
Eastern Washington University Eastern Washington University 

EWU Digital Commons EWU Digital Commons 

EWU Masters Thesis Collection Student Research and Creative Works 

Winter 2021 

Intrusion detection for industrial control systems Intrusion detection for industrial control systems 

Kurt Lamon 
Eastern Washington University 

Follow this and additional works at: https://dc.ewu.edu/theses 

 Part of the Digital Communications and Networking Commons, and the Other Computer Engineering 

Commons 

Recommended Citation Recommended Citation 
Lamon, Kurt, "Intrusion detection for industrial control systems" (2021). EWU Masters Thesis Collection. 
662. 
https://dc.ewu.edu/theses/662 

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital 
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of 
EWU Digital Commons. For more information, please contact jotto@ewu.edu. 

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=dc.ewu.edu%2Ftheses%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=dc.ewu.edu%2Ftheses%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=dc.ewu.edu%2Ftheses%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/662?utm_source=dc.ewu.edu%2Ftheses%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu


Intrusion Detection for

Industrial Control Systems

A Thesis

Presented To

Eastern Washington University

Cheney WA

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

by

Kurt Lamon

Winter 2021



ii

Authorization to Submit Thesis

This Thesis of Kurt Lamon, submitted for the degree of Master of Science with a major in

Computer Science and entitled “Intrusion Detection for Industrial Control Systems,”

has been reviewed in final form. Permission, as indicated by the signatures and dates given

below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: Date:
Dr. Stuart Steiner

Committee Member: Date:
Dr. Dan Li

Committee Member: Date:
Dr. Martin Weiser



iii

Abstract

Industrial Control Systems (ICS) are rapidly shifting from closed local networks, to remotely

accessible networks. This shift has created a need for strong cybersecurity anomaly and intru-

sion detection for these systems; however, due to the complexity and diversity of ICSs, well

defined and reliable anomaly and intrusion detection systems are still being developed.

Machine learning approaches for anomaly and intrusion detection on the network level

may provide general protection that can be applied to any ICS. This paper explores two ma-

chine learning applications for classifying the attack label of the UNSW-NB15 dataset. The

UNSW-NB15 is a benchmark dataset that was created off general network communications and

includes labels for normal behavior and attack vectors. A baseline was created using K-Nearest

Neighbors (kNN) due to its mathematical simplicity.

Once the baseline was created a feed forward artificial neural network known as a Multi-

Layer Perceptron (MLP), was implemented for comparison due to its ease of reuse for running

in a production environment. The experimental results show that both kNN and MLPs are

effective approaches for identifying malicious network traffic; although, both still need to be

further refined and improved before implementation on a real-world production scale.
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Glossary Of Terms

Anomaly Detection - A branch of machine learning where models search for outliers within

a dataset. Intrusion detection is a practical application of anomaly detection for cybersecurity.

Anomaly Based Intrusion Detection - A form of intrusion detection that seeks to classify

intrusions by determining which communications are out of the ordinary from the normal

behavior.

Industrial Control Systems - A collective term for the variety of electronic systems,

networks, and hardware that monitor and control industrial processes.

k-Nearest Neighbors - A simple supervised machine learning model that can be used for

both classification and regression.

Malware - Software that is designed to damage, intrude on, or compromise a system.

Multi-Layer Perceptron - A type of feedforward artificial neural network.

Precision - A performance metric that is the rate of correct positive predictions out of all

positive predictions.

Recall - A performance metric that is the proportion of negatives correctly predicted.

ROC AUC - The Receiver Operating Characteristic Area Under Curve is a performance

measure that combines the true positive and false positive rates.

Signature Based Intrusion Detection - A form of intrusion detection that seeks to classify

intrusions by exploring their similarity to a list of known intrusions. This method has lower

overhead to test data but cannot identify new attacks.



xiv

Supervisory Control and Data Acquisition Systems - A class of industrial control

systems that focus on receiving data from sensors, reporting that data, and making system

updates.

UNSW-NB15 - A benchmark dataset designed for testing intrusion detection systems.



Chapter 1 Introduction

Industrial Control Systems (ICS) and Supervisory Control And Data Acquisition (SCADA)

systems are critical components of modern industrial infrastructure. In the past, these com-

ponents of critical infrastructure would run on closed, local networks or no network at all,

requiring a technician to be present on site to make changes or supervise the hardware. By

connecting these systems to a remotely accessible network, technicians enabled themselves to

control more complicated systems remotely as well as increasing and improving capabilities of

the infrastructure components, however doing so also enables the possibility of intrusion by

unauthorized parties. Bhamere et al. describe the security risks associated with opening these

systems to remote terminals [1].

Due to the diversity of industrial control systems and the infrastructure that they manage,

no unified rule-based security approach could be made. Stouffer et al. describes how due

the critical nature of industrial infrastructure, any sort of intrusion can result in catastrophic

consequences [2].

The diversity of malware and its constant evolution makes rule-based intrusion detection

ineffective at detecting novel attacks and requiring of regular updates. Buczak and Guven

describe this growth and the corresponding need for adaptable solutions [3]. Machine learning

approaches train an effective model to recognize complex patterns in existing data. This enables

the testing of new data to a high degree of accuracy, and can be updated with new labeled data

to improve performance in an ever changing environment. According to Liu and Lang, machine

learning algorithms for anomaly detection tend to have a lower missed rate but a higher false

alarm rate when compared to signature or misuse based detection methods [4].

Intrusion detection is a critical component of network security. It is not yet possible to

build a system that is perfectly closed to any outside agents while being open to correct ones,

therefore it is necessary to implement solutions that recognize when attacks are being launched

and notify the system of potential intrusions [2]. Intrusion detection is directly related to the

machine learning task of anomaly detection, identifying which behaviors are out of the ordinary

for a normal set of values.
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1.1 Literature Review

As cybersecurity, industrial control systems, and machine learning all make continuous ad-

vancements, each of these topics as well as their interdependence has been a widely explored

topic. Previous works researched applications and techniques for intrusion detection as well as

the challenges and options available for SCADA specific benchmark datasets.

Network intrusions can be determined by a variety of methods. Mudzingwa and Agrawal

group these IDS methods into three major approaches, Anomaly based Intrusion Detection

Systems (AIDS), Signature based Intrusion Detection Systems (SIDS), and hybrid approaches

which combine aspects of the other two [5]. SIDS work by comparing observed communica-

tion signatures to a local database or file of known malicious signatures. This approach has

exceptionally low overhead for both testing and implementing the system since no training or

learning of the environment is required. The drawback of SIDS is its inability to recognize

new attacks or ones that are not included in file. AIDS mitigates the weaknesses of SIDS by

using machine learning or statistical-based models to identify abnormal communications in the

network traffic. The benefit to AIDS is the ability to catch new attacks; however these systems

do so at the expense of training and learning time.

