & Treatments 

To test these hypotheses, I established apiaries at two local study sites (one site on the 

Eastern Washington University campus in Cheney, WA, and one site on private property in Four 

Lakes, WA) in April 2018. The honey bees were Carniolan bees from Olivarez Honey Bees, Inc. in 

northern California and stored in 10 frame Langstroth box hives. Honey bee hives at both 

locations were fed a supplemental mixture of either 1:1 sugar-water (‘sugar’ treatment) or 1:1 

sugar-water plus a select group of protein, vitamins, and minerals (synthetic nectar and pollen 

treatment, referred to as ‘nectar’ treatment) by adding the liquid mixture to a 1-gallon feeder 

frame located inside each hive (Figure 1.1). Each site had 8 hives, with 4 fed sugar and 4 fed 

nectar (n=16 hives total) (Table 1.1). The synthetic nectar contained nutrients commonly found 

in nectar and pollen (Table 1.2) (Brodschneider and Crailsheim 2010). Because of the diverse 

mixture of nutrients in the treatment, this study did not strive to determine which particular 

nutrient affects bee health, but rather how the combination of nutrients that mimic natural 

pollen and nectar affect bee health.  

Weekly feedings of hives occurred throughout the spring and fall seasons, from initial set up 

in April 2018 to October 2018 (Table 1.3). The duration of feeding depended on nectar flow and 
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temperature. Specifically, spring feeding began when temperatures were steadily above 45oF 

and end when flowers began to bloom (approx. April through June). Fall feeding began when 

there was a decline in bloomed flowers and ended when temperatures were steadily below 

45oF (approx. September through October) (Núñez 1976). The timing of feeding treatments was 

similar to when beekeepers feed their hives in this region. Feeding treatments are not the sole 

source of food that bees consume; feeding managed hives either experimentally or by 

beekeepers is a supplement to keep the bees from starving in times of low food availability. 

While bees are feeding on flora outside of experimental control, bees from both treatments 

have equal access to the same surrounding flora and should not affect analysis of treatment 

effects. 

As part of this experiment, treatment (Supplemental Nectar and Pollen mixture, or ‘Nectar,’ 

and Control, ‘Sugar’), location of hives, survival status of hives, hive weights, and disease 

occurrence were all evaluated. Chapter one will focus on hive health measures, such as hive 

efficiency and growth, disease occurrence of Nosema spp. and Varroa destructor mites, and 

survival status of hives throughout the experiment. Chapter two will focus on comparing the 

above variables to the gut microbiome structure and function to better understand how the 

supplemental food that honey bees eat, the location of apiaries, the survival status of hives, 

and hive weights are influenced by or change the gut microbiome.  

Hive Weight Analysis 

Hive efficiency and growth can be measured by amount of honey produced and population 

size of colony (Lecocq et al. 2015). Because this is difficult to measure objectively as individual 

variables, total increase of hive weight over time was substituted as a measure of hive 
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efficiency and population growth (Meikle and Holst 2015). Between Spring 2018 and Winter 

2018, hives were weighed approximately weekly during feeding and monthly between feedings 

using a digital vertical hanging scale. With weight measurements, honey production, pollen 

stores, and population growth can be monitored as a function of hive health. To compare hive 

weight over time and among treatments, locations, and hive survival (hives that survived, hives 

that were lost in the summer, and hives that were lost in the winter), a linear mixed effect 

model was used in R studio (version 1.1.463) with Hive ID defined as a random effect to account 

for repeated sampling. Additionally, each timepoint was analyzed separately using the non-

parametric Kruskal-Wallis test in R studio, where hive weight was compared among treatment, 

survival status, and location. The non-parametric Kruskal-Wallis test was used because the 

weight data were not normally distributed, even after log transformation. Finally, weight was 

also compared to gut microbiome structure and function (See Chapter 2).  

Disease Susceptibility 

Hive disease occurrence was measured through identification and quantification of two 

common honey bee pathogens: Nosema sp. and Varroa destructor mites.  

Hives were frequently assessed for the fungal microsporidian parasite Nosema sp. by 

visually checking for signs of disease. Because Nosema causes dysbiosis, excessive defecation at 

the entrance or interior of the hive is a sign of Nosema infection. This was checked for at each 

weight and feeding visit to the hive.  

Because hives can still have low-level Nosema infections without the visual signed, Nosema 

was checked for by visualizing homogenized bee guts under a microscope and counting spores 

with a hemocytometer (Ellis et al. 2013, Moreira et al. 2012). Samples were collected by using a 
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soft brush to push bees off of a pulled frame and into a sterile 50 mL collection tube for each 

hive. Samples were placed on ice in the field and frozen at -800C upon return to the lab until 

dissection (Kakumanu et al. 2016). Following a 30 second rinse in 5% bleach solution and two 

30 second rinses in sterile water, the whole abdomen of the bee was removed from the head 

and ground into a paste with 50 mL of distilled water. 50 bees were used in total from each hive 

analyzed. The paste was then filtered to remove any exoskeleton and centrifuged for 3.5 

minutes at 1400 rpm. The liquid was discarded and an additional 50 mL of distilled water was 

added back into the tube. The liquid and pellet were mixed via pipette and then placed onto 

the hemocytometer and visualized using a microscope. 

For PCR amplification of Nosema, bees were dissected by gently pulling on the stinger 

under sterile conditions to collect the whole gut following the rinse procedure described above. 

Five bees were pooled per hive sample to ensure true representative of a typical honey bee gut 

within the hive (Kakumanu et al. 2016). The whole guts were placed into a single sterile 1.5 mL 

microcentrifuge tube containing 180 µl lysis buffer and homogenized with a sterile pestle. DNA 

was extracted using Qiagen DNEasy Blood and Tissue Kit according to the manufacturer’s 

protocol including the lysozyme pre-treatment for Gram-positive bacteria (Walke et al. 2015). 

DNA was diluted using 200 µl of water and stored at -80OC until PCR amplification. For PCR 

amplification, general Nosema genus primers were used that could identify both Nosema apis 

and Nosema cerenae (Chen et al. 2008). Each sample was amplified in triplicate, with each PCR 

reaction containing 0.5 µl of each forward and reverse primers (10 µM), 5 µl of QuantaBio 5 

prime Taq Hotstart Master Mix, 2.6 µl of PCR grade water, 0.4 µl of Magnesium Chloride, and 1 

µl of DNA for a total of 10 µl reactions. Water was used in place of DNA template for the 
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negative controls, which were run for each sample. A positive control containing Nosema DNA 

was also run for each PCR. The PCR reactions were placed in a thermocycler with the following 

conditions: 1) 94oC for 2 minutes, 2) 94oC for 30 seconds, 3) 55oC for 1 minute, 4) 72oC for 1 

minute, 5) 72oC for 5 minutes, and 6) held at 4oC. Steps 2-4 were repeated a total of 35 times. 

Triplicate reactions for each sample were combined, and amplification was confirmed using 

1.5% agarose gel electrophoresis. Samples were considered positive for Nosema if there was a 

band that matched the band of the positive control.  

Hives were also monitored for Varroa mites once in the fall (September 2018) and once in 

the Spring (April 2019) using the ethanol roll method, where approximately 100 bees were 

collected and added to a container with a small sieve (Dietemann et al. 2013). The sieve was 

placed at the top of the container with the bottom filled with 100% ethanol. The honey bees 

were placed in the sieve portion and the whole container was shaken for approximately one 

minute. This coated the bees in ethanol and removed Varroa mites, which are small enough to 

pass through the sieve and collect in the ethanol. Even though the mites are small, they are 

bright red and easy to visually see and count once in the ethanol. Mite counts were analyzed 

against treatment and hive location in R using a two-tailed T-test and visualized using a boxplot. 

Hive Survival 

Hives were monitored during feeding and weighing to ensure than hives were healthy. To 

determine if a hive was still alive, the following factors were observed: large number of dead 

bees outside of hive, excessive drone cells in hive indicating a loss of the queen bee, presence 

of brood cells, and presence of bees within the hive.  
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 Survival rates were analyzed against treatment and location of hive using Fisher’s Exact test 

in R Studio (version 1.1.463).  

 

Results 

Hive Weight             

While all hives increased in weight over the course of the experiment (linear mixed 

effect model, all p-values < 0.05), hive weights did not differ over all time between treatments 

(Figure 1.2; linear mixed effect model, t-value = 0.62, p-value = 0.54), location (Figure 1.3; linear 

mixed effect model, t-value = -1.45, p-value = 0.17), or survival status (Figure 1.4; linear mixed 

effect model, hives lost in summer t-value = -1.85, p-value = 0.09, hives lost in winter t-value = 

1.62, p-value = 0.13). While it appeared there may be some difference between treatments at 

particular timepoints or locations based on the graphs, there was no significant difference 

(Table 1.4). 

At three timepoints early in the experiment (June 1st, June 6th, and June 12th), Red Barn 

hives were significantly heavier than those at Four Lakes (Figure 1.5, Table 1.4). Hive weights 

were not statistically different among any variables at the microbiome sampling timepoints (all 

p > 0.05, Table 1.4).  

Hive weighted differed by survival status later in the experiment on August 23rd (Figure 

1.6; Kruskal-Wallis, chi-squared = 7.67, p-value = 0.02), where hives lost in the winter were 

heavier than hives lost in the summer (Wilcoxon Pairwise Test: p-value = 0.053) but not those 

that survived (Wilcoxon Pairwise Test: p-value = 0.19). Hives that survived were also not 

significantly different than those lost over summer (Wilcoxon Pairwise Test: p-value = 0.12).   
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Disease Susceptibility 

Nosema 

Nosema infection was not detected via hemocytometer method, nor was it detected via 

PCR amplification of Nosema gene. After analyzing several key winter timepoints, it was 

determined there was likely little to no Nosema infections in either apiary. Additionally, hives 

showed no major signs of Nosema infection in the field. There was no indication of excessive 

excrement outside the entrance of the hive and, excluding the drone bees expelled from the 

hive at the beginning of winter, there was not an excessive number of dead bees found at the 

entrance of hives.  

Varroa destructor Mites 

There were no significant differences in mite counts between treatments in fall 2018 or 

the following spring (Fall: Figure 1.7, two-tailed t-test, t-value = 1.83, p-value = 0.13; Spring: 

Figure 1.8, t-value = -0.75, p-value = 0.59), or between survival status (Figure 1.9, two-tailed t-

test, t-value = 1.55, p-value = 0.2). Location of hives was not evaluated as a variable of mite 

infestation because during fall sampling, only Four Lakes hives were observed and during the 

spring sampling, Red Barn had one remaining hive, limiting sample size for statistical analysis. 

Hive Survival 

Hives were found to be dead at two separate timepoints: Once in August 2018 (referred 

to as Dead Summer, or “DeadS”) and once in March 2019 (referred to as Dead Winter, or 

“DeadW”). Six hives at Red Barn and one hive at Four Lakes were lost in August. One hive at 

Red Barn and four hives at Four Lakes were lost over winter (Table 1.5). There were no 

significant differences in survival between treatments (Fisher’s exact, p-value = 1). There was a 
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trend in which Red Barn had slightly higher hive loss during summer (Fisher’s exact, p-value = 

0.059). 

 

Discussion 

Hive Weight 
 While all hives increased in weight over the course of the experiment as they became 

established, feeding honey bees with a nutritional supplement mimicking natural pollen and 

nectar did not affect growth of hive population or honey stores, as measured by hive weight. 

This is in contrast with other published studies; for example, one study examined the effect of 

an assortment of sugar diets (e.g. sucrose, glucose, and fructose) on hive health factors and 

showed that hives fed the sucrose diet gained the most weight out of their treatment groups 

(Guler et al. 2018). Other factors that were not measured or controlled for as part of this field 

experiment could have a stronger effect on hive growth, such as water availability, external 

food sources, weather patterns, predators, and pathogens. For example, the less time honey 

bees have to dedicate to collecting water to bring into the hive to cool by evaporation, the 

more time and resources they can dedicate to foraging for nectar and pollen; therefore, if there 

is a close water resource, hives can product more honey (Le Conte and Navajas 2008). 

