
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

Spring 2018

GPU accelerated risk quantification GPU accelerated risk quantification

Forrest L. Ireland
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Information Security Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Ireland, Forrest L., "GPU accelerated risk quantification" (2018). EWU Masters Thesis Collection. 497.
https://dc.ewu.edu/theses/497

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=dc.ewu.edu%2Ftheses%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.ewu.edu%2Ftheses%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/497?utm_source=dc.ewu.edu%2Ftheses%2F497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

GPU Accelerated Risk Quantification

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

By

Forrest L. Ireland

Spring 2018

THESIS OF FORREST L. IRELAND APPROVED BY

YUN TIAN

GRADUATE COMMITTEE DATE

STU STEINER

GRADUATE COMMITTEE DATE

CHRISTIAN HANSEN

GRADUATE COMMITTEE DATE

ii

Abstract

Factor Analysis of Information Risk (FAIR) is a standard model for quantitatively es-

timating cybersecurity risks and has been implemented as a sequential Monte Carlo simu-

lation in the RiskLens and FAIR-U applications. Monte Carlo simulations employ random

sampling techniques to model certain systems through the course of many iterations. Due

to their sequential nature, FAIR simulations in these applications are limited in the num-

ber of iterations they can perform in a reasonable amount of time. One method that has

been extensively used to speed up Monte Carlo simulations is to implement them to take

advantage of the massive parallelization available when using modern Graphics Process-

ing Units (GPUs). Such parallelized simulations have been shown to produce significant

speedups, in some cases up to 3,000 times faster than the sequential versions. Due to the

FAIR simulation’s need for many samples from various beta distributions, three methods of

generating these samples via inverse transform sampling on the GPU are investigated. One

method calculates the inverse incomplete beta function directly, and the other two methods

approximate this function - trading accuracy for improved parallelism. This method is then

utilized in a GPU accelerated implementation of the FAIR simulation from RiskLens and

FAIR-U using NVIDIA’s CUDA technology.

iii

Contents

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Background 3

2.1 Factor Analysis of Information Risk (FAIR) 3

2.1.1 Risk . 3

2.1.2 Loss Event Frequency . 3

2.1.3 Threat Event Frequency . 4

2.1.4 Contact Frequency . 4

2.1.5 Probability of Action . 4

2.1.6 Vulnerability . 4

2.1.7 Threat Capability . 5

2.1.8 Resistance Strength . 5

2.1.9 Loss Magnitude . 5

2.1.10 Primary Loss Magnitude . 5

2.1.11 Secondary Risk . 6

2.1.12 Secondary Loss Event Frequency . 6

2.1.13 Secondary Loss Magnitude . 6

2.2 Modeling Expert Opinion with PERT-Beta Distributions 6

2.2.1 Beta Distribution . 7

2.2.2 PERT-Beta Distributions . 8

2.3 Sampling from Non-Uniform Distributions 9

3 Current Sequential Algorithm 13

3.1 Overview . 13

3.2 Sampling from a PERT-Beta Distribution 13

iv

3.3 Vulnerability . 14

3.4 Primary Loss Magnitude . 17

3.5 Secondary Loss Magnitude . 19

3.6 Primary Loss Event Frequency . 20

3.7 Secondary Loss Event Frequency . 25

3.8 Risk Exposure . 26

4 Parallel Algorithms 28

4.1 Sampling from PERT-Beta Distributions . 28

4.2 Parallelizing the FAIR Simulation . 32

5 Results 34

5.1 Inverse Regularized Incomplete Beta Comparison 34

5.2 Performance of the Lookup Table Based Inverse Transforms 38

5.3 Quality of Generated Beta Distributions . 40

5.4 Comparison of the GPU Accelerated FAIR Monte Carlo Simulation to the

Sequential Simulation . 43

6 Conclusions 52

7 Future Work 53

References 55

Appendices 58

A GPU Based FAIR Simulation Algorithms 58

B FAIR Scenario Inputs . 62

v

List of Figures

1 The FAIR Ontology . 3

2 PERT-Beta Probability Density Functions 7

3 Beta Distribution Probability Density Function 8

4 PERT-Beta Distribution Confidence Levels 10

5 Inverse Transform Sampling . 11

6 Beta Distribution Cumulative Density Function 12

7 Parallel Programming Model . 32

8 Lookup Table based Inverse Incomplete Beta Function 35

9 Lookup Table Inverse Transform Errors . 36

10 Lookup Table based Inverse Incomplete Beta Errors 37

11 Speed-up for Tranformation of Various Samples Sizes 39

12 Speed-up for Various Lookup Table Sizes 40

13 Histograms of Lookup Table base Beta Distributions 41

14 FAIR Scenario Simulation GPU Speed-up 46

15 FAIR Scenario 1 Risk Exposure Histogram Comparison 49

16 FAIR Scenario 2 Risk Exposure Histogram Comparison 50

17 FAIR Scenario 3 Risk Exposure Histogram Comparison 51

vi

List of Tables

1 Sample Inputs for Direct Mode Vulnerability 15

2 Example Iterations for Direct Mode Vulnerability 16

3 Sample Inputs for Derived Mode Vulnerability 17

4 Example Iterations for Derived Mode Vulnerability 17

5 Sample Inputs for Primary Loss Magnitude 18

6 Example Iterations for Primary Loss Magnitude 18

7 Sample Inputs for Secondary Loss Magnitude 19

8 Example Iterations for Secondary Loss Magnitude 20

9 Sample Inputs for Direct Mode Primary Loss Event Frequency 20

10 Example Iterations for Primary Loss Event Frequency 21

11 Sample Inputs for PLEF Derived from Threat Event Frequency and Vulner-

ability . 22

12 Example Iterations for PLEF Derived from Threat Event Frequency and

Vulnerability . 23

13 Sample Inputs for PLEF Derived from Contact Frequency, Probability of

Action, and Vulnerability . 23

14 Example Iterations for PLEF Derived from Contact Frequency, Probability

of Action, and Vulnerability . 23

15 Sample Inputs for Secondary Loss Event Frequency 25

16 Example Iterations for Secondary Loss Event Frequency 26

17 Example Iterations for Risk Exposure . 27

18 Errors from Using Various Inverse Lookup Table Sizes 37

19 Speed-up of GPU Accelerated Inverse Sampling Transform 38

20 Speed-up for Various Lookup Table Sizes 40

21 K-S Statistics for Various Lookup Table Sizes 43

22 FAIR Scenario 1 Execution Time Comparison 44

23 FAIR Scenario 2 Execution Time Comparison 44

24 FAIR Scenario 3 Execution Time Comparison 45

vii

25 K-S Statistics for Scenario 1 Risk Exposure 47

26 K-S Statistics for Scenario 2 Risk Exposure 47

27 K-S Statistics for Scenario 3 Risk Exposure 47

28 Comparison of General Statistics of GPU and CPU Risk Exposure 48

29 FAIR inputs for Scenario 1. 62

30 FAIR inputs for Scenario 2. 62

31 FAIR inputs for Scenario 3. 63

viii

1 Introduction

Understanding the risk exposure of a business’ cybersecurity assets is an important as-

pect of operating as a business in modern times. Factor Analysis of Information Risk

(FAIR) is an international standard information risk management model supported by the

FAIR institute and adopted by the Open Group that helps business leaders quantify and

understand their business’ risk [1]. There are several implementations of the FAIR model

including the RiskLens application [2] and the FAIR-U educational application [3]. Both

of these applications implement the FAIR model as a Monte Carlo simulation which pro-

duces frequency distributions of estimated cybersecurity related losses. These Monte Carlo

simulations are currently implemented using sequential algorithms and do not make use

of modern parallel computational technologies. This limits the total number of iterations

that a FAIR scenario can use to around 50,000 iterations. For very complex or large FAIR

scenarios a simulation can take between 4 and 5 minutes to complete and process the sim-

ulation results. Just as with other random sampling processes, Monte Carlo simulations

generally improve and become more reliable as more samples are calculated. Therefore,

increasing the number of iterations can significantly improve the consistency and resolution

of results. However, the current implementations cannot do this, as it would dramatically

increase the execution time of the simulation.

A popular method of improving the performance of Monte Carlo simulations is to im-

plement them on a Graphics Processing Unit (GPU) using technologies such as CUDA [4]

or openCL [5]. GPUs have been used to accelerate various Monte Carlo simulations such as

physical interactions between man-made structures and sea-ice [6], Brownian motor dynam-

ics [7], or financial applications [8]. These GPU based simulations showed speedups over

their CPU based implementations ranging from 84 to 3,000 times. More modest speedups

of 34 to 85 times have been reported in the GPU acceleration of random number generators

used in Monte Carlo simulations [9].

The FAIR model as implemented in the RiskLens and FAIRU applications require the

generation of a large number of samples from PERT-Beta distributions. These distribu-

tions are generated through the inverse transformation of uniformly distributed numbers

by calculating the inverse incomplete beta function for each uniformly distributed num-

ber. This is a computationally intensive function to compute, and does not lend itself to

efficient implementation on the GPU due to a phenomenon known as thread divergence,

which occurs when the code executing on the GPU has a large number of divergent code

paths. In extreme cases, this can force sequential execution of tasks on the GPU, which

limits performance. There are methods for trading accuracy and correctness for improved

parallelization, and this thesis will examine a couple of possible solutions.

This thesis investigates three GPU accelerated methods for implementing inverse trans-

form sampling to generate beta distributions. These three methods implement inverse tran-

form sampling to transform a uniform distribution into a beta distribution. One method

does so through computation of the inverse incomplete beta function, the other two make

use of a lookup table and either a linear or binary search of that table to approximate

the inverse incomplete beta function. Analysis of the performance and accuracy of these

three methods are performed. Finally, a FAIR Monte Carlo simulation is implemented on

the GPU using the lookup table with binary search method for inverse transform sampling

to generate beta distributions. The results of the GPU accelerated FAIR simulation are

compared against the CPU based implementation for their accuracy and performance.

2

2 Background

2.1 Factor Analysis of Information Risk (FAIR)

Factor Analysis of Information Risk (FAIR) is a framework designed to model risk by

describing the factors that make up risk and the relationships between those factors. This

framework is illustrated in figure 1, and it shows the various factors that contribute to risk

and how they are connected. The following section will briefly describe each of the different

factors and highlight the relationships important to this project as they are described in

Jack Jones’ book Measuring and Managing Information Risk [10].

Risk

Loss Event
Frequency

Threat Event
Frequency

Contact
Frequency

Probability
of Action

Vulnerability

Threat
Capability

Resistance
Strength

Loss
Magnitude

Primary Loss
Magnitude

Secondary
Risk

Secondary Loss
Event Frequency

Secondary Loss
Magnitude

Figure 1: The Fair Ontology.

2.1.1 Risk

The top node of the FAIR ontology is the Risk node. Risk is defined as “the probable

frequency and probable magnitude of future loss” [10]. This definition leads into the two

factors that comprise Risk: Loss Event Frequency and Loss Magnitude.