AIDS can also be further broken down into subcategories: Statistics based models, knowl-

edge based models, and machine learning models. Statistics based models define a profile for

normal behavior and flag any points that are then determined to be low probability. Knowledge

based models similarly create a profile for normal behavior and then flag any low probability

occurrences; what separates these models from the statistical category is knowledge based mod-

els are created using human knowledge about the system rather than automated data collected

from the system. Machine learning based models work by extracting knowledge from large

amounts of data and define complex transfer functions that flag individual points as anomalies

or intrusions. Khraisat et al. describe the approaches and respective challenges to creating

successful intrusion detection systems [6].

There are many different approaches within the realm of machine learning models for

anomaly detection. Khraisat et al. outline some of the more popular algorithms and their

proprietary effectiveness, including Decision Trees, Naive Bayes, Genetic Algorithms, Artificial
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Neural Networks, Fuzzy logic, Support Vector Machines, Hidden Markov Models, k-Nearest

Neighbors (kNN), and k-Means [6]. With a fairly basic Remote Terminal Unit (RTU) serial

communication dataset, the approaches of Naive Bayes, Random Forests, Non-Nested General-

ized Exemplars, Support Vector Machines, and some Decision Tree/rule-based approaches were

shown to be promising at detecting malicious communications [7].

Generalizing the dataset to include broader communications provides broader insights and

any models created could then potentially be utilized in multiple applications. Benchmark

datasets for network intrusion detection were created to analyze this problem. The UNSW-

NB15 dataset, created in 2015, improves upon the KDD-99 dataset which at that point was

becoming dated. Moustafa and Slay analyzed and described the UNSW-NB15 dataset in detail,

doing several statistical explorations to prove the quality of the dataset. The UNSW-NB15

dataset was validated to accurately mimic both normal and attack behavior and is shown to be

complex enough that any existing or novel Network Intrusion Detection System (NIDS) could

be reliably tested using the dataset [8].
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Chapter 2 Dataset Selection

The UNSW-NB15 dataset was selected because it is one of several key Intrusion Detection

benchmark datasets. It is designed to represent normal and attack behaviors in modern network

traffic. Each data point represents one network packet or communication sent or received. The

dataset contains both normal behavior and nine different modern attack types [8].

2.1 Intrusion Detection Benchmark Datasets

The world of network connected computing systems is one experiencing extremely high growth,

change, and diversification. With so many devices, from every day IoT devices to large in-

frastructure systems, becoming increasingly dependent on network connectivity, the threat of

malware in these systems is also increasing, thus creating an express need for comprehensive

network cyber security. Hamid et al. describe that due to the wide diversity and growth rate of

these systems, it is ineffective to try to create measures of cyber defense on a per-system basis

[9].

Intrusion Detection benchmark datasets help mitigate the inefficiencies of per-system cyber

defense measures. Ring et al. survey the available IDS benchmark datasets to validate their

design and describe their intentions. These benchmark systems are specifically designed to be

more global in application and research, with the intent of developing solutions that can be

applied to any facet of network connected applications [10].

Many benchmark datasets have been created since the first notable dataset, DARPA, was

developed in 1998 [10]. Table 2.1 shows the progression of benchmark datasets created for

intrusion detection experiments.

Generally, each dataset incrementally improved upon the previous. The early datasets were

criticized for being generated with artificially created network traffic, both for attacks and

normal behavior, thereby lacking representative data of the problem space. As new datasets

were created to iterate, replace, or strengthen the previous, each had its own unique challenges

in data generation or sourcing. As network usage matures and evolves these datasets lose their

relevancy because the data they hold becomes less similar to modern architectures and attacks.
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Dataset Year Created Created By

DARPA 1998-1999 Lincoln Laboratory
KDD99 1998-1999 UC Irvine

DEFCON 2000 The Shmoo Group
CAIDA 2002/2016 Center of Applied Internet Data Analysis
LBNL 2004/2005 Lawrence Berkeley National Laboratory

NSL-KDD 2009 University of New Brunswick
CDX 2009 United States Military Academy
Kyoto 2009 Kyoto University

Twente 2009 University of Twente
UMASS 2011 University of Massachusettes

ISCX 2012 University of New Brusnwick
ADFA 2013 University of New South Wales

UNSW-NB15 2015 Australian Centre for Cyber Security

Table 2.1: Development of intrusion detection benchmark datasets.

2.2 The UNSW-NB15 Dataset

The UNSW-NB15 dataset was created by researchers in the Cyber Range Lab of the Aus-

tralian Centre for Cyber Security in an effort to improve upon and update existing network

cybersecurity benchmark datasets. Previous benchmarks, the KDD99 and NSLKDD datasets,

the former explored by Özgür and Erdam and the latter explored by Dhanabal and Shantharaj,

were outdated because attacks have become more advanced and low profile and normal network

behavior has also changed [11]. In the analysis of Moustafa and Slay, the UNSW-NB15 dataset

is shown to have updated both the attacks and normal behavior to represent more modern

network traffic [8].

The UNSW-NB15 dataset was created by simulating normal network traffic and attacks

using the IXIA PerfectStorm and tcpdump tools to capture network data. Then the Argus

and Zeek-IDS tools were used to extract feature information into CSV-formatted datasets. The

UNSW-NB15 dataset consists of approximately 2.5 million rows and is split into four CSV files

[8].

While this dataset is seemingly very comprehensive, it is also succeptible to becoming

dated due to the growth and diversification of both normal behavior and malware. Although

this dataset is still relevant, it will eventually need to be updated and replaced as the needs of

network communications and the ways hackers exploit them change.



6

Attributes and Structure

The UNSW-NB15 dataset has 49 features that each describe some attribute of a communication

or its context within an arriving set of communications. Most features are continuous but some

are categorical and two are binary. The dataset also contains label and metadata for the type of

attack, attack vs normal, and dataset indexing. Excluding the labels and metadata, Moustafa

and Slay divide the informational features into five categories [8]:

1. Flow Features: Features that identify the hosts/recipients of a communication and the

communication protocol.

2. Basic Features: Features that contain meta-information about the particular instance

of connection and communication, such as the duration or size of the communication,

time-to-live, etc.

3. Content Features: Features describing attributes of TCP/IP and HTTP services.

4. Time Features: Features describing the timing information of the particular communi-

cation.

5. Additional Generated Features: General purpose generated flags and statistical in-

formation about the content and delivery of the communication, or statistical information

about the particular communications relationship to surrounding communications.

See Appendix A.1 for information on individual features within each of these groups.

Attacks and Intrusions

Where the previous benchmark datasets lacked present day attack vectors, the UNSW-NB15

dataset supplements this with attacks classified into nine groups:

1. Fuzzers: Attacks characterized by feeding a system large amounts of data in attempt to

make it crash.