Additionally, honey bees were not limited to the nutrient supplementation provided; the 

nutrient supplementation was not meant to replace every nutrient the bees need but rather 

enhance natural resources. Therefore, the honey bees were still able to forage for nectar and 

pollen. It is challenging to measure what food resources the honey bees are bringing back into 

the hive and quality of food resources is important for many factors of hive health, including 

brood and honey production (Maes et al. 2016). One study in particular found that 
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supplementing hives with pollen increased brood production in young queens during the fall 

and early spring (Ricigliano et al. 2018). Because the queen bees used for this experiment were 

young queens (less than a year old), I would have expected this pattern to be present in my 

experimental hives as well. Weather patterns also influence foraging for food and water; 

drought can cause a halt in nectar flow as well as an increase in predatory insects like yellow 

jackets (Navajas 2008). These environmental factors could have had a stronger influence on 

hive growth than the nectar supplementation tested here.  

 Hives lost over winter were significantly heavier than hives lost over summer or those 

that survived the experiment. However, this pattern was only observed at a single timepoint at 

the end of August. This is likely due to two factors: first, this weight timepoint was one week 

prior to observing the loss of seven hives in summer; these hives were likely already losing a 

significant amount of population and honey stores (see survival discussion below). Second, 

hives that grow rapidly and are very heavy in summer, such as those that were lost over winter 

in this study, are subject to swarming (Rangel & Seeley 2012). Swarming events are where hive 

populations grow to exceed the size of the hive boxes and the hive splits its population, taking 

up to 75% of the bee population and the old queen to find a new home to populate. This can 

weaken a hive if swarming events occur just before winter (Rangel & Seeley 2012).  

 Location of hives is important for hive growth and production; the nutrient and water 

resources available within five miles of the hive impact honey production and brood numbers 

(Guzman et al. 2019). Hives at Red Barn were significantly heavier than the Four Lake hives at 

three timepoints during late spring (June 1st through June 12th). These hives started out strong 

with large population and honey stores and rapid growth, which led to some hives swarming 
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during early to mid-summer. This likely explains why I observed the initial hive weight 

differences, with Red Barn hives being heavier pre-swarm. It is possible the hives at Red Barn 

had better resources, such as external pollen sources and water sources in Spring and early 

summer than at Four Lakes; this would account for the difference in initial population growth 

and honey stores. Although it is difficult to account for the many confounding factors in a field 

study and to identify mechanisms explaining the observed patterns, my experiment was able to 

determine that hive weight was related to timepoint, apiary location, and survival status, but 

not my supplemental diet treatment. 

 
Disease Susceptibility 
 Nutrition plays an important role in a hive’s susceptibility to Varroa mite infestation. For 

example, previous studies have shown that the landscape around apiaries and therefore the 

floral resources available for foraging significantly influences Varroa mite infestation (Dolezal et 

al. 2016, Giacobino et al. 2017). Additionally, Varroa mite infestation has been shown to 

decrease host metabolic pathways, specifically protein metabolism, and that this is not easily 

reversible once a hive becomes infested with Varroa mites (Alaux et al. 2011). However, it 

could be that supplementing with protein prior to infestation, as I did with my nutrient 

supplementation mixture provides honey bees with the protein they need to continue to grow 

larvae and mitigate this effect of Varroa mite to allow honey bees to resist infestation. This 

could explain why there was no significant difference between treatment or survival status on 

infestation of Varroa destructor mites. Alternatively, the mite count numbers in fall were 

relatively low (0-4 mites per 100 bees) and likely not a strong selective pressure in either apiary, 

possibly due to the sugar-water feeding in the control hives; previous research has shown that 
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hives fed a sugar-water supplementation had an augmented production of host antimicrobial 

peptides, increased metabolic pathways, and increase in genes affecting honey bee longevity 

(Alaux et al. 2011). Therefore, it is possible that the sugar-water alone was enough to mitigate 

Varroa infestation. It is difficult to determine an effect of treatment on mite infestation with 

such low mite infestation. 

 Although the fungal gut pathogen Nosema was not detected at either apiary, we only 

tested for this pathogen using molecular methods in select fall and winter timepoints because 

this is when Nosema is typically most prevalent (Webster et al. 2004). It could be that Nosema 

is prevalent at different times of the year in this region than in better studied areas. Both 

species of Nosema (N. ceranae and N. apis) that infect honey bees appear to be widespread 

throughout the United States, but there is little research to support the distribution and 

prevalence of Nosema specifically in the Pacific Northwest (Grupe and Quandt 2020). More 

research across seasons and geographical locations is needed to fully understand the scope of 

Nosema infection in this region. 

Survival 
 Hive loss annually is unfortunately a common occurrence for beekeepers. During 2015-

2016, annual hive loss in the United States was estimated at 40.5% of managed hives, with 

winter losses at 26.9% and summer losses at 23.6% (Kulhanek et al. 2017). In the short term, 

hive losses fluctuate; this is thought to be due to fluctuating environmental conditions, such as 

weather between different years (Potts et al. 2010). However, there is a long-term trend of 

increasing honey bee hive losses (Seitz et al. 2016).  

Washington hives were more impacted than the United States average. Washington 

State is in the top ten states for most managed honey bee hives (Bee Informed Partnership, 
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2021). Hives in Washington state are essential for the agricultural production of apples, 

cherries, pears, and raspberries (Klein et al. 2007, USDA 2021). According to the Bee Informed 

Partnership, Washington hive loss was at 62.1% for the winter season, summer loss at 18.5%, 

and an annual average of 68.6% loss for the 2018/2019 season (Bee Informed Partnership 

2021). Hive losses can vary between specific geographical locations and hive management 

practices. For example, Western Washington sees higher precipitation rates than Eastern 

Washington, which may contribute to a higher hive loss in Eastern Washington due to longer 

periods of draught (Wise 2010). Hive management is also a critical part of hive survival. 

Placement of hives within an apiary, overwintering practices, and disease management all 

impact hive survival (Oberreiter & Brodschneider 2020).  

Hive loss between our two apiaries exceeded this average in the summer season and 

annually; in summary, 43.75% of hives were lost over summer and 55.56% of hives were lost 

over winter, for a total of 75% hive loss. Six of the seven hives lost over the summer were at the 

Red Barn apiary. As mentioned above, this is likely due to the large amount of swarming activity 

in that apiary in early summer. In late summer, this location had a large infestation of yellow 

jackets (Vespula sp.) predators; the hives were found nearly empty of honey bees with yellow 

jackets robbing whatever honey stores were left. Yellow jackets are known predators of honey 

bees, robbing honey stores when other nutrient sources are depleted (Pusceddu et al. 2018). 

The swarming activity around this timepoint likely left these hives with too small of a 

population to defend their hive from the yellow jackets. Due to the large number of hives lost 

over summer, Red Barn had slightly higher hive loss than Four Lakes.  



                                                                                                                       28 

 Over winter, hives that were heavier in the fall months were the ones that were lost. 

There could be two possible reasons for this: first, there could have been swarming activity in 

the fall that weakened the hives, or second, they had too large of a population to sustain over 

winter with the honey stores they had prepared for winter. Food storage over winter is vital for 

hive survival; honey bees need to consume honey over the winter for the energy required to 

keep their hive warm and, with no plants available for forage for nectar during the winter, it is 

important that bees have enough food storage to last through the winter months (Wright et al. 

2018). 

 Treatment did not have an effect on hive survival. This is not what I expected because 

nutrient supplementation can increase immunocompetence, brood and honey production, and 

metabolism of nutrients (Alaux et al. 2010, Dolezal & Toth 2018, Guler et al. 2008, Ricigliano et 

al. 2018). It is possible this mixture of nutrients did not contain everything needed to boost 

honey bee health, particularly regarding the protein content. The sole protein included in my 

supplement was casein; pollen protein composition is much more complex and diverse, and 

other nutrient studies generally include actual pollen samples for the protein content instead of 

isolated protein (Roulston et al. 2000, Tristchler et al. 2017). Future studies should include a 

wider range of protein available after potentially analyzing pollen protein sources locally to 

determine what honey bees in the area are consuming.  

 

 

 

 



                                                                                                                       29 

CHAPTER 2: EFFECTS OF NUTRITION ON HONEY BEE GUT BACTERIAL COMMUNITY STRUCTURE 

& FUNCTION 

Methods 

For chapter two, I hypothesized that supplementing hive colonies with a mixture of sugar, 

water, and a select group of amino acids and vitamins that mimic naturally occurring pollen and 

nectar would have a beneficial effect on the structure and function of the gut microbiome of 

honey bees.  

Honey bee samples described in this chapter are referring to the experiment and hive set up 

described in chapter one. For experimental design and set up, see chapter one. 

Sampling & Sequence Prep 

To characterize gut bacterial communities, honey bees were sampled from a brood frame to 

get a mixture of young and old bees before and after each cycle of supplemental feeding (Table 

3). Samples were collected by using a soft brush to push bees off of a pulled frame and into a 

sterile 50 mL collection tube for each hive. Samples were placed on ice in the field and frozen at 

-800C upon return to the lab until dissection (Kakumanu et al. 2016). Following a 30 second 

rinse in 5% bleach solution and two 30 second rinses in sterile water, bees were dissected by 

gently pulling on the stinger under sterile conditions to collect the whole gut. Five bees were 

pooled per hive sample to ensure true representative of a typical honey bee gut within the hive 

(Kakumanu et al. 2016). The whole guts were placed into a single sterile 1.5 mL microcentrifuge 

tube containing 180 µl lysis buffer and homogenized with a sterile pestle. DNA was extracted 

using Qiagen DNEasy Blood and Tissue Kit according to the manufacturer’s protocol including 
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the lysozyme pre-treatment for Gram-positive bacteria (Walke et al. 2015). DNA was eluted 

from collection filter using 200 µl of water and stored at -80OC until PCR amplification.  

The V4-V5 regions of the 16S rRNA gene were amplified with PCR using barcoded-515F and 

926R primers (primer sequences without linker, pad, barcode, or Illumina adaptor: forward 

sequence: GTGYCAGCMGCCGCGGTAA, reverse sequence: CCGYCAATTYMTTTRAGTTT) following 

the 16S Illumina amplicon protocol from the Earth Microbiome Project (EMP) (Walters et al. 

2016, Parada et al. 2016). These primers were selected because they amplify the portion of the 

16S rRNA gene in bacteria that has conserved regions for the primers to bind, but also hyper-

variable regions within the amplified fragments to identify different types of bacteria in the 

community. The amplicons were also barcoded on the forward primer so that samples may be 

tagged with unique barcode sequences per sample and multiplexed for sequencing process. 

Following sequencing, samples can be demultiplexed and identified using the barcode in the 

bioinformatic data analysis steps.  

Each sample was amplified in triplicate, with each PCR reaction containing 2µl of each 

forward and reverse primers (10 µM), 10 µl of QuantaBio 5 prime Taq Hotstart Master Mix, 12 

µl of PCR grade water, and 2 µl of DNA template diluted with molecular water 1:10 for a total of 

25 µl reactions. Water was used in place of DNA template for the negative controls, which were 

run for each sample. The PCR reactions were placed in a thermocycler with the following 

conditions: 1) 94oC for 3 minutes, 2) 94oC for 45 seconds, 3) 50oC for 1 minute, 4) 72oC for 1.5 

minutes, 5) 72oC for 10 minutes, and 6) held at 4oC. Steps 2-4 were repeated a total of 35 times. 

Triplicate reactions for each sample were combined, and amplification was confirmed using 

1.5% agarose gel electrophoresis. DNA concentration of each sample was measured using a 
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Qubit 4.0 fluorometer with the dsDNA High Sensitivity assay kit, and samples were pooled in 

equimolar concentrations into a sterile 1.5 mL tube. Finally, the pooled sample was cleaned 

using the Qiagen QIAquick PCR Clean Up Kit. The final concentration of the pooled, cleaned 

sample was measured with the Qubit fluorometer at 42.1 ng/µl. To characterize the structure 

of the gut bacterial community, DNA was sequenced in January 2019 by Dana-Farber Cancer 

Institute at Harvard University using a 250 base pairs (bp) paired-end approach on the Illumina 

MiSeq platform (Caporaso et al. 2011).  

Importing Data and Initial Filtering 

DNA sequence data was processed with the bioinformatics program Quantitative 

Insights into Microbial Ecology 2 (MacQIIME v2-2019.1) for gut microbiome community 

structure analysis (Bolyen et al. 2020). Data was imported into QIIME2 using the import plugin 

with a manifest file and type parameter “SampleData[PairedEndSequncesWithQuality]”. Initial 

filtering steps included QIIME plugin DADA2 (Callahan et al. 2016) and filtering of mitochondria, 

chloroplast, and unassigned sequences. DADA2 was used for quality control of sequencing data 

because it is customizable for where to trim reads on either end based on quality scores and is 

the only quality filtering plugin available with QIIME2 that supports paired end sequences. Trim 

location of read was chosen based off of mean quality score of each base pair (Figure 2.1). 

