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ABSTRACT 

Damming of rivers is widespread and can profoundly impact riparian areas 

by altering the fluvial processes that drive riparian vegetation communities. Dam 

removal may reverse these effects; however, very few studies have examined the 

response of riparian vegetation to large dam removal and associated disturbances, 

such as the release of sediment. Understanding how dam removal impacts 

downstream riparian vegetation is crucial as dam removal becomes more common. 

The Elwha River, Washington, is the location of the largest dam removals to date 

and provides an unprecedented opportunity to explore questions related to dam 

removal and riparian vegetation. The objectives of this study were to 1) look at how 

riparian vegetation species richness and community composition changed five 

years after the removal of two large dams on the Elwha, and 2) examine how the 

soil seed bank relates to riparian landforms and location above and below the 

former dam sites. To do this I surveyed plant species richness, community 

composition, and soil seed bank species richness and seed abundance on three 

riparian landforms (bars, floodplains, and terraces) located above, between, and 

below the dams. I surveyed the above ground vegetation in 2016 and 2017 and 

compared it to data collected before dam removal (2005 and 2010) and 

immediately after removal (2012, 2013, and 2014). The soil seed bank was collected 

in 2017. Native species richness increased five years after removal on certain 

landforms, and sediment deposition following dam removal does not negatively 

impact species richness downstream. Community composition differed above and 
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below the dams five years after removal. The soil seed bank had more species and 

was more abundant above the dams on floodplains and bars but was sparse below 

the dams. I expect that native species richness will continue to increase, as 

sediment continues to work its way through the system and perturbations begin to 

fall within natural levels. This study represents the largest dataset collected on 

riparian vegetation following dam removal and provides evidence that removal 

may increase native species richness, while sediment deposition may limit the soil 

seed bank.   
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Chapter 1 : Downstream riparian vegetation dynamics five years after 

dam removal on the Elwha River, Washington 
 

1.1 INTRODUCTION 

Over half of the large river systems in the world have been impacted by 

dams (Nilsson et al. 2005) and in the U.S. only ~2% of rivers remain unmodified by 

dams and levees (Lytle and Poff 2004). Dams alter key hydrologic and 

geomorphologic processes (Nilsson and Berggren 2000, Poff and Hart 2002, Graf 

2006) and consequently impact riparian zones (Poff et al. 2007). These zones 

contain diverse and complex biological communities and provide a range of 

ecological functions and services (Naiman et al. 1993, Naiman and Decamps 1997, 

Tabacchi et al. 2000, Sweeney et al. 2004, Arthington et al. 2010). Many of these 

functions depend on riparian vegetation (Tabacchi et al. 2000) and fluvial 

processes, such as flooding and sediment deposition. These processes create 

different riparian landforms, such as bars, floodplains, and terraces, which often 

have distinct vegetation communities due to differences in flow regime and 

sediment characteristics (Hupp and Osterkamp 1996, Bendix and Hupp 2000, Lytle 

and Poff 2004, Latterell et al. 2006, Merritt et al. 2010).  

By trapping sediment within reservoirs, dams limit the amount of sediment 

traveling downstream (Nilsson and Berggren 2000, Poff and Hart 2002, Rood et al. 

2005). Sediment starvation below dams can cause channel incision (Kondolf 1997), 

which can limit overbank flooding and intensify the disconnect between the river 



2 
 

and the floodplain (Schneider et al. 2003, Pollock et al. 2007, Jacobson et al. 2011). 

By altering natural flow regimes and the river-floodplain connection, dams can 

impact the biota that has adapted to certain flood intensity, frequency, and timing 

(Poff et al. 1997, Bendix and Hupp 2000, Shafroth et al. 2002, Lytle and Poff 2004, 

Solari et al. 2016). Removing over-bank flooding and the lateral exchange of 

materials (such as sediment and nutrients) can drastically impact floodplain 

species (Rood et al. 2005), possibly by allowing them to progress to a later 

successional community and become more like upland vegetation (Merritt and 

Cooper 2000). Dams have also been shown to limit hydrochory (seed dispersal by 

water) and downstream propagule dispersal which negatively effects recruitment 

of native species and allows for invasive or non-native plant invasions (Greet et al. 

2012, Cubley and Brown 2016). Dams may also indirectly impact vegetation 

through other means, such as blocking of fish movement (Nilsson and Berggren 

2000), which can limit marine derived nitrogen in the system (Duda et al. 2011a).  

As many dams approach the end of their intended lifespan it often makes 

economic and environmental sense to remove them (Bednarek 2001, Babbitt 2002, 

Poff and Hart 2002, Doyle et al. 2003). However, there have been few completed 

studies looking at the effects of dam removal on riparian vegetation downstream of 

the dams. It is unknown whether the return of the drivers of riparian vegetation, 

such as flooding, fluvial change, and hydrochory, will translate to a return to pre-

dam riparian vegetation communities. Additionally, dam removal may introduce 

addition perturbations to the system.  
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The removal of dams can cause increased downstream sediment movement 

(Bednarek 2001), which may temporarily raise channel bed height, alter over-bank 

flood frequency, change riparian landforms, and alter soil characteristics (Pizzuto 

2002). For example, the removal of the Condit Dam on the White Salmon River, 

Washington, exposed 1.8 million m3 of sediment, of which 1 million m3 was 

transported out of the drained reservoir within fifteen weeks, raising the channel 

bed height by over a 1 meter (Wilcox et al. 2014). Abundant sedimentation can 

bury existing understory vegetation and provide nutrients and a bare surface for 

plant recolonization, potentially by invasive species (Jurik et al. 1994, Gleason et al. 

2003, Asaeda and Rashid 2012). As little as 0.5 cm of sediment can reduce seedling 

emergence by 91.7% (Gleason et al. 2003). However, the release and deposition of 

fine-grained sediment may also increase herbaceous vegetation encroachment, 

especially if the sediment is high in total nitrogen content (Asaeda and Rashid 

2012). Furthermore, some riparian tree species may be killed by heavy sediment 

deposition, while some may experience compensatory growth (Kui and Stella 

2016). The characteristics of the sediment (such as texture and nutrient content) 

may also play a role in how species adapt to deposition. This change in sediment 

dynamics following dam removal is expected to lessen with time, as the old 

reservoir beds incise and stabilize.  However, it may take years or decades for 

downstream areas to recover from impacts of this sedimentation (Pizzuto 2002), 

and it is unknown how this change in the sediment regime related to large dam 

removals may impact downstream vegetation.  
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The Elwha River on the Olympic Peninsula in Washington State is the site 

of the largest dam removal project to date and provides a rare opportunity to 

examine how large dam removals affects downstream vegetation. Two dams 

impounded the Elwha River; the lower Elwha Dam (33m), which was built between 

1910 and 1913, and the Glines Canyon Dam (64 m), which was built between 1925-

1927. From 1945 until their removal the dams were operated to allow water to flow 

out of the reservoir at the rate it flowed in. The dams blocked hydrochory (Brown 

and Chenoweth 2008), as well as sediment, which decreased the presence of newly 

deposited land forms and led to later successional floodplain forests (Kloehn et al. 

2008, Shafroth et al. 2016). Both dams were removed in stages between 2010 and 

2014, beginning with the Elwha Dam and ending with the larger Glines Canyon 

Dam. While the final piece of the Glines Canyon Dam was not removed until 2014, 

both reservoirs were drained by 2012.  

Before dam removal, native species richness was 45% lower and community 

composition differed compared to their reference sites above the dams (Clausen 

2012). In the first two years after dam removal, species richness and community 

composition did not change significantly from pre-removal conditions (Cubley 

2015); however, hydrochory was restored (Cubley and Brown 2016). Examining the 

immediate impact of dam removal is not sufficient to understand how removal 

may impact downstream vegetation in the long term. While riparian areas may 

respond quickly to change, it can still take many decades for the communities 

associated with specific landforms to change to new types, with regular 
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disturbance limiting succession (Latterell et al. 2006). However, in areas that 

experience significant geomorphic and hydrologic change, vegetation may respond 

in as short as five years (Lisius et al. 2018). Large movement of sediment 

downstream may delay the recovery of riparian vegetation. Thus, long-term 

monitoring is needed to better understand the effects of large dam removal on 

downstream vegetation.   

The objective of my research was to test the hypothesis that dam removal 

can restore riparian vegetation communities downstream, and that evidence of 

this can be observed as soon as five years after dam removal. I tested this by 

documenting changes to riparian vascular plant communities five years after dam 

removal on the Elwha River. My specific research questions were: 1) would native 

plant species richness increase, and community composition change downstream 

from the dams five years after removal 2) what environmental factors drive 

vascular plant community composition after dam removal, and 3) does sediment 

negatively impacted plant species richness? I predicted that after five years, native 

species richness would increase below the dams, and community composition 

would become more like upstream reference cites. I also predicted that nonnative 

species richness would increase downstream of dams, particularly on the bar and 

floodplain landforms. Furthermore, I expected sediment deposition to impact both 

native and nonnative species, with lower native species and higher nonnative 

species on landforms with more sediment deposition. 
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1.2 METHODS 

Study area 

 

The Elwha River is located on the north side of the Olympic Peninsula in 

western Washington State, and runs south to north into the Strait of Juan de Fuca 

(Figure 1.1). It is 72 km long and drains a watershed of 833 km2, 80% of which lies 

within Olympic National Park (East et al. 2015). The lower segment of the river is 

owned by the Washington Department of Fish and Wildlife, private land owners, 

and the Lower Elwha Klallam Tribe. The river alternates between steep canyons 

and wide valleys and experiences a wide rainfall gradient of around 600 cm to 100 

cm from the headwaters in the Olympic Mountains to the mouth of the river near 

Port Angeles, Washington (Duda et al. 2011). The Elwha Dam was located 7.1 river 

kilometers above the mouth and the Glines Canyon dam was located at river 

kilometer 21.6. Over their lifetime, the dams trapped 21 ± 3 million m3 of sediment 

(Randle et al. 2015), starving the downstream segments of fine-grained sediment, 

which led to a more cobble-dominated riverbed. The removal of the dams released 

roughly 7.3 million m3 of sediment (as of 2015), and raised the channel bed by ~1 m, 

with much of the erodible sediment expected to work its way through the system 

within a few years (East et al. 2015, Warrick et al. 2015).  