2. Analysis: Intrusions that target web applications through ports, email, or scripts in

order to gain entrance.
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3. Backdoor: Connections that attempt to circumvent normal security measures of a we-

bapp, attempting to gain access for an external user.

4. Denial of Service (DoS): An attack designed to occupy the resources of a system,

causing it to be too busy to respond to legitimate users.

5. Exploit: An attack that takes advantage of a particular unintended vulnerability of a

system.

6. Generic: An attack that seeks to identify collision with every block cipher of a system.

7. Reconnaissance: A probe designed to gain information about a system without neces-

sarily intruding or causing damage.

8. Shellcode: An attack where shell scripts are used to gain entrance to the code of a web

application.

9. Worms: An attack where the malware seeks to replicate itself across a network once it

has gained entrance.

The dataset is approximately 87% non-malicious values and 13% attack values. Table 2.2

illustrates the distribution of attack categories in the dataset.

Attack Category Label Count Percentage

normal 0 2,218,764 87.3513%
generic 1 215,481 8.4833%
exploits 1 44,525 1.7529%
fuzzers 1 24,246 0.9545%

dos 1 16,353 0.6438%
reconnaissance 1 13,987 0.5507%

analysis 1 2,677 0.1054%
backdoor 1 2,329 0.0917%
shellcode 1 1,511 0.0595%
worms 1 174 0.0069%

Table 2.2: UNSW-NB15 attack type distribution
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2.3 Comparison: UNSW-NB15 and NSL-KDD

The DARPA dataset was one of the original datasets created for IDS testing. It was designed

by running network traffic in a simulated air force base for two weeks, followed by five weeks of

attack traffic. The KDD99 set was then created by processing the DARPA logs. Because of the

preprocessed format of the KDD99 dataset, it became more popular for machine learning ex-

periments. Later, the NSL-KDD dataset was created by removing redundancies and duplicates

from KDD99. The NSL-KDD dataset effectively reduced the size of KDD99 without taking

away from the knowledge that it represents, as described by Özgür and Erdam [12].

The NSL-KDD dataset, while an improvement on KDD99, retains all of the shortcomings

of KDD99 as well. The attacks featured in KDD99 and NSL-KDD are limited and lack many

of the attacks that modern networks face. Each of the attacks in the NSL-KDD and KDD99

datasets can be divided into four categories:

1. Denial of Service (DoS) - attempting to overwhelm a system in order to make it unavailable

to legitimate users.

2. R2L - Unauthorized access or password guessing, remote to local.

3. U2R - Unauthorized access to a root account, user to root.

4. Probing - Observation of a system in order to gain information about that system.

The UNSW-NB15 dataset contains similar versions of each of these attack categories, as well

as more modern ones. The UNSW-NB15 dataset also contains more up to date normal behavior

as well as a more appropriate balance of normal and attack behaviors. Where NSL-KDD is

imbalanced towards attacks, the UNSW-NB15 emphasizes on normal behaviors.

2.4 Comparison: UNSW-NB15 and ICS Attack Datasets

T. Morris provides a collection and survey of several ICS specific datasets. These datasets are

created from simulated critical infrastructure systems, including a gas pipeline, a water storage

tank, and a power supply system [13]. Each of these datasets includes both generic network
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data as well as data specific to each piece of infrastructure, including setpoints for pipeline

pressure and PID controller values.

These datasets could be very useful in the future when determining potential models for

specific systems, however, as current research is exploring more general solutions, the UNSW-

NB15 dataset would likely apply more broadly to systems outside these ones listed.
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Chapter 3 Architectural Overview

This thesis expands on the existing work related to creating and evaluating intrusion detection

systems for the UNSW-NB15 dataset. In the experiments of S. Maji, logistic regression, gradient

boosted decision trees, ensemble classifiers, and other machine learning models were used. The

ensemble method performed best as it was able to combine the strengths of multiple types of

classifiers [14].

This thesis is structured in the following general machine learning pipeline:

1. Data Preprocessing: Null values, alternate spellings, and out of range values must be

adjusted to expected ranges and data types before applying any machine learning model.

2. Exploratory Data Analysis: General data exploration yields insights into the dataset

providing assistance for feature engineering. This can include correlation analysis and

exploring dataset metrics.

3. Feature Engineering: Certain features can be dropped, scaled, transformed, or created

to add new insights to the dataset or to remove unnecessary complexity before applying

machine learning models.

4. Baseline Model Implementation: An easy-to-implement model was used to create

a baseline for expectations of the more advanced model. This application of k-Nearest

Neighbors (kNN) is used as the baseline model.

5. Advanced Model Implementation: A more advanced model is used to explore the

dataset. For this application, a Multi-Layer Perceptron neural network was used as the

more advanced model.

6. Performance Metrics and Analysis: Once predictions are made for the baseline and

advanced models’ test sets, the effectiveness of these models can be explored. Due to

dataset balancing constraints, both F1 score and accuracy were analyzed.

One key component of exploration is assessing the success of the advanced model. According

to Zuech et al. a successful application will be highly accurate, minimize false alarms, and be
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able to recognize many different attacks [15].

This thesis develops a k-Nearest Neighbors classifier for identifying attacks to use as the

baseline comparison for a subsequent MLP approach.

This application is theoretical in nature and should be viewed in the context of a preliminary

step in identifying the most effective system that could be implemented in a production network

environment. This work focused on quantitative analysis of the results, F1 score, measures of

accuracy, etc; Stouffer et al. describe that it is important to consider the qualitative measures

associated with each potential model [2]. Qualitative measures are minimally explored but it is

useful to consider the training time, testing time, and ease of updates to the model as measures

of what might make an applicable industry implementation. Additionally, the repercussions

of a successful cyber attack on an industrial control system can be immense, so any approach

that is short of perfect must still be improved or combined with additional efforts before being

deemed effective enough to be put into production.

3.1 Data Preprocessing

While the UNSW-NB15 dataset is of very high quality and is relatively comprehensive, there

are still a few steps required to prepare data and clean it before it is ready for model application.

The data is stored in four separate CSV files that must be combined into a unified data structure.

In this application a Pandas dataframe in Python was used, though any data structure can be

used.

Only a few columns required preprocessing for null values or mismatched data types. The

columns ”ct ftp cmd” and ”is ftp login”, containing the count of ftp commands in the sessions

and a boolean flag if the ftp session was accessed by user and password, needed to be recast

from objects to integers. The aforementioned columns as well as the columns ”attack cat”

and ”ct flw http mthd”, containing the attack type label and the count of HTTP flows in the

session, needed to have null values filled. Because each of these columns had meaningful null

values, indicating that the specific column did not apply to that particular data point, the nulls

were replaced with a meaningful categorical point indicating the same effect. If there were any

continuous variables with null values, those should be replaced with the mean of the training
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data for that feature. Two columns, ”attack cat” and ”ct ftp cmd”, also included categorical

data points that were either misspelled or out of range. These were fixed with replacement

lambda functions.