2.1.2 Loss Event Frequency

Loss Event Frequency (LEF) is one of two nodes that contributes to risk and is defined as

“the probable frequency within a given time-frame, that loss will materialize from a threat

agent’s action” [10]. Typically, LEF is reported in events per year, although it is possible to

report loss event frequencies in different time-frames provided one is consistent throughout

3

a scenario. LEF can be estimated directly be an analyst, or be derived from Threat Event

Frequency and Vulnerability as shown in Figure 1.

2.1.3 Threat Event Frequency

Within the FAIR ontology, Threat Event Frequency (TEF) is defined as “the probable

frequency, within a given time-frame, that threat agents will act in a manner that may

result in loss” [10]. Initially the definition of TEF appears very similar to the definition

of LEF, however the key point of difference is that TEF is a measure of how frequently

a threat agent might cause while LEF is a measure of events that resulted in loss. Risk

analysts may estimate TEF directly, but it can also be derived from Contact Frequency and

Probability of Action as shown in Figure 1.

2.1.4 Contact Frequency

Contact Frequency (CF) is the first of two nodes from which TEF can be derived. The

FAIR ontology defines CF as “the probable frequency, within a given time-frame, that

threat agents will come into contact with assets” [10].

2.1.5 Probability of Action

Probability of Action (PoA) is defined as “the probability that a threat agent will act

upon an asset once contact has ocurred” [10]. TEF is estimated from CF and PoA by

simply multiplying the two values together.

2.1.6 Vulnerability

Vulnerability is defined as “the probability that a threat agent’s actions will result in loss”

[10]. This is best thought of as the percentage of attacks against an asset that are successful

and result in damages. The Vulnerability of a scenario is determined by performing repeated

Bernoulli trials to simulate attacks against an asset. Some percentage of the simulated

attacks will be successful and this percentage is used as the Vulnerability input in nodes

above Vulnerability. This can be computed directly from analyst inputs or from Threat

Capability and Resistance Strength.

4

2.1.7 Threat Capability

Threat Capability (TC) is broadly defined as “the capability of a threat agent” [10].

This is so broadly defined due to how differently a threat agent can be defined depending

on the current threat scenario under analysis. TC is defined on a percentile scale between

1 and 100. The least capable threat agent would be assigned to the 1st percentile, while

the most capable threat agent would be assigned to the 100th percentile. Obviously threat

agents with greater skill and more resources will have a greater capability than an agent

with very low skill and/or very few resources.

2.1.8 Resistance Strength

Resistance Strength is defined as “the level of difficulty that a threat agent must over-

come” [10]. In order to calculate Vulnerability from TC and Resistance Strength, the

two factors must be measured along the same relative scale. Assets with lower Resistance

Strength are more susceptible to less capable threat agents, so more successful attacks can

be expected, while an asset with higher Resistance Strength will not be as susceptible to

less capable threat agents.

2.1.9 Loss Magnitude

Loss Magnitude (LM) is defined as “the probable magnitude of primary and secondary

loss resulting from an event” [10]. From the definition and Figure 1 we can see that LM is

composed of two other factors: Primary Loss and Secondary Risk.

2.1.10 Primary Loss Magnitude

Primary Loss Magnitude (PLM) is defined as “primary stakeholder loss that material-

izes as a result of an event” [10]. A primary stakeholder is the individual or organization

from whose perspective the focus of the risk analysis is being performed. Some examples of

primary losses include: lost revenue from outages, lost wages due to outages, and replace-

ment/repair of assets. PLM is the summation of these primary losses that occur as a result

of a loss event.

5

2.1.11 Secondary Risk

Secondary Risk is defined as the “primary stakeholder loss-exposure that exists due to

the potential for secondary stakeholder reactions to the primary event” [10]. This factor

takes into account the impact of secondary stakeholders (anyone affected by the loss event,

besides the primary stakeholders, e.g. customers). This could included losses related to

customers looking for services at other companies or relevant fines and judgements. This

node, much like the Risk node is composed of a Secondary Loss Event Frequency and a

Secondary Loss Magnitude.

2.1.12 Secondary Loss Event Frequency

Secondary Loss Event Frequency (SLEF) is defined as “the percentage of primary events

that have secondary effects” [10]. This means that for a given scenario, if there are 10

primary loss events in a year and the SLEF was 20%, then in addition to the 10 primary

loss events, 2 secondary loss events will occur.

2.1.13 Secondary Loss Magnitude

Secondary Loss Magnitude (SLM) is defined as “the loss associated with secondary

stakeholder reactions” [10]. SLM is essentially how large the loss will be when there is a

secondary loss event. SLM can include losses such as legal defense fees, decreased stock

prices, fines and judgements, and lost market share.

2.2 Modeling Expert Opinion with PERT-Beta Distributions

Factor Analysis of Information Risk (FAIR) relies heavily on industry experts to provide

estimates for the values of the factors in the FAIR ontology. Due to the probabilistic nature

of risk and the lack of exact estimates for each FAIR factor, all of the factors that can be

estimated are modelled using probability distributions. There are a number of probability

distributions that can be used to model an industry expert’s opinion about a value. The

most intuitive of these distributions can be described by easy to reason about parameters,

such as the minimum, maximum, and most likely values.

6

Modified PERT-beta distributions are used throughout the implementations of the FAIR

simulation outlined in this thesis. This distribution takes four parameters: minimum, mode,

maximum, and confidence. An expert would provide what they believe to be the minimum

and maximum values for a particular variable (eg. primary loss magnitude), along with the

value that they believe to be most likely (mode) and their confidence in that most likely

value [11]. For example, an industry expert with experience in security controls on databases

may be tasked with estimating the resistance strength of an organization’s database servers.

The expert could decide that the assests have a 33% resistance strength. While this is a

very precise estimate, it is very likely wrong. A better course of action is for the expert

to provide a range of possible values. In our example, the expert may say they believe the

current controls on the database server would provide a resistance strength between 25%

and 40%, and they think the most likely resistance strength is 33%. The expert could also

say whether they have a high or low confidence in their selection of the most likely (mode)

value. These additional parameters allow the expert to better describe their opinion.

5 6 7 8 9 10

5

10

15

20
High Confidence

Medium Confidence
Low Confidence

Figure 2: PERT distribution PDFs with minimum = 5, mode = 6.2, max = 10, and varying
confidence levels (low, medium, and high confidence in the mode).

2.2.1 Beta Distribution

The PERT-beta distribution is a transformation of the standard beta distribution. The

standard beta distribution is defined on the range [0,1]. Beta distributions are described by

two parameters α, and β. Figure 3 shows a beta distribution’s probability density function

7

(PDF). This function is smooth and continuous between 0 and 1 and it has a value of 0 at

both ends of the range. The beta distribution PDF is given in Equation (1) [12].

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0
tα−1(1− t)β−1dt (1)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

Figure 3: The probability density function (PDF) of a beta distribution with α = 2 and
β = 5.

2.2.2 PERT-Beta Distributions

A PERT-beta distribution is the favored distribution for the FAIR model because it

allows a risk analyst to specify the desired probability distribution using easy to reason

about parameters [10]. These parameters include the minimum (a), mode (b), and maximum

(c). The minimum and maximum parameters describe the range of the distribution, and

the mode specifies the value with the greatest probability of occuring.

The high confidence PERT-beta PDF in Figure 2 and the beta PDF Figure 3 look very

similar. They look similar because the PERT-beta distribution is simply a transformation

of the beta distribution. A PERT-beta distribution is generated by scaling and shifting

a beta distribution along the x-axis such that the range corresponds with the PERT-beta

distribution’s minimum and maximum values. Equation (2) illustrates this transformation

[13]. The beta function in Equation (1) requires two shape parameters α and β. Equations

(3) and (4) are used to calculate these parameters using the PERT parameters and the

8

estimated mean, µ. Equation (5) is the estimate of the mean µ of the beta distribution in

terms of the minimum, mode, and maximum parameters [14].

PERT (a, b, c) = BETA(α, β) ∗ (c− a) + a (2)

where

α =
(µ− a)(2b− a− c)

(b− µ)(c− a)
(3)

β =
α(c− µ)

(µ− a)
(4)

µ =
a+ 4b+ c

6
(5)

The algorithms in this thesis make use of the modified PERT distribution which is similar

to the PERT-beta distribution. The modified PERT distribution takes the three PERT-beta

parameters, minimum (a), mode (b), and maximum (c), as well as a confidence in the mode

(γ). The modified PERT distribution has a different approximation of µ which depends

on the new parameter γ. Equation (6) shows the calculation of the mean and it should be

obvious that γ changes the relative weight of the mode in the calculation of the mean. A

lower γ creates a distribution that is flatter and more evenly distributed throughout the

range, while higher values of γ create distributions that are more sharply peaked near the

mode. Figure 4 illustrates the difference in the PDFs with varying confidence levels and

the corresponding γ values.

µ =
a+ γb+ c

γ + 2
(6)

2.3 Sampling from Non-Uniform Distributions

The current implementations of the FAIR simulation generate beta distributions for use

in the modified PERT distribution through a method called inverse transform sampling.

Inverse transform sampling is a method for generating non-uniform distributions through

9

5 6 7 8 9 10

5

10

15

20 γ = 8
γ = 4
γ = 1

Figure 4: Sample PERT distributions with minimum = 5, mode = 6.2, max = 10, and
varying confidence levels (low, medium, and high) corresponding to γ = 1, γ = 4, and
γ = 8 respectively.

the transformation of a uniform distribution. For a desired distribution X, let it have a

cumulative density function (CDF) F , then a uniform variate U between 0 and 1 can be

transformed by passing it through the inverse CDF as shown in Equation (7) [15].

X = F−1(U) (7)

Figure 5 graphically illustrates how inverse transform sampling works. Along the U axis

there are lines uniformly spread across the axis. These extend up to the inverse function

F−1 and extend to the X axis where the lines are no longer evenly spread. They have been

transformed into some other distribution that depends on the shape of F−1.

10

Figure 5: Illustration of how inverse transform sampling works by feeding uniform variates
into a function F−1 to produce non-uniform variates.

To generate beta distributions using inverse transform sampling, the CDF of the beta

distribution must be known. The CDF of the beta distirbution is the regularized incom-

plete beta function [12]. This function is given by Equation (9) [16]. Figure 6 shows the

corresponding CDF for the PDF in Figure 3. The inverse of the regularized incomplete beta

function Ix(α, β) can be used to transform uniform variates into random variates following

a beta distribution.

Bx(α, β) =

∫ x

0
tα−1(1− t)β−1dt 0 < x < 1 (8)

Ix(α, β) =
Bx(α, β)

B(α, β)
(9)

11

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 6: The cumulative density function (CDF) of a beta distribution with α = 2 and
β = 5.

12

3 Current Sequential Algorithm

3.1 Overview

The current sequential FAIR Monte Carlo simulation implements each node of the FAIR

ontology in Figure 1. The algorithm for each node takes in inputs from either the user, or

the outputs from nodes below it. This structure makes it quite easy to break the overall

simulation down into a few smaller, easier to understand components. These steps are as

follows:

1. Vulnerability

2. Primary Loss Magnitude

3. Secondary Loss Magnitude

4. Primary Loss Event Frequency

5. Secondary Loss Event Frequency

6. Risk Exposure

All leaf nodes in the FAIR ontology require user inputs in the form of the modified

PERT distribution parameters: minimum, mode, maximum, and confidence. Inputs do not

need to be provided for all leaf nodes, instead users may choose to provide inputs for nodes

higher in the ontology and have inputs at the lower nodes ignored. This can only be done

for the Loss Event Frequency, Threat Event Frequency, and Vulnerability nodes. It should

be noted that there are multiple algorithms for the Loss Event Frequency and Vulnerability

nodes because of the different sources of inputs.