 The presence of the dams created three river segments—the upper 

segment, which is located above both dams (~28-32 river kilometers above the 

mouth), the middle segment, which is located between the two dams (~15-21 river 
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kilometers above the mouth), and the lower segment, which is located below both 

dams (~2-7 river kilometers above the mouth). The upper segment, unimpacted by 

the dams, served as my reference site. An ideal reference would have been an 

undammed reference river, but undammed rivers in the area had substantially 

different geomorphology, climate, or land use making them unsuitable. 

Field sampling 

 

At each river segment (upper, middle, and lower), five valley-wide transects 

were set up perpendicular to the river, as described in Shafroth et al. (2016; Figure 

1.1). Each transect was placed to represent common riparian landforms and 

vegetation patch types. Landforms were determined using stand age and 

vegetation types, and further classified into bars, floodplains, and terraces. At each 

transect, 100 m2 vegetation plots were established, randomly stratified across 

riparian landforms, and spaced to represent separate vegetation patch types and to 

avoid pseudoreplication.  

 At each plot we measured vascular plant species composition and cover. 

Vegetation was identified to species level using Hitchcock and Cronquist (1979). 

Species names and native status were updated using the ITIS and USDA Plants 

Databases, respectively (ITIS 2018, USDA 2018). Species cover was estimated using 

midpoints of modified Braun-Blanquet (1964) cover classes (trace, 0-1%, 1-2%, 2-

5%, 5-10%, 10-25%, 25-50%, 50-75%, 75-95%, 95-100%). Within each plot, we 

estimated ground cover percentage of water, sand/soil, bedrock, gravel, 
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bryophytes/lichens, wood, and litter/organic matter, measured soil depth at each 

corner using a 119 cm soil probe, and estimated surface sediment grain size using a 

Wolman pebble count (Wolman 1954). Plot elevation was measured using a total 

station and a Real Time Kinematic GPS. Surveying was done two years before dam 

removal (in 2005 and 2010) and five times after dam removal (in 2012, 2013, 2014, 

2016, and 2017). A list of plots sampled by year is provided in Table 1.1.  Not all plots 

were sampled in all years; some plots were lost to erosion and channel movement, 

lost due to construction of engineered logjams in the lower river segment or 

created due to bar development. Furthermore, not all plots were sampled each 

year due to different sampling priorities in some years (e.g. in 2014, when plots 

with new sediment deposition were prioritized). 

 In 2016, soil samples were collected from each plot. Soil subsamples were 

collected a depth of 10 cm after removing the litter layer, from eight locations 

surrounding the vegetation plot. The subsamples were pooled by plot and stored 

in a cooler before being transported back the Eastern Washington University 

where they were dried at 60°C for 48 hours. They were then sieved and sent to 

Brookside Laboratories Inc. (New Bremen, OH) to test texture (percent clay, silt, 

sand, and organic matter), and common metrics of fertility and soil development, 

including: total exchange capacity, pH, estimated nitrogen release, S, P, Bray II P, 

Ca, Mg, K, Na, H, B, Fe, Mn, Cu, Zn, Al, N03-N, and NH4-N. 
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Data analysis 

 

To determine whether species richness increased on landforms downstream 

from dams, the effect of river segment, year, and landform on native and 

nonnative species richness was analyzed using a mixed model analysis (PROC 

MIXED in SAS) on all plots sampled each year. In each mixed model I nested 

transect, a random factor, into river segment, a fixed effect, and used the 

Satterthwaite method to calculate degrees of freedom to account for departures 

from homoscedasticity. A subset of this data was used to compare change in 

species richness from before and after the dam removals and sediment deposition 

(Table 1.1). To determine estimated sediment deposition, I calculated the 

difference in elevation at each plot before and after the dams were removed from 

2010 to 2016.  Plots from year 2016 were used instead of 2017 to increase sample size 

as elevation was measured for a smaller number of plots in 2017. Change in species 

richness was calculated for both native and nonnative species between 2010 and 

2017. Change in elevation was square-root transformed and compared to change in 

native and nonnative species richness on the middle and lower river segment and 

across all landforms using linear models in R version 3.3.2 (R Core Team 2018) and 

graphed using the ggplot2 package (Wickham and Chang 2016).  

We used a non-metric multidimensional scaling ordination (NMDS) and 

permutational multivariate analysis of variance (PERMANOVA) to compare 

species composition between 2010 and 2017, river segment, and landform. 
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Individual plants that could not be identified to species level and species that 

occurred in less than 5% of the plots in each year were removed from the 

community analysis. Bray Curtis distance measures and a Wisconsin double 

standardization were used. Environmental variables were compared to determine 

which ones were correlated, and then the vectors were plotted onto the NMDS. I 

used an indicator species analysis to determine what species could be used as 

indicators for each river segment and landform for 2010 and 2017. I also calculated 

the relative frequency of occurrence of each species between 2010 and 2017. NMDS 

plots were created in R version 3.3.2 (R Core Team 2018) using the Vegan package 

(Oksanen et al. 2018), and the PERMANOVA was performed in Primer 7 and 

PERMANOVA+ (Clarke and Gorley 2015). The indicator species analysis was 

performed in R version 3.3.2. (R Core Team 2018) using the indicspecies package 

(De Caceres and Legendre 2009). 

1.3 RESULTS 

Species richness 

Overall, mean native species richness per plot was 21.8 species and 

nonnative species richness per plot was 6.5 species. Native species represented 75% 

of all species, across all landforms, river segments, and years. Across all years, there 

was higher native species richness in the upper river segment compared to the 

middle and lower (Table 1.3), however there was no difference in nonnative species 

richness between river segments across all years (Table 1.4).  
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Total native species richness increased from both years before removal 

(2005 and 2010) to 2017 (Figure 1.2, Table 1.2). Native species richness increased 

from 2010 and 2017 on the middle segment only (Figure 1.3, Table 1.3). Nonnative 

species richness did not change significantly with time (Figure 1.4, Table 1.4). Both 

native and nonnative species varied between landform, with higher native species 

richness in the floodplain and the lowest on the bars (Table 1.3), but with higher 

nonnative species richness on bars and floodplains than terraces (Table 1.4).  

The most sediment deposition occurred on the lower river segment, with a 

significant difference between the lower river segment and the upper segment 

(Figure 1.5, Table 1.5), particularly on floodplains (Table 1.5). There was no 

correlation between change in native or nonnative species richness and sediment 

deposition on any landform or river segment below the dams (Figure 1.6; Figure 

1.7).  

Species composition 

 

Plant species composition changed from 2010 and 2017 (Figure 1.8) on lower 

river segment bars, lower river segment floodplains, and middle river segment 

floodplains (Table 1.6). In 2010, the lower river segment contained mostly 

nonnative species as indicators, including Leucanthemum vulgare, Hypericum 

perforatum, Digitalis purpurea, and Lapsana communis, but also contained native 

species indicators, such as Oemleria cerasiformis, Rubus parviflora, and Populus 

trichocarpa. In 2017 it only contained two nonnative species as indicators (Cytisus 
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scoparius and Rubus bifrons), with Oemleria cerasiformis, Rubus parviflora, 

Artemisia suksdorfii, Lonicera involucrata, and Dicentra formosa as native 

indicators. Nonnative indicator species increased on bar landforms after dam 

removal, with only native species indicators in 2010 (Salix sitchensis, Populus 

trichocarpa, Alnus rubra, Equisetum arvense, and Deschampsia elongata), and 

mostly nonnative species indicators in 2017 (Aira caryophyllea, Senecio sylvaticus, 

Vulpia myuros, Plantago lanceolata, Senecio jacobaea, and Sonchus asper).  The few 

native species indicators on bars in 2017 included herbaceous species such as: 

Epilobium brachycarpum, Agrostis exarata, Eriophyllum lanatum, Epilobium 

minutum, and Mimulus guttatus. The full list of indicator species can be found in 

Appendix 1.1 and 1.2.  

While indicator species are useful for determining which species 

differentiate different landforms and river segments, they are not necessarily the 

dominant species in those categories. The dominant species (defined as those 

having the relatively highest cover – though some of these may still cover less than 

20% of the plot) varied among river segments and landforms and are listed in 

Appendix 1.3. The upper river segment had higher cover of native conifer species, 

such as Pseudotsuga menziesii and Tsuga heterophylla, particularly on the terraces. 

The shrub layer for each landform in the upper segment was dominated by Rosa 

spp. and Rubus spp. The herbaceous layer varied by landform, with Achlys triphylla 

dominating the terraces, Nemophila parviflora and Claytonia sibirica in the 
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floodplains, and grasses (such as Deschampsia elongata and Elymus glaucus) as 

well as Equisetum arvense dominating the bars.  

The dominant species in the middle river segment also varied across 

landforms, primarily in the herbaceous layer. Polystichum munitum was dominant 

on the terraces, Equisetum arvense and nonnative Dactylis glomerata dominated 

the floodplain, and Agrostis species were dominant on the bar landforms. The 

middle segment also contained many nonnative species as dominant species in the 

herbaceous layer, such as Phalaris arundinacea, Geranium robertianum, and 

Lathyrus latifolius. The dominant trees and shrubs varied little among the 

landforms, with Acer species, Alnus rubra, and Salix sitchensis as the dominant 

tree species and Symphoricarpos albus, Rosa species, and Rubus species as the 

dominant shrubs across all landforms. 

Dominant species on the lower river segment also varied among landforms. 