3.2 Exploratory Data Analysis

The UNSW-NB15 dataset contains over 2.5 million rows and 49 features. In effort to save

a significant amount of computing requirements, it is crucial to identify redundancies in data,

namely any pieces of data that may be eliminated without cost to the effectiveness of the model,

as is shown in the S. Maji’s exploration [14]. This was explored through various correlation

analysis.

Finding the correlation between variables helped identify possible redundancies. Main-

taining a set of redundant variables does not serve to add any additional insight to a machine

learning model. When compared to keeping only one of the variables, the model should perform

nearly as well but with improved training and testing time. Figure 3.1 shows the correlation

between features of the UNSW-NB15 dataset in a heatmap.

Finding the correlation between features of the dataset and the attack label serves as a

helpful preliminary step at identifying which features might be particularly useful for a classifier.

Appendix A.2 gives the correlations between each feature and the attack category for the

UNSW-NB15 dataset.
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Figure 3.1: A heatmap of the correlation between variables in the
UNSW-NB15 dataset.
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3.3 Feature Engineering

The UNSW-NB15 dataset contains two variables, sbytes and dbytes, that represent the source

bytes and destination bytes. Summing these two variables results in a new vector for the

total number of bytes exchanged in the communication. While this information can be easily

determined from the data, listing it explicitly may provide additional insight for the system.

It was also necessary to drop columns that are unhelpful to the machine learning models.

For both kNN and MLP, any features that were specific to the generation of the dataset (IP

addresses, timestamps, etc) were dropped. This included srcip, sport, dstip, dsport, stime, and

ltime.

For the MLP model, one out of any two features that were highly correlated, having a

correlation value of greater than 0.95, with each other were dropped. The features dropped due

to high correlation were sloss, dloss, dpkts, dwin, ltime, ct srv dst, and ct src dport ltm. The

correlation values for these features with their highly correlated pairs can be found in table 3.1.

A heatmap of all features correlations can be found in figure 3.1.

Kept Feature Dropped Feature Correlation

sbytes sloss 0.9533
dbytes dloss 0.9913
dbytes dpkts 0.9708
swin dwin 0.9972
stime ltime 0.9999

Table 3.1: Pairs of features with correlations higher than 0.95 along with
whether or not they were kept in the feature set for the machine learning

approaches used.

For kNN, any features that were highly correlated with the attack label served as a helpful

starting point at selecting a feature set. These correlations can be found in Appendix A.2.

Any remaining columns needed to be feature scaled or encoded to avoid larger features

overshadowing smaller ones. Each continuous feature was normalized by z-score to a mean of

0 and standard deviation of 1. Equation 3.1 is the z-score normalization equation used.

x′ =
x− x̄

σ
(3.1)
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Figure 3.2: Label distribution on the train/test split.

Each categorical, non-binary feature was one-hot encoded into a group of binary features.

Each feature in the group would represent one possible value of the original variable and within

that group, one feature would be flagged as true to indicate that original category.

Before the data can be used in machine learning applications, it needs to be split into a

training set and a testing set. For both subsequent models, an 80/20 train/test split was used.

Figure 3.2 shows the proportions of attack labels between the training and testing sets, verifying

that they both have an appropriately similar distribution.

3.4 Performance Metrics

Performance metrics for this application can be divided into two general categories: how effec-

tive the model is and how practical the model is. Measures regarding how effective the model
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is were created using information from the test set predictions and actual values.

Predicted Attack Predicted Normal

Actual Attack True Positive False Negative

Actual Normal False Positive True Negative

Table 3.2: Predicted values vs. actual values. Combinations of these fields
are used in a variety of performance metrics.

F1 Score

The UNSW-NB15 dataset is heavily skewed towards normal data points. This makes looking

at individual statistics and the general accuracy ineffective. S. Raschka describes that the

F-Measure is an effective measure for such datasets [16].

The F1 Score is the F-Measure of a binary classifier. It combines both the precision and

recall, equations 3.3 and 3.4, to evaluate both how precise and how robust the model is.

F1 =
2

recall−1 + precision−1
(3.2)

Precision =
tp

tp+ fp
(3.3)

Recall =
tn

tn+ fp
(3.4)

Equation 3.2 is the equation for the F1 score of a system’s performance. A perfect F1 score

is 1, indicating both perfect precision and recall. The worst possible F1 score is 0, indicating

either 0 precision or 0 recall.

The F1 measure is a good measure for this data because of the high skew towards normal

values. The F1 measure equally weights the precision and recall, so a successful model can only

be recognized as such if it is both able to properly classify correct values and avoid misclassifying
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values [16].

ROC AUC Score

The Receiver Operating Characteristic (ROC) curve plots the True Positive Rate (TPR) seen in

equation 3.5 against the False Positive Rate (FPR) seen in equation 3.6. The area under curve

(AUC) of the ROC curve is a measure of how effective a model is at making correct predictions

[17]. A perfect ROC AUC score is 1, indicating no mis-classifications, and a score above 0.5

indicates that a model is more likely than not to make correct predictions as described by S.

Narkhede [18].

TPR =
TP

TP + FN
(3.5)

FPR =
FP

FP + TN
(3.6)

The two components of the ROC AUC score represent two critical classification rate in

intrusion detection. The TPR represents the ability that the model has to correctly identify

attacks. In intrusion detection, this is a particularly critical score, as the repercussions for a

false negative are greater than that of a true positive. The FPR, or False Alarm Rate (FAR),

identifies the tendency of the model to misclassify normal behaviors as malicious [15]. While a

high FAR is still not good, the damage caused in an ICS by flagging normal communications

as possibly malicious is generally significantly less than allowing attacks in.

3.5 Baseline Analysis: kNN

The k-Nearest Neighbors (kNN) classifier works by comparing an unknown data point to known,

labeled data points and taking a vote of the k nearest points, by some established distance

measure. Lin et al. support kNN as generally a good baseline for machine learning approaches

because it is easy to implement and will correctly classify a majority of data points, so long
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as they are relatively clustered with each other. In intrusion detection, this inherent cluster-

ing is often the case because if a vulnerability is found, exploits will generally focus on that

vulnerability and end up looking similar to each other [19].

kNN generally serves as an excellent benchmark for intrusion detection applications. With

many attacks exploiting a particular vulnerability or pattern, clusters naturally appear around

these types of communications [19]. This makes kNN a good benchmark because it is easy

to implement and will catch a bulk of the attacks. Additionally, the extremely large size and

depth of attacks that the UNSW-NB15 dataset holds is likely to make clusters more definite as

attacks are likely to be repeated with minor changes. However, new attacks, attacks specific to

an individual system, and outliers are harder to catch with kNN.