3.2 Sampling from a PERT-Beta Distribution

Most of the algorithms in the following sections rely on user provided estimates describing

the expected values of the FAIR ontology factors that are used in each part of the FAIR

model. For each factor the user supplies four values corresponding to the four modified

PERT-beta distribution parameters: minimum, mode, maximum, and confidence. The

current sequential implementation makes use of the inverse transform method for converting

a uniformly distributed variate to a modified PERT-beta distributed variate. Algorithm

13

1 takes the PERT descriptors as parameters and computes the inverse incomplete beta

function for a random variate U .

Algorithm 1 SamplePERT

Inputs: a, b, c, γ, U
Outputs: Random variate from a PERT-beta distribution

1: procedure SamplePERT(a, b, c, γ, U)
2: µ = a+γb+c

γ+2

3: α = (µ−a)(2b−a−c)
(b−µ)(c−a)

4: β = α(c−µ)
(µ−a)

5: return incbi(α,β, U) ∗(c− a) + a
6: end procedure

The current sequential algorithm is based on the function incbi from the cephes math

library [17]. This function computes the inverse of the regularized incomplete beta function.

The regularized incomplete beta function is the CDF of a beta distribution and inverting

this function allows a uniform distribution to be mapped to a beta distribution via the

inverse transform sampling method.

The incbi function takes as parameters the two shape parameters α and β of the beta

function and a number y where 0 < y < 1. It then finds a number x that satisfies equation

(10).

Ix(a, b)− y = 0 (10)

At a high level, the function incbi works by first estimating the inverse by computing

the inverse for a normal distribution. This estimated inverse is then used as the starting

point for either interval halving (bisection or binary search), or Newton’s method for finding

the roots of Equation (10). These methods are executed until a solution for the equation

is found, or an error state is reached. For more implementation details, the source code is

available online [17].

3.3 Vulnerability

The vulnerability of an asset is the first aspect of a scenario to be calculated. The

vulnerability of an asset within a single scenario is the percentage of attacks against it that

14

are successful. This percentage can be determined in two ways. The first is by deriving the

value from user provided inputs for vulnerability and the second is by estimating it from

user provided inputs for Threat Capability and Resistance Strength. Bernoulli trials are

used to simulate attacks against the asset. After all iterations, the percentage of successful

attacks is taken as the vulnerability of the asset for the scenario.

Direct Mode

When directly calculating vulnerability, the user will provide a minimum, mode, maxi-

mum, and confidence value as inputs for Vulnerability. The minimum, mode, and maximum

values must be in the range [0,1] since the values are probabilities. Algorithm 2 describes

how to calculate Vulnerability directly from user inputs.

Table 1 contains sample inputs for the direct Vulnerability calculations. As an example,

Table 2 contains ten iterations of Algorithm 2. In this example, two of the ten iterations

resulted in a 1 being stored in the vulnerabilityIterations array. To complete Algorithm 2

the average of the vulnerabilityIterations array is taken which ends up being 0.2 for this

example. This means the asset is vulnerable to 20% of attacks made against it by the threat

actor for the scenario.

Algorithm 2 Direct Mode Vulnerability

1: vulnerabilityIterations = new int[iterations]
2: for i=0,...,iterations do
3: sample=SamplePERT(vuln.min, vuln.mode, vuln.max, vuln.confidence)
4: x = UniformRandom()
5: if x < sample then
6: vulnerabilityIterations[i] = 1
7: else
8: vulnerabilityIterations[i] = 0
9: end if

10: end for
11: return average(vulnerabilityIterations)

Minimum Mode Maximum Confidence

Vulnerability 0.05 0.08 0.16 4

Table 1: Sample inputs for direct mode Vulnerability.

15

Iteration sample x vulnerabilityIterations

0 0.07 0.18 0

1 0.12 0.33 0

2 0.13 0.08 1

3 0.09 0.40 0

4 0.08 0.35 0

5 0.06 0.28 0

6 0.07 0.65 0

7 0.10 0.01 1

8 0.09 0.16 0

9 0.08 0.72 0

Table 2: Example iterations for Vulnerability estimation in direct input mode.

Derived Mode

When the user chooses to enter inputs for Threat Capability and Resistive Strength

they will provide minimum, mode, maximum, and confidence values for both. Once again,

the minimum, mode, and maximum values need to be in the range [0,1] since both are

probabilities. Threat Capability is the threat actor’s ability to successfully attack the asset.

Thus, an input value of 1 for Threat Capability indicates a threat actor is always able to

successfully attack an asset, while a value of 0 means the threat actor will never successfully

attack the asset. Resistive strength measures the strength of protective controls on the asset.

A Resistive Strength of 1 means the controls stop all attacks while a value of 0 means the

controls stop no attacks.

Once again Bernoulli trials are used to simulate attacks against the asset, however this

time the Resistive Strength and Threat Capability PERT distributions are used as inputs

to the Bernoulli trials. Once all simulated attacks have been completed, the asset’s vul-

nerability is assigned the percentage of successful attacks. Algorithm 3 details the steps

involved in calculating Vulnerability with this method.

Table 3 contains sample inputs for Threat Capability and Resistive Strength, and in

Table 4 examples are provided for Algorithm 3 with ten iterations using the sample inputs.

As shown in the attackResult row, only one of the ten iterations saw a successful attack

against the asset. Calculating the average of the attackResult column gives the estimated

Vulnerability of the asset for the scenario. In this case, the average is 0.10, indicating the

16

asset is vulnerable to 10% of attacks.

Algorithm 3 Derived Mode Vulnerability

1: attackResults = new int[iterations]
2: for i=0,...,iterations do
3: resistance = SamplePERT(rs.min, rs.mode, rs.max, rs.confidence)
4: threatCapability = SamplePERT(tcap.min, tcap.mode, tcap.max, tcap.confidence)
5: if threatCapability < resistance then
6: attackResults[i] = 1
7: else
8: attackResults[i] = 0
9: end if

10: end for
11: return average(attackResults)

Minimum Mode Maximum Confidence

Threat Capability (tcap) 0.45 0.65 0.70 8

Resistance Strength (rs) 0.60 0.70 0.90 4

Table 3: Sample inputs for Vulnerability estimation in derived mode.

Iteration resistance threatCapability attackResults

0 0.65 0.64 0

1 0.71 0.68 0

2 0.80 0.60 0

3 0.85 0.50 0

4 0.68 0.61 0

5 0.62 0.67 1

6 0.79 0.68 0

7 0.72 0.62 0

8 0.75 0.57 0

9 0.80 0.63 0

Table 4: Example iterations for Vulnerability estimation in derived mode.

3.4 Primary Loss Magnitude

The primary losses for a scenario are the losses that are experienced as a direct result of

a successful attack against the asset. There are 6 forms of loss and they are: productivity

costs, response costs, replacement costs, competitive advantage losses, fines and judgements,

and reputation losses. Users provide inputs for each of the six forms of loss. The input for

each form of loss will contain a minimum, mode, maximum, and a confidence value.

17

Table 5 contains sample inputs for calculating Primary Loss and Algorithm 4 describes

how these inputs are used to produce the output for this step. The inputs for each of

the six forms of loss have a minimum, mode, maximum, and confidence. The output from

Algorithm 4 is an array of primary loss values. Each of these values represents a potential

loss that can be experienced because of an attack. This array of values will be used in later

steps.

Algorithm 4 Primary Loss

1: primaryLosses = new double[iterations]
2: set all primaryLosses to 0
3: for i=0,...,iterations do
4: iterationLosses = 0
5: for all f in formsOfLoss do
6: iterationLosses += SamplePERT(f.min, f.mode, f.max, f.confidence)
7: end for
8: primaryLosses[i] = iterationLosses
9: end for

10: return primaryLosses

Minimum Mode Maximum Confidence

Productivity $1,000 $1,233 $1,275 1

Response $1,000 $1,525 $4,500 8

Replacement $9,500 $9,650 $10,500 8

Competitive Advantage $50 $857 $999 8

Fines & Judgements $1,000 $1,250 $1,500 4

Reputation $4,500 $5,200 $5,500 4

Table 5: Sample inputs for calculating primary losses at each iteration.

Iteration Productivity Response Replacement Comp.
Adv.

Fines &
Judgements

Reputation Primary
Losses

0 $1,236 $1,980 $9,811 $962 $1,451 $4,802 $20,242

1 $1,252 $2,884 $10,135 $557 $1,300 $4,803 $20,931

2 $1,197 $2,151 $9,587 $117 $1,029 $4,911 $18,992

3 $1,093 $1,428 $9,663 $910 $1,401 $5,392 $19,887

4 $1,117 $3,629 $10,048 $299 $1,424 $4,966 $21,483

5 $1,109 $2,157 $9,977 $265 $1,244 $4,626 $19,378

6 $1,130 $2,465 $9,518 $891 $1,423 $5,326 $20,752

7 $1,251 $2,979 $10,424 $491 $1,278 $5,286 $21,709

8 $1,159 $1,609 $9,566 $866 $1,083 $4,975 $19,258

9 $1,172 $1,349 $9,844 $605 $1,247 $5,060 $19,277

Table 6: Example iterations for Primary Loss Magnitude calculation.

18

3.5 Secondary Loss Magnitude

The Secondary Loss Magnitude for a scenario is broken down into the same six forms of

loss as Primary Loss Magnitude. Secondary losses are experienced incidentally to primary

losses. An important distinction between primary and secondary losses is that primary

losses will always occur after a successful attack, while secondary losses have a chance

of not occurring after a successful attack. In this step of the process, only the potential

secondary losses are calculated. The Secondary Loss Event Frequency step will determine

if the secondary losses actually occur.

Users provide inputs for each of the six forms of secondary loss. The calculated values

for each form are summed to give the total Secondary Loss Magnitude. Algorithm 5 details

the steps required to calculate Secondary Loss Magnitude from the user’s inputs.

The output from Algorithm 5 is an array of secondary loss magnitudes, one for each

iteration. This array is stored for later use in calculating the total loss magnitude for each

iteration. Table 7 gives sample inputs for secondary loss magnitude estimation and Table

8 gives an example of the calculations for several iterations of Algorithm 5.

Algorithm 5 Secondary Loss Magnitude

1: secondaryLosses = new double[iterations]
2: set all secondaryLosses to 0
3: for i=0,...,iterations do
4: iterationLosses = 0
5: for all f in formsOfLoss do
6: iterationLosses += SamplePERT(f.min, f.mode, f.max, f.confidence)
7: end for
8: secondaryLosses[i] = iterationLosses
9: end for

10: return secondaryLosses

Minimum Mode Maximum Confidence

Productivity $500 $650 $1,000 8

Response $750 $800 $850 1

Replacement $325 $450 $500 8

Competitive Advantage $0 $1,000 $2,000 4

Fines & Judgements $500 $550 $800 8

Reputation $600 $900 $1,000 1

Table 7: Sample inputs for calculating Secondary Loss Magnitude.