Acer macrophyllum was the most dominant tree on the terraces, while Alnus rubra, 

Populus balsamifera, and Salix sitchensis were more dominant on the floodplain 

and bar landforms. Oemleria cerasiformis and Symphoricarpos albus were highly 

dominant shrubs for both the terrace and floodplain landforms, while Rubus and 

Rosa species were the dominant shrubs on bar landforms. Herbaceous species 

were highly variable between landforms, with Polystichum munitum dominant on 

terraces; Urtica dioica, Equisetum arvense, and nonnative Geranium robertianum 

on the floodplains; and nonnative Leucanthemum vulgare, Hypericum perforatum, 

Phalaris arundinacea, and native Equisetum arvense on the bar landforms.  
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The dominant species in each river segment and landform generally 

remained similar between 2010 and 2017, particularly in the terrace landforms and 

among tree and shrub species. The biggest change in dominant species 

composition occurred in the herbaceous species on the floodplain and bar 

landforms. In the upper segment the dominant herbaceous floodplain species 

changed from Nemophila parviflora to Claytonia sibirica, and Deschampsia 

elongata to Equisetum arvense on the bars. The nonnative grass, Aira cayophyllea, 

also became the second-most dominant herbaceous species on the bars in the 

upper segment in 2017. On the middle segment the dominant herbaceous species 

changed from Dactylis glomerata and Polystichum munitum before the dams were 

removed, to Equisetum arvense and Phalaris arundinacea after removal. The 

middle bars changed from Agrostis exarata (a native grass), to Agrostis stolonifera 

(a nonnative grass). Similarly, the dominant species in the lower segment changed 

from Urtica dioica to Equisetum arvense on the floodplains, and Leucanthemum 

vulgare to Equisetum arvense on the bars. Furthermore, Equisetum arvense 

increased in its relative frequency of occurrence by 30% following dam removal 

(Appendix 1.4).  

 In 2017, plant community composition differed among landforms and 

segments (Table 1.6). The difference in landform is shown on axis 1 of the 

ordination, while the difference in segment is shown on axis 2 (Figure 1.9). 

Community composition was correlated with a number of environmental variables 

including: percent cover of bryophytes/lichens, percent cover litter/organic 
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matter, percent cover of sand/soil, percent cover of gravel/cobble, median particle 

size, soil depth, percent clay, silt, sand, and organic matter, total exchange 

capacity, pH, estimated nitrogen release, S, P, Bray II P, Ca, Mg, K, Na, H, B, Fe, 

Mn, Cu, Zn, Al, N03-N, and NH4-N (Figure 1.9). Most environmental vectors were 

strongly correlated with axis 1, which was associated with landform. Gravel size 

and presence of gravel and sand, percent sodium, and pH tended to be higher on 

bar landforms (Figure 1.9b). All other variables (with the exceptions of copper and 

percent cover of bryophytes) were higher on plots in the floodplains and terraces 

(Figure 1.9a).   

1.4 DISCUSSION 

The increase in native species richness and the changes in community 

composition below the dams in the five years since their removal suggest that dam 

removal is gradually restoring downstream riparian plant diversity on the Elwha by 

increasing the heterogeneity of landforms in the middle river segment, where 

increased native species richness was primarily seen. This was likely the result of 

an increase in newly deposited landforms following sediment deposition from dam 

removal (East et al. 2014). Before dam removal, the middle segment had few newly 

formed, fine-grained bar surfaces (Kloehn et al. 2008, Shafroth et al. 2016). This 

pattern is similar to the results of a sediment release on the Kurobe River in Japan 

where Asaeda and Rashid (2012) found that the thickness of the fine-grained layer 

following deposition was positively correlated with herbaceous biomass. However, 

the riverbed is still equilibrating post-dam removal as 7.3 million m3 of sediment 
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works through the system (Magirl et al. 2015), so these landforms may continue to 

change.   

Regular flood disturbance and sediment deposition/erosion is often a driver 

of riparian plant diversity (Poff et al. 1997, Brown and Peet 2003), thus increasing 

flood and sediment disturbance on these landforms may increase species richness. 

Increases in native species may also be explained by the restoration of hydrochory 

following dam removal. Three species that became indicators of the lower river 

segment in 2017 were also found to be transported via hydrochory following dam 

removal (Epilobium brachycarpum, Mimulus guttatus, and Senecio sylvaticus) 

(Cubley and Brown 2016).  

While native species richness increased in the middle segment, it did not 

increase in the lower segment. This may be due to the sediment deposition 

downstream following dam removal. In the two years following dam removal, 

sediment loads were 3 and 20 times higher than the yearly average (Magirl et al. 

2015), as more than 7.3 million m3 of sediment moved its way through the system. 

While it is unknown how much of this sediment was deposited in the riparian 

areas, deposition patterns varied across landforms and segments. The upper 

segment saw little deposition. The middle segment experienced deposition on the 

bars and floodplains, but to a lesser extent than the lower segment, which 

experienced the highest amount of deposition across all landforms. Substantial 

sediment deposition can negatively impact riparian species (Kui and Stella 2016), 

especially those not adapted to this type of disturbance. Three terraces on the 
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lower segment had deposition above 0.2 meters, whereas no terraces in the middle 

or upper segment had sediment deposition. This suggests that the lower segment 

is experiencing the brunt of the sediment deposition, and this may be delaying 

restoration.  

There was no negative correlation between native species richness and 

sediment deposition. This is contrary to my predictions; I hypothesized that the 

sediment flux following dam removal would lead to a decrease in native species 

and an increase in nonnative species. The proportion of native species to 

nonnative species remained similar to what it was before the dams were removed 

(Clausen 2012) and is likewise similar to other rivers on the Olympic Peninsula 

(Planty‐Tabacchi et al. 1996). This suggests that plant communities on these 

landforms are resilient to higher amounts of sediment deposition and flooding, 

which is consistent with some descriptions of riparian plant species dynamics 

(Hupp and Osterkamp 1996, Naiman and Decamps 1997, Bendix and Hupp 2000, 

Lytle and Poff 2004). Furthermore, we may not be seeing an effect of sediment 

deposition due to the possible timing of the deposition; if it occurred multiple 

years prior, the plants species may have had time to recover, or if it occurred 

slowly it may not have been a significant disturbance like it would have been if it 

occurred during a short period.  

 Overall, the difference in native species richness among river segments is 

likely due to the historic presence of the dams. This would also explain the higher 

species richness in the upper river segment across all years. Before the dam 
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removal, Clausen (2012) found that native species richness was 45% lower below 

the dams. While native species richness is increasing below the dams, it is still 

higher in the upper segment. Other possibilities for the difference in native species 

richness between river segments include land-use, precipitation, or differences due 

to patterns along the river. Nilsson et al (1989) found that species richness was 

highest in the middle reach of two rivers in Sweden. This was also found in other 

studies (Dunn et al. 2006). Our upper segment falls right along the middle of the 

length of the Elwha, so it is possible that species richness is highest in the upper 

river segment due to this pattern. This would explain the higher species richness 

on terrace landforms in the upper segment, which I would expect to be similar 

across segments if the lower species richness on bars and terraces in the middle 

and lower segment were do only to the dams. Time will tell whether species 

richness in the middle segment continues to rise to upstream levels, and if it does, 

it will be strong evidence that the low diversity of the middle segment was driven 

by the dams. 

Native species richness was highest on the floodplains and lowest on the 

bars. This is consistent with the intermediate disturbance hypothesis, which 

suggests that the highest diversity will be found in areas with intermediate levels 

of disturbance (Connell 1978). This has also been observed in other riparian studies 

(Biswas and Mallik 2010, Mligo 2016) However, some studies have found the 

highest species richness on the most frequently flooded landforms, such as bars 

(Brown and Peet 2003).  
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 Community composition also differed between each landform and segment 

and was correlated with a subset of environmental variables that were consistent 

with what Clausen (2012) found before dam removal. This finding is also consistent 

with riparian ecological theory; riparian zones often have different species 

communities at different landforms (Hupp and Osterkamp 1996, Bendix and Hupp 

2000, Lytle and Poff 2004, Merritt et al. 2010), and this difference is likely due to a 

difference in abiotic factors (Tabacchi et al. 1998) and disturbance (Brown and 

Peet 2003). Other studies have shown similar findings on the Elwha and other 

rivers of the Olympic Peninsula. Shafroth et. al. (2016) found different riparian 

forest composition and structure associated with landforms on the Elwha, and 

Latterell et al. (2006) found different vegetation patch types at different riparian 

landforms on the Queets River. The difference in community composition among 

river segment is likely due to legacy dam effects, much like species richness.  

 The highest change in dominant species across each river segment occurred 

in the herbaceous species of the floodplain and bar landforms, which maybe 

because the tree and shrub species are longer lived and less likely to experience a 

change in dominant species in five years following dam removal. Interestingly, 

nonnative species did not become dominant following dam removal. In fact, on 

the lower bar, lower floodplain, and middle floodplain, the native Equisetum 

arvense replaced a nonnative species as either the first or second most dominant 

herbaceous species by cover. However, a few nonnative species did become more 

dominant after dam removal: Aira caryophyllea replaced Elymus glaucus as the 
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second most dominant herbaceous species on upper bars, and Agrostis stolonifera 

replaced Agrostis exarata as the most dominant herbaceous species on middle 

bars. 

Conclusion 

This study represents the largest dataset gathered on riparian vegetation 

before and after dam removal, and the results suggest that dam removal may 

increase native species richness downstream of the dams, possibly by creating 

newly formed landforms and increasing disturbance through flooding and 

sediment deposition. While no change was observed in the first two years 

following removal (Cubley 2015), the significant change after five years suggests 

that it may take more than two years for riparian plant communities to respond to 

the changes in flow regime, sediment dynamics, and seed supply following dam 

removal. Furthermore, this provides stronger evidence that the lower levels of 

native species found below the dams prior to removal (Clausen 2012) was due to 

the dams, rather than another factor, such as land-use or precipitation.   
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1.5 TABLES AND FIGURES 

Table 1-1. Table showing the number of plots sampled per year for each river 
segment and landform. To compare change in species richness with sediment 
deposition I had to look at a smaller subset of data (using 2016 for sediment 
deposition and 2017 for change in species richness). The number of plots can be 
seen in the bottom most table. 