Distance Measures

To perform kNN, the data needs to be in a form that enables a distance measure to be taken

[20]. Most commonly, this is the Euclidean distance measure. Categorical data requires some

manipulation before a distance measure can be applied. The one-hot encoding process from the

feature engineering step enabled the Euclidean algorithm to be used. One downfall of kNN is its

inability to use multiple distance measures. In a situation with only binary categorical features,

the Jaccard distance could be used more effectively than the Euclidean distance. Given the

mixed nature of the dataset as well as the heavy favor towards continuous features, Euclidean

distance worked effectively.

As an algorithm, kNN identifies clusters of data points to assert label membership. By

nature, distance measures between points are inherently linear. Should the data have more

complex, non-linear relationships between variables and the label, kNN may miss these irregular

or non-linear clusters.

Feature Selection

Since the UNSW-NB15 dataset has a relatively small feature set, it is possible to run kNN

across all features. However, looking into the spread of correlations between individual features

and the label vector makes it clear that certain variables would be more beneficial than others.

Additionally, lowering the number of features included would also substantially improve the
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runtime of the algorithm. It is important to choose the correct subset of variables to use.

Because kNN must compare all variables for each data point in order to classify, the runtime

requirements can be excessively high for testing each data point. Additionally, certain variables

can confound the clusters and adversely contribute to proper classification.

Determining the perfect subset of features to use for kNN, the one that finds the global

maximum accuracy score, required a comprehensive search of all feature permutations. Since

the dataset has 49 features, this would be an excessively time consuming feat. Instead, a variety

of methods were used to find a satisfactory local maximum accuracy score.

To streamline the development process, a randomly selected one tenth subset of the data

was selected each run for intermediate testing. The full set was only used to determine the final

baseline score and to occasionally validate results along the way.

Determining an optimal feature set was done as follows:

1. A test was run on the full feature set of the data.

2. Subsequent tests were run on the feature sets that the original UNSW-NB15 paper out-

lined; basic features, flow features, content features, time features, and additional gener-

ated features.

3. Each of these tests were run several times to establish which value of k, the number of

neighbors used for classification, would be most effective. This was determined to be

k = 5 and was used for the remaining tests.

4. It was noted that the basic features feature set performed the best, followed by the full

feature set.

5. Feature correlations were calculated between the informational (non-meta) features of the

dataset and the attack label.

6. Test were run on different combinations of the most strongly correlated feature, including

positive, negative, and mixed correlations.

7. Beyond the first few features, correlation was not a helpful indicator of kNN accuracy, so

individual features were tested instead.



20

Figure 3.3: The resulting kNN accuracy by adding features in order of best
individual kNN performance.

8. kNN was run on individual features and they were then ordered by performance.

9. Starting with the best performers, sbytes and sload, the next features were added on and

their group performance was noted along with whether or not it was more effective than

without the new feature.

10. Each feature that resulted in a positive delta performance was then grouped together

and the process was repeated until a satisfactory result, a local maximum accuracy, was

obtained.

The first iteration of testing features resulted in a maximum accuracy score of 0.92675.

Appendix A.3 shows the strength of each feature in a single-feature kNN. This is the order that

features were then tested in the group. Figure 3.3 shows the group performance as each new

feature was added.

The second iteration of testing features began with the set created by taking only the

features that had a positive effect on the group performance from the previous test. Adding

these features incrementally produced figure 3.4. Notably, the best performance of this resulted
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Figure 3.4: The resulting kNN accuracy created by adding features that
resulted in a positive accuracy delta during the previous test (iteration 2).

in an improved accuracy of 0.9573.

This process was repeated again, taking only the features that resulted in a positive delta

from iteration two and adding them incrementally. The resulting best kNN accuracy of 0.9562

was never able to surpass the previous best, so it was determined that a local maximum had

been reached, and the optimal feature set would be the one that resulted in the best score from

iteration two. Figure 3.5 shows the relative performance of this test.

Ultimately, the final feature set was comprised of 16 features: sbytes, sload, smeansz, dload,

dbytes, dmeansz, ct state ttl, sinpkt, sttl, spkts, dloss, ct srv dst, ct dst src ltm, ct dst ltm, trans -

depth, and ct ftp cmd. Some of these features listed were one-hot encoded; for simplicity of

listing values, each group of encoded columns has been grouped back into their original column

name. The method used for parameter selection is not guaranteed to produce the optimal

result. Because of the complexity of the dataset features, not all possible combinations could

be tested and not all possible methods of feature engineering could be applied in a reasonable

amount of both development and run time. However, the feature selection done should yield a

value at or close to a local maximum with results satisfactory for a baseline assessment.
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Figure 3.5: The resulting kNN accuracy created be adding features that
resulted in a positive accuracy delta during the previous test (iteration 3).

In exploring the effectiveness of individual features on kNN results, certain features, when

added or removed from the active feature set, could either increase or decrease the accuracy of

the algorithm, depending on the remaining feature set used. Due to the linear nature of kNN

and this fact that certain features can be more effective when paired leads to the hypothesis

that there are more complex patterns in the data that, if properly identified, may yield better

results than the kNN baseline.

3.6 Advanced Method: Multi-Layer Perceptron

A Multi-Layer Perceptron supervised learning algorithm and is a form of neural network that

includes one or more hidden layers [21]. It can be used as both a classifier or a regressor but in

this application we will be using its classifier functionality. The MLP classifier seeks to learn a

non-linear function.

f(·) : Rm− > Ro (3.7)
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Equation 3.7 describes a multi-layer perceptron where m is the dimensionality of the feature

set and o is the possible options for classification. The model is trained using the backpropoga-

tion algorithm over the training set. Tests are then evaluated by passing the m features of

the test point into the input of the model and the resulting o options are then output with a

likelihood weight. The highest weight is then assigned as the classification.

In this instance, after one-hot encoding the input data has 197 features: m = 197. Because

the data is binary classified as attack or not, the output vector is size 2: o = 2.

Multi-Layer Perceptrons are able to represent complex non-linear functions. Each neuron in

the neural network implements a weighted linear sum of the values output by the neurons of the

previous layer. By combining multiple layers, a neural network is able to identify and represent

complex non-linear functions. This is particularly useful in intrusion detection because while

many attack data points fall into linear clusters, capturing new or more sophisticated attacks

requires non-linear capabilities.

Multi-Layer Perceptrons are susceptible to local minimums dependent on the random weight

initialization of the untrained model. A given set of tuned parameters does not guarantee the

best possible outcome of the model or an identical outcome from retraining a similar model.

Once an MLP classifier is built and trained, testing datapoints is very quick and the testing

and classification of data can be used to continue to train the model in production. In a network

environment where network communications are changing and adapting, this can make a model

longer standing.