Forward reads were trimmed at 12 base pairs at 5’ end and 228 base pairs at 3’ end. Reverse 

reads were trimmed at 13 base pairs at 5’ end and 217 base pairs at 3’ end. 

After initial filtering steps, number of reads in each sample sequences were analyzed. 

One sample (nectar replicate from Four Lakes in September timepoint) was removed from the 

study due to extremely low sequence counts; the sample amplified only two sequences. 
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Sequence counts per sample ranged from 30,834 to 125,576, with a total sequence count of 

3,438,513 and a mean of 61,971.5 sequences per sample. Across all samples, these sequences 

were clustered into 339 unique operational taxonomic units (OTUs) based on 100% sequence 

similarity. Samples were then visualized via alpha rarefaction plugin, which graphically shows 

the number of sequences needed to accurately capture bacterial diversity within each sample 

(Figure 2.2). Based on this, the data were rarefied at 30,834 sequences per sample to 

standardize the sequencing depth (and thus the sampling effort) per sample. This value was 

chosen to capture the maximum amount of diversity without losing any further samples. 

Phylogenetic Tree 

The phylogenetic tree was made using align-to-tree-mafft-fasttree QIIME plugin (Katoh 

& Standley 2013). This plugin creates a phylogenetic tree by first aligning sequences using 

MAFFT and masking any phylogenetic uninformative or unassigned sequences. From there it 

creates a tree by inferring a midpoint based on the longest tip-to-distance unrooted tree. For 

further analysis, the masked, rooted tree from this plugin was used. 

Taxonomy 

Taxonomy was assigned using a custom classifier trained for 515F-926R primers using 

the Silva 16S database v132 99% OTUs reference sequences pre-processed by QIIME to remove 

any ambiguous sequences, replicated taxonomy, or errors (Glöckner et al. 2017). Reads for the 

515F-926R primer set were extracted using feature-classifier extract-reads QIIME plugin and 

classified using the classify-sklearn naïve Bayes taxonomy classifier plugin (Bokulich et al. 2018).  

After all filtering was complete, the diversity core-metrics-phylogenetic plugin was used 

to calculate four alpha diversity metrics (observed OTUs, Shannon, Evenness, Faith’s 
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Phylogenetic diversity) and four beta diversity metrics (Bray Curtis, Jaccard, Unweighted 

Unifrac, Weighted Unifrac). Because the following statistics used for both alpha and beta 

diversity do not take into consideration repeat sampling of hives over time, samples were 

analyzed per timepoint separately.  

Alpha Diversity 

Alpha diversity is the measure of diversity within a particular ecosystem, in this case the 

honey bee gut microbiome, measured by the number or abundance of each species. The QIIME 

core-metrics-phylogeny plugin results in four different alpha diversity metrics, allowing a range 

of quantitative and qualitative analyses. Observed OTUs measures the number of distinct OTUs 

within a sample, defined as richness. Pielou’s evenness measures the relative abundance of 

each OTU, defined as evenness. Shannon diversity metric measures both the richness and 

evenness. Finally, Faith’s phylogenetic diversity measures richness and abundance with 

consideration for the phylogenetic relatedness of each OTU. 

To analyze the effects of treatment, location, survival status, and hive weight on each of 

these four alpha diversity metrics, the diversity alpha-group-significance plugin was used to 

analyze categorical data (Treatment, Location, Status) and the diversity alpha-correlation plugin 

was used to analyze continuous data (Weight). The alpha-group-significance plugin uses a 

Kruskal-Wallis test to test for differences in alpha diversity among variables and is visualized 

with box plots, while the alpha-correlation plugin utilizes Spearman rank test and is visualized 

using scatter plots.  

Beta Diversity 
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Beta diversity is a measure of species diversity between ecosystems, testing differences 

in microbiome composition and structure between variables. The QIIME diversity core-metrics-

phylogeny plugin results in four beta diversity metrics: Bray-Curtis, Jaccard, Weighted Unifrac, 

and Unweighted Unifrac. Jaccard and Unweighted Unifrac compare OTUs between two groups 

based on presence/absence of species, while Bray Curtis and Weighted Unifrac compare both 

presence/absence and abundance of OTUs in each ecosystem, or bee gut sample. The weighted 

and unweighted Unifrac metrics both additionally consider phylogeny of OTUs. Utilizing all four 

beta diversity metrics is vital for observing if significant changes in bacterial diversity between 

communities are driven by simple presence/absence of a bacterial group or if this change is 

driven by relative abundance and relatedness of these bacterial groups as well. 

To analyze these four beta diversity metrics, I used a permutational multivariate analysis 

of variance (PERMANOVA) on each distance or similarity matrix via the diversity beta-group-

significance plugin in QIIME to test for differences in microbiome structure between 

treatments, location of apiaries, and survival status. To test for a correlation between hive 

weight and microbiome structure, I used a Mantel correlation test on each distance/similarity 

matrix via the diversity beta-correlation plugin in QIIME. Both tests were visualized using a 

principal coordinate analysis (PCoA) using QIIME emperor plot function.  

Relative Abundance of Bacterial Groups 

To test for differences in relative abundances of bacterial genera between variables, 

Linear Discriminant Analysis Effect Size (LEfSe) was used (Segata et al. 2011). This application 

compares the relative abundance of OTUs between variable groups, determining if an OTU is 

higher abundance or unique to a particular group by first running the data set with a non-
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parametric Kruskal-Wallis test to determine bacterial groups with significantly different relative 

abundances by variable of interest. Any significant bacterial groups are then analyzed using a 

linear discriminant analysis (LDA) to determine the effect size of each group (Segata et al. 

2011). Additionally, relative abundance was visualized with taxa bar plot QIIME plugin. 

Bacterial Community Function 

To infer what kind of functionality the bacterial community may provide to the honey 

bee gut, and how this potential function varies by treatment, the QIIME plugin Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used. This 

approach identifies theoretical community function analysis based off predictive metagenomic 

profiling of the 16s rRNA gene (Langille et al. 2013).  

The program Statistical Analysis of Metagenomic Profiles (STAMP) was used to analyze 

the PICRUSt output data (Parks et al. 2014). This program analyzes the relative abundances of 

predicted genes between variables using the non-parametric statistical test Kruskal-Wallis with 

Bonferroni p-value correction as well as a Games-Howell post-hoc test for multiple group 

variables and White’s non-parametric t-test for two group variables with a bootstrap 

confidence interval. 

These tools will help identify how bacterial communities differ in composition and 

function between treatments to better understand which bacterial groups may correlate with 

nutrient uptake, hive efficiency, and survival under stress. 
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Results 

Alpha Diversity 
Treatment (Nectar vs Sugar), Location 

There were no significant differences at any timepoint when comparing bacterial 

communities between the two treatments (Nectar and Sugar) or hive location across all four 

alpha diversity metrics (Table 2.1, all p > 0.05). 

Hive Weight 

Bacterial diversity was significantly negatively correlated with both hive weight 

(observed OTUs, Figure 2.3, rs = -0.93, p-value = 0.007 and Shannon, Figure 2.4, rs = -0.83, p-

value = 0.004) and percent weight gain (observed OTUs, Figure 2.5, rs = -0.99, p-value = 0.0003) 

at the September timepoint, where heavier hives had lower bacterial community diversity than 

lighter hives. There were no correlations between weight or weight gain and bacterial diversity 

at the May, April, August, or October timepoints (Table 2.1, all p > 0.05).  

Status (Alive vs Dead Winter vs Dead Summer) 

During May, hives that died later in the summer had significantly lower diversity than 

those that survived the experiment (observed OTUs, H = 4.03, p-value = 0.045) and those that 

were lost over winter (observed OTUs, Figure 2.6, H = 6.90, p-value = 0.0086). Hives lost over 

winter and hives that survived were not significantly different (observed OTUS, Kruskal-Wallis, 

H = 0.009, p-value = 0.92). Similarly, at the October timepoint, hives lost over winter had 

significantly lower diversity that hives that survived the winter (Faith’s phylogenetic diversity, 

Figure 2.7, H = 6, p-value = 0.014). At the timepoints in April, August, and September, there 

were no differences among survival status for the four alpha diversity metrics (Table 2.1, all p > 

0.05).  
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Beta Diversity 
Treatment 

Treatment did not influence the bacterial community structure across all four beta 

diversity metrics across all timepoints (Figure 2.8, PERMANOVA, all p > 0.05).  

Location 
 Bacterial community structure did not differ between apiary locations at the April or 

May timepoints (Figure 2.9, PERMANOVA, all p > 0.05); September timepoint was not analyzed 

as only Four Lake hives were sampled, and August and October timepoints were excluded due 

to the fact there were only two hives remaining at Red Barn at those timepoints.  

Weight 
 Hive weight did not correlate with microbiome composition at any of the five timepoints 

(Table 2.2, Mantel Correlation Test, all p > 0.05). 

Status 
 Survival status of hives had significantly different microbiomes at several timepoints. 

Interestingly, in April at the start of the experiment, all three survival statuses had significantly 

different microbiome structures (Bray-Curtis, Figure 2.10, pseudo-F = 1.98, p-value = 0.025). 

Although not significant, hives that survived tended to be more similar to those lost in winter 

(Bray-Curtis, pseudo-F = 1.9, p-value = 0.095) than those lost in summer (Bray-Curtis, pseudo-F 

= 2.08, p-value = 0.073) when compared pairwise. Hives lost over winter differed most from 

hives lost over summer (Bray-Curtis, pseudo-F = 1.94, p-value = 0.033).  

There was a similar pattern at the May timepoint. Hive survival status had significantly 

different microbiome composition overall (Jaccard, Figure 2.11, pseudo-F = 1.34, p-value = 

0.047). Pairwise, there were no significant differences or potential trends, except again when 

comparing hives lost over summer to hives lost over winter (Jaccard, pseudo-F = 1.43, p-value = 

0.063). 
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 In August, hives that survived and those that were lost over winter had statistically 

different microbiome compositions (Jaccard, Figure 2.12, pseudo-F = 1.4, p-value = 0.044). This 

microbiome sampling was taken after hives had died over summer. There were no significant 

differences at the September timepoint in regard to survival status. Similar to the August 

timepoint, in October leading up to the winter, hives lost over winter had significantly different 

microbiome composition than hives that survived (Unweighted Unifrac, Figure 2.13, pseudo-F = 

2.54, p-value = 0.023).   

Relative Abundance by Bacterial Genus 
   
 Overall, there were 339 unique bacterial groups (100% OTUs) found across all samples. 

The genus Lactobacillus was the most abundant across all samples, ranging from 93% to 41% 

relative abundance with a mean relative abundance of 71%. Gilliamella (mean 12%), 

Snodgrasella (mean 11%), Commensalibacter (mean 2%), Bifidobacterium (mean 1%), 

Bartonella (mean 1%), and Frischella (mean 1%) were also present in all samples in relatively 

high abundance (Figure 2.14).  

Treatment  
 At the May timepoint, Arsenophonus was significantly higher in Nectar treated hives 

than Sugar treated hives (Figure 2.15, Nectar Mean = 2.6%, Sugar Mean = 0%, LDA = 4.45, p-

value = 0.011). In August, Commensalibacter was significantly higher in Sugar hives, although it 

was in low relative abundance overall in both treatments (Figure 2.16, Nectar Mean = 0.15%, 

Sugar Mean = 0.54%, LDA = 3.66, p-value 0.027). Treatment had no effect on relative 

abundance of bacterial groups at the April, September, or October timepoints (all p > 0.05). 

Location  
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 At the August timepoint, three bacterial genera had higher relative abundances at Red 

Barn than Four lakes: Gilliamella (Figure 2.17, Four Lakes mean = 12.8%, Red Barn mean = 

20.7%, LDA = 4.66, p-value = 0.04), Snodgrasella (Figure 2.18, Four Lakes mean = 7.7%, Red Barn 

mean = 18.2%, LDA = 4.78, p-value = 0.04), and Pseudomonas (Figure 2.19, Four Lakes mean = 

0%, Red Barn mean = 0.43%, LDA = 3.97, p-value = 0.005); additionally, Lactobacillus was higher 

at Four Lakes than Red Barn at this timepoint (Figure 2.20, Four Lakes mean = 75%, Red Barn 

mean = 52%, LDA = 5.05, p-value = 0.04). 