 

Year  Bar Flood Ter Total 

2005 

Up 15 13 9 37 

Mid 3 13 22 38 

Low 8 24 11 43 

Total 26 50 42 118 

  Bar Flood Ter Total 

2010 

Up 10 8 7 25 

Mid 3 10 16 29 

Low 5 17 6 28 

Total 18 35 29 82 

  Bar Flood Ter Total 

2013 

Up 15 11 6 32 

Mid 13 10 13 36 

Low 11 15 6 32 

Total 39 36 25 100 

  Bar Flood Ter Total 

2014 

Up 7 4 5 16 

Mid 8 6 6 20 

Low 10 8 4 22 

     

Total 25 18 15 58 

  Bar Flood Ter Total 

2016 

Up 11 11 4 26 

Mid 6 10 9 25 

Low 12 15 8 35 

Total 29 36 21 86 

  Bar Flood Ter Total 

2017 

Up 10 10 4 24 

Mid 6 10 8 24 

Low 8 14 8 30 

Total 24 34 20 78 

   Bar Flood Ter Total 

2017 
sediment 
/change 

Mid 2 10 3 15 

Low 1 15 7 23 

Total 3 25 10 38 

 



 
 

 

Table 1-2 The results from the mixed model analysis looking at the effect of year, river segment, and landform on total 
species richness. Only significant Tukey pairwise comparisons are shown. 

Species Richness (2005, 2010, 2014, 2016, 2017)  - Mixed Model Results 

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison 

Effect DF F p   Effect Estimate DF Adj p 

Year 5 3.04 0.0103   2005:2017 -4.9986 466 0.0343 

Segment 2 20.77 <.0001   2010:2017 -5.7037 466 0.0198 

Year*Segment 10 1.11 0.3544   Lower:Upper -7.0285 466 <.0001 

Landform 2 27.08 <.0001   Middle:Upper -6.2361 466 <.0001 

Year*Landform 10 0.69 0.7359   Middle (2010):Middle(2017) -12.0328 466 0.0443 

Segment*Landform 4 0.39 0.8133   Bar:Floodplain -7.8236 466 <.0001 

Year*Segment*Landform 20 0.93 0.545   Floodplain:Terrace 6.2015 466 <.0001 
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Table 1-3 The results from the mixed model analysis looking at the effect of year, river segment, and landform on native 
species richness. Only significant Tukey pairwise comparisons are shown. 

 

 

 

 

 

 

 

 

Native Species Richness (2005, 2010, 2014, 2016, 2017) - Mixed Model Results 

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison 

Effect DF F P   Effect Estimate DF Adj P 

Year 5 3.12 0.0089   2010:2017 -3.8086 455 0.0256 

Segment 2 13.39 0.0005   Lower:Upper -8.2455 13.2 0.0006 

Year*Segment 10 1.97 0.0349   Middle:Upper -6.583 15.2 0.0036 

Landform 2 37.69 <.0001   Middle (2010):Middle (2017) -8.9155 456 0.0171 

Year*Landform 10 0.9 0.5359   Bar:Floodplain -7.309 466 <0.0001 

Segment*Landform 4 1.02 0.396   Bar:Terrace -5.0706 453 <0.0001 

Year*Segment*Landform 20 1.02 0.4397   Floodplain:Terrace 2.2385 446 0.0209 
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Table 1-4. The results from the mixed model analysis looking at the effect of year, river segment, and landform on nonnative 
species richness. Only significant Tukey pairwise comparisons are shown. 

 

 

 

 

 

 

 

Nonnative Species Richness (2005, 2010, 2014, 2016, 2017) - Mixed Model Results 

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison 

Effect DF F P   Effect Estimate DF Adj P 

Year 5 2.05 0.0707   Bar:Terrace 4.1574 450 <0.0001 

Segment 2 1.87 0.1904   Floodplain:Terrace 4.4431 441 <0.0001 

Year*Segment 10 0.5 0.8882        
Landform 2 46.85 <.0001        
Year*Landform 10 0.46 0.9161        
Segment*Landform 4 3.52 0.0076        
Year*Segment*Landform 20 0.66 0.8636           
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Table 1-5. The results from the mixed model analysis looking at the effect of landform and river segment on the change in 
elevation, a measure of deposition. Only significant Tukey pairwise comparisons are shown (alpha = 0.05) 

 

Change in Elevation (Before [2010] - After [2016]) - Mixed Model Results 

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison 

Effect DF F P   Effect Estimate DF Adj P 

Landform 2 1.81 0.1742   Lower: Upper 0.3632 18.7 0.0032 

Segment 2 7.55 0.0043   Lower Floodplain: Upper Floodplain 0.3877 21.9 0.0392 

Segment*Landform 4 0.31 0.8726           

 



 
 

 

Table 1-6 Table showing the results from a PERMANOVA comparing species 
composition between year, river segment (sect), and landform (land). River 
segments include upper (up), middle (mid), and lower (low). Landforms include 
terrace (ter), floodplains (flood) and bars.  

 

PERMANOVA Results Pair-Wise Comparisons 

Factors P (perm) Groups Being Compared Avg. Similarity t  P (perm) 

Year < 0.001 2010:2017 24.234 1.882 <0.001 

Sect < 0.001 Low:Mid 25.256 2.371 <0.001 

Land < 0.001 Low:Up 19.985 3.993 <0.001 

Year:Sect 0.006 Mid:Up 22.846 2.579 <0.001 

Year:Land 0.696 Bar:Flood 25.246 2.883 <0.001 

Sect:Land < 0.001 Bar:Ter 13.345 4.723 <0.001 

Year:Sect:Land 0.083 Flood:Ter 23.154 3.967 <0.001 

-- -- Low:Mid (2017) 26.763 1.905 <0.001 

-- -- Low:Up (2017) 20.000 2.978 <0.001 

-- -- Mid:Up (2017) 23.762 1.958 <0.001 

-- -- Bar:Flood (2017) 26.451 2.342 <0.001 

-- -- Bar:Ter (2017) 13.277 3.641 <0.001 

-- -- Flood:Ter (2017) 23.15 2.778 <0.001 

-- -- 2010:2017 (Low) 29.394 1.900 <0.001 

-- -- 2010:2017 (Mid) 27.989 1.291 0.046 

-- -- 2010:2017 (Up) 27.002 1.335 0.022 

-- -- 2010:2017 (Bar) 29.379 1.382 0.016 

-- -- 2010:2017 (Flood) 31.114 1.555 0.005 

-- -- 2010:2017 (Ter) 28.706 1.015 0.378 

-- -- 2010:2017 (Low Bar) 21.664 1.570 0.007 

-- -- 2010:2017 (Low Flood) 38.847 1.550 0.016 

-- -- 2010:2017 (Low Ter) 39.925 1.145 0.224 

-- -- 2010:2017 (Mid Bar) 42.787 1.267 0.14 

-- -- 2010:2017 (Mid Flood) 31.325 1.332 0.038 

-- -- 2010:2017 (Mid Ter) 33.493 0.946 0.524 

-- -- 2010:2017 (Up Bar) 33.684 1.192 0.128 

-- -- 2010:2017 (Up Flood) 39.144 1.098 0.224 

-- -- 2010:2017 (Up Ter) 44.584 0.989 0.457 
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Figure 1.1. A map of the Elwha River and the location of our study sites. Transects 
are located in the lower, middle, and upper river segment. Map credit: Shafroth et 
al. (2016). 
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Figure 1.2. Native species richness across all years, by river segment and landform. 
The dotted line indicates when the dams were removed.  
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Figure 1.3. Native species richness across all years, by river segment and landform. 
The dotted line indicates when the dams were removed.  
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Figure 1.4. Nonnative species richness across all years, by river segment and 
landform. The dotted line indicates when the dams were removed.  
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Figure 1.5. Boxplots showing the average change in elevation (between 2010 and 
2016) for each plot, by river segment and landform. 
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Figure 1.6. Scatter plots and the results from a linear regression showing the 
relationship between change in native species and deposition downstream of the 
dams. The shaded area represents the 95% confidence interval. 
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Figure 1.7. Scatter plots and the results from a linear regression showing the 
relationship between change in non-native species and deposition downstream of 
the dams. The shaded area represents the 95% confidence interval. 
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Figure 1.8. NMDS ordination showing the vegetation community composition in 
2010 and 2017. k = 3. Stress = 0.18. The two years are significantly different 
(PERMANOVA: p < 0.001) 
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Figure 1.9. NMDS ordination showing 2017 vegetation communities shaded by 
landform (A) and river segment (B). Significantly correlated environmental vectors 
are plotted. The direction of the vector indicates the direction of the association, 
and the length of the line indicates the strength of the correlation. Element units 
are in mg/kg unless otherwise noted. k = 3. Stress = 0.16.   
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Chapter 2 : Riparian soil seed bank characteristics following dam 

removal on the Elwha River, Washington. 

 

2.1 INTRODUCTION 

While dam removals are becoming an increasingly common method to 

restore rivers, it is still relatively unknown how riparian vegetation downstream of 

the removed dams will respond (Poff and Hart 2002, Shafroth et al. 2002). Soil seed 

banks, which can be defined as the collection of viable seeds found in the soil, may 

play a key role in recolonization and early succession of disturbed landforms 

following dam removal; however, their dynamics in riparian zones are not well 

understood (Goodson et al. 2001a). While several studies have stressed the 

importance of the soil seed bank in wetlands, few have looked at their role in 

riparian areas or their influence on restoration (Goodson et al. 2001a, Williams et 

al. 2008a). Most research has found soil seed banks of riparian zones dominated by 

annual ruderal species (Lu et al. 2010, Greet et al. 2013, O’Donnell et al. 2016), 

suggesting that they may play a role in early succession following a disturbance. 

Soil seed banks may also serve as biodiversity reservoirs (Vandvik et al. 2016). 