One of the benefits and challenges of an MLP are the variety of hyperparameters available

to tune. These options enable MLP classifiers to be effective in a multitude of applications

but they also then need to be tuned to determine an effective configuration, which can be time

consuming.

Hyperparameter Tuning

The most significant hyperparameters available to the MLP Classifier are the activation function

and the solver which are used for the initialization of weights and for how they are updated

in training. The particular choice of activation function and solver also unlocks additional
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parameters that can be tuned.

Hyper-parameter tuning also requires performance metrics to assess and validate perfor-

mance. For this, the F1 score and ROC AUC scores were chosen, prioritizing ROC AUC and

then F1, though the performance of these two measures will generally scale together as can also

be seen in the experiments of S. Maji [14].

Since the UNSW-NB15 dataset contains such a large number of datapoints, a stochastic

gradient descent based optimization function for the solver is likely the best selection. The

Sci-Kit Learn libraries give two such options: SGD and Adam. Beginning with each of these,

most of the remaining hyperparameters do not have any intuitive best answer and will need to

be tuned individually. The parameters tuned and options for each are listed in table 3.3.

Test #1: Solver=sgd
Parameter Options tested

Solver sgd
Activation Function identity, logistic, tanh, relu

Alpha 1e-5, 0.0001, 0.001
Learning Rate constant, invscaling, adaptive

Test #2: Solver=adam
Parameter Options tested

Solver adam
Activation Function identity, logistic, tanh, relu

Alpha 1e-5, 0.0001, 0.001

Table 3.3: Multi-Layer Perceptron hyper-parameter configurations tested

Parameters are tuned and options are explored using a twice validated gridsearch to ensure

the results are reliable. Ultimately, 72 tests were run for the SGD solver, 36 different parameter

combinations twice validated, and 24 tests were run for the Adam solver, 12 different parameter

combinations twice validated. In an ideal scenario, these tests would be five times validated,

but due to runtime constraints twice validated provided sufficient results.
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Chapter 4 Results

4.1 Baseline: kNN

The kNN algorithm achieved varying results depending on the selection of variables used for

analysis.

The locally optimal feature set selected contained the following 16 features: sbytes, sload,

smeansz, dload, dbytes, dmeansz, ct state ttl, sinpkt, sttl, spkts, dloss, ct srv dst, ct dst src ltm,

ct dst ltm, trans depth, and ct ftp cmd. It was also determined that the most effective value

of k is 5. Running kNN with these configurations produced an F1 score of 0.9720 and a ROC

AUC score of 0.9834. Table 4.1 shows the confusion matrix for the best kNN predictions.

Predicted Attack Normal

Actual
Attack 62404 1884
Normal 1716 442006

Table 4.1: The confusion matrix for the best kNN predictions

As a baseline exploration, these results are highly promising. For the optimized feature set,

0.97 is a high F1 score, especially for a straightforward algorithm like kNN with little to no

feature engineering. Additionally, the fact that a smaller subset of features produced not only

a more time efficient run but better results.

4.2 Multi-Layer Perceptron

The Multi-Layer Perceptron Artificial Neural Network has many more parameters to fine tune

than the kNN baseline. Some of the parameters can be selected with confidence by looking

at their design and documentation but other required experimentation and testing to find an

optimized set.

Many of the MLP hyper parameters are dependent on the particular solver function.

Each test begins with a solver function and uses gridsearch to tune the corresponding hyper-

parameters.
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Table 4.2 summarizes each experiment and its results.

Test #1: Solver=sgd
Parameter Options tested Best Selected

Solver sgd sgd
Activation Function identity, logistic, tanh, relu relu

Alpha 1e-5, 0.0001, 0.001 1e-5
Learning Rate constant, invscaling, adaptive adaptive

F1 Score: 0.9633
ROC AUC: 0.9825

Test #2: Solver=adam
Parameter Options tested Best Selected

Solver adam adam
Activation Function identity, logistic, tanh, relu tanh

Alpha 1e-5, 0.0001, 0.001 1e-5

F1 Score: 0.9697
ROC AUC: 0.9828

Table 4.2: Multi-Layer Perceptron tests and hyper-parameter configurations

Test #1: Stochastic Gradient Descent Solver

The first test used the Stochastic Gradient Descent solver (SGD), and tested the hyper-

parameters activation, alpha, and learning rate. The most effective combination, an activation

function of Rectified Linear Unit (RELU) function, an alpha value of 0.00001, and an adaptive

learning rate, resulted in an F1 score of 0.9633 and a ROC AUC score of 0.9825. The most

significant hyper-parameters in this test were the activation function and learning rate. An

adaptive learning rate runs similar to a constant learning rate, but decreases each time con-

secutive epochs fail. Where a constant rate would quit early, the adaptive rate will narrowly

approach the local maximum more before quitting. This explains the similar, yet marginally

better results of the adaptive rate, as well as it’s additional runtime.

Test #2: Adam Solver

The second test used the solver Adam, a modified Stochastic Gradient Descent function, and

tuned the hyper-parameters activation and alpha. The most effective configuration, an acti-

vation function of hyperbolic tangent (tanh) and an alpha of 1e-5, resulted in an F1 score of
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0.9697 and a ROC AUC score of 0.9828.

Analysis

While there was some variation in effectiveness, the parameters that were the most significant

between tests were activation functions of either tanh or relu, outperforming the other options

across both tests. Additionally, smaller alpha values also gave better results at the cost of

higher runtime.

The best tuned MLP classifier from Test #2 produced results with an F1 score of 0.9679 and

a ROC AUC score of 0.9828. Table 4.3 shows the confusion matrix for this model’s predictions.

Predicted Attack Normal

Actual
Attack 62358 1930
Normal 1966 441756

Table 4.3: The confusion matrix for the best MLP predictions

Comparing with the baseline results of kNN, this is a reasonably close score. A visual

comparison of the performances of kNN and the two MLP tests is presented in figure 4.1. With

the shorter test runtime of a trained neural network, this approach is arguably more practical

than the kNN baseline; however, this model would still need to be improved or paired with other

systems before it is sufficient for a production system. Other experiments have also produced

better F1 scores than this one achieved by the MLP system [14].

Presumably, more exploratory data analysis and feature engineering could yield even better

results by enabling the discovery of new patterns that may not be visible or as pronounced

in this model. Additionally, the abundance of parameters to tune led to discovering a local

maximum in performance and not the global maximum. With so many parameters to tune

and the runtime required for training the neural network, it was not feasible to guarantee best

results by a particular configuration.
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Figure 4.1: The performances of kNN, MLP stochastic gradient descent
solver, and MLP Adam solver.