 In October, there were two genera that were higher in relative abundances at Red Barn 

than Four Lakes: Arsenophonus (Figure 2.21, Four Lakes mean = 0%, Red Barn mean = 0.017%, 

LDA = 4.85, p-value = 0.005) and Bartonella (Figure 2.22, Four Lakes mean = 1.3%, Red Barn 

mean = 15%, LDA = 4.85, p-value = 0.04).  

 There were no differences in bacterial relative abundances between locations at the 

April and May timepoints (all p-values > 0.05). The September timepoint was not included as 

there was only one location sampled.  

Status 
Interestingly, at the April timepoint, Snodgrasella was higher in hives that survived the 

experiment than those that died over summer or over winter (Figure 2.23, Alive mean = 12.5%, 

Dead Summer mean = 5.7%, Dead Winter mean = 7.8%, LDA = 4.81, p-value = 0.043).  

In September, Providencia was higher in hives that survived the experiment than those 

lost over winter, although its relative abundance was very low (Figure 2.24, Alive mean = 0.02%, 

Dead Winter mean = 0%, LDA = 2.35, p-value = 0.049). 

 
Community Function 
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 In total, there were 263 predicted functions observed across all samples. There were no 

functions significantly associated with treatment, location, or survival status across all 

timepoints (all p-values > 0.05).  

 

Discussion 

Gut Microbiome Structure 
 

The most abundant bacterial groups across all samples were Lactobacillus, Gilliamella, 

Snodgrasella, Bifidobacterium, and Commensalibacter. This group of genera, outside of 

Commensalibacter, is commonly found as the core group in honey bee gut microbiome (Kwong 

& Moran 2016). Commensalibacter is usually not a genus associated with the core honey bee 

gut microbiome, meaning that it is not a member of the eight bacterial groups always present 

in the gut regardless of time of year or diet, but is still commonly found in the gut and generally 

fluctuates throughout seasons (Kwong & Moran 2016).  

Treatment 
The nectar supplementation treatment had no significant effects on overall gut 

microbiome structure. However, when examining the relative abundances of particular 

bacterial taxa, there were patterns of differential abundances between treatments. In May, 

there was a higher abundance of the bacterium Arsenophonus in the nectar-treated hives, 

although this genus was still in low abundance overall in the community (2.6% mean in nectar 

hives and 0% mean in sugar hives). Interestingly, this bacterium is thought to be a pathogen 

transmitted by Varroa destructor mites (Yanez et al. 2016). Arsenophonus has been found to be 

more abundant in hives with symptoms of colony collapse disorder; this may be due to the 

correlation with Varroa destructor mites (Yanez et al. 2016). Seasonally, Arsenophonus is 
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typically lower in spring and fall and peaks in abundance in summer, following seasonality of 

Varroa mites (Drew et al. 2021). Unfortunately, we were unable to evaluate the relationship 

between the abundance of this bacterium and Varroa infestation since we did not take mite 

counts at this timepoint. While it is unreasonable to assess this relationship without Varroa 

mite counts, this could suggest an increased number of Varroa mites in nectar treated hives at 

this timepoint.  

In August, Commensalibacter was significantly higher in sugar-treated hives than nectar-

treated hives. Commensalibacter is a genus of acetic acid bacteria (AAB) that ferment sugars; as 

such, this bacterial group is reasonably more abundant with more sugar present (Crotti et al. 

2010). However, with sugar also a main ingredient in the nectar treatment, I would expect 

there to be no difference between treatments. Potentially, this bacterium was limited by other 

bacteria that could metabolize the additional nutrients present. 

Other studies that have evaluated the impact of nutrition on gut microbiome 

composition have found that members of the core microbiome differ between 

supplementation and control. A study by Rothman et al. found that Gilliamella, Lactobacillus, 

and Bartonella decreased with supplemental forage in comparison to the control (Rothman et 

al. 2018). This is interesting because all three are associated with metabolizing key nutrients of 

honey bee diet such as carbohydrates and degradation of pollen. Another study evaluated the 

influence of syrup mixtures against honey as a nutritional supplementation and found an 

increase in Rhizobiales (the order that contains Bartonella apis) and Bifidobacteria in honey and 

wheat starch syrup treatments in comparison to standard sugar water (D'Alvise et al. 2018). I 

would have expected a similar pattern with my experiment because there are more nutrients 
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available to digest in my nutrient supplementation, bacteria that support the metabolism of 

nutrients such as Gilliamella, Snodgrasella, and Lactobacillus would be increased with nutrient 

supplementation (Kwong and Moran 2016, Lee et al. 2018, Lee et al. 2015a, Zheng et al. 2016, 

Kwong et al. 2017).  

For future studies, the nutrient composition of supplemental feed should be further 

evaluated in a controlled setting such as a cage experiment with nutrients broken down into 

smaller categories. This would allow for a more precise evaluation of which nutrients fortify 

honey bee health best before nutrients are combined into a single supplementation and 

provided to whole honey bee hives. 

Location 
 For the first four months of the experiment, the gut microbiomes of bees at the two 

apiaries did not differ. In August and October, there were several bacterial groups that differed 

in relative abundance between the two apiary locations. However, there was a low sample size 

at these two timepoints because there were only two hives remaining at Red Barn. While this 

limits the validity of the statistics, there was a large difference in relative abundances in 

bacterial groups between locations that it merits mentioning. Additionally, the gut microbiome 

is known to differ spatially; this is likely due to the landscape around the hives and as such 

where the honey bees are foraging for food and water (Donkersley et al. 2018). Thus, it is 

expected that the gut microbiome will differ between apiary locations. 

Survival Status 
 Interestingly, hive survival was correlated with several aspects of the honey bee gut 

microbiome. First, hives that survived the experiment had significantly higher bacterial diversity 

than those that did not survive, at the sampling timepoint before they were discovered dead, 
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both in May before summer hives were discovered dead and in October before winter hives 

were discovered dead. This could mean that a more diverse gut microbiome has some benefit 

that allows honey bees to survive stressors. A diverse gut microbiome is important for honey 

bee health because each bacterium has a function to contribute to factors of health such as 

metabolic activity and immune response; these bacteria work together to create a working 

ecosystem of symbiotic functions that assist with host health (Kesnerova et al. 2017). This 

pattern is also seen in human gut microbiome and is associated with a diverse diet (Heiman & 

Greenway 2016). Additionally, a diverse skin microbiome has been found to decrease disease 

intensity and prevalence by pathogenic fungi in amphibians (Walke et al. 2017), trout (Lowrey 

et al. 2015), and bats (Lemieux-Labonte et al. 2017); this pattern could also apply to pathogens 

that infect the honey bee gut such as the microsporidian fungi Nosema. 

In addition, survival status of hives was correlated with different microbiome 

communities at several timepoints (April, May, August, and October). Interestingly, this 

“survival microbiome biomarker” was detected as soon as the first sampling timepoint in April, 

taken before hives were introduced into their new homes. However, it is important to note that 

this distinct gut microbiome structure between survival status groups was not significant across 

the same beta diversity metrics over time. In April, the Bray-Curtis metric detected these 

differences, while the Jaccard metric detected differences in May and August, and, finally, the 

Unweighted Unifrac metric detected differences in October. This suggests that in the beginning 

of the experiment, when hives arrived from the initial single apiary, the actual composition was 

similar, but the relative abundance of particular bacterial groups, such as Snodgrasella, differed 

and was an important distinguishing factor for hive health. Later in the experiment, the 
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composition shifted, indicated by Jaccard and unweighted UniFrac being different, with 

members of the community either being lost or gained, and this had an impact on ultimate hive 

survival.  

Interestingly, Snodgrasella had higher relative abundance in April in hives that ended up 

surviving the experiment. Snodgrasella is recognized as a core honey bee gut microbe and is 

involved with downstream metabolism of sugar byproducts such as carboxylates (Moran 2015). 

Additionally, Snodgrasella is associated with higher survival rates when exposed in vitro to the 

pathogen Escherichia coli (Kwong et al. 2017). It is difficult to say what kind of influence this 

bacterium had over hive health in regard to overwintering success at such an early timepoint, 

but the initial increased abundance could have influenced community composition changes 

throughout the entire experiment and influenced survival indirectly. In fact, Snodgrasella is one 

of the first gut microbes to colonize bee guts, forming a biofilm on the gut lining and modifying 

the gut environmental conditions for later colonizing microbes (Sauers & Sadd 2019). Thus, the 

relative abundance of this key early colonizer can have long term implications on gut 

community structure and hive survival, as seen in my study.  Future research should focus on 

manipulating the microbiome by adding and removing this microbe from the gut community to 

further evaluate its impacts on bee and hive health and survival. 

As hives became established in their new homes during the spring and summer months, 

whole bacterial groups could have been added or removed, causing Jaccard to pick up on 

differences solely in presence/absence. In particular, although at very low relative abundances 

(0-0.02%), Providencia was found in higher abundances in hives that survived than those that 

were lost over winter at the September timepoint. Providencia is not well studied in honey 
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bees; first identified in the honey bee gut in a study published in 2019, its function is not well 

understood (Khan et al. 2017, Sladjana et al. 2019). In other insects such as Drosophila, this 

bacterium is typically pathogenic, which is not what I would expect from a bacterium correlated 

with hive survival (Sladjana et al. 2019). However, with such low relative abundance found 

here, this bacterium likely did not have much influence on hive survival.  

While changes were detected in overall gut microbiome structure, no particular 

bacterial groups were significantly different in relative abundances between survival statues in 

October. At this point, the hives had been established for six months; it is possible the 

Unweighted Unifrac was detecting changes in strain level variation of bacterial groups, since 

this metric measures differences in phylogenetic relatedness among microbial community 

members.  

Future research could focus on removal and inoculation of honey bee guts with 

Snodgrasella (such as Kwong et al. 2017) and Providencia to further elucidate their role in hive 

health and survival. Snodgrasella plays a major role in nutrient digestion (Moran 2015) but is 

not commonly found in probiotic mixtures (e.g. Super DFM Commercial Probiotic). Providencia 

is not well understood, so evaluating this bacterium’s influence on hive health, especially in low 

abundances as seen in my study, would be a novel contribution to the field. Further identifying 

the role of overall diversity of the gut microbiome of honey bees would also help us understand 

how the composition of the gut microbiome impacts hive health. Furthermore, it would be 

useful to evaluate the macroecological theory of the diversity-function relationship (Carroll et 

al. 2011) in a microbial system like the honey bee gut microbiome to expand the generalizability 

of this theory and prove its applicability on additional ecological systems. 
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Weight 
 September was the only timepoint when weight correlated negatively with microbiome 

differences. Hives that were heavier in weight had less bacterial diversity than lighter hives. This 

could mean that increased bacterial diversity correlates with less brood and honey production 

in hives; it’s possible that with additional groups of bacteria, the bacterial groups needed to 

assist with nutrient digest were in lower abundance, especially in a gut microbiome ecosystem 

that is relatively simple in comparison to other organisms. For example, the human gut 

microbiome is much more complex but there is some redundancy and overlap between 

bacterial group commonly found in the gut and their role in nutrient digestion (Vieira-Silva et al. 

2016). While brood and honey productivity have been studied in relation to nutrient 

supplementation, the composition of the gut microbiome and hive productivity have not been 

closely researched; this would be a good area for future studies (Ricigliano et al. 2018). 

 
Gut Microbiome Function 
 There were no functions significantly correlated with treatment, location, or status. It is 

possible that these three factors did not influence the gut microbiome in a way that altered the 

overall predicted function of the ecosystem. PICRUSt has been used successfully to study 

predicted function shifts in the honey bee gut microbiome in other studies, such as the study by 

Kakumanu et al. that examined the influence of pesticide exposure on the honey bee gut 

microbiome structure and function and found that genes associated with oxidative 

phosphorylation increased and sugar metabolism decreased with pesticide exposure 

(Kakumanu et al. 2016). Another study examined how the gut microbiome structure and 

function differed between social statuses of honey bees, finding several significant differences 

between nurse and foraging bees (Yun et al. 2018). Additionally, PICRUSt is frequently used to 
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analyze predicted function in human gut microbiome studies (Baxter et al. 2014, Heinsen et al. 

2016, Zilberman-Schapira et al. 2016).  