19

Iteration Productivity Response Replacement Comp.
Adv.

Fines &
Judgements

Reputation Secondary
Losses

0 $970 $784 $465 $1,214 $610 $932 $4,977

1 $646 $815 $374 $762 $611 $926 $4,134

2 $946 $795 $385 $1,167 $738 $966 $4,897

3 $771 $801 $413 $119 $623 $712 $3,439

4 $653 $787 $471 $1,248 $605 $745 $4,509

5 $852 $801 $449 $325 $553 $817 $3,797

6 $629 $799 $418 $1,800 $517 $684 $4,847

7 $743 $837 $389 $1,236 $635 $907 $4,747

8 $765 $764 $399 $698 $565 $733 $3,954

9 $593 $828 $446 $1,308 $597 $972 $4,744

Table 8: Example iterations for secondary losses estimation.

3.6 Primary Loss Event Frequency

Primary Loss Event Frequency (PLEF) calculates the number of loss events per year.

There are three ways to calculate PLEF. The first relies on the user directly entering

inputs for the Loss Event Frequency node. In this case, Vulnerability does not need to

be calculated. The second method is used if the user enters inputs for the Threat Event

Frequency node. This will utilize the calculated Vulnerability for the scenario and the

Threat Event Frequency inputs to calculate the PLEF. Finally, the user can enter inputs

for Contact Frequency and Probability of Action nodes. These two inputs will be used to

calculate Threat Event Frequency, which will then be used with the calculated Vulnerability

to determine Loss Event Frequency.

Direct Mode

When calculating PLEF directly, the user provides only inputs for the PLEF node.

Algorithm 6 goes over the steps required to calculated PLEF and Table 9 contains sample

inputs. Table 10 provides sample iterations and in the last column of the table, the number

of primary loss events for each iteration is recorded. This number indicates the number of

loss events that occurred within a year.

Minimum Mode Maximum Confidence

Primary Loss Event Frequency 0.1 1.5 9.0 4

Table 9: Sample inputs for direct estimation of Primary Event Loss Frequency

20

Algorithm 6 Primary Loss Event Frequency - Direct Mode

1: primaryLEFs = new int[iterations]
2: for i=0,...,iterations do
3: sampledPLEF = SamplePERT(plef.min, plef.mode, plef.max, plef.confidence)
4: r = Random.NextDouble()
5: iterationPLEF = 0
6: if sampledPLEF < 1 then
7: if r < sampledPLEF then
8: iterationPLEF = 1
9: end if

10: else
11: major = floor(sampledPLEF)
12: minor = sampledPLEF - major
13: if r < minor then
14: iterationPLEF = major + 1
15: else
16: iterationPLEF = major
17: end if
18: end if
19: primaryLEFs[i] = iterationPLEF
20: end for
21: return primaryLEFs

Iteration sampledPLEF r major minor iterationPLEF

0 1.27 0.29 1 0.27 1

1 1.72 0.70 1 0.72 2

2 4.00 0.03 4 0.00 4

3 3.96 0.97 3 0.96 3

4 1.58 0.18 1 0.58 2

5 6.02 0.51 6 0.02 6

6 7.38 0.19 7 0.38 8

7 0.36 0.52 - - 0

8 5.22 0.69 5 0.22 5

9 2.77 0.31 2 0.77 3

Table 10: Example iterations for Priamry Loss Event Frequency estimation.

Derived from Threat Event Frequency and Vulnerability

PLEF can be determined when the user provides inputs for the Threat Event Frequency

node and inputs for calculating Vulnerability. The method in which PLEF is determined

is very similar to the previously described method. The only change to the algorithm is

on line 4 where sampled PLEF is calculated from threat event frequency and vulnerability.

21

Vulnerability has already been calculated at this point and is a single probability in the

range [0,1]. Table 11 contains sample inputs for Algorithm 7. Table 12 contains values for

ten iterations of Algorithm 7.

Algorithm 7 Primary Loss Event Frequency - TEF/VULN Mode

1: primaryLEFs = new int[iterations]
2: for i=0,...,iterations do
3: sampledTEF = SamplePERT(tef.min, tef.mode, tef.max, tef.confidence)
4: sampledPLEF = sampledTEF * Vulnerability
5: r = Random.NextDouble()
6: iterationPLEF = 0
7: if sampledPLEF < 1 then
8: if r < sampledPLEF then
9: iterationPLEF = 1

10: end if
11: else
12: major = floor(sampledPLEF)
13: minor = sampledPLEF - major
14: if r < minor then
15: iterationPLEF = major + 1
16: else
17: iterationPLEF = major
18: end if
19: end if
20: primaryLEFs[i] = iterationPLEF
21: end for
22: return primaryLEFs

Minimum Mode Maximum Confidence

Threat Event Frequency 10 14 28 4

Vulnerability 0.20

Table 11: Sample inputs for estimation of Primary Event Loss Frequency from Threat Event
Frequency and Vulnerability.

22

Iteration sampledTEF Vulnerability sampledPLEF r major minor iterationPLEF

0 13.05 0.20 2.61 0.688 2 0.61 2

1 19.26 0.20 3.85 0.04 3 0.85 4

2 17.29 0.20 3.46 0.59 3 0.46 3

3 17.10 0.20 3.42 0.83 3 0.42 3

4 15.43 0.20 3.09 0.66 3 0.09 3

5 10.94 0.20 2.19 0.81 2 0.19 2

6 17.87 0.20 3.57 0.99 3 0.57 3

7 21.78 0.20 4.36 0.39 4 0.36 4

8 13.79 0.20 2.76 0.54 2 0.76 3

9 19.53 0.20 3.91 0.59 3 0.91 4

Table 12: Example iterations for estimating Primary Loss Event Frequency from Threat
Event Frequency and Vulnerability.

Derived from Contact Frequency, Probability of Action, and Vulnerability

The final method of estimating PLEF is by estimating Threat Event Frequency from

Contact Frequency and Probability of Action, and then using that result along with the

scenario vulnerability, to estimate PLEF. Algorithm 8 outlines the steps involved in esti-

mating PLEF in this case. Table 13 lists sample inputs for this step and Table 14 contains

example values for ten iterations.

Minimum Mode Maximum Confidence

Contact Frequency 500 600 800 8

Probability of Action 0.10 0.25 0.30 4

Vulnerability 0.20

Table 13: Sample inputs for estimation of Primary Loss Event Frequency from Contact
Frequency, Probability of Action, and Vulnerability

Iteration sampledPoA sampledCF Vulnerability sampledPLEF r major minor iterationPLEF

0 0.23 533.4 0.20 24.54 0.74 24 0.54 24

1 0.25 613.4 0.20 30.67 0.50 30 0.67 31

2 0.21 628.7 0.20 26.41 0.83 26 0.41 26

3 0.24 727.0 0.20 34.90 0.88 34 0.90 35

4 0.38 623.3 0.20 34.90 0.65 34 0.90 35

5 0.14 543.2 0.20 15.21 0.44 15 0.21 15

6 0.25 629.4 0.20 30.21 0.18 30 0.21 31

7 0.26 620.5 0.20 32.27 0.09 32 0.27 33

8 0.29 703.4 0.20 40.80 0.30 40 0.80 41

9 0.21 619.8 0.20 26.03 0.35 26 0.03 26

Table 14: Example iterations for estimating Primary Loss Event Frequency from Probability
of Action, Contact Frequency, and Vulnerability.

23

Algorithm 8 Primary Loss Event Frequency - CF/POA/VULN Mode

1: primaryLEFs = new int[iterations]
2: for i=0,...,iterations do
3: sampledPoA = SamplePERT(poa.min, poa.mode, poa.max, poa.confidence)
4: sampledCF = SamplePERT(cf.min, cf.mode, cf.max, cf.confidence)
5: sampledPLEF = sampledPoA * sampledCF * Vulnerability
6: r = Random.NextDouble()
7: iterationPLEF = 0
8: if sampledPLEF < 1 then
9: if r < sampledPLEF then

10: iterationPLEF = 1
11: end if
12: else
13: major = floor(sampledPLEF)
14: minor = sampledPLEF - major
15: if r < minor then
16: iterationPLEF = major + 1
17: else
18: iterationPLEF = major
19: end if
20: end if
21: primaryLEFs[i] = iterationPLEF
22: end for
23: return primaryLEFs

24

3.7 Secondary Loss Event Frequency

Secondary Loss Event Frequency determines how often secondary losses are experienced

when there has been a threat event. This is calculated directly from user provided inputs

for this node. Unlike Primary Loss Events, Secondary Loss Events do not always happen

when there is a successful attack against an asset. Every loss event will be a Primary Loss

Event, and a subset of those events will also include secondary loss events. Due to this

dependence on the PLEF, Algorithm 9 requires the output from that step. Algorithm 9

describes the steps involved in estimating Secondary Loss Event Frequency and Table 15

provides sample inputs.

The last row of Table 16 is the number of secondary loss events per iteration. It should

be clear that the secondary loss event frequency will always be equal to or less than the

PLEF. This resultant array of values is stored for use in the next step.

Algorithm 9 Secondary Loss Event Frequency

1: secondaryLEFs = new int[iterations]
2: for i=0,...,iterations do
3: secondaryLEFs[i] = 0
4: for j=0,...,primaryLEFs[i] do
5: sampledSLEF = SamplePERT(slef.min, slef.mode, slef.max, slef.confidence)
6: r = Random.NextDouble()
7: if r < sampledSLEF then
8: secondaryLEFs[i]++
9: end if

10: end for
11: end for
12: return secondaryLEFs

Minimum Mode Maximum Confidence

Secondary Loss Event Frequency 0.12 0.21 0.30 8

Table 15: Sample inputs for calculation of Secondary Loss Event Frequency.

25

Iteration PLEF sampledSLEF r sampledSLEF r sampledSLEF r SLEF

0 3 0.21 0.50 0.29 0.59 0.25 0.59 0

1 2 0.27 0.54 0.13 0.15 - - 0

2 3 0.22 0.14 0.14 0.20 0.20 0.13 2

3 1 0.17 0.33 - - - - 0

4 3 0.22 0.19 0.17 0.52 0.16 0.42 1

5 3 0.24 0.77 0.13 0.05 0.27 0.40 1

6 1 0.19 0.30 - - - - 0

7 1 0.21 0.86 - - - - 0

8 1 0.18 0.60 - - - - 0

9 2 0.21 0.85 0.21 0.62 - - 0

Table 16: Example iterations for calculating secondary loss event frequencies.

3.8 Risk Exposure

The last step of the FAIR Monte Carlo simulation is to pull together the outputs from

previous steps to produce the overall risk exposure for the current scenario. To complete this

the output arrays from Primary Loss Event Frequency, Secondary Loss Event Frequency,

Primary Loss Magnitude, and Secondary Loss Magnitude are needed. There are no direct

user inputs for this step of the process. Algorithm 10 details the steps to calculate the Risk

Exposure for the scenario and Table 17 contains example iterations.