4.3 kNN and MLP Performance by Attack Category

Attack Type No. Correct No. Incorrect Accuracy

No Attack 441756 1966 0.9956
Generic 43051 20 0.9995
Exploits 8771 155 0.9826
Analysis 458 84 0.8450
Fuzzers 3266 1554 0.6776

DOS 3247 51 0.9845
Reconnaissance 2771 47 0.9833

Backdoor 474 1 0.9979
Shellcode 295 18 0.9425
Worms 25 0 1

Table 4.4: MLP predictions by attack category

Table 4.4 shows the prediction success dependent on the type of attack for the MLP classifier

while table 4.5 shows the prediction success dependent on the type of attack for the kNN

classifier. Table 4.6 shows the comparative performance between the kNN and MLP classifiers.

Compared to the kNN classifier, the MLP model excelled at backdoor, shellcode, and worm

attacks. The MLP model comparatively performed the worst at fuzzer attacks but was very
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Attack Type No. Correct No. Incorrect Accuracy

No Attack 442006 1716 0.9961
Generic 43040 31 0.9993
Exploits 8713 213 0.9761
Analysis 458 84 0.8450
Fuzzers 3380 1440 0.7012

DOS 3251 47 0.9857
Reconnaissance 2791 27 0.9904

Backdoor 468 7 0.9853
Shellcode 280 33 0.8946
Worms 23 2 0.92

Table 4.5: kNN predictions by attack category

close for remaining attacks/normal values. Looking at the sizes of each subset, The kNN clas-

sifier performed better on attack categories with larger data points whereas the MLP classifier

performed better on categories with fewer data points.

Attack kNN Performance MLP Performance Improvement

No Attack 0.9961 0.9956 -0.0005
Generic 0.9993 0.9995 +0.0002
Exploits 0.9761 0.9826 +0.0065
Analysis 0.8450 0.8450 ±0
Fuzzers 0.7012 0.6776 -0.0236

DOS 0.9857 0.9845 -0.0012
Reconnaissance 0.9904 0.9833 -0.0071

Backdoor 0.9853 0.9979 +0.0126
Shellcode 0.8946 0.9425 +0.0479
Worms 0.92 1 +0.08

Table 4.6: Comparison of the kNN and MLP performance by attack
category
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Chapter 5 Conclusion and Future Work

Multi-Layer Perceptrons exemplified a potentially effective measure of intrusion detection for

network cybersecurity. Achieving an F1 score of 0.9679 and a ROC AUC score of 0.9828, as

compared to the kNN F1 score of 0.9720 and ROC AUC score of 0.9834. MLP was also able to

improve upon the accuracy of kNN for lesser recorded attacks. MLPs illustrated that they were

able to begin to recognize some of the complex patterns of identifying attack vectors in network

communications while retaining general performance. Additionally, once trained, MLPs make

a practical application of machine learning for network intrusion detection due to their shorter

testing time.

Machine learning models targeting more complex patterns, such as MLP, are generally

benefited by the comprehensive nature of the dataset. The fact that kNN performed best on a

smaller subset of the dataset’s features than the MLP approach also indicates that the inclusion

of detailed data when analyzing network communications benefits machine learning methods

targeting more complex patterns.

The UNSW-NB15 dataset represents more generic network traffic than could typically be

found within an ICS setting. The inclusion of this more specific data would enable a more

effective model however limiting the scope of the system to that in which the data was recorded.

Based on the data in this thesis, the results from kNN and the MLP classifier were satisfac-

tory for intrusion detection, however they are not yet sufficient for a system that can be trusted

for critical infrastructure systems in production.

Both systems in this thesis were binary classifiers trained on a dataset of both known

anomalies and normal traffic. This would make both systems unlikely to catch zero-day attacks

unless they particularly resembled an existing attack. The MLP approach can be restructured

into a regressor that predicts the likelihood that a particular data point is an anomaly rather

than a binary prediction. This could possibly produce better results at catching zero-day and

previously unseen attacks.
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Future Work

Further development of intrusion detection for Industrial Control Systems, would benefit from

a few genres to be expanded:

ICS Specific Datasets: The UNSW-NB15 dataset contains general information that

can be applied to nearly any network-connected device. To build strong defenses for a given

industrial control system, it would be helpful to also explore ICS specific datasets, particularly

those that represent systems similar to the one to be protected.

Improving the Dataset: The UNSW-NB15 dataset contains exceptional information on

general network traffic. Expanding into ICS-specific traffic would give more insights into the

benefits and challenges of setting up an Intrusion Detection And Prevention System (IDPS).

Exploratory Data Analysis: There are multiple ways to scale and represent feature

values within the dataset. In these experiments each feature was represented on its original

scale; it is possible that some features provide more insight into the data if scaled in other ways.

For example, logarithmic representations of some of the data or boxing it into categories may

improve the performance of a model. This concept would require additional exploratory data

analysis to assess these correlations with the attack labels before they can be tested on existing

machine learning models.

Exploring other methodologies: Neural networks and multi-layer perceptrons are only

one of many machine learning models that yield successful results in such an experiment. Adding

to the MLP approach by exploring other tuning factors, models, and combinations of models

could yet give results that surpass those of this experiment. Additionally, a replicator neural

network or an autoencoder could be used in place of the multi-layer perceptron. These models

specialize at anomaly detection. The success of the MLP approach would merit an exploration

into those models for an ICS intrusion detection system.

Model Assessment: F1 score and ROC AUC are two of the most effective means of

measuring performance of an intrusion detection system. There are other methods for assessing

the effectiveness of a system which should be explored.
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[12] A. Özgür and H. Erdem, “A review of kdd99 dataset usage in intrusion detection

and machine learning between 2010 and 2015,” PeerJ Preprints, vol. 4, 2016. [Online].

Available: https://doi.org/10.7287/peerj.preprints.1954v1

[13] T. Morris, “Industrial control system (ics) cyber attack datasets,” WebPage. [Online].

Available: https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

[14] S. Maji, “Building an intrusion detection system on unsw-nb15 dataset based on machine

learning algorithm,” WebPage, September 2020.

[15] R. Zeuch, T. M. Khoshgoftaar, N. Seliya, M. M. Najafabadi, and C. Kemp,

“A new intrusion detection benchmarking system,” in Proceedings of the Twenty-Eighth

International Florida Artificial Intelligence Research Society Conference, 2015.

[16] S. Raschka, “About feature scaling and normalization – and the effect of

standardization for machine learning algorithms,” WebPage, July 2014. [Online].

Available: https://sebastianraschka.com/Articles/2014 about feature scaling.html

https://doi.org/10.1080/19393555.2015.1125974
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://doi.org/10.7287/peerj.preprints.1954v1
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html


34

[17] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,”

in Proceedings of the 23rd International Conference on Machine Learning, ser. ICML ’06.