Riparian soil seed bank composition may be unique based on riparian landform, 

similar to above ground vegetation, although this has not been shown in all 

instances (Williams et al. 2008b, Schwab and Kiehl 2017).  
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The potential for seed banks to help to restore pre-dam plant communities 

is relatively unknown. Lu et al. (2010) found a low abundance of species that made 

up the pre-dam vegetation community in the soil seed bank of the drawdown zone 

of the Three Gorges Reservoir in China. However, Boudell and Stromberg (2008) 

found that the soil seed bank of a long-dewatered floodplain contained riparian 

species, suggesting that riparian vegetation may emerge if fluvial processes are 

restored. Goodson et al. (2002) found a substantial soil seed bank in old channel 

segments, which often experience heavy sediment deposition. The soil seed bank 

has also been shown to correlate with riparian zone health, with less altered 

riparian systems having a more diverse and less exotic soil seed bank than more 

disturbed systems (Williams et al. 2008a, Greet et al. 2013).  

Dam removal often releases high volumes of sediment (Bednarek 2001), 

which can blanket riparian landforms (Cubley 2015), bury existing vegetation, and 

provide nutrients and a bare surface for recolonization (Jurik et al. 1994, Gleason et 

al. 2003a, Asaeda and Rashid 2012). Sediment carried downstream can contain 

seeds, often picked up through hydrochory, and these seeds become part of the 

soil seed bank when the sediment is deposited, while the deposition limits the 

germination of seeds in the pre-existing soil below (Jurik et al. 1994, Gleason et al. 

2003a, Goodson et al. 2003a). Because this sedimentation on top of existing 

vegetation may reduce local seedling emergence, the seeds that are carried in the 

sediment may be more likely to germinate than local seed (Goodson et al. 2003). 

The impact of sediment deposition following dam removal may make the soil seed 
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bank a vital component of restoration following removal. Furthermore, the 

composition of the seed bank may ultimately determine the success of a river 

restoration; a seed bank dominated by invasive species may contribute to 

undesirable recolonization (Williams et al. 2008a), while one with native and 

desirable species may drive passive restoration (Rubio et al. 2014). 

The removal of two large dams on the Elwha River in Washington, provides 

a rare opportunity to examine the riparian soil seed bank following large dam 

removal. The Elwha River passed through two dams, Elwha Dam (33 m) and Glines 

Canyon Dam (64 m). Both dams were built in the early 1900’s. The dams trapped 

sediment, altered downstream morphology (Kloehn et al. 2008), and limited 

hydrochory (Brown and Chenoweth 2008). They were removed in stages between 

2010 and 2014, with most of the reservoirs drained by 2012. In the initial two years 

following removal hydrochory was restored (Cubley and Brown 2016), but no 

change in species richness and composition was seen below the dams (Cubley 

2015). Five years following removal, species richness had increased, and 

community composition had shifted as described in Chapter 1. 

In this study, I examined the soil seed bank of riparian landforms on the 

Elwha River five years after dam removal. I aimed to evaluate how the soil seed 

bank differed above, between, and below the dams, and on different riparian 

landforms with various levels of sediment deposition. I tested two hypotheses: 1) 

there would be higher seedbank species richness and germinated seed abundance 
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on landforms above the dams, and 2) there would be lower seedbank species 

richness and seed abundance on landforms with larger amounts of sediment 

deposition.   

2.2 METHODS 
Study area 

 The 72 km long Elwha River is located in Northwest Washington State on 

the Olympic Peninsula (Figure 2.1), where it flows south to north from the 

headwaters in the Olympic Mountains to the Strait of Juan de Fuca, alternating 

between steep canyons and wide valleys. It encompasses a watershed of 

approximately 833 km2, of which about 80% lies within Olympic National Park 

(East et al. 2015). The rest of the river lies within private, state, and tribal land. The 

Elwha experiences a wide rainfall gradient, roughly 600 cm annually at the 

headwaters to around 100 cm annually at the mouth, near Port Angeles, 

Washington (Duda et al. 2011). 

 The Elwha was previously impounded by two dams, the upper Glines 

Canyon dam (located at river kilometer 21.6) and the lower Elwha Dam (located at 

river kilometer 7.1), which were built in 1927 and 1914 respectively. They were 

constructed to provide power for local lumber mills and were operated to allow 

water to flow out as it flowed into the reservoirs (Duda et al. 2008). The dams 

trapped sediment and woody debris, preventing them from being transported 

downstream. This altered channel morphology, decreased the presence of newly 
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formed landforms, and may have led to a shift of riparian communities to later 

successional forests (Kloehn et al. 2008, Shafroth et al. 2016). The dams also 

blocked hydrochory, potentially limiting downstream seed recruitment (Brown 

and Chenoweth 2008). 

 The dams were removed between 2010 and 2014 in stages to allow for 

sediment to be distributed across the reservoirs, limiting the amount and intensity 

of sediment movement downstream, and to provide breaks during times when 

anadromous fish were migrating upstream. The dam removal exposed an 

estimated 21 ± 3 million m3 of sediment, of which around 7.3 million m3 eroded 

within years of removal, blanketing riparian landforms and causing bed 

aggradation of approximately 1 m (Cubley 2015, East et al. 2015, Randle et al. 2015, 

Warrick et al. 2015). 

Study design 

My study utilized long-term vegetation transects that were established 

before the dam removal (Clausen 2012). Sets of five transects were located within 

three different segments of the Elwha River: above the dams (upper), between the 

dams (middle), and below the dams (lower) (Figure 2-1). The upper segment 

served as our reference, due to its relatively undisturbed state, natural levels of 

flooding and sediment transport.  Each transect was oriented perpendicular to the 

river channel, spanning across the riparian landforms in the river valley. 

Landforms were classified by vegetation patch type and geomorphic surface age 
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class (see Shafroth et al. 2016), and grouped into terrace, floodplain, and bar 

landform classes. Seventy-four 100 m2 vegetation plots were located in a stratified 

random fashion across the vegetation patch types crossed by the transect. Only 

one plot was positioned in each vegetation patch type crossed by a transect to 

avoid psuedoreplication.  

Field Sampling 

Soil was collected from each plot during the summer of 2016 and 2017. A soil 

core was used to collect soil from 0 to 10 cm deep at 8 locations just outside each 

vegetation plot, avoiding previously sampled locations. Surface litter was lightly 

brushed away to expose the soil below before it was collected. This was done to 

ensure that I collected only seeds found in the soil, rather than recently deposited 

surface seeds. Each subsample was pooled and mixed thoroughly, before being 

placed in a cooler. The samples were then cold stratified for 12 weeks until October 

2017 in order to break seed dormancy. Plot elevation data was collected using a 

Real Time Kinematic GPS in 2010 and 2016.  

Greenhouse Methods 

In October 2017 the seed bank soil was sieved (4 mm) to remove large 

stones and roots. Three hundred ml of each sample was spread across a 27.94 cm 

W x 54.28 cm L x 6.20 cm D greenhouse flat filled with five cm of potting soil. Each 

flat was randomly placed on tables at the Eastern Washington University research 
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greenhouse. Control flats, containing only potting soil, were placed at each table to 

account for seeds present in the potting soil and seed drift in the greenhouse. No 

species germinated in the controls. The flats were bottom watered twice weekly 

and subjected to ambient light for two weeks, two hours of supplemental light 

during the day for four weeks, and four hours of supplemental light a day for the 

rest of the study to account for changing season. Supplemental lighting was used 

to simulate late spring day lengths and was provided by overhead grow lights.   

 Seeds were allowed to germinate from October 2017 to May 2018. 

Germinated seedlings were counted and identified to species where possible, using 

Hitchcock and Cronquist (1973). Flowering individuals were removed to avoid 

overcrowding and discarded or pressed as a voucher specimen. Species 

classification (native or nonnative) was obtained from the USDA Plants National 

Database and scientific names were checked and updated using ITIS (ITIS 2018, 

USDA 2018).  

Data Analysis  

 A mixed model analysis (PROC MIXED in SAS) was used to compare the 

effect of landform and river segment on seed bank richness (number of species per 

plot) and abundance (total number of germinated seeds per plot). In both mixed 

models I nested transect, a random factor, into river segment, a fixed effect. To 

account for departures from homoscedasticity in my data, the Satterthwaite 

method was used to calculate degrees of freedom. A Tukey-adjusted least square 
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means test was used to look at pairwise comparisons. The mixed model analysis 

was done in SAS 9.4 and graphed in R (R Core Team 2018), using the ggplot2 

package (Wickham and Chang 2016).  

 General linear models (using a Poisson distribution) were used to compare 

seed bank species richness and abundance to sediment deposition on plots located 

below the dam sites. Plots from the upper river segment were removed to isolate 

the effect of deposition following dam removal. To determine estimated sediment 

deposition, I calculated the difference in elevation at each plot before (2010) and 

after (2016) the dams were removed.  Plots from year 2016 were used instead of 

2017 to increase sample size as elevation was measured for a smaller number of 

plots in 2017. This resulted in a smaller data set for the sediment and seed bank 

analysis. Species richness and abundance were plotted against sediment 

deposition. These analyses were performed and graphed in R (R Core Team 2018). 

2.3 RESULTS 

Overall, 367 total seeds germinated representing 34 species in the seed bank 

of the 76 plots sampled (Table 2-1). Twenty-one taxa were identified to family, and 

of those, 12 are classified as nonnative (57%). The most common species found was 

the native little western bittercress (Cardamine oligosperma), followed by multiple 

grass species and a sedge (Carex sp.) that I was unable to identify to species 

because they did not flower. The most common nonnative species included wall-

lettuce (Mycelis muralis) and oxeye daisy (Leucanthemum vulgare). Only two 
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woody species germinated, thimbleberry (Rubus parviflorus) and an unknown 

blackberry (Rubus sp.).  

Floodplains contained the most species and seeds. Nonnative species are 

indicated by NN. Cerastium arvense, Cirsium vulgare (NN), Crepis capillaris (NN), 

Galium trifidum, Geranium robertianum (NN), Mimulus sp., Rubus parviflorus, 

Rumex crispus (NN), and Stellaria media (NN) were all unique to the upper river 

segment. Epilobium ciliatum, Geranium molle (NN) and Holcus lanatus (NN) were 

unique to the middle segment. Rubus sp. and Stachys sp. were unique to the lower 

segment. The soil seed bank differed from the above ground vegetation (see 

Chapter 1), with relatively more annual herbaceous species represented. Cardamine 

oligosperma was not found above ground in any plot in 2017. Other species, such as 

Mycelis muralis (NN) and Leucanthemum vulgare (NN), were present in the extant 

vegetation, however there was no consistent pattern between their presence in the 

soil seed bank and their presence above-ground.  