 Because the shift in the gut microbiome composition might have been too subtle to 

detect microbial functional differences using PICRUSt, future studies should include full 

metabolomic analyses, focusing on metabolites known to be present in the honey bee gut 

microbiome that impact host nutrition metabolism (i.e. carbohydrate metabolism and pectin 

degradation) and support host immune defenses (i.e. antimicrobial peptides) (Engel et al. 2012, 

Kesnerova et al. 2017, Kwong et al. 2017). 
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CONCLUSIONS 

While the original goal of identifying a beneficial sugar treatment supplemented with 

protein and micronutrients did not provide any promising solutions for beekeepers, it is very 

interesting that survival status correlated with microbiome structure, especially at timepoints 

so early on in the experiment. With increased sample size and additional apiary locations to 

observe if this pattern is repeatable, gut microbiome sequencing could be a potential tool to 

add to the modern hive health observation techniques. Biomarkers in the gut microbiome to 

identify if a hive will be successful would be useful on the industrial scale as well as provide 

information as to which bacteria are key to hive health and success. Future studies could focus 

on identifying these specific “survival” bacterial groups and testing a probiotic mixture to 

observe if altering honey bee gut microbiome to a “healthy” biomarker can achieve hive 

success and survival. Current probiotic mixtures are supplementing with important members, 

like the lactic acid bacteria (mainly Lactobacillus); it is possible that honey bees could benefit 

from a wider range of bacterial groups that have more functionality within the gut.  

 Additionally, in future studies, it would be interesting to break down the protein and 

micronutrient mixture in a laboratory setting with caged bees to identify what nutrients and in 

what quantities help honey bee health. This would remove the confounding factors of the field 

to be able to identify what nutrients are vital before repeating this study in the field. Nutrient 

stress is becoming an increasingly large stressor in honey bee health, with issues like climate 

change-driven drought and agricultural monocultures rapidly increasing. A better 

understanding of important nutrients to supplement during times of nutrient stress in the field 

could drastically improve honey bee health and reduce the increasing hive loss beekeepers are 
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experiencing. This research could also inform native pollinator conservation efforts about the 

role of the gut microbiome in bee health, which may prove useful to maintain healthy 

ecosystems. 
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TABLES AND FIGURES 

 

Figure 1.1 – Photo of a treatment hive with one brood frame pulled out. Yellow circle designates 

feeder frame. Telescoping cover and top cover (pictured on the left) are added to the top of the 

hive body, preventing exposure and robbing of resources such as supplemental feed or honey by 

bees from other hives or other organisms. 
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Figure 1.2 – Linear plot depicting hive weight over time by treatment, where the solid line is the 

“Sugar” treatment and the dashed line is the “Nectar” treatment. Hive weights did not differ 

over between treatments across all time points (linear mixed effect model, t-value = 0.62, p-

value = 0.54).  
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Figure 1.3 – Linear plot depicting hive weight over time by location, where the solid line are 

hives located at “Red Barn” and the dashed line are hives located at “Four Lakes”. Hive weights 

did not differ between location across all time points (linear mixed effect model, t-value = -1.45, 

p-value = 0.17). At three timepoints (June 1st, June 6th, and June 12th), Red Barn hives were 

significantly heavier than those at Four Lakes (see Figure 1.5, Table 1.4). 
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Figure 1.4 – Linear plot depicting hive weight over time by survival status, where the solid line 

are hives lost over winter, the dashed line are hives lost over summer, and the dotted line are 

hives that survived the year. Hive weights did not differ among survival status (linear mixed 

effect model, hives lost in summer t-value = -1.85, p-value = 0.09, hives lost in winter t-value = 

1.62, p-value = 0.13). Survival status was significant on August 23rd (Figure 1.6; Kruskal-Wallis, 

chi-squared = 7.67, p-value = 0.02), where hives lost in the winter are heavier than hives lost in 

the summer (Wilcoxon Pairwise Test: p-value = 0.053) but not those that survived (Wilcoxon 

Pairwise Test: p-value = 0.19). Hives that survived were also not significantly different than 

those lost over summer (Wilcoxon Pairwise Test: p-value = 0.12).   
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Figure 1.5. Box plots of average hive weight by location on June 1st (A), June 6th (B), and June 

12th (C). Hive weight was significantly different by location on June 1st (Kruskal-Wallis, Chi-
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Squared = 3.98, p-value = 0.046), June 6th (Kruskal-Wallis, Chi-Squared = 5.83, p-value = 0.016), 

and June 12th (Kruskal-Wallis, Chi-Squared = 6.89, p-value = 0.0087). 

 
 
 
Figure 1.6. This boxplot shows hive weight by survival status on August 23rd where “Alive” are 

hives that survived the experiment, “DeadS” are hives lost over summer, and “DeadW” are 

hives lost over winter. Weights across survival status were significant overall at this timepoint 

(Kruskal-Wallis, chi-squared = 7.67, p-value = 0.02), where hives lost over winter were 

significantly different than hives lost over summer (p-value 0.053) but those lost over summer 

and winter were not significantly different from hives that survived (p-value = 0.12 and 0.19, 

respectively). The letters here indicate significance, where groups with different letters are 

significantly different from each other. 
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Figure 1.7. Box plot showing Varroa destructor mite infestation by two treatment groups 
“Nectar” and “Sugar” in September 2018. There was no significant difference between 
treatments (two-tailed t-test, t-value = 1.83, p-value = 0.13).  
 
 

 
Figure 1.8. Box plot showing Varroa destructor mite infestation by two treatment groups 
“Nectar” and “Sugar” in April 2019. There was no significant difference between treatments 
(two-tailed t-test, t-value = -0.75, p-value = 0.59).  
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Figure 1.9. Box plot showing Varroa destructor mite infestation by two survival groups “Alive” 
and “Lost in Winter” in September 2018. There was no significant difference between survival 
groups (two-tailed t-test, t-value = 1.55, p-value = 0.2).  
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Figure 2.1 Quality scores of DNA amplicon sequences before trimming using DADA2 on the 

forward reads (A) and reverse (B) reads.  

 

A 

B 
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Figure 2.2. Alpha rarefaction plot. This graph shows how sequencing depth influences the 

amount of diversity captured when visualizing Faith’s Phylogenetic Diversity. Each individual 

line is a sample. All samples were rarefied at maximum sequencing depth of 30834 sequences 

per sample. 
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Figure 2.3. Scatter plot where each dot is a single hive. X-axis shows hive weight (kg) and Y-axis 

shows OTU richness (# of OTUs). There was a negative correlation here between hive weight 

and bacterial richness (observed OTUs, Spearman Rank Test, rs = -0.93, p-value = 0.007). 

 

 
Figure 2.4. Scatter plot where each dot is a single hive. X-axis shows hive weight (kg), and Y-axis 

shows Shannon diversity metric. There was a negative correlation between hive weight and 

bacterial diversity (Shannon, Spearman Rank Test, rs = -0.83, p-value = 0.004). 
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Figure 2.5. Scatter plot where each dot is a single hive. X-axis shows percent weight gained 

since experiment start in April, and Y-axis shows # of OTUs. Hives that gained less weight 

throughout the duration of the experiment had higher OTU richness than hives that gained 

more weight (observed OTUs, Spearman Rank Test, rs = value -0.99, p-value = 0.0003). 

 

 

 



                                                                                                                       73 

 
 
Figure 2.6. Box plot depicting OTU richness alpha diversity differences between survival status 

in May. Hives that died in the summer had significantly lower diversity than those that survived 

the experiment (observed OTUs, Kruskal-Wallis, H = 4.03 p-value = 0.045) and those that were 

lost later over winter (observed OTUs, Kruskal-Wallis, H = 6.90, p-value = 0.0086). Hives lost 

over winter and hives that survived were not significantly different (observed OTUS, Kruskal-

Wallis, H = 0.009, p-value = 0.92).  
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Figure 2.7. Box plot depicting OTU richness differences between survival status in October. 

Hives lost over winter had significantly lower diversity that hives that survived the winter 

(Faith’s phylogenetic diversity, Kruskal-Wallis, H = 6, p-value = 0.014). 
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Figure 2.8. Principal Coordinate Analysis Plot using Weighted Unifrac dissimilarity matrix to 

visualize differences in microbiome community between treatment groups of hives at the May 

Timepoint. There were no significant differences between treatment and microbiome at any 

timepoint (all p-values > 0.05) 
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Figure 2.9. Principal Coordinate Analysis Plot using Weighted Unifrac dissimilarity matrix to 

visualize differences in microbiome community between location of hives at the May 

Timepoint. There were no significant differences between location and microbiome at any 

timepoint (all p-values > 0.05) 
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Figure 2.10. Principal Coordinate Analysis Plot using Bray-Curtis dissimilarity matrix to visualize 

differences in microbiome community between survival status of hives at the April Timepoint. 

All three survival statuses had significantly different microbiome structures (Bray-Curtis, 

PERMANOVA, pseudo-F = 1.98, p- value = 0.025). 

 
 



                                                                                                                       78 

 
Figure 2.11. Principal Coordinate Analysis Plot using Jaccard distance matrix to visualize 

differences in microbiome community between survival status of hives at the May timepoint. 

Among three hive survival statuses, there was difference in microbiome composition (Jaccard, 

PERMANOVA, pseudo-F = 1.34, p-value = 0.047). 
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Figure 2.12. Principal Coordinate Analysis Plot using Jaccard distance matrix to visualize 

differences in microbiome community between survival status of hives at the August timepoint. 

Hives that survived and those that were lost over winter had statistically different microbiome 

compositions (Jaccard, PERMANOA, pseudo-F = 1.4, p-value = 0.044). 
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Figure 2.13. Principal Coordinate Analysis Plot using Unweighted Unifrac distance matrix to 

visualize differences in microbiome community between survival status of hives at the October 

timepoint. Hives lost over winter had significantly different microbiome composition than hives 

that survived at the October timepoint (Unweighted Unifrac, PERMANOVA, pseudo-F = 2.54, p-

value = 0.023). 
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Figure 2.14. Bar plot showing relative abundance of bacterial groups at the Genus level. This bar 

plot shows nectar and sugar treated hives over all time, where “FL” represents hives located at 

Four Lakes, “RB” represents hives at Red Barn, “N” represents hives fed supplemental nectar 

and pollen nutrient mixture, and “S” represents hives fed the control sugar-water mixture. 
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Figure 2.15. Relative abundance bar plot showing relative abundance of Arsenophonus across 

treatment groups at the May timepoint. Arsenophonus was significantly higher in Nectar 

treated hives than Sugar treated hives (Nectar Mean = 2.6%, Sugar Mean = 0%, LDA = 4.45, p-

value = 0.011).  

 

Figure 2.16. Relative abundance bar plot showing relative abundance of Commensalibacter at 

the August timepoint across treatment groups. Commensalibacter was significantly higher in 
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Sugar hives, although it was in low relative abundance overall in both treatments (Nectar Mean 

= 0.15%, Sugar Mean = 0.54%, LDA = 3.66, p-value 0.027). 

 

Figure 2.17. Relative abundance bar plot showing relative abundance of Gilliamella at the 

August timepoint across apiary locations. Gilliamella had a higher relative abundance at Red 

Barn location than Four lakes (Four Lakes mean = 12.8%, Red Barn mean = 20.7%, LDA = 4.66, p-

value = 0.04). 
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Figure 2.18. Relative abundance bar plot showing relative abundance of Snodgrasella at the 

August timepoint across apiary locations. Snodgrasella had a higher relative abundance at Red 

Barn location than Four lakes (Four Lakes mean = 7.7%, Red Barn mean = 18.2%, LDA = 4.78, p-

value = 0.04). 
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Figure 2.19. Relative abundance bar plot showing relative abundance of Pseudomonas at the 

August timepoint across apiary locations. Pseudomonas had a higher relative abundance at Red 

Barn location than Four lakes (Four Lakes mean = 0%, Red Barn mean = 0.43%, LDA = 3.97, p-

value = 0.005). 
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Figure 2.20. Relative abundance bar plot showing relative abundance of Lactobacillus at the 

August timepoint across apiary locations. Lactobacillus was higher at Four Lakes than Red Barn 

at this timepoint (Four Lakes mean = 75%, Red Barn mean = 52%, LDA = 5.05, p-value = 0.04). 
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Figure 2.21. Relative abundance bar plot showing relative abundance of Arsenophonus in 

October across apiary locations. Arsenophonus was higher in Red Barn hives than Four Lake 

hives at this timepoint (Four Lakes mean = 0%, Red Barn mean = 0.017%, LDA = 4.85, p-value = 

0.005). 
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 Figure 2.22. Relative abundance bar plot showing relative abundance of Bartonella in October 

across apiary locations. Bartonella was higher in Red Barn hives than Four Lake hives at this 

timepoint (Four Lakes mean = 1.3%, Red Barn mean = 15%, LDA = 4.85, p-value = 0.04).  
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Figure 2.23. Relative abundance bar plot showing the relative abundance of Snodgrasella at the 

April timepoint across survival statuses. Snodgrasella was higher in hives that survived the 

experiment than those that died over summer or over winter (Figure 2.23, Alive mean = 12.5%, 

Dead Summer mean = 5.7%, Dead Winter mean = 7.8%, LDA = 4.81, p-value = 0.043).  
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Figure 2.24. Relative abundance bar plot showing the relative abundance of Providencia at the 

September timepoint across survival statuses. Providencia was higher in hives that survived the 

experiment than those lost over winter, although its relative abundance was very low (Alive 

mean = 0.02%, Dead Winter mean = 0%, LDA = 2.35, p-value = 0.049). 
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Tables: 

Table 1.1 – Number of hives assigned to each treatment type and location. 