Algorithm 10 Risk Exposure

1: riskExposure = new double[iterations]
2: for i=0,...,iterations do
3: primaryExposure = primaryLossMagnitude[i] * primaryLossEventFrequency[i]
4: secondaryExposure = secondaryLossMagnitude[i] * secondaryLossEventFrequency[i]
5: riskExposure[i] = primaryExposure + secondaryExposure
6: end for
7: return riskExposure

26

Iteration PLEF SLEF PLM SLM Risk Exposure

0 3 0 $20,242 $4,977 $60,726

1 2 0 $20,931 $4,134 $41,862

2 3 2 $18,992 $4,897 $66,770

3 1 0 $19,887 $3,439 $19,887

4 3 1 $21,483 $ 4,509 $68,958

5 3 1 $19,378 $4,847 $61,931

6 1 0 $20,753 $4,847 $20,753

7 1 0 $21,709 $4,747 $21,709

8 1 0 $19,258 $3,954 $19,258

9 2 0 $19,277 $4,744 $38,664

Table 17: Example iterations for calculating Risk Exposure.

27

4 Parallel Algorithms

For this thesis, the generation of samples from PERT-beta distributions and the FAIR

Monte Carlo simulation were implemented for the GPU using NVIDIA’s CUDA technology.

How these were parallelized is explained throughout the following section.

4.1 Sampling from PERT-Beta Distributions

The sequential algorithm for generating random samples from a PERT-Beta distribution

relies heavily on the inverse transformation method to transform uniformly distributed

values in the range [0,1] to PERT-beta distributed values. For the parallel implementation,

rather than computing each PERT-Beta sample as its needed, all the samples for a each

step are generated all at once by many parallel threads. An array of uniform samples

is generated on the GPU using a CUDA library called cuRAND that provides a simple

method for generating uniform distributions on the GPU. The GPU function, or kernel,

that performs the inverse transform grabs a number from the uniform array, transforms

it, then places it in the same position of an output array. Three different methods were

implemented to perform this transformation.

Parallel Execution of incbi

The first of these methods executes the incbi function on the GPU for every value that

is transformed. Algorithm 11 outlines the process for transforming an array of uniformly

distributed values U to a PERT-Beta distributed array. This algorithm has the benefit that

the transformed values will be more accurate than the transformed values from Algorithms

12 and 13. The performance and accuracy tradeoffs are later presented and discussed in

the results section.

Algorithm 11 is very simple. However, in the CUDA architecture, this solution is not

optimal. The incbi function is a large and complex function with many divergent code

paths. Executing such code is not optimal in CUDA due to a phenomenon called thread

divergence. Thread divergence occurs in CUDA because not all threads execute completely

independently of one another. CUDA runs groups of 32 threads together as a single warp.

28

Algorithm 11 Parallel incbi

Let U be an array of n uniformly distributed numbers in the range [0,1].
Let transformed be an array of size n.

1: procedure ParallelIncbi(U , n, α, β)
2: for n parallel threads with threadIds i from 0 to n− 1 do
3: InverseIncompleteBeta(i, U , α, β, transformed)
4: end forreturn transformed
5: end procedure

6: procedure InverseIncompleteBeta(i, U , α, β, output)
7: output [i] = incbi(α, β,U [i])
8: end procedure

All running threads within a warp execute the same instructions at the same time. If

threads within a warp should be executing a different set of instructions, such as during an

if/else statement, those threads will execute their instructions sequentially. This means the

threads executing the first part of the path will execute while the threads in the other part

will sit idle. Once the running threads have completed the first part, the second group of

threads will execute their instructions while the first threads sit idle. As shown by Bialas

and Strzelecki thread divergence can severly impact performance, potentially increasing

runtime up to 32x when all threads in a warp are executing different instructions [18].

There are methods that can be employed to reduce the amount of thread divergence

within warps. These methods range from compile-time analysis and optimization of warp

task assignment [19] to consideration of tradeoffs of error tolerance for less control diver-

gence and improved parallelism [20]. It is the latter method that this thesis focuses on for

improving the inverse transformation of large arrays of uniformly distributed numbers to

beta distributions.

Lookup Table based Inverse Transform Sampling

A method for inverse transformation is described by Naglic̆ et al. where a table was used

to store precalculated values for difficult to compute light propagation phase functions. In

simulations the table was then used to lookup the precomputed values and improve the

performance of the simulation [21]. This thesis presents a similar method for the transfor-

mation of uniform samples by an inverse incomplete beta lookup table. This transformation

29

is composed of two steps: an initial precompute step and a transformation step.

In the first step of the lookup table based inverse transform, a lookup table for the

inverse of the incomplete beta function is produced. This makes use of the cumulative

density function (CDF) of the beta distribution, which is the regularized incomplete beta

function (9) [12]. The values of the lookup table will be computed from Ix(α, β) = y where,

for each index in the lookup table, the index divided by the table size is used as the value

of x and the result y is stored at the index. Algorithm 12 outlines this process for a parallel

environment where each thread calculates a different index of the lookup table. Calculating

Ix(a, b) in its integral form is a difficult computational task that can be made simpler by

using the continued fraction form shown in Equation (11) [16]. The continued fraction

is computed out to d300 or until the result has matched or exceeded the precision of the

machine.

Ix(a, b) =
xa(1− x)b

aB(a, b)

(
1

1+

d1
1+

d2
1+

d3
1+

...

)
(11)

where

d2m =
m(b−m)x

(a+ 2m− 1(a+ 2m)
(12)

d2m+1 =
(a+m)(a+ b+m)x

(a+ 2m)(a+ 2m+ 1)
(13)

In the second step of the lookup table based inverse transform sampling, a large array

of uniform variates (U) is transformed in parallel. Each thread is tasked with transforming

a single value y from U . This is done by searching the lookup table for an index m such

that the value at m is less than y and the value at m+ 1 is greater than y. The algorithm

then interpolates the values at the indices m and m + 1 to produce an approximation

to the inverse incomplete beta function for y. Algorithm 13 describes this process. The

procedure ParallelApproximatePERTBetaTransform is the entry point for Algorithm 13.

Two methods of searching the lookup table were implemented for this thesis: a linear scan

and a binary search.

30

Algorithm 12 Initialize Inverse Lookup

Let lookup be an array of size n+ 1.
1: procedure ParallelInitializeInverseLookup(n, α, β, lookup)
2: for n parallel threads with threadIds i from 0 to n do
3: InitializeInverseBetaLookup(i, n, α, β, lookup)
4: end for
5: end procedure

6: procedure InitializeInverseBetaLookup(threadIdx, n, α, β, lookup)
7: x = threadIdx/n . Determine the value of x to compute Ix(α, β)
8: y = Ix(α, β) . Computed using the continued fraction shown in equation (11)
9: lookup[threadIdx] = y

10: end procedure

Algorithm 13 Parallel Inverse Beta Transform

Transforms an array U of n uniformly distributed numbers in the range [0,1] into ap-
proximately beta distributed numbers.

1: procedure ParallelApproximatePERTBetaTransform(U , min, max, lookup,
lookuplength, n)

2: Let transformed be an array of size n.
3: for n parallel threads with threadIds i from 0 to n− 1 do
4: InversePERTBeta(i, U , transformed, lookup, lookuplength, min, max)
5: end for
6: return transformed
7: end procedure

8: procedure InversePERTBeta(threadIdx, U , output, lookup, lookuplength, min,
max)

9: y = U [threadIdx]
10: x0 = 0.0
11: x1 = 0.0
12: l = 0
13: r = lookuplength− 1
14: m
15: Perform a search for the index m in lookup such that lookup[m] ≤ y and y ≤

lookup[m+ 1]
16: x = Interpolate(lookup [m+ 1] , x0, lookup [m] , x1, y)
17: output [threadIdx] = min+ (max−min) ∗ x . Scales the values to the PERT min

and max parameters
18: end procedure

19: procedure Interpolate(x0, y0, x1, y1, x)

20: y = y0 + (y1 − y0)
(
x−x0
x1−x0

)
21: end procedure

31

4.2 Parallelizing the FAIR Simulation

The previously described inverse table lookup transform method was applied to a par-

allelized version of the FAIR Simulation described in Section 3. This necessitated the

parallelization of the FAIR simulation algorithms. The majority of the algorithms have

an outer for loop that can be easily parallelized. This make parallelization fairly straight

forward since each thread on the GPU can be assigned to do the work for a single iteration

of the loop. This is possible because each iteration is independent of all other iterations.

Each algorithm of the FAIR simulation was implemented to take in arrays with an

element for each iteration. Each input array is filled with samples from a PERT-Beta

distribution described by the user inputs, or outputs from another part of the simulation.

Each thread is assigned a unique integer id. This id is used to index the input arrays

and access the values for the simulation. The thread calculates the result for the current

algorithm being executed, and uses the id to store that result in the output array. Figure

7 illustrates the parallelization of the FAIR simulation algorithms.

Figure 7: Parallel model for each FAIR simulation algorithm. Each thread performs the
work that would have been in the for loop of the sequential algorithms.

32

This pattern works for the majority of the FAIR simulation algorithms with the exception

of the Vulnerability and SLEF algorithms. These require some work before or after the

parallelized portions in order to work.

For the Vulnerability algorithms, an average needs to be calculated from the resulting

Vulnerability array. For simplicity, the average of the Vulnerability array is calculated on

the CPU. It is possible to accelerate the average calculation using the GPU to perform the

summation work in calculating the average of the array. The summation can be implemented

as an inclusive scan as described by Harris [22]. However, that will be left for future work.

In the sequential algorithm for SLEF, samples from the SLEF distribution are taken for

each primary loss event in each iteration. The algorithm therefore requires an array of SLEF

samples equal in length to the sum of all primary loss events. Once again, for simplicity,

the summation of the primary loss events is performed on the CPU, but could be moved

to the GPU. This was computed as a prefix scan with each prefix sum stored in an array

for use by the parallel Secondary Loss Event Algorithm. This array is the same length as

the primary loss event array, and each value is an offset into the SLEF samples array where

each thread can begin using sampled SLEF values. This method prevents different threads

from accessing the same index and double sampling some values, preserving the PERT-Beta

distribution. Algorithm 14 is executed in each thread in the parallel version of Secondary

Loss Event Frequency.

Algorithm 14 Secondary Loss Event Frequency Kernel

1: procedure SLEFKernel(threadIdx, outputs, plef, slef, uniform, slefOffsets)
2: secondaryLossEvents = 0
3: primaryLossEvents = plef[threadIdx]
4: for i=0 ... primaryLossEvents do
5: sampledSLEF = slef[slefOffsets[threadIdx] + i]
6: r = uniform[slefOffsets[threadIdx] + i]
7: if r < sampledSLEF then
8: secondaryLossEvents++
9: end if

10: end for
11: outputs[threadIdx] = secondaryLossEvents
12: end procedure

33

5 Results

5.1 Inverse Regularized Incomplete Beta Comparison

In order to verify the lookup table based approximations for the inverse incomplete beta

function can be used to perform inverse transform sampling, it needs to be shown that the

precomputed values in the tables approximate the inverse incomplete beta function. This

was done by calculating the inverse incomplete beta function for 10,000 numbers evenly

spaced numbers between 0 and 1. Figure 8 shows scatter plots of the results of this process.