 Soil seed bank species richness and abundance was higher in the upper 

river segment (Table 2.2, Table 2.3).  Both species richness and abundance were 

higher in the upper segment floodplains (Table 2.2, Table 2.3); abundance only was 

also higher on the upper bars compared to bars in other segments (Figure 2.3). 

Abundance was similar in upper floodplains and upper bars (Figure 1.3; Table 2.3). 

There was no significant difference in species richness between bars, floodplains, 
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and terraces on the lower and middle river segment, or bars and terraces on the 

upper river segment (Figure 1.3; Table 2.2).  

Upper river segment floodplains contained higher species richness than all 

other segment landforms, representing 62% of the species found (Table 2.1). The 

upper bars and floodplains also contained higher seed abundance, with 67% of all 

seeds counted (Table 2.1).  Soil seed bank species richness and germinated seed 

abundance both had a negative correlation with newly deposited sediment depth 

across all riparian landforms on both the middle and lower river segments (Figure 

2.4; Figure 2.5). However, the effect of sediment depth on seed species richness or 

abundance did not vary among the different river segments or landforms.  

2.4 DISCUSSION 

The high seed bank richness and abundance in the upper floodplains and 

bars relative to the downstream river segments indicates that dam removal may 

have altered the downstream soil seed bank on the Elwha River. This may be a 

legacy of the dams, as similar patterns were found before dam removal in 2005 

Brown (2007).  

The very limited seed bank below the dams following dam removal could 

also be explained by the high sediment depth on many of our sites, which may 

limit the soil seed bank by depletion. Disturbance following sediment deposition 

on downstream sites created exposed substrate, which may have allowed species to 

germinate, depleting the soil seed bank. It is possible that this explains patterns in 
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the seed bank that were seen on the Lake Mills Delta before dam removal, where 

seed bank species richness and abundance decreased with surface age (Hulce 

2009). Furthermore, disturbance in agricultural soils that create exposed surfaces 

has been shown to increase emergence, thus lowering the number of seeds in the 

seed bank (Feldman et al. 1996, Mulugeta and Stoltenberg 1997). The soil seed 

bank may have also been limited due to burial and mixing with sediment, or by 

loss of seed viability.  

While many seed bank studies show that the majority of seeds can be found 

in the top 10 cm of soil, it may be different for riparian areas, due to the frequent 

cycles of erosion and deposition (Goodson et al. 2001). A study by O’Donnell et al 

(2014) examined the seed bank at different soil depths on rivers in Australia and 

found that the highest propagule abundance and species richness was found 20-30 

cm deep on landforms that experience frequent fluvial disturbance. This suggests 

that I may not have sampled deeply enough. However, it is questionable how 

ecologically viable seeds at that depth are: as little as 0.25 to 0.5 cm of sediment 

has been shown to significantly reduce seedling emergence (Jurik et al. 1994, 

Gleason et al. 2003). Unless further erosion occurs, it is unlikely that seeds at that 

depth will germinate.  

It is also possible that the sites with sediment deposition simply did not 

contain many seeds. Brown and Chenoweth (2008) found that the sediment 

trapped behind Glines Canyon Dam contained few seeds and Michel et al. (2011) 
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found low seed rain on the exposed sediments behind Glines Canyon dam and 

downstream floodplains. However, downstream hydrochory has increased 

following dam removal (Cubley and Brown 2016), and seeds from hydrochory can 

mix with sediment and be deposited together (Goodson et al. 2003b). Some of the 

most prevalent species found in the soil seed bank, Cardamine oligosperma and 

Mycelis muralis, were also represented in the hydrochorous seeds trapped 

following removal (Cubley and Brown 2016).  

 The patterns I found in seed bank species richness and abundance among 

landforms (higher on floodplains and terraces) are similar to other studies, where 

higher species richness and abundance are often found in riparian areas that 

experience intermittent flooding. Bornette et al. (1998) found the lowest propagule 

species richness in sites with frequent flooding, with the highest species richness 

in sites with intermediate flood frequency. Schwab and Kiehl (2017) found highest 

seed density and species richness in areas with fluctuating water levels, and less in 

sites with stable conditions. Many other studies had similar findings, with higher 

seed density in flooded areas of a drawdown zone (Zhang et al. 2016), and higher 

seed abundance in flooded sites (Capon and Brock 2006). Additionally, O’Donnell 

et at. (2014) found the highest species richness on river benches (a raised bar, 

similar to an early developing floodplain), but highest seed abundance on bars, 

similar to my findings.  
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These results suggest that in natural conditions, fluvial processes, such as 

flooding and sediment deposition, are a major driver of soil seed banks in riparian 

zones. The soil seed bank may have fewer species on the terraces due less mixing 

of soil and sediment; seeds may not have had any mechanism to enter the soil 

from the litter layer. Furthermore, seeds in the soil of more mature landforms may 

have been there for a longer time period and may no longer be viable. Hulce 

(2009) found less species richness and germinated seeds on older landforms on the 

Lake Mills delta before the dams were removed on the Elwha.  

Over all I found a relatively sparse seed bank on the Elwha River (34 species 

and 367 germinated seeds) compared to other seed bank studies which have found 

around 50 to 125 species, with seed abundance in the thousands, using similar 

methodology and replicate sizes (Capon and Brock 2006, Boudell and Stromberg 

2008, Araujo Calçada et al. 2015, O’Donnell et al. 2016, Schwab and Kiehl 2017), but 

in differing ecoregions. However, this discrepancy may be explained by the 

unusually high sediment depth on many of our sites below the dam, as explained 

above. Another explanation for the low seed abundance may be the timing of soil 

collection. Most seed bank studies reviewed collected soil in the winter and spring. 

Collecting in the summer may limit the number of spring germinating species in 

the seed bank. However, seasonal variation may not be important in some cases. 

Soil seed banks are often dissimilar to the above ground vegetation (Goodson et al. 

2001b, Hopfensperger 2007), suggesting that seed banks may not noticeably 

contribute to above ground vegetation communities in stable areas. This further 
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suggests that seeds in the soil seed bank may stay dormant through growing 

seasons if conditions are not right for germination, limiting the effect of season on 

seed bank species richness and abundance. However, when conditions are right, 

such as after a disturbance, the seed bank can germinate and contribute more to 

the community.   

It is also worth noting that the seed bank germination method I used only 

allowed observation of germinated seeds and does not necessarily account for all 

seeds in the soil. Furthermore, the watering regime may encourage germination of 

some species, while inhibiting others (Gurnell et al. 2007). Therefore, I may have 

only observed a fraction of the soil seed bank present in my samples. 

 In conclusion, the soil seed bank of the Elwha River five years after dam 

removal exhibited a limited seed bank downstream of the dams compared to our 

reference segment. This is likely due to a combination of legacy dam effects and 

increased deposition on landforms that generally contain the majority of the seed 

bank species richness in riparian zones, such as bars and floodplains. This is 

supported by the relatively abundant seed bank in the upper segment floodplain 

and bars, which was not impacted by the dams and experienced little to no 

sediment deposition in the five years following dam removal. It is unclear whether 

the limited seed bank found in areas with high sediment deposition is caused by 

low seed availability in the sediment, seed burial by the sediment, or depletion 

caused by seeds germinating immediately after deposition.  
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I predict that the seed bank will increase in species richness and abundance 

as sediment stabilizes and the natural flow and sediment dynamics return. As the 

riparian landforms stabilize and the vegetation communities mature, there may be 

more inputs than losses through germination, leading to an increase in seeds 

present in the soil. If the landform were to develop into communities typical of 

terrace landforms, seed bank species richness may level off with only a few 

dominant species contributing seeds. However, abundance may continue to 

increase as those species continue to add seeds year after year.  Long term 

monitoring of the soil seed bank following dam removal would give us valuable 

insights into how the soil seed bank changes through time in areas with sediment 

deposition and few seeds.  
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2.5 TABLES AND FIGURES 

Table 2.1. Plant species found in the soil seed bank by landform and river segment. 
Total number of species, seed count, and number of plots for each landform is 
summarized at the bottom. Nonnative species are marked with (NN).  

 

  Upper   Middle   Lower 

  Bar Flood Ter   Bar Flood Ter   Bar Flood Ter 

Agrostis sp.       x x     

Bromus sp.    x   x       

Cardamine oligosperma x x x   x x  x x  

Carex sp.   x     x   x  

Cerastium arvense  x          

Cirsium vulgare (NN)  x          

Crepis capillaris (NN) x x          

Dactylis glomerata (NN)      x x     

Dicot 1 x         x  

Dicot 2  x          

Dicot 3  x    x      

Epilobium ciliatum      x      

Festuca sp. x x   x x   x x x 

Galium aparine       x     

Galium trifidum  x          

Geranium molle (NN)      x      

Geranium robertianum (NN)  x          

Holcus lanatus (NN)      x      

Hypericum perforatum (NN)         x   

Leucanthemum vulgare (NN) x x       x x  

Mimulus sp. x           

Montia parvifolia  x          

Mycelis muralis (NN)  x x        x 

Phalaris arundinacea (NN) x        x   

Poacae sp. 1 x x x  x x x   x  

Poacae sp. 2 x x x       x  

Rorippa islandica  x   x     x  

Rubus parviflorus  x          

Rubus sp.            x 

Rumex crispus (NN)  x          

Stachys sp.          x   

Stellaria media (NN)  x          

Stellaria sp.   x          

Urtica dioica 
     x    x  

Total number of species 9 21 4   4 10 6   6 9 3 

Total seed count 112 136 11   7 27 14   8 21 8 

N 9 10 4   6 9 8   8 14 8 
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Table 2.2. The results from a mixed model analysis looking at the effect of river 
segment and landform on soil seed bank richness. Only statistically significant 
pairwise comparisons are shown.  