 

 

 

 

 

Table 1.2 – Nutrients in synthetic nectar feeding treatment. Nutrients are mixed into a 5-gallon 

bucket of 1:1 sugar to water. 

Nutrient: Per 5-gal sugar water: 

Calcium (Calcium Citrate) 2.7 grams 

Magnesium (Magnesium Chloride) 0.9 grams 

Phosphorus (Disodium Phosphate) 1.8 grams 

Potassium (Potassium Chloride) 23.4 grams 

Sodium (Sodium Chloride) 2.25 grams 

Zinc (Zinc Citrate) 0.099 grams 

Casein 135 grams 

p-Coumaric Acid 4.5 grams 

Niacin 27.48 milligrams 

Pantothenic Acid 15.44 milligrams 

Vitamin B6 5.45 milligrams 

Folate 0.45 milligrams 

Vitamin C 113.55 milligrams 

Riboflavin 8.63 milligrams 

 Four Lakes Red Barn Total: 

Nectar 4 4 8 

Sugar 4 4 8 

Total: 8 8 16 
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Table 1.3 – Feeding and sampling schedule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 April 28, 2018 May 23, 2018 August 23, 2018 September 12, 2018 October 3, 2018 

Samples: Initial hive set up 

Pre-feeding 

sample 

Post-feeding 

sample 

No treatment 

sample 

Pre-feeding sample Post-feeding 

Sample 
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Table 1.4. This table shows all statistical information for hive weight at individual timepoints by 

Treatment, Status, and Location. This table also notes what weight timepoints microbiome 

sampling occurred and the date where the 2nd hive box was added to the growing hives. 

Highlighted p-values indicate significance. 
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Table 1.5. Hive Survival Status where “DeadS” are hives that were lost over summer, “DeadW” 

are hives that were lost over winter, and “Alive” are hives that survived the one-year 

experiment. 
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Table 2.1. Summary of alpha diversity results across all timepoints, alpha diversity metrics, and 

variables. Highlighted p-values indicate significance. Cells with “N/A” represent when test was 

not applicable (i.e. only one location sampled) or where sample size was too low for statistical 

analysis.  
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Table 2.2. Summary of beta diversity results across all timepoints, beta diversity metrics, and 

variables. Highlighted p-values indicate significance. During August and October, the location 

and combination of Treatment and Status were excluded due to low sample size. Cells with 

“N/A” represent when test was not applicable (i.e. only one location sampled) or where sample 

size was too low for statistical analysis. 
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APPENDIX 

RStudio – Analyzing Weight at Individual Timepoints 
1. Import data 

weight_timepoint_X <- read.csv(file="Weight_TimepointX.csv", header=TRUE) 

2. Kruskal Wallis Statistical Test; Weight versus each variable (Treatment, Location, 

Survival Status) 

kruskal.test(Weight ~ Location, data=weight_timepoint_X) 

3. Visualize using Box Plot 

boxplot(Weight~Location, data=weight_timepoint_X) 

4. Repeat for each additional timepoint 

 
RStudio – Analyzing Weight Over all Timepoints 

1. Open required packages 

library(nlme) 

2. Import data 

weight_all_time <- read.csv(file="WeightR_everything.csv", header=TRUE) 

3. Linear Mixed Effect Model by Individual Variable (Treatment, Location, Survival Status) 

m1 <- lme(Weight~Treatment, random=~1|ID, data=weight_all_time, na.action=na.exclude) 

4. Summarize Model 

summary(m1) 

5. Visualize Using Line Graph 

mean_trt <- read.csv("mean_trt.csv") 
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opar <- theme_update(panel.grid.major = element_line(colour="grey85"), panel.grid.minor = 

element_line(colour="grey80"), panel.background = element_rect(fill="white", linetype = 

"solid", colour = "black")) 

gp <- ggplot(mean_trt, aes(x=Timepoint, y=MeanWeight, colour=Treatment, 

group=Treatment)) 

gp + geom_line(aes(linetype=Treatment), size=.6) + geom_point(aes(shape=Treatment), size=3) 

+  geom_errorbar(aes(ymax=MeanWeight+StandardError, ymin=MeanWeight-StandardError), 

width=.1) + ylab ("Weight (kg)") + ggtitle("Hive Weight Over Time by Treatment") + 

theme(plot.title = element_text(hjust = 0.5)) 

theme_set(opar) 

 
RStudio – Analyzing Mite Counts 

1. Import data – done twice, once for each mite sampling timepoint 

mites_april<-read.csv(file="Mites_April.csv", header = TRUE) 

2. Run two-tailed t-test against variables (Treatment, Location, Status) 

t.test(Mites~Treatment, data=mites_april)  

3. Visualize using boxplot 

boxplot(Mites~Treatment, data=mites_april) 

RStudio – Analyzing Hive Survival Rates 
1. Import data 

survival <- read.csv("weight_timepoint1.csv") 

2. Create data frame - Done for each variable (Treatment, Location, Status) 

status.data <- data.frame(survival$Status,survival$Location) 

status.data = table(survival$Status,survival$Location) 
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3. Run Fisher’s Exact Test 

fisher.test(status.data) 

 
Protocol: Dissection and DNA extraction of honeybee gut using Qiagen DNeasy Kit 
Based off Koch and Schmid-Hempel 2011 Microbial Ecology [Updated June 2017] 
Reagents: 

• 5% bleach solution and sterile water for surface sterilization of bees 
• Sterile molecular water for DNA elution 
• Lysis buffer 
• Lysozyme (powder) 
• Proteinase K (DNeasy kit) 
• Buffer AL, AW1, AW2 (DNeasy kit) 

o If this is the first time you are using the kit, make sure you add ethanol to the 
appropriate buffers as described in the manufacturer’s instructions. 

Preparing lysis buffer: 
• Prepare and autoclave stock solutions of  

o Tris-HCl pH 8 1M (calibrate pH with HCl) 
o EDTA pH 8 0.5M (calibrate pH with NaOH pellets) 

 
• Prepare and autoclave lysis buffer 

o 20mM Tris-HCl pH 8 
o 2mM EDTA pH 8  
o 1.2% Triton-x-100 

 
Preparing lysing solution: (do this immediately prior to sample collection) 
 

• Measure out lysozyme into a sterile falcon tube; sterilize spatula (ethanol and flame) 
before transferring powder. Add appropriate amount of buffer (20mg lysozyme per 1ml 
lysis buffer). Vortex falcon tube. 

o For 12 samples, make enough for 13 tubes by adding 48 mg lysozyme to 2.4 ml 
lysis buffer. 

o For 24 samples, 90 mg lysozyme + 4.5 ml lysis buffer. 
o For 30 samples, 111.6 mg lysozyme + 5.58 ml lysis buffer. 

 
Prior to extraction: 

• Sterilize workspace, dissection tools, and pipettors with 10% bleach solution. 
• Prepare sterile 1.5ml tubes with 180 ul of lysis buffer and lysozyme solution. 

 
Dissection 

• To surface sterilize, soak whole bee in 5% bleach solution for 30 sec., followed by three 
5 sec. rinses in sterile water (use fresh 1ml aliquots in 1.5ml tubes of bleach and water for 
each bee). Place bee onto sterile petri dish under dissecting microscope.  

• Remove gut from bee by: 
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o Pulling off stinger with GI tract attached. Cut out midgut if interested in this 
section. 

o If necessary, remove abdomen, cut along sides with micro-scissors, remove 
ventral cuticle, remove whole or midgut. 

o **Flame or bleach sterilize tools between each sample. 
• Transfer gut(s) to 1.5ml tube containing 180ul of lysis solution (with lysozyme).  

o Pool 5 bee guts per hive sample 
 

DNA Extraction 
• Set heat block to 37oC. 
• Grind gut(s) in lysis solution with sterile pestle and mixer for 5 seconds to homogenize 

solution.  
• Incubate at 37C for 1 hour 
• Reset thermal block to 56 C.  

o Add 25 ul proteinase k to each tube.  
o Add 200 ul buffer AL. 
o Vortex each sample. 

• Incubate at 56 C for 30 minutes. 
o While waiting, set up and label filter/collection tubes (from DNeasy kit) and 

sterilized storage tubes. Place in racks that have been cleaned and bleached. 
• Turn off incubator. 

o Add 200 ul cold ethanol (100%; maintain in freezer) to each tube.  
§ Ethanol binds to the DNA and prevents it from washing through the filter. 

o Vortex 5-10 seconds. 
o For pools: Centrifuge at 13,000rpm for 2 minutes, transfer supernatant to spin 

column (next step). 
• Pipette solution into DNeasy mini spin columns (the special filter tubes) that have been 

placed  in the 2 ml collection tubes. Use a large pipette set at ~800 ul. Discard pipette tip 
every time in between tubes. 

o Centrifuge at 8500 rpm for 1 min. 
o Discard the liquid in the collection tube, along with the tube. Retain the filter 

tube.  
• Place mini spin column in a new collection tube.  

o Add 500 ul AW1 buffer. 
o Centrifuge at 8500 rpm for 1 min; discard collection tube and liquid. 

• Place mini spin column in a new collection tube. 
o Add 500 ul AW2 buffer. 
o Centrifuge at 14000 rpm for 3 mins; discard liquid. Centrifuge again for 1 min. 

then discard liquid and collection tube, being careful not to splash liquid up onto 
filter. 

• Place mini spin column in a clean, sterile 1.5ml storage tube. 
o Pipette 200 ul of sterile water directly onto membrane in tube. Discard pipette tip 

every time in between tubes. 
o Let sit incubating at room temperature for 5 minutes. 
o Centrifuge at 8500 rpm for 1 min. Be sure to position vials so caps don’t break. 

• Store DNA at -20 or -80 for long term. 
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Illumina MiSeq Sequencing Protocol 
 
Adapted from the Earth Microbiome Project  
Edited in August, 2017 by: Jeni Walke, Angie Estrada, Daniel Medina, Jessica Hernandez and 
Lisa Belden. Edited Nov-April 2018-2019 by: Shelby Fettig, Jeni Walke 
  
Reagents: 

• UltraClean PCR grade H2O 

• 5 Prime Hot Master Mix 

• Forward primer + barcode IL 515F 

• Reverse primer IL 926R 

  
Before beginning: 

• Sterilize workspace with Thermo Scientific RNase AWAY. If possible, perform in a hood 
dedicated to PCR set up. UV hood before using; UV hood space 15 minutes and open 
PCR tubes for additional 15 minutes.	

• Sterilize pipettors (use pipettors dedicated for PCR reagents and use a separate pipettor 
for the DNA) with RNAase AWAY. 

• Clean and sterilize with 5% bleach: 1 large centrifuge tube rack and several small PCR 
tube racks. Rinse and allow to dry. 

• Locate samples and barcodes. Assign samples to barcodes. Keep both in fridge until 
ready to use. 

• Due to high concentration of DNA, DNA was further diluted using 45 ul of molecule 
grade PCR water and 5 ul of DNA to create a 1:10 dilution ratio. 

Step 1: Make your PCR reactions 
• For each sample, you will run triplicate PCR reactions plus a negative control = 4 PCR 

tubes per sample. 
 
Per sample                                                 4x (4 per sample – triplicate + neg control)               

12 ul UltraClean PCR grade H2O                 48 ul              

10 ul Quantabio 5’ Prime Hot Master Mix   40 ul             

0.5 ul Forward primer + barcode IL 515       2 ul             

0.5 ul Reverse primer IL 926R              2 ul        

23 ul Total (Before DNA)     
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2.0 ul   DNA                                               6.0 ul (in triplicate)   = 25 ul rxn 
 
1. Set up four rows of PCR tubes. The front row is where we will set up our M3. The second 

row will be our negative control. The last two rows will be our second and third replicate of 
samples. 
 