New York, NY, USA: Association for Computing Machinery, 2006, p. 233–240. [Online].

Available: https://doi.org/10.1145/1143844.1143874

[18] S. Narkhede, “Understanding auc-roc curve,” WebPage, June 2018. [Online]. Available:

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

[19] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “Cann: An intrusion detection system based

on combining cluster centers and nearest neighbors,” Knowledge-Based Systems, vol. 78,

pp. 13–21, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0950705115000167

[20] H. A. Abu Alfeilat, A. B. Hassanat, O. Lasassmeh, A. S. Tarawneh, M. B.

Alhasanat, H. S. Eyal Salman, and V. S. Prasath, “Effects of distance measure

choice on k-nearest neighbor classifier performance: A review,” Big Data, vol. 7, p.

221–248, Dec 2019. [Online]. Available: http://dx.doi.org/10.1089/big.2018.0175

[21] J. Esmaily, R. Moradinezhad, and J. Ghasemi, “Intrusion detection system based

on multi-layer perceptron neural networks and decision tree,” in 2015 7th Conference on

Information and Knowledge Technology (IKT), 05 2015, pp. 1–5.

https://doi.org/10.1145/1143844.1143874
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://www.sciencedirect.com/science/article/pii/S0950705115000167
https://www.sciencedirect.com/science/article/pii/S0950705115000167
http://dx.doi.org/10.1089/big.2018.0175


Appendix

A.1 UNSW-NB15 Features and Feature Groups

Features and Feature Groups from Nour Moustafa and Jill Slay [8]

Flow Features

No. Feature Name Description

1 srcip Source IP address
2 sport Source port number
3 dstip Destination IP address
4 dsport Destination Port number
5 proto Protocol type

Basic Features

No. Feature Name Description

6 state Indicates that state and its dependent protocol
7 dur Record total duration
8 sbytes Source to destination bytes
9 dbytes Destination to source bytes
10 sttl Source to destination time to live
11 dttl Destination to source time to live
12 sloss Source packets re-transmitted or lost
13 dloss Destination packets re-transmitted or lost
14 service Such as http, ftp, smtp, ssh, dns, and ftp-data
15 sload Source bits per second
16 dload Destination bits per second
17 spkts Source to destination packet count
18 dpkts Destination to source packet count

35
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Content Features

No. Feature Name Description

19 swin Source TCP window advertisement value
20 dwin Destination TCP window advertisement value
21 stcpb Source TCP base sequence number
22 dtcpb Destination TCP base sequence number
23 smeansz Mean of the flow packet size transmitted by the

source
24 dmeansz Mean of the flow packet size transmitted by the

destination
25 trans depth Represents the pipelined depth into the connec-

tion of http request/response transaction
26 res bdy len Actual uncompressed content size of the data

transferred from the server’s http response

Time Features

No. Feature Name Description

27 sjit Source jitter in milliseconds
28 djit Destination jitter in milliseconds
29 stime Record start time
30 ltime Record last time
31 sinpkt Source inter-packet arrival time in milliseconds
32 dinpkt Destination inter-packet arrival time in millisec-

onds
33 tcprtt TCP connection setup round-trip time; sum of

‘synack’ and ‘ackdat’
34 synack TCP connection setup time; the time between

the SYN and SYN ACK packets
35 ackdat TCP connection setup time; the time between

the SYN ACK and ACK packets
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Additional Generated Features

No. Feature Name Description

36 is sm ips ports If both the source and destination IP addresses
and ports are the same then this is flagged with
a 1, else 0

37 ct state ttl No. for each state (6) according to specific
ranges of values for sttl (10) and dttl (11)

38 ct flw http mthd No. of flows that contain HTTP methods within
an HTTP service

39 is ftp login If the ftp session is accessed by user and pass-
word then 1, else 0

40 ct ftp cmd No. of flows that has a command in ftp session
41 ct srv src No. of records that contain the same service

(14) and srcip (1) in the last 100 records, ac-
cording to ltime (26)

42 ct srv dst No. of records that contain the same service
(14) and dstip (3) in the last 100 records, ac-
cording to ltime (26)

43 ct dst ltm No. of records of the same dstip (3) in the last
100 records according to ltime (26)

44 ct src ltm No. of records of the same srcip (3) in the last
100 records according to ltime (26)

45 ct src dport ltm No. of records of the same srcip (1) and the
dsport (4) in the last 100 records according to
ltime (26)

46 ct dst sport ltm No. of records of the same dstip (3) and the
sport (2) in the last 100 records according to
ltime (26)

47 ct dst src ltm No. of records of the same srcip (1) and the
dstip (3) in the last 100 records according to
ltime (26)
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A.2 UNSW-NB15 Feature and Attack Label Correlation

Feature Attack Label Correlation

sttl 0.5042
ct dst sport ltm 0.3937
ct src dport ltm 0.3415

rate 0.3286
ct state ttl 0.3185
ct srv dst 0.2929
ct srv src 0.2902

ct dst src ltm 0.2800
ct src ltm 0.2765
ct dst ltm 0.2580

sload 0.1245
sbytes 0.0206
state 0.0142
sloss 0.0064
dur -0.0011

is ftp login -0.01621
response body len -0.0164

ct ftp cmd -0.0171
trans depth -0.0258

djit -0.0271
sjit -0.0274

spkts -0.0277
dbytes -0.0326
dinpkt -0.0376
proto -0.0384
dloss -0.0444

smean -0.0611
dpkts -0.0615

ct flw http mthd -0.0750
dttl -0.0986

is sm ips ports -0.1174
ackdat -0.1205
sinpkt -0.1208
tcprtt -0.1488
synack -0.1499
dmean -0.2115
dload -0.2805
stcpb -0.2814
dtcpb -0.2829
dwin -0.3693
swin -0.4145
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A.3 UNSW-NB15 Feature and Individual kNN Accuracy

Feature Single-Feature kNN Accuracy

sbytes 0.8857
sload 0.8857

smeansz 0.8429
dinpkt 0.8368
dload 0.8206
dbytes 0.7990

dur 0.7929
dmeansz 0.7872
synack 0.7855
tcprtt 0.7844
ackdat 0.7743

ct state ttl 0.7737
sinpkt 0.7687

sttl 0.7685
sjit 0.7673
dttl 0.7543
djit 0.7540

dpkts 0.7505
dtcpb 0.72462
stcpb 0.7238
spkts 0.7161
sloss 0.7146
swin 0.7044
dloss 0.6946
dwin 0.6840

ct srv dst 0.6304
ct srv src 0.6272

ct dst src ltm 0.5672
ct dst ltm 0.5595

ct src dport ltm 0.5582
trans depth 0.5539

ct flw http mthd 0.5530
ct ftp cmd 0.5508
ct src ltm 0.5437

ct dst sport ltm 0.5288
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