 

 

  

Seed bank species richness - Mixed Model Results 

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison 

Effect DF F P   Effect Estimate Adj P 

Segment 2.000 12.380 
< 
0.001   Low:Up -1.899 < 0.001 

Landform 2.000 6.180 0.003   Mid:Up -1.522 0.001 

Reach*Landform 4.000 3.100 0.021   Bar: Flood -1.169 0.006 

-- -- -- --   Flood:Ter 1.026 0.030 

-- -- -- --   LowBar:UpFlood -3.650 < 0.001 

-- -- -- --   LowFlood:UpFlood -3.543 < 0.001 

-- -- -- --   LowTer:UpFlood -3.775 < 0.001 

-- -- -- --   MidBar:UpFlood -3.733 < 0.001 

-- -- -- --   MidFlood:UpFlood -2.956 < 0.001 

-- -- -- --   MidTer:UpFlood -3.150 < 0.001 

-- -- -- --   UpBar:UpFlood -2.622 0.002 

-- -- -- --   UpTer:UpFlood 2.650 0.033 
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Table 2.3. The results from a mixed model analysis showing the effect of river 
segment and landform on the soil seed bank seed abundance. Only significant 
pairwise comparisons are shown.  

 

  

Seed bank species count - Mixed Model 
Results     

Type 3 Tests of Fixed Effects   Tukey Pairwise Comparison   

Effect DF F P   Effect Estimate Adj P 

Segment 2.000 19.080 < 0.001   Low:Up -8.532 < 0.001 

Landform 2.000 4.310 0.017   Mid:Up -7.726 < 0.001 

Reach*Landform 4.000 2.690 0.039   Flood:Ter 4.300 0.013 

-- -- -- --   LowBar:UpBar -11.444 < 0.001 

-- -- -- --   LowBar:UpFlood -12.900 < 0.001 

-- -- -- --   LowFlood:UpBar -10.944 < 0.001 

-- -- -- --   LowFlood:UpFlood -12.400 < 0.001 

-- -- -- --   LowTer:UpBar -11.444 < 0.001 

-- -- -- --   LowTer:UpFlood -12.900 < 0.001 

-- -- -- --   MidBar:UpBar -11.278 0.002 

-- -- -- --   MidBar:UpFlood -12.733 < 0.001 

-- -- -- --  MidFlood:UpBar -9.444 0.005 

-- -- -- --  MidFlood:UpFlood -10.900 < 0.001 

-- -- -- --  MidTer:UpBar -10.694 0.001 

-- -- -- --  MidTer:UpFlood -12.150 < 0.001 

-- -- -- --  UpTer:UpBar 9.694 0.046 

-- -- -- --   UpTer:UpFlood 11.150 0.010 
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Figure 2.1. A map of the Elwha River and the location of our study sites. Transects 
are located in the lower, middle, and upper river segment. Map credit: Shafroth et 
al. (2016). 
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Figure 2.2. Boxplot showing the average seed bank species richness (per sample 
collected from 100 m2 plot) between river segment and landform. Different letters 
denote significance between groups. The effect of river segment and landforms 
was tested using a mixed model analysis.  

  



63 
 

 

 

Figure 2.3. Boxplot showing the average seed bank germinated seed abundance 
(per sample collected from 100 m2 plot) between river segment and landform. 
Different letters denote significance between groups. The effect of river segment 
and landforms was tested using a mixed model analysis. 
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Figure 2.4. Scatter plots showing the relationship between seed bank species 
richness and deposition below the dams (Poisson regression; slope = -1.771; p = 
0.029).  
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Figure 2.5. Scatter showing the relationship between seed bank and germinated 
seed abundance and deposition below the dams (Poisson regression; slope = -1.671; 
p = 0.005). 
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APPENDIX I 

Appendix 1.1 The results of the indicator species analysis for 2017.  

Group Species Status Indicator Value p 

Segment    

Upper Fragaria vesca  0.795 0.005 

 Aira caryophyllea NN 0.674 0.005 

 Osmorhiza berteroi 0.664 0.005 

 Madia gracilis  0.612 0.005 

 Nemophila parviflora 0.571 0.005 

 Anaphalis margaritacea 0.564 0.005 

 Epilobium brachycarpum 0.559 0.005 

 Vulpia myuros NN 0.547 0.005 

 Aira praecox NN 0.540 0.005 

 Achlys triphylla  0.535 0.010 

 Rumex acetosella NN 0.514 0.005 

 Tsuga heterophylla 0.493 0.010 

 Rubus leucodermis 0.485 0.015 

 Phleum pratense NN 0.456 0.010 

 Bromus pacificus 0.437 0.010 

 Trientalis borealis 0.436 0.015 

 Pteridium aquilinum 0.408 0.020 

 Fragaria virginiana 0.381 0.045 

 Claytonia perfoliata 0.354 0.050 

Middle None -- -- -- 

Lower Oemleria cerasiformis 0.848 0.005 

 Rubus parviflorus 0.726 0.005 

 Artemisia suksdorfii 0.666 0.005 

 Cytisus scoparius NN 0.539 0.005 

 Lonicera involucrata 0.504 0.010 

 Rubus bifrons NN 0.503 0.020 

 Dicentra formosa 0.491 0.015 

Landform    

Terrace Polystichum munitum 0.909 0.005 

 Acer circinatum 0.834 0.005 

 Thuja plicata 0.640 0.005 

 Rosa gymnocarpa 0.624 0.010 

 Maianthemum racemosum 0.606 0.005 

 Achlys triphylla 0.594 0.005 

 Tiarella trifoliata 0.575 0.010 

 Adenocaulon bicolor 0.533 0.010 
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 Tsuga heterophylla 0.508 0.010 

 Dicentra formosa 0.506 0.005 

 Trientalis borealis 0.489 0.005 

 Galium trifidum 0.473 0.020 

 Goodyera oblongifolia 0.397 0.015 

 Prosartes hookeri 0.397 0.015 

 Viola glabella  0.397 0.020 

 Pteridium aquilinum 0.396 0.015 

 Linnaea borealis 0.375 0.030 

Floodplain Ranunculus repens NN 0.547 0.050 

Bar Epilobium brachycarpum 0.613 0.005 

 Aira caryophyllea NN 0.605 0.005 

 Agrostis exarata 0.557 0.030 

 Eriophyllum lanatum 0.503 0.010 

 Senecio sylvaticus NN 0.500 0.005 

 Vulpia myuros NN 0.500 0.020 

 Epilobium minutum 0.459 0.015 

 Plantago lanceolata NN 0.446 0.010 

 Mimulus guttatus 0.404 0.020 

 Senecio jacobaea NN 0.384 0.035 

  Sonchus asper NN 0.377 0.030 
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Appendix 1.2. The results of the indicator species analysis for 2010. 

Group Species Status Indicator Value p 

Segment    

Upper Achlys triphylla  0.704 0.005 

 Pseudotsuga menziesii  0.665 0.005 

 Osmorhiza berteroi 0.656 0.005 

 Fragaria vesca  0.592 0.005 

 Collomia heterophylla 0.588 0.005 

 Montia parviflora 0.588 0.005 

 Galium triflorum 0.587 0.010 

 Equisteum arvense 0.586 0.005 

Middle Geranium robertianum  NN 0.741 0.005 

 Dactylis glomerata NN 0.725 0.005 

 Circaea alpina  0.692 0.005 

 Carex deweyana  0.668 0.005 

 Symphoricarpos albus  0.658 0.005 

 Rubus ursinus  0.653 0.005 

 Polystichum munitum 0.061 0.010 

 Adenocaulon bicolor 0.546 0.005 

 Bromus inermis NN 0.491 0.005 

Lower Oemleria cerasiformis  0.722 0.005 

 Leucanthemum vulgare NN 0.663 0.005 

 Rubus parviflora 0.619 0.005 

 Populus trichocarpa 0.605 0.015 

 Hypericum perforatum NN 0.600 0.005 

 Digitalis purpurea NN 0.559 0.010 

 Lapsana communis NN 0.547 0.005 

Landform    

Terrace Acer macrophyllum 0.712 0.005 

 Polystichum munitum 0.699 0.005 

 Adenocaulon bicolor 0.656 0.005 

 Circaea alpina  0.616 0.050 

 Galium triflorum 0.587 0.010 

Floodplain Mycelis muralis NN 0.630 0.025 

 Symphoricarpos albus  0.630 0.005 

 Oemleria cerasiformis  0.610 0.005 

 Rubus ursinus  0.610 0.040 

 Dactylis glomerata NN 0.605 0.010 

Bar Salix sitchensis 0.809 0.005 

 Populus trichocarpa 0.689 0.005 
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 Alnus rubra  0.658 0.005 

 Equisetum arvense 0.640 0.005 

  Deschampsia elongata 0.621 0.005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix 1.3. The top two dominant tree, shrub, and herbaceous species at each river segment, landform, and year, 
measured by percent cover at 100 m2 vegetation plot.  