The upper plot shows the values produced by the lookup table with a size of 8. The points

in this plot show a function that is clearly not smooth, and is nowhere near as smooth as

the one produced by the incbi function. As the size of the lookup table increases, the plot

appears to become more smooth. The middle plot of Figure 8 is produced by a lookup table

with 4,096 entries. It appears just as smooth as the plot produced by incbi and appears to

match it very well. The difference in time to initialize lookup tables of different sizes was

negligible for all tested table sizes.

In Figure 9, the distribution of errors between the interpolated lookup table values

and the values produced by incbi are shown for various lookup table sizes. Errors were

calculated by generating 100,000 random numbers between [0,1] and computing the inverse

using the lookup table and incbi. The absolute difference between the two values was

calculated and plotted on the histogram. It can be clearly seen that the smaller lookup

tables had many more larger errors. This was to be expected after looking at the inverse

CDFs produced by the smaller lookup table in Figure 8. At the table sizes of 2048 and 4096,

the distributions of errors is in a very narrow range around 0. This suggests that increasing

the table size further would be of diminishing benefit. Indeed, looking at the minimum,

mean, and maximum recorded errors for the lookup table sizes in Table 18, the average

error is smaller than 10−7 at those lookup table sizes. Within the FAIR model an error

of 10−7 would correspond with a 1 in 10 million year loss event or would be the difference

between a loss of $10,000,000 or $10,000,001. There is no requirement in the application

for such accuracy, so a lookup table of 4,096 elements provides more than enough accuracy.

34

Figure 8: Plots of the interpolated values from the inverse lookup table for a beta distribu-
tion with α = 5 and β = 8. The top two plots are generated from the inverse tables with
sizes of 8 and 4096. The bottom plot shows the inverse values computed by incbi.

35

Figure 9: Distributions of absolute errors in the lookup based methods compared to the
incbi function for various lookup table sizes.

36

Lookup Table Size Minimum Error Average Error Maximum Error

4 5.78× 10−9 2.65× 10−2 1.49× 10−1

8 1.29× 10−9 6.95× 10−3 7.56× 10−2

16 8.96× 10−11 1.77× 10−3 2.83× 10−2

32 6.72× 10−12 4.44× 10−4 1.45× 10−2

64 4.53× 10−13 1.11× 10−4 7.24× 10−3

128 6.74× 10−14 2.78× 10−5 1.74× 10−3

256 1.82× 10−14 6.95× 10−6 5.53× 10−4

512 4.55× 10−15 1.74× 10−6 1.29× 10−4

1024 1.11× 10−16 4.34× 10−7 2.87× 10−5

2048 6.66× 10−16 1.09× 10−7 9.35× 10−6

4096 1.11× 10−16 2.71× 10−8 2.11× 10−6

8192 0.00 6.78× 10−9 5.31× 10−7

16384 0.00 1.70× 10−9 2.00× 10−7

32768 0.00 4.24× 10−10 4.33× 10−8

65536 0.00 1.06× 10−10 9.06× 10−9

Table 18: The error in calculating the inverse of the regularized incomplete beta function
using the method in algorithm 13 compared to the cephes implementation of incbi. Fore-
ach table size, 1,000,000 uniformly random numbers were transformed and the minimum,
average, and maximum errors were recorded.

Figure 10: Graph generated from Table 18 of the absolute error of the lookup table based
methods for calculating the inverse incomplete beta for various sizes of lookup tables.

37

5.2 Performance of the Lookup Table Based Inverse Transforms

One of the most common methods of comparing sequential and parallel implementation

performance is by using a metric called speed-up. Speed-up is defined as the ratio of the

runtime of the sequential implementation to the runtime of the parallel implementation

with p processors as shown in Equation (14).

T (n, 1)

T (n, p)
(14)

Table 19 and Figure 11 show the speed-ups for the parallel implementations of inverse

transforms described in Algorithms 11 and 13. The Exact Calc. method, which calculates

incbi in each thread acheives a maximum speedup of 31x over the sequential implementa-

tion. Both lookup table based implementations improve upon this significantly. The lookup

method using a linear search of the lookup table acheives a maximum speedup of 169x and

the lookup with a binary search acheives an even greater speedup of 390x. Interestingly,

looking at Figure 11, the Exact Calc. implementation doesn’t seem to be increasing its

speed-up after about 100,000 samples, while binary search based Lookup is still increasing

its speed-up at 10,000,000 samples.

Generated Samples Exact Calc. Lookup (Linear search) Lookup (Binary Search)

1 0.0001 0.0046 0.0084

10 0.0406 0.0293 0.0394

100 0.378 0.258 0.373

1,000 2.09 2.66 3.71

10,000 12.2 18.0 18.6

100,000 25.2 86.7 134

1,000,000 29.0 169 327

10,000,000 31.1 159 390

Table 19: The speed-up of three methods for calculating inverse transforms in CUDA for
various sample sizes. The Exact Calc. column is the speed-up of Algorithm 11 over the
sequential implementation. The two Lookup columns present speed-ups of Algorithm 13
with either a linear or binary search compared to the sequential implementation.

38

Figure 11: Graph of the values from Table 19.

Another factor in the performance of the Lookup table based inverse transforms is the

size of the lookup table. Clearly, a large lookup table will take longer, on average to search

for a particular value. Linear searches have a runtime of O(n) while binary searched have an

average runtime of O(logn). Therefore it is expected that the binary search based Lookup

transform should have better performance than the linear search lookup transform for large

lookup table sizes. Indeed, in experimentation, this expectation appears to hold true. Table

20 shows the speed-ups for the two lookup transforms for increasing lookup table sizes. Each

test transformed 1,000,000 samples. For lookup tables larger than 64 elements, the binary

search is faster than the linear search. Infact, the binary search based lookup transform

only lost about 15% of its performance while the table size increased a factor of 214.

39

Lookup Table Size Lookup (Linear search) Lookup (Binary Search)

4 342 328

8 341 338

16 343 321

32 325 319

64 310 321

128 299 313

256 259 314

512 203 302

1024 143 300

2048 88.3 301

4096 51.2 311

8192 27.7 302

16384 15.1 305

32768 7.95 297

65536 4.10 278

Table 20: Speed-up of lookup table based inverse transforms with increasing lookup table
sizes.

Figure 12: The speed-ups from Table 20 plotted against table size.

5.3 Quality of Generated Beta Distributions

The lookup table based inverse transform methods have good performance compared

to the sequential based implementation, and the approximations to the inverse incomplete

40

beta function appear to be accurate for sufficiently large lookup tables. This implies that

the methods will produce accurate beta distributions. Figure 13 shows distributions that

result from transforming uniform distributions of 1,000,000 samples with various lookup

table sizes.

Figure 13: Example beta distributions produced by the Lookup Table Inverse Transfor-
mation method for various sizes of the lookup table. The lowest graph is a distribution
produced by the incbi function. Distributions were produced with 1,000,000 samples.

An interesting artifact that arises from small lookup table size is the stairstep pattern

41

evident in the histograms of the 16 and 32 element lookup tables. As the size of the table

increases, these steps become smaller until they become lost in the random noise. The

steps occur because of the linear interpolation when performing the transformation. The

top plot in Figure 8 shows these linear segments. A linear inverse CDF simply causes a

linear transformation of a uniform distribution. This is why each step is flat in the smaller

lookup table sizes. At a lookup table size of 256, the steps are no longer noticable.

While a visual comparison of the histograms of the generated distributions suggests that

the distributions generated using larger lookup tables are very similar to the distributions

produced by the sequential methods, statistical tests are needed to verify this. There

are many statistical tests that can compare sampled distributions, but the most fitting is

the Kolmogorov-Smirnov (K-S) test. This test finds the maximum distance between the

cumulative density function of a reference distribution and the cumulative density function

of the experimental data [23]. This test assumes that the null hypothesis is the experimental

samples are drawn from the reference distribution. When a confidence level of α is used the

null hypothesis can be rejected when the p-value of the test is below 1−α. For example, if

the p-value for the test was 0.15 and α = 0.95, then the null hypothesis could not be rejected

and it is possible for the samples to be from the reference distribution. If the p-value was

0.01, the null hypothesis could be rejected and it could be said the samples were not pulled

from the reference distribution.

Table 21 contains the test statistic and p-value for beta distributions generated from

the inverse lookup table method. These statistics were calculated using the python scipy

library’s stats.kstest function for the K-S test calculations, and stats.beta for the

reference CDF [24]. Assuming a confidence value of 95%, and according to the p-values in

Table 21 the null hypothesis could be rejected for the distributions generated from lookup

tables with 64 or less elements. This means the diference between the CDF of the generated

distribution and the reference CDF were statistically significant and that the inverse lookup

table method would need more than 128 elements to generate beta distributions that are

close to the reference beta CDF. This reaffirms the earlier conclusion that larger lookup

tables produce distributions that more closely match the reference implementation. In

particular, lookup tables must be larger than 128 elements.

42

Lookup Table Size K-S Test Statistic P-Value

16 0.0137 6.69× 10−163

32 0.0042 1.22× 10−15

64 0.0014 0.047

128 0.0008 0.568

256 0.0007 0.652

512 0.0008 0.570

1024 0.0010 0.223

2048 0.0008 0.492

4096 0.0009 0.455

Table 21: Kolmogorov-Smirnov test statistics for beta distributions generated by the inverse
lookup table method.

5.4 Comparison of the GPU Accelerated FAIR Monte Carlo Simulation

to the Sequential Simulation

In Section 4, a set of algorithms was described that parallelize the sequential FAIR Monte

Carlo simulation algorithms described in Section 3. These algorithms were implemented

for the GPU using NVIDIA’s CUDA technology. Since these simulations rely heavily on

the generation of beta distributions and it was shown that the inverse table lookup with

binary search resulted in speedups up to 390x over the sequential versions, large perfor-

mance improvements can be expected. Because of its excellent performance and acceptable

accuracy, the lookup table with binary search was used to generate beta distributions in

the parallel FAIR Monte Carlo simulation produced for this research. A lookup table with

4,096 elements was used in this FAIR simulation of the high accuracy shown with tables

of that size. The following section analyzes the performance and accuracy of the parallel

implementation for three distinct FAIR Scenarios.

All three scenarios have unique inputs which are provided in Appendix B in Tables

29, 30, and 31. These inputs were selected in order to test the different sets of FAIR

factors that can be used to describe a FAIR scenario. Scenario 1 (Table 29) uses direct

mode Vulnerability calculations and estimates Loss Event Frequency from Threat Event

Frequency and Vulnerability. Scenario 2 (Table 30) derives Threat Event Frequency from

Probability of action and Contact Frequency. Finally, scenario 3 (Table 31) uses direct

mode for Primary Loss Event Frequency.

43

Execution Time Comparison

The first metric of the simulation that is examined is the speedup of the GPU based im-

plementation over the current sequential implementation. Several different iteration counts

were used to get an idea of how well the GPU implementation scales compared to the CPU

based implementation. Tables 22, 23, and 24 contain the average execution times for the

CPU and GPU based implementations at each iteration count. The average execution time

for each method and each iteration count was computed from five separate trials. The three

tables also contain the speedup of the GPU compared to the CPU for each iteration count.