2. Add all reagents, except DNA, to each PCR tube in the first row of the plate. 
a. Each tube will have its own forward primer with assigned barcode; add forward 

primer last to avoid changing tips between each tube for all other reagents. 
b. Label each tube by barcode. 
c. Vortex gently and briefly centrifuge after all reagents except DNA have been 

added to all tubes in front row. 
  
3.     Pipette 23 ul from the first row of PCR tubes, with every reagent listed above except DNA, 
into the negative PCR tubes. Label each tube as negative control and barcode number. 
  
4.   Add DNA (6ul) to first row.  

     a. Vortex gently and centrifuge briefly 
 

5.     Take 25 ul from the first row of PCR tubes and add into replicate rows #2 and #3. Label 
tubes in second and third row with barcode number.  
  
6.     Vortex gently and centrifuge each PCR tube, including negative control strip, briefly.                     
  
Step 2: Run reactions in thermocycler 
1. Make sure machine is set for 25 ul samples. 
 
2. Thermocycler conditions: 

Temp     Time 
1. 94°C      3 min   
2. 94°C     45 sec   Denaturing 
3. 50°C     1 min      Annealing  
4. 72°C     1.5 min  Extension 

o Repeat steps 2-4 34x 
5. 72°C     10 min 
6. 4°C      hold 

  
You can maintain your PCR product in the fridge overnight if you need to wait until the next day 
to run your gel. 
  
Step 3. Run gels to check amplification and negative controls 
1. Combine your three separate PCR reactions into a single PCR tube. Use post-PCR pipettors 
and tips. 

2. Make a 1.5% gel. Combine 140 mL 1X TBE and 2.1 g agarose in a small Erlenmeyer flask.  
Microwave until just boiling. Swirl. Continue boiling/swirling until solution is clear. 



                                                                                                                       105 

3. Once the solution has cooled slightly, add 14 ul gel red stain.  

• Note: Gel red is the dye that stains your DNA for visualization.  

• Note: Gel red stain is light sensitive--keep away from light as much as possible. 

4. Pour gel into mold and allow to cool completely. 

5. On a strip of parafilm, combine 5 ul PCR product and 1 ul loading dye. Pipette up and down to 
combine. 

• Note: Loading dye is the dye that is used to view how far your samples have traveled in 
the gel during electrophoresis.  

6. Reset pipettor to 6 ul. Pipette each sample into gel well.  

• As the amount of solution decreases (due to evaporation), you may need to reset your 
pipette ul setting. Avoid air bubbles in the pipette tip as this will cause the DNA to leak 
out. Gently pipette solution into wells. 

7. Load 5 ul of DNA ladder into gel. You can use a broad range 50-10,000 bp ladder. 

8. Run gel at a voltage of ~160 for approximately 20 minutes, until dye is about halfway across 
gel and each of the three colored bands has separated. 

9. Visualize gels. Bands for this primer set will be at ~ 300-350 bp. Sample bands may be a little 
smeary, but there should not be multiple bands. No bands should be visible for the negative 
controls.  

10. Store PCR products at -20 C until you’ve accumulated all of the samples that you are going 
to run on a single Illumina plate before moving on to Step 4. 
  
Step 4: Quantifying the DNA 
We use a Qubit 2.0 Florometer and the dsDNA High Sensitivity assay kit. Readings can be a bit 
fickle, so it is better to do all of your samples on the same day at the same time with the same 
working solution and standards. This can be done on the countertop. Use post-PCR pipettors and 
tips. 
 
Before beginning: 

● Organize your samples in a single PCR tube rack on ice. 

● Label florometry tubes supplied by Qubit in a tube rack with sample names in the same 
order as they occur in the PCR tube rack. 

 
1. Combine in a 50 ml falcon tube: 
Per sample (so multiply by the number of samples you are quantifying, plus your 2 standards, 
plus a little extra for pipetting) 
 

• 1 ul Qubit reagent 
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• 199 ul Qubit buffer 

 
Vortex. This is your working solution. 
 
2. Make your standards. Combine 10 ul of each standard with 190 ul working solution. Make a 
separate solution for each standard and combine in the tubes supplied by Qubit. 

3. For your samples: Combine 2-5 ul sample with 198-195 ul working solution. Total solution 
volume should be 200 ul. Make a separate solution for each sample and combine in the 
florometry tubes that you labeled already. To get the most accurate measurements, it is very 
important that you get the precise amount of your entire sample into the working solution. Try 2 
ul of sample first. If the readings are too low (there’s too little DNA), then redo, increasing the 
amount sample. 

4. Vortex and briefly centrifuge all tubes. Drops of liquid stuck on the sides or lids of tubes can 
mess up the readings. 

5. Incubate at room temperature for 2 min. 

6. Read tubes in the Florometer. Specify the amount of sample you used (i.e., 2-5 ul). Record 
reading in ng/ul. 

 
Step 5: Combine equal amounts of amplicons into a single tube 
1. Based on the concentration determined by the Florometer, determine how much of each 
sample you need to add. The goal is to add the same amount of ng of DNA per sample (~180 ng) 
into a single, 1.5 ml centrifuge tube. 
Example: If Sample 1 has a concentration of 38 ng/ul, you should add 200/38 = 5.3 ul to the 
pool. 

2. Add the appropriate volume of each sample to a single centrifuge tube. This is your pooled 
sample. Compute the volume of the pooled sample. 

  
Step 6: Clean up pooled sample. 
We use the Qiagen QIAquick PCR Clean Up Kit. 
If this is the first time you are using the kit, make sure you add ethanol and the PH indicator to 
the appropriate buffers as described in the manufacturer’s instructions. 
 
1. Vortex the pooled sample to thoroughly mix it. Pipette 100 ul of the pooled sampled into a 
new, clean 1.5 ml centrifuge tube. **Store the remaining, uncleaned pooled sample in storage 
box in -20C. 

2. Add 500 ul of Buffer PB to the 100 ul of your pooled sample. Vortex. Check that the color of 
the mixture is yellow. If the color of the mixture is orange or violet, add 10 μl of 3 M sodium 
acetate, pH 5.0, and mix. The color of the mixture will turn to yellow. 

3. Place a Qiaquick spin column in a provided 2 ml collection tube. 
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4. To bind DNA, apply the sample to the QIAquick column and centrifuge for 30–60 s at 13,000 
rpm. 

5. Discard flow-through. Place the QIAquick column back into the same tube. 

6. Wash the pooled sample. Add 0.75 ml Buffer PE to the QIAquick column, let the buffer sit on 
the filter for 2 min, then centrifuge for 30–60 s at 13,000 rpm. 

7. Discard flow-through and place the QIAquick column back in the same tube. Centrifuge the 
column for an additional 1 min at 13,000 rpm. 

8. Place the QIAquick column in a new, clean 1.5 ml centrifuge tube. 

9. To elute the DNA, add 50 ul water to the QIAquick column, let the buffer sit on the filter for 3 
min, then centrifuge for 1 min at 13,000 rpm. 

10. Measure the concentration of the cleaned, pooled sample using the Qubit Florometer (as 
above, but with only one sample) and the 260/280 using the Nanodrop. 260/280 should be 
between 1.8-2.0. 

  
Step 7: Add PhiX 
For running these libraries in the MISeq and HiSeq, you may need to make your sample more 
complex by adding 30-50% PhiX to your run. 
 
However, the sequencing facility may add PhiX for you. Check with the particular sequencing 
facility you are using for information about adding PhiX. The sequencing facility that we use 
(listed below) adds PhiX for you. 
  
Step 8: Send for sequencing! 
Keep cleaned, pooled sample frozen until ready to send. Send sample on dry ice. 
  
Sequencing Facility and contact info: 
  
Zach Herbert <zherbert@research.dfci.harvard.edu> 
Molecular Biology Core Facilities 
Dana Farber Cancer Institute at Harvard 
http://mbcf.dfci.harvard.edu/ 
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Nosema PCR Protocol 
 
Adapted from the Earth Microbiome Project  
Edited in August, 2017 by: Jeni Walke, Angie Estrada, Daniel Medina, Jessica Hernandez and 
Lisa Belden. Edited Nov-April 2018-2019 by: Shelby Fettig, Jeni Walke; Edited Oct 2019 based 
off Illumina MiSeq Protocol 
  
Reagents: 

• UltraClean PCR grade H2O 

• 5 Prime Hot Master Mix 

• Forward primer  

• Reverse primer  

• Nosema positive control 

  
Before beginning: 

● Sterilize workspace with RNA away. If possible, perform in a hood dedicated to PCR set 
up. UV hood before using; UV hood space 15 minutes and open PCR tubes for additional 
15 minutes. 

● Sterilize pipettors (use pipettors dedicated for PCR reagents and use a separate pipettor 
for the DNA) with bleach and ethanol or with RNA away. 

● Clean and sterilize with 5% bleach: 1 large centrifuge tube rack and several small PCR 
tube racks. Rinse and allow to dry. 

● Locate samples and reagents. Keep both in fridge until ready to use. 

Step 1: Make your PCR reactions 
• For each sample, you will run one PCR reaction. 
• You will run one negative control with no DNA and one positive control with Nosema 

DNA each run. 
• For samples that might have LOW DNA CONCENTRATIONS, the PCR reactions could 

be prepared with the same method as below, but with a small change in the volume of the 
reagents and DNA; additionally BSA could be added to increase PCR yield. 

  
Per sample                                               M3  = 8x (# of samples + extra for pipetting)               

2.6 ul UltraClean PCR grade H2O             20.8 ul         

0.4 ul MgCl3                          40 ul 

5 ul 5 Prime Hot Master Mix                     3.2 ul             

0.4 ul Forward primer Nos GenF         4 ul             
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0.4 ul Reverse primer Nos GenR         4 ul        

9 ul Total (Before DNA)        

+ 1 ul   DNA       
                                           
3. Add all reagents EXCEPT DNA into a 1.5 mL centrifuge tube. This is your M3. 

 
4. Pipette 9 ul of M3 into each of your sample PCR tubes. 
  
3.   Add DNA (1ul) to each tube EXCEPT the negative control. 
 
4.     Vortex gently and centrifuge each PCR tube, including negative control strip, briefly.                     
  
Step 2: Run reactions in thermocycler 
1. Make sure machine is set for 10 ul samples. 
 
2. Thermocycler conditions: 

Temp     Time 
7. 94°C      2 min   
8. 94°C     30 sec  Denaturing 
9. 55°C     30 sec  Annealing 
10. 72°C     1.5 min Extension 

o Repeat steps 2-4 34x 
11. 72°C     10 min 
12. 4°C      hold 

  
You can maintain your PCR product in the fridge overnight if you need to wait until the next day 
to run your gel. 
  
Step 3. Run gels to check amplification and negative controls 
 
1. Make a 1.5% gel. Combine 140 mL 1X TBE and 2.1 g agarose in a small Erlenmeyer flask.  
Microwave until just boiling. Swirl. Continue boiling/swirling until solution is clear. 

2. Once the solution has cooled slightly, add 14 ul gel red stain.  

3. Pour gel into mold and allow to cool completely. 

4. On a strip of parafilm, combine 5 ul PCR product and 1 ul loading dye. Pipette up and down to 
combine. 

Note: loading dye is the dye that is used to view how far your samples have traveled in the 
gel during electrophoresis.  

5. Reset pipettor to 6 ul. Pipette each sample into gel well.  



                                                                                                                       110 

As the amount of solution decreases (due to evaporation), you may need to reset your 
pipette ul setting. Avoid air bubbles in the pipette tip as this will cause the DNA to leak 
out. Gently pipette solution into wells. 

6. Load 5 ul of DNA ladder into gel. You can use a broad range 50-10,000 bp ladder. 

7. Run gel at a voltage of ~160 for approximately 20 minutes, until dye is about halfway across 
gel and each of the three colored bands has separated. 

8. Visualize gels. Bands for this primer set will be between 1200 and 1500 bp when comparing 
to DNA ladder. Sample bands may be a little smeary, but there should not be multiple bands. No 
bands should be visible for the negative controls and a strong band visible for the positive 
control. 
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QIIME Bioinformatics Processing Protocol 
Installing QIIME2 

1. Install Miniconda 
a. https://docs.conda.io/en/latest/miniconda.html 
b. https://conda.io/projects/conda/en/latest/user-guide/install/macos.html 
c. You can choose python 2 or 3; QIIME will work with either 

2. Install QIIME 2 w/in a conda environment 
a. Run the following code, one line at a time 

i. wget https://data.qiime2.org/distro/core/qiime2-2019.1-py36-osx-
conda.yml 

ii. conda env create -n qiime2-2019.1 --file qiime2-2019.1-py36-osx-
conda.yml 

3. Activate conda environment 
a. Conda activate qiime2-2019.1 

4. Test installation 
a. Run command: 

i. Qiime –help 

Importing Sequence Data 

• Fastq files were downloaded from the sequencing facilities’ website 
(https://distrib.dfci.harvard.edu). The sequencing facility already demultiplexed the 
files, meaning there were individual fastq files for each forward and reverse sample 
sequence.  