  Terrace Floodplain Bar 
  2010 2017 2010 2017 2010 2017 
 Tree Pseudotsuga menziesii 

Tsuga heterophylla 
 

Tsuga heterophylla 
Pseudotsuga menziesii 

Alnus rubra 
Salix sitchensis 

Alnus rubra 
Acer macrophyllum 

Alnus rubra 
Populus balsamifera 

Populus balsamifera 
Alnus rubra 

Upper Shrub Mahonia nervosa 
Rosa gymnocarpa 
 

Rosa gymnocarpa 
Rubus ursinus 

Rubus leucodermis 
Rubus ursinus 

Rubus leucodermis 
Rubus ursinus 

Rosa nutkana 
Rubus ursinus 

Rubus ursinus 
Rosa nutkana 

 Herb Achlys triphylla 
Linnaea borealis 

Achlys triphylla 
Polystichum munitum 

Nemophila parviflora 
Galium aparine 

Claytonia sibirica 
Tolmiea menziesii 

Deschampsia elongata 
Elymus glaucus 

Equisetum arvense 
Aira cayophyllea* 

        

        
 Tree Acer macrophyllum 

Alnus rubra 
 

Acer circinatum 
Acer macrophyllum 

Alnus rubra 
Pseudotsuga menziesii 

Alnus rubra 
Pseudotsuga menziesii 

Alnus rubra 
Salix sitchensis 

Alnus rubra 
Salix sitchensis 

Middle Shrub Symphoricarpos albus 
Rubus ursinus 
 

Symphoricarpos albus 
Rubus ursinus 

Rosa nutkana 
Symphoricarpos albus 

Rubus ursinus 
Symphoricarpos albus 

Symphoricarpos albus 
Rubus ursinus 

Rubus ursinus 
Symphoricarpos albus 

 Herb Polystichum munitum 
Dactylis glomerata* 

Polystichum munitum  
Carex deweyana 

Dactylis glomerata* 
Polystichum munitum 

Equisetum arvense 
Phalaris arundinacea* 

Agrostis exarata 
Geranium robertianum* 

Agrostis stolonifera* 
Lathyrus latifolius* 

        

        
 Tree Acer macrophyllum 

Thuja plicata 
 

Acer macrophyllum 
Thuja plicata 

Alnus rubra 
Populus balsamifera 

Populus balsamifera 
Alnus rubra 

Salix sitchensis 
Populus balsamifera 

Alnus rubra 
Salix sitchensis 

Lower Shrub Oemleria cerasiformis 
Symphoricarpos albus 
 

Oemleria cerasiformis 
Symphoricarpos albus 

Oemleria cerasiformis 
Symphoricarpos albus 

Oemleria cerasiformis 
Symphoricarpos albus 

Rubus parviflorus 
Symphoricarpos albus 

Rubus bifrons* 
Rosa nutkana 

 Herb Polystichum munitum 
Carex mertensii 

Polystichum munitum 
Petasites frigidus 

Urtica dioica 
Geranium robertianum* 

Equisetum arvense 
Urtica dioica 

Leucanthemum vulgare* 
Hypericum perforatum* 

Equisetum arvense 
Phalaris arundinacea* 

*Nonnative species 

 



 
 

Appendix 1.4. Species list for Elwha River including the relative frequency of occurrence 

for plant species between 2010 and 2017. Only species with a relative frequency of 

occurrence > 0.01 for either year are shown. The species are ordered by highest 

occurrence in 2017.  

Species 
Relative frequency  

of occurrence 

 2010 2017 

Acer macrophyllum 0.8 0.77 

Mycelis muralis 0.75 0.77 

Rubus ursinus 0.69 0.73 

Symphoricarpos albus 0.7 0.71 

Alnus rubra 0.72 0.69 

Elymus glaucus 0.75 0.65 

Polystichum munitum 0.71 0.65 

Populus balsamifera 0.54 0.62 

Dactylis glomerata 0.49 0.58 

Salix sitchensis 0.3 0.53 

Galium aparine 0.51 0.51 

Equisetum arvense 0.19 0.51 

Geranium robertianum 0.55 0.5 

Rubus spectabilis 0.4 0.5 

Abies grandis 0.58 0.49 

Oemleria cerasiformis 0.52 0.49 

Agrostis stolonifera 0.01 0.46 

Circaea alpina 0.36 0.45 

Leucanthemum vulgare 0.27 0.42 

Carex deweyana 0.39 0.41 

Tolmiea menziesii 0.24 0.41 

Petasites frigidus 0.14 0.41 

Deschampsia elongata 0.17 0.4 

Acer circinatum 0.31 0.38 

Rosa nutkana 0.3 0.38 

Rubus parviflorus 0.34 0.36 

Epilobium ciliatum 0.05 0.36 

Stachys mexicana 0.17 0.35 

Bromus vulgaris 0.63 0.33 

Pseudotsuga menziesii 0.46 0.33 

Lathyrus latifolius 0.2 0.33 

Holcus lanatus 0.14 0.33 

Collomia heterophylla 0.11 0.33 

Hypochaeris radicata 0.23 0.31 

Achillea millefolium 0.07 0.31 
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Fragaria vesca 0.48 0.29 

Claytonia sibirica 0.2 0.29 

Phalaris arundinacea 0.06 0.28 

Artemisia suksdorfii 0.05 0.28 

Thuja plicata 0.29 0.27 

Holodiscus discolor 0.27 0.27 

Galium triflorum 0.39 0.26 

Crepis capillaris 0.01 0.26 

Rosa gymnocarpa 0.3 0.24 

Agrostis exarata 0.13 0.24 

Osmorhiza berteroi 0.33 0.23 

Ranunculus repens 0.25 0.22 

Trifolium repens 0.12 0.22 

Stellaria crispa 0.11 0.22 

Cirsium arvense 0.1 0.22 

Adenocaulon bicolor 0.31 0.21 

Prunella vulgaris 0.24 0.21 

Anaphalis margaritacea 0.19 0.19 

Poa trivialis 0.12 0.19 

Lapsana communis 0.22 0.18 

Urtica dioica 0.19 0.18 

Tiarella trifoliata 0.13 0.18 

Polypodium glycyrrhiza 0.16 0.17 

Aira caryophyllea 0.02 0.17 

Trifolium dubium 0 0.17 

Agrostis capillaris 0.48 0.15 

Nemophila parviflora 0.16 0.15 

Micromeria douglasii 0.11 0.15 

Stellaria calycantha 0.11 0.15 

Ribes divaricatum 0.1 0.15 

Hypericum perforatum 0.16 0.14 

Cirsium vulgare 0.13 0.14 

Achlys triphylla 0.29 0.13 

Montia parvifolia 0.11 0.13 

Rumex crispus 0.08 0.13 

Dicentra formosa 0.04 0.13 

Eriophyllum lanatum 0.04 0.13 

Galium trifidum 0 0.13 

Lupinus rivularis 0 0.13 

Plantago lanceolata 0.16 0.12 

Cytisus scoparius 0.08 0.12 

Lonicera involucrata 0.08 0.12 

Rumex acetosella 0.07 0.12 
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Madia gracilis 0.05 0.12 

Tsuga heterophylla 0.04 0.12 

Vulpia myuros 0.01 0.12 

Rubus leucodermis 0.12 0.1 

Maianthemum racemosum 0.1 0.1 

Medicago lupulina 0.04 0.1 

Epilobium minutum 0.02 0.1 

Cardamine oligosperma 0.01 0.1 

Trientalis borealis 0.23 0.09 

Taraxacum officinale 0.13 0.09 

Aira praecox 0.08 0.09 

Bromus pacificus 0.07 0.09 

Bromus sitchensis 0.06 0.09 

Lathyrus nevadensis 0.02 0.09 

Mimulus guttatus 0 0.09 

Digitalis purpurea 0.13 0.08 

Mahonia nervosa 0.13 0.08 

Tellima grandiflora 0.13 0.08 

Fragaria virginiana 0.12 0.08 

Senecio jacobaea 0.04 0.08 

Senecio sylvaticus 0.01 0.08 

Athyrium filix-femina 0.1 0.06 

Phleum pratense 0.08 0.06 

Vaccinium parvifolium 0.07 0.06 

Arctium minus 0.05 0.06 

Veronica officinalis 0.05 0.06 

Sonchus asper 0.02 0.06 

Vicia hirsuta 0.02 0.06 

Cerastium arvense 0 0.06 

Clematis vitalba 0 0.06 

Hieracium albiflorum 0.13 0.05 

Pteridium aquilinum 0.1 0.05 

Bromus inermis 0.08 0.05 

Linnaea borealis 0.07 0.05 

Chamerion angustifolium 0.05 0.05 

Geum macrophyllum 0.02 0.05 

Festuca subuliflora 0.01 0.05 

Juncus effusus 0 0.05 

Viola glabella 0.16 0.04 

Prosartes hookeri 0.11 0.04 

Goodyera oblongifolia 0.08 0.04 

Hydrophyllum tenuipes 0.06 0.04 

Vicia americana 0.06 0.04 
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Claytonia perfoliata 0.05 0.04 

Ranunculus uncinatus 0.05 0.04 

Sambucus racemosa 0.05 0.04 

Carex hendersonii 0.02 0.04 

Carex mertensii 0.02 0.04 

Poa palustris 0.01 0.04 

Disporum hookeri 0 0.04 

Erigeron philadelphicus 0 0.04 

Mentha arvensis 0 0.04 

Poa compressa 0 0.04 

Poa pratensis 0.24 0.03 

Amelanchier alnifolia 0.1 0.03 

Festuca rubra 0.06 0.03 

Maianthemum stellatum 0.06 0.03 

Vicia sativa 0.06 0.03 

Aquilegia formosa 0.05 0.03 

Gaultheria shallon 0.05 0.03 

Lonicera ciliosa 0.02 0.03 

Moehringia macrophylla 0.02 0.03 

Picea sitchensis 0.02 0.03 

Malus fusca 0.01 0.03 

Viola sempervirens 0.01 0.03 

Geranium molle 0 0.03 

Juncus balticus 0 0.03 

Linaria dalmatica 0 0.03 

Oenanthe sarmentosa 0 0.03 

Ribes lacustre 0.11 0.01 

Campanula scouleri 0.08 0.01 

Sedum spathulifolium 0.02 0.01 

Cinna latifolia 0.01 0.01 

Luzula parviflora 0.01 0.01 

Asplenium viride 0 0.01 

Epilobium brachycarpum 0.1 0 

Festuca subulata 0.08 0 

Epilobium glaberrimum 0.07 0 

Luzula multiflora 0.07 0 

Galium kamtschaticum 0.05 0 

Asplenium trichomanes 0.04 0 

Clematis ligusticifolia 0.04 0 

Festuca occidentalis 0.04 0 

Phacelia hastata 0.04 0 

Aruncus dioicus 0.02 0 

Collomia grandiflora 0.02 0 
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Danthonia californica 0.02 0 

Cardamine occidentalis 0.01 0 

Viola palustris 0.01 0 
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