Iterations Average CPU Time (ms) Average GPU Time (ms) GPU Speed-up

5,000 271 497 0.55

25,000 1,081 500 2.16

50,000 2,075 513 4.05

250,000 9,463 535 17.7

500,000 20,770 564 36.8

2,500,000 85,757 730 117

5,000,000 184,537 969 190

Table 22: Average Parallel and Sequential execution times for different numbers of iterations
for Scenario 1. Times are reported as the average of 5 test runs.

Iterations Average CPU Time (ms) Average GPU Time (ms) GPU Speed-up

5,000 434 491 0.89

25,000 1,403 526 2.67

50,000 2,540 517 4.92

250,000 11,344 550 20.6

500,000 22,560 580 38.9

2,500,000 110,358 844 131

5,000,000 239,269 1,175 204

Table 23: Average Parallel and Sequential execution times for different numbers of iterations
for Scenario 2. Times are reported as the average of 5 test runs.

44

Iterations Average CPU Time (ms) Average GPU Time (ms) GPU Speed-up

5,000 282 476 0.59

25,000 1,015 494 2.05

50,000 1,997 492 4.06

250,000 8,608 506 17.0

500,000 17,063 533 32.0

2,500,000 82,713 685 121

5,000,000 168,146 903 186

Table 24: Average Parallel and Sequential execution times for different numbers of iterations
for Scenario 3. Times are reported as the average of 5 test runs.

For all three scenarios, the GPU based solution was actually slower than the sequential

implementation at 5,000 iterations. However, the GPU was at least 2x faster at 25,000

iterations. A maximum of 5 million iterations was performed and the largest speedup was

in scenario 2 with 204x speedup. The minimum speedup for the GPU implemenation at 5

million iterations was 186x. Interestingly, the GPU speedup increases with more iterations.

In Figure 14, it can be seen that the trajectory of the GPU implementation is still upward at

5 million iterations, suggesting the possibility for even greater speedups at higher iteration

counts. Simulations with more than 5 million iterations were not performed because the

sequential implementation would take too long to finish and the existing data clearly shows

the performance characteristics of the GPU implementation.

45

Figure 14: Speed-ups of the GPU implemented FAIR simulation for the three sample sce-
narios at various iteration counts.

Accuracy of the GPU Based Simulation

In order to validate the GPU based FAIR Monte Carlo simulation, the results need to

be examined to ensure they are similar to the current sequential implementation’s results.

In the analysis of the GPU transformed beta distributions a One-Sample Kolmogorov-

Smirnov test was used to compare the generated distributions to a reference CDF. There is

no CDF for the FAIR simulation which means a One-Sample K-S test would not be feasible.

However, there is a related Two-Sample K-S test which can be used to compare two sets of

samples and determine if they could have been drawn from the same distribution. Using

the Two-Sample K-S test, the GPU and CPU distributions can be tested for their difference

and a p-value can be obtained.

For each of the three test scenarios, and at 5,000, 50,000, 500,000, and 5,000,000 itera-

tions GPU and CPU generated distributions were fed into the Two-Sample K-S test. The

statistic and the p-value for each pair of distributions for each scenario are shown in Tables

25, 26, and 27. Just as in the One-Sample K-S test, the null hypothesis is that the two

samples were drawn from the same distribution. So, when the P-Value is below 1 − α the

46

null hypothesis can be rejected. A α = 0.95 confidence is used in this test. In all of the tests

in the Tables 25, 26, and 27 the P-Value was greater than the 0.05 cutoff value. This means

the null hypothesis cannot be rejected and that the sampled GPU and CPU distributions

may have been drawn from the same distribution.

Iterations K-S Statistic P-Value

5,000 0.0072 0.999

50,000 0.0023 0.999

500,000 0.0025 0.087

5,000,000 0.0003 0.934

Table 25: Two sample K-S test statistics for Scenario 1 at various iteration counts.

Iterations K-S Statistic P-Value

5,000 0.0144 0.675

50,000 0.0070 0.177

500,000 0.0012 0.888

5,000,000 0.0004 0.864

Table 26: Two sample K-S test statistics for Scenario 2 at various iteration counts.

Iterations K-S Statistic P-Value

5,000 0.0170 0.462

50,000 0.0058 0.364

500,000 0.0024 0.112

5,000,000 0.0008 0.067

Table 27: Two sample K-S test statistics for Scenario 3 at various iteration counts.

In addition to examining the K-S test statistics, simpler statistics, such as the minimum,

Q1, mean, median, Q3, maximum, and standard deviation can be compared to further show

the similarity, or dissimilarity, of the CPU and GPU generated Risk Exposure distributions.

Table 28 summarizes these statistics and for simplicity, values for these statistics are shown

only for each Scenario with 5,000,000 iterations. With the exception of the minimum and

maximum values, the GPU and CPU values are well within 1% of each other. In fact the

differences between the GPU and CPU statistics is small enough that rounding for reporting

the results to users would show the same value. The larger differences in the minimum and

maximum values could be explained by the fact that those values have very low probabilities

of occurring, so the difference may be just as significant between two consecutive runs of

47

the GPU or CPU implementations. Unlike the other statistics values that are influenced by

the millions of other samples, the minimum and maximum are single point values that are

not indicitive of any collective property of the distribution, other than the range of values.

Scenario 1 Scenario 2 Scenario 3
GPU CPU GPU CPU GPU CPU

Minimum $0.00 $0.00 $616,584.00 $586,577.12 $70.81 $69.43

Q1 $0.00 $0.00 $2,817,497.00 $2,816,724.25 $169.07 $168.98

Mean $371.25 $370.79 $3,789,953.84 $3,790,276.79 $209.30 $209.31

Median $0.00 $0.00 $3,625,980.00 $3,626,523.65 $184.42 $184.47

Q3 $1,066.33 $1,065.83 $4,592,890.00 $4,593,358.19 $272.70 $272.74

Maximum $2,980.27 $2,933.50 $11,850,000.00 $11,714,287.39 $421.74 $425.58

Std. Dev. $657.87 $657.50 $1,300,563.31 $1,301,282.43 $89.14 $89.19

Table 28: Basic statistics for the CPU and GPU Risk Exposure distributions generated
with 5,000,000 iterations of the FAIR Monte Carlo simulation.

48

Figure 15: Risk Exposure histogram for Scenario 1. The FAIR simulation was run at 5,000,
50,000, 500,000, and 5,000,000 iterations. Histograms for both the GPU accelerated method
and the CPU based sequential method included.

49

Figure 16: Risk Exposure histogram for Scenario 2. The FAIR simulation was run at 5,000,
50,000, 500,000, and 5,000,000 iterations. Histograms for both the GPU accelerated method
and the CPU based sequential method included.

50

Figure 17: Risk Exposure histogram for Scenario 3. The FAIR simulation was run at 5,000,
50,000, 500,000, and 5,000,000 iterations. Histograms for both the GPU accelerated method
and the CPU based sequential method included.

51

6 Conclusions

FAIR simulation is important for quantifying cyber security risk and current Monte

Carlo implementations are not fast enough to use a large number of iterations. GPUs have

been extensively used to improve the performance of Monte Carlo simulations in a variety of

applications and this thesis demonstrates the benefits of implementing the FAIR simulation

on the GPU. Due to the simulation’s heavy reliance on generating beta distributions, three

methods for generating beta distributions via inverse transform sampling were described and

compared for their accuracy and speed-up over the comparable sequential implementation.

These methods were: direct calculation of the inverse incomplete beta function, an inverse

lookup table with a linear search, and an inverse lookup table with a binary search.

The simplest method of generating beta distributions, directly calculating the inverse

incomplete beta on the GPU, only showed a maximum speed-up over the sequential imple-

mentation of 31x, while the linear and binary lookup table based implementations demon-

strated speed-ups of 159x and 390x while generating distributions of the same size. While

the lookup table based methods are very fast compared to direct calculation of the inverse

incomplete beta function, an immediate drawback to either lookup table based method is

that they are inherently inaccurate since they interpolate between exactly calculated values

of the inverse incomplete beta function.

Several tests of the accuracy of the lookup table based implementations were performed.

It was shown that for lookup tables smaller than 128 elements, the generated distributions

were not similar enough to the exactly calculated values according to K-S tests. It was

also shown that as the table size increased, the errors became smaller. Eventually, at a

table size above 2,048 elements the error in the calculated values became insignificant in

the FAIR simulations. At that table size, a maximum error on the order of 10−6 was found.

In a FAIR simulation, this can be thought of as missing a 1 in a million event, or the

difference between $1,000,000 and $1,000,001. In applications that report the outcome of

FAIR simulations to users, the rounding used to display the simulation results makes this

level of error negligible.

After determining that the lookup table based implementations for inverse transform

52

sampling were much faster than directly calculating the inverse, and had errors within an

acceptable level, they were put to use in a real world application - a FAIR simulation. Three

different FAIR scenarios were used to test a FAIR Monte Carlo simulation implemented for

the GPU using NVIDIA’s CUDA technology. It was shown that utilizing the lookup table

with binary search to perform inverse transform sampling, along with parallelizing each step

of the FAIR simulation resulted in speed-ups between 186x and 204x when performing 5

million iterations. It was also shown that the risk exposure distributions generated by the

parallel implementation were very similar to the distributions produced by the sequential

implementation in use today with minimal difference in key statistics.

The fact that the parallel implementation of the FAIR simulation is not only much faster

than the sequential version, but also produces similar results is impressive. The sequen-

tial implementation in use today is limited to 50,000 iterations because of the execution

time. Most users utilize a version that only computes 5,000 iterations because it provides

relatively quick feedback to the user. Parallelizing the FAIR simulation on the GPU can

allow the number of iterations to be increased significantly, without increasing the runtime

significantly. For all three FAIR scenarios tested, the execution time of the parallel im-

plementation computing 5 million iterations was always faster than computing only 25,000

iterations in the sequential implementation. As with most random sampling techniques,

Monte Carlo simulations produce clearer, more consistent results when using higher itera-

tions, so being able to complete a simulation in less time with many times more iterations

is a huge improvement.

7 Future Work

Having demonstrated the viability of inverse transform sampling via a lookup table,

further work could be done to improve the performance of looking up values in the lookup

tables. Investigation into small, lightweight data structures or an advanced indexing schemes

that remove the need for conditional statements could decrease the amount of thread diver-

gence and improve performance. Additionally, the implementations in this thesis did not

take advantage of CUDA’s more advanced memory models. Shared memory in CUDA is

53

significantly faster than the global memory that was used in the parallel implementations.

The lookup tables are prime candidates for being placed in shared memory since all threads

need to access them.

It is also worth noting, that while the lookup table based inverse transform sampling was

used to produce beta distributions, it could also be applied to generating other distribu-

tions. Parallelized Monte Carlo simulations that use computationally expensive functions

to produce distributions can derive great benefits provided the simulations can tolerate the

errors inherent in the method. The method can also be modified to use experimental data

to generate the lookup table, rather than a mathematical expression.