• Files were imported into QIIME using a manifest table that contained the location of 
each sequence file, whether it was a forward or reverse sample sequence, and the 
sample ID.  

○ qiime tools import \ 
○ --type 'SampleData[PairedEndSequencesWithQuality]' \ 
○ --input-path Manifest.csv \ 
○ --input-format PairedEndFastqManifestPhred33 \ 
○ --output-path paired-end_demux.qza 

Checking Sequence Quality Scores 

• qiime demux summarize \ 

--i-data paired-end_demux.qza \ 

--o-visualization demux.qzv 

• Any files ending in “qzv” are visualized at view.qiime2.org 

Filtering Low Quality Scores and Trimming Sequences 

• qiime dada2 denoise-paired \ 
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  --i-demultiplexed-seqs paired-end_demux.qza \ 

  --p-trim-left-f 12 \  

  --p-trim-left-r 13 \ 

  --p-trunc-len-f 228 \ 

  --p-trunc-len-r 217 \ 

  --o-representative-sequences rep-seqs-dada2.qza \ 

  --o-table table-dada2.qza 

  --o-denoising-stats stats-dada2.qza 

Create Feature Classifier with Silva v132 Database 

• Database downloaded from https://www.arb-

silva.de/no_cache/download/archive/release_132/Exports/  

• Import Database and Taxonomy Files: 
qiime tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path silva_132_99_16s.fna \ 
  --output-path 85_otus.qza 

 
qiime tools import \ 
  --type 'FeatureData[Taxonomy]' \ 
  --input-format HeaderlessTSVTaxonomyFormat \ 
  --input-path 85_otu_taxonomy.txt \ 
  --output-path ref-taxonomy.qza 

 
• Extract Reads Using 515F 926R Primer Set: 
qiime feature-classifier extract-reads \ 
  --i-sequences silva_132_99_16s.qza \ 
  --p-f-primer GTGYCAGCMGCCGCGGTAA \ 
  --p-r-primer CCGYCAATTYMTTTRAGTTT \ 
  --p-min-length 0 \ 
  --p-max-length 0 \ 
  --o-reads extractreads_silva_99_16s_ref-seqs.qza 

 
• Train Classifier: 
qiime feature-classifier fit-classifier-naïve-bayes \ 
--i-reference-reads silva_99_16s_ref-seqs.qza \ 
--i-reference-taxonomy silva_132_99_16s_taxonomy_all_levels.qza \ 
--o-classifier silva_99_132_16s_classifer.qza  
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Classify Dataset 

• qiime feature-classifier classify-sklearn \ 

  --i-classifier silva_99_132_16s_classifer.qza \ 

  --i-reads rep-seqs.qza \ 

  --o-classification taxonomy.qza 

Filter Mitochondria and Chloroplasts 

• qiime taxa filter-table \ 

--i-table table.qza \ 

--i-taxonomy taxonomy.qza \ 

--p-exclude mitochondria,chloroplasts \ 

--o-filitered-table filtered_table.qza 

• qiime taxa filter-seqs \ 

--i-sequences rep-seqs.qza \ 

--i-taxonomy taxonomy.qza \ 

--p-exclude mitochondria,chloroplasts \ 

--o-filtered-sequences filtered_rep_seqs.qza 

 

Visualize Feature Table  

• qiime feature-table summarize \ 

  --i-table filtered_table.qza \ 

  --o-visualization filtered_table.qzv \ 

  --m-sample-metadata-file metadata.tsv 

 

Create Phylogenetic Tree 

• qiime phylogeny align-to-tree-mafft-fasttree \ 

  --i-sequences filtered_rep-seqs.qza \ 

  --o-alignment aligned-rep-seqs.qza \ 

  --o-masked-alignment masked-aligned-rep-seqs.qza \ 

  --o-tree unrooted-tree.qza \ 
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  --o-rooted-tree rooted-tree.qza 

 

Visualize Alpha Rarefaction Plot to Determine Sampling Depth 

• qiime diversity alpha-rarefaction \ 

--i-table filtered_table.qza \ 

--i-phylogeny rooted-tree.qza \ 

--p-max-depth 62000 \ 

--m-metadata-file metadata.tsv \ 

--o-visualization alpha-rarefaction.qzv 

 

Diversity Metrics 

• Filter Table to Include a Single Timepoint 

qiime feature-table filter-samples \ 

  --i-table filtered_table.qza \ 

  --m-metadata-file metadata.tsv \ 

  --p-where "Timepoint='April'" \ 

  --o-filtered-table April-table.qza 

○ Repeat for each timepoint 

• qiime diversity core-metrics-phylogenetic \ 

  --i-phylogeny rooted-tree.qza \ 

  --i-table filtered_table.qza \ 

  --p-sampling-depth 30834 \ 

  --m-metadata-file metadata.tsv \ 

  --o-rarefied-table rare-table.qza 

  --output-dir core-metrics-results 

o Output folder will contain all alpha metrics (Default: Shannon, observed otus, 

faith’s, evenness) and beta metrics (jaccard, bray-curtis, unweighted unifrac, 

weighted unifrac). 

o Repeat for each timepoint 
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Alpha Diversity 

• Group Significance (Comparing categorical variables with Kruskal-Wallis) 

○ qiime diversity alpha-group-significance \ 

  --i-alpha-diversity core-metrics-results/faith_pd_vector.qza \ 

  --m-metadata-file metadata.tsv \ 

  --o-visualization core-metrics-results/faith-pd-group-significance.qzv 

○ Repeat for all alpha diversity metrics and at all timepoints 

• Correlation (Comparing numerical variables with Spearman Rank Test) 

○ qiime diversity alpha-correlation \ 

--i-alpha-diversity core-metrics-results/faith_pd_vector.qza \ 

--m-metadata-file metadata.tsv \ 

--p-method Spearman 

--o-visualization core-metrics-results/faith-pd-group-significance.qzv 

○ Repeat for all alpha diversity metrics and at all timepoints 

 

Beta Diversity 

• Group Significance (Comparing categorical variables with PERMANOVA) 

○ qiime diversity beta-group-significance \ 

  --i-distance-matrix core-metrics-

results/unweighted_unifrac_distance_matrix.qza \ 

  --m-metadata-file metadata.tsv \ 

  --m-metadata-column Treatment \ 

  --o-visualization core-metrics-results/unweighted-unifrac-treatment-

significance.qzv \ 

  --p-pairwise 

○ Repeated for all categorical variables and all diversity metrics at all timepoints 

• Correlation (Comparing numerical variables using Mantel test) 

○ qiime diversity beta-correlation \ 
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--i-distance-matrix core-metrics-

results/unweighted_unifrac_distance_matrix.qza \ 

--m-metadata-file metadata.tsv \ 

--m-metadata-column Weight \ 

--o-metadata-distance-matrix filename.qza \ 

--o-mantel-scatter-visualization filename.qzv 

--p-intersect-ids 

○ Repeated for all numerical variables and all diversity metrics at all timepoints 

• Visualize with Emperor Plot 

○ Used to visualize beta diversity distance metrics with interactive PCoA 

○ Part of initial core-metrics-phylogeny output 

 

Relative Abundance 

• Visualize Microbiome with Taxa Bar Plot 

qiime taxa barplot \ 

  --i-table filtered_table.qza \ 

  --i-taxonomy taxonomy.qza \ 

  --m-metadata-file metadata.tsv \ 

  --o-visualization taxa-bar-plots.qzv 

 

• Collapse Table to Level 6 (Genus) 

qiime taxa collapse \ 

  --i-table table.qza \ 

  --i-taxonomy taxonomy.qza \ 

  --p-level 6 \ 

  --o-collapsed-table table-l6.qza 

 

• Export Feature Table to biom file for LEfSe analysis 
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qiime tools export \ 

--input-path table-l6.qza \  

--output-path table-l6 

 

• Convert biom file to tsv 

biom convert \ 

--input-fp table-l6.biom \  

--output-fp table-l6.txt \  

--header-key “taxonomy” --to-tsv  

 

• Divide output tsv file into five separate files for each timepoint by cutting all samples at 

the particular timepoint into a new excel workbook 

• Edit text file in excel 

○ Remove “#Constructed from biom file” line 

○ Add variable to top row 

○ Replace “#OTU ID” with “SampleID” 

○ Repeat for each variable (Treatment, Location, Status) at each timepoint 

• Upload file to http://huttenhower.sph.harvard.edu/galaxy/ 
○ Follow instructions for steps 1-4. Default setting were used. 
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PICRUSt Protocol 
• Install package 

wget https://github.com/gavinmdouglas/q2-

picrust2/releases/download/v0.0.2/q2-picrust2-0.0.2.zip \ 

unzip q2-picrust2-0.0.2.zip \ 

cd q2-picrust2-0.0.2 \ 

python setup.py install \ 

qiime dev refresh-cache  

• Run pipeline 

qiime picrust2 full-pipeline  

--i-table mammal_biom.qza \ 

--i-seq mammal_seqs.qza \ 

--output-dir q2-picrust2_output \ 

--p-threads 1 \ 

--p-hsp-method pic \ 

--p-max-nsti 2 

–verbose 

• Visualize feature table 

qiime feature-table summarize  

--i-table q2-picrust2_output/pathway_abundance.qza  

--o-visualization q2-picrust2_output/pathway_abundance.qzv 

• Export for analysis in RStudio 

qiime tools export \ 

   --input-path q2-picrust2_output/pathway_abundance.qza \ 

   --output-path pathabun_exported 

biom convert \ 

   -i pathabun_exported/feature-table.biom \ 

   -o pathabun_exported/feature-table.biom.tsv \ 

   --to-tsv 

• Categorize using RStudio 
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categorize_by_function_l3 <- function(in_ko, kegg_brite_mapping) { 

  out_pathway <- data.frame(matrix(NA, nrow=0, ncol=(ncol(in_ko) + 1))) 

  colnames(out_pathway) <- c("pathway", colnames(in_ko)) 

  for(ko in rownames(in_ko)) { 

    if(! ko %in% rownames(kegg_brite_mapping)) { 

      next 

    } 

    pathway_list <- strsplit(kegg_brite_mapping[ko, "metadata_KEGG_Pathways"], 

"\\|")[[1]] 

    for(pathway in pathway_list) { 

      pathway <- strsplit(pathway, ";")[[1]][3] 

      new_row <- data.frame(matrix(c(NA, as.numeric(in_ko[ko,])), nrow=1, 

ncol=ncol(out_pathway))) 

      colnames(new_row) <- colnames(out_pathway) 

      new_row$pathway <- pathway 

      out_pathway <- rbind(out_pathway, new_row) 

    } 

  } 

  out_pathway = data.frame(aggregate(. ~ pathway, data = out_pathway, FUN=sum)) 

  rownames(out_pathway) <- out_pathway$pathway 

  out_pathway <- out_pathway[, -which(colnames(out_pathway) == "pathway")] 

  if(length(which(rowSums(out_pathway) == 0)) > 0) { 

    out_pathway <- out_pathway[-which(rowSums(out_pathway) == 0), ] 

  } 

  return(out_pathway) 

} 

kegg_brite_map <- read.table("picrust1_KO_BRITE_map.tsv", 

                             header=TRUE, sep="\t", quote = "", stringsAsFactors = FALSE, 

comment.char="", row.names=1) 
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test_ko <- read.table("picrust_alltimepoints.tsv", header=TRUE, sep="\t", row.names=1) 

test_ko_L3 <- categorize_by_function_l3(test_ko, kegg_brite_map) 

test_ko_L3_sorted <- test_ko_L3[rownames(test_ko_L3), ] 

write.csv(test_ko_L3_sorted, "alltime_ko_l3_sorted.csv") 

 

• Import data table and metadata file into STAMP 

• Sort by timepoint 

• Set variable of interested (treatment, location, and survival status) 

• Set statistical test 

○ For multiple groups, choose Kruskal-Wallis with Bonferroni p-value correction 

and Games-Howell post-hoc test 

○ For two groups, choose White’s Non-Parametric t-test with bootstrap confidence 

interval 

• Run statistical analysis and view results 
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