While the runtime FAIR simulation was dramatically improved by its parallelization,

many of the reporting and analysis tools consuming the results of the simulation are still

implemented sequentially. As was shown, the number of iterations the parallel FAIR sim-

ulation was able to complete in about a second was 100 times greater than the maximum

number of iterations the current sequential implementations regularly support. The tooling

consuming the results of the parallelized FAIR simulation would need to parallelized to a

similar degree to support the higher iterations that can be acheived.

54

References

[1] “What is fair?.” https://www.fairinstitute.org/what-is-fair. Accessed: May

17, 2018.

[2] “Risklens.” https://www.risklens.com. Accessed: May 17, 2018.

[3] “Fair-u application.” https://app.fairu.net. Accessed: May 17, 2018.

[4] “Cuda.” https://developer.nvidia.com/about-cuda. Accessed: May 17, 2018.

[5] “Opencl.” https://www.khronos.org/opencl. Accessed: May 17, 2018.

[6] S. Ayubian, S. Alawneh, M. Richard, and J. Thijsen, “Implementation and perfor-

mance of a gpu-based monte-carlo framework for determining design ice load,” 2017

International Conference on High Performance Computing & Simulation, pp. 109–116,

2017.

[7] J. Spiechowicz, M. Kostur, and L. Machura, “Gpu accelerated monte carlo simulation

of brownian motor dynamics with cuda,” Computer Physics Communications, vol. 191,

pp. 140–149, 2015.

[8] S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos, “Accelerating financial appli-

cation on the gpu,” Proceedings of the 6th Workshop on General Purpose Processor

Using Graphics Processing Units, pp. 127–136, 2013.

[9] L. Howes and D. Thomas, “Efficient random number generation and application using

cuda,” in GPU Gems 3 (H. Nguyen, ed.), ch. 37, pp. 805–830, Upper Saddle River,

NJ: Addison-Wesley, 2008.

[10] J. Freund and J. Jones, Measuring and Managing Information Risk. Oxford, UK:

Elsevier, 2015.

[11] S. D. Moitra, “Skewness and the beta distribution,” The Journal of the Operational

Research Society, vol. 41, no. 10, pp. 953–961, 1990.

55

[12] National Institute of Science and Technology, “1.3.6.6.17 beta distribution.”

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm. Ac-

cessed: March 28, 2018.

[13] D. Vose, Risk Analysis - A Quantitative Guide. Hoboken, NJ, USA: John Wiley &

Sons Inc., 2008.

[14] D. Malcolm, J. Roseboom, C. Clark, and W. Fazar, “Application of a technique for

reserach and development program evaluation,” Operations Research, vol. 7, no. 5,

pp. 646–669, 1959.

[15] L. Devroye, Non-Uniform Random Variate Generation. New York, New York, USA:

Springer-Verlag, 1986.

[16] National Institute of Science and Technology, “Incomplete gamma and related func-

tions.” https://dlmf.nist.gov/8.17. Accessed: March 28, 2018.

[17] S. L. Moshier, “cephes.” http://www.netlib.org/cephes/. Accessed: March 28,

2018.

[18] P. Bialas and A. Strzelecki, “Benchmarking the cost of thread divergence in CUDA,”

ArXiv e-prints, Apr. 2015.

[19] F. Khoransani, R. Gupta, and L. N. Bhuyan, “Efficient warp execution in presence of

divergence with collaborative context collection,” MICRO-48 Proceedings of the 48th

International Symposium on Microarchitecture, pp. 204–215, 2015.

[20] J. Sartori and R. Kumar, “Branch and data herding: Reducing control and memory

divergence for error-tolerant gpu applications,” IEEE Transactions on Multimedia,

vol. 15, pp. 279–290, February 2013.

[21] P. Naglic̆, F. Pernus̆, B. Likar, and M. Bürmen, “Lookup table-based sampling of

the phase function for monte carlo simulations of light propagation in turbid media,”

Biomedical Optics Express, vol. 8, pp. 1895–1910, March 2017.

56

[22] M. Harris, S. Sengupta, and J. D. Owens, “Parallel refix sum (scan) with cuda,” in

GPU Gems 3 (H. Nguyen, ed.), ch. 39, pp. 851–876, Upper Saddle River, NJ: Addison-

Wesley, 2008.

[23] National Institute of Science and Technology, “1.3.5.16 kolmogorov-smirnov goodness-

of-fit test.” https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.

htm. Accessed: May 14, 2018.

[24] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for

Python,” 2001–. Accessed: May 14, 2018.

57

Appendices

A GPU Based FAIR Simulation Algorithms

All of the algorithms involved in the FAIR Monte Carlo model (described in sections

4.3 - 4.8) have been implemented as CUDA kernels. Note that the primary and secondary

loss algorithms are identical and are condensed into a single kernel, Algorithm 17. Whether

primary or secondar loss magnitudes are calculated depends on whether the primary or

secondary forms of loss are provided as inputs to the kernel.

Algorithm 15 Direct Mode Vulnerability Kernel

Input: threadIdx, outputs, vulnerability, uniform

1: vuln ← vulnerability[threadIdx]
2: r ← uniform[threadIdx]
3: if r < vuln then
4: outputs[threadIdx] ← 1
5: else
6: outputs[threadIdx] ← 0
7: end if

Algorithm 16 Derived Mode Vulnerability Kernel

Input: threadIdx, outputs, resistanceStrength, threatCapability

1: res ← resistanceStrength[threadIdx]
2: tCap ← threatCapability[threadIdx]
3: if tCap < res then
4: outputs[threadIdx] ← 1
5: else
6: outputs[threadIdx] ← 0
7: end if

Algorithm 17 Loss Magnitude Kernel

Input: threadIdx, outputs, productivity, response, replacement, competitiveAdvan-
tage, finesJudgements, reputation

1: outputs[threadIdx] ←
productivity[threadIdx]
+ response[threadIdx]
+ replacement[threadIdx]
+ competitiveAdvantage[threadIdx]
+ finesJudgements[threadIdx]
+ reputation[threadIdx]

58

Algorithm 18 Direct Primary Loss Event Frequency Kernel

Input: threadIdx, outputs, primaryLossEventFrequency, uniform

1: plef ← primaryLossEventFrequency[threadIdx]
2: r ← uniform[threadIdx]
3: outputs[threadIdx] ← 0
4: if plef < 1.0 then
5: if r < plef then
6: outputs[threadIdx] ← 1
7: end if
8: else
9: major ← floor(plef)

10: minor ← plef - major
11: if r < minor then
12: outputs[threadIdx] ← major + 1
13: else
14: outputs[threadIdx] ← major
15: end if
16: end if

Algorithm 19 Primary Loss Event Frequency TEF/VULN Kernel

Input: threadIdx, outputs, threatEventFrequency, uniform, vulnerability

1: tef ← threatEventFrequency[threadIdx]
2: plef ← tef * vulnerability
3: r ← uniform[threadIdx]
4: outputs[threadIdx] ← 0
5: if plef < 1.0 then
6: if r < plef then
7: outputs[threadIdx] ← 1
8: end if
9: else

10: major ← floor(plef)
11: minor ← plef - major
12: if r < minor then
13: outputs[threadIdx] ← major + 1
14: else
15: outputs[threadIdx] ← major
16: end if
17: end if

59

Algorithm 20 Primary Loss Event Frequency CF/POA/VULN Kernel

Input: threadIdx, outputs, contactFrequency, probabilityOfAction, uniform, vulnera-
bility

1: cf ← contactFrequency[threadIdx]
2: poa ← probabilityOfAction[threadIdx]
3: plef ← cf * poa * vulnerability
4: r ← uniform[threadIdx]
5: outputs[threadIdx] ← 0
6: if plef < 1.0 then
7: if r < plef then
8: outputs[threadIdx] ← 1
9: end if

10: else
11: major ← floor(plef)
12: minor ← plef - major
13: if r < minor then
14: outputs[threadIdx] ← major + 1
15: else
16: outputs[threadIdx] ← major
17: end if
18: end if

60

Algorithm 21 Secondary Loss Event Kernel

MakeSLEFSamples is executed on the CPU prior to running the SLEF kernel

1: procedure MakeSLEFSamples(plef, plefLength, slefmin, slefmode, sledmax, sle-
fgamma)

2: totalLossEvents ← 0
3: Let slefIndices be an array of size plefLength
4: for i = 0...plefLength do
5: slefIndices[i] ← totalLossEvents
6: totalLossEvents += plef[i]
7: end for
8: Let U be an array of totalLossEvents uniformly distributed numbers in the range

[0,1]
9: slef ← InversePERTBetaTransform(U, slefmin, slefmode, sledmax, slefgamma)

10: end procedure

11: procedure SLEFKernel(threadIdx, outputs, plef, slef, uniform, slefIndices)
12: secondaryLossEvents ← 0
13: primaryLossEvents ← plef[threadIdx]
14: for i = 0...primaryLossEvents do
15: sampledSLEF ← slef[slefIndices[threadIdx] + i]
16: r ← uniform[slefIndices[threadIdx] + i]
17: if r < sampledSLEF then
18: secondaryLossEvents++
19: end if
20: end for
21: outputs[threadIdx] ← secondaryLossEvents
22: end procedure

Algorithm 22 Risk Exposure Kernel

Input: threadIdx, outputs, plef, slef, plm, slm

1: primaryLossExposure ← plef[threadIdx] * plm[threadIdx]
2: secondaryLossExposure ← slef[threadIdx] * slm[threadIdx]
3: outputs[threadIdx] ← primaryLossExposure + secondaryLossExposure

61

B FAIR Scenario Inputs

Input Minimum Mode Maximum Gamma

Primary Productivity Cost $100.00 $200.00 $301.00 4.0

Primary Response Cost $100.00 $200.00 $301.00 4.0

Primary Replacement Cost $100.00 $200.00 $301.00 4.0

Primary Competitive Advantage Losses $100.00 $200.00 $301.00 4.0

Primary Fines & Judgements $100.00 $200.00 $301.00 4.0

Primary Reputation Costs $100.00 $200.00 $301.00 4.0

Secondary Productivity Cost $100.00 $200.00 $301.00 4.0

Secondary Response Cost $100.00 $200.00 $301.00 4.0

Secondary Replacement Cost $100.00 $200.00 $301.00 4.0

Secondary Competitive Advantage Losses $100.00 $200.00 $301.00 4.0

Secondary Fines & Judgements $100.00 $200.00 $301.00 4.0

Secondary Reputation Costs $100.00 $200.00 $301.00 4.0

Threat Event Frequency 0.1 0.5 1.0 1.0

Vulnerability 0.5 0.5 0.5 1.0

Secondary Loss Event Frequency 0.1 0.15 0.25 4.0

Table 29: FAIR inputs for Scenario 1.

Input Minimum Mode Maximum Gamma

Primary Productivity Cost $10,000.0 $256,500.00 $300,000.00 8.0

Primary Response Cost $5,000.00 $7,500.00 $10,000.00 1.0

Primary Replacement Cost $25,000.00 $28,750.00 $50,000.00 4.0

Primary Competitive Advantage Losses $25,000.00 $32,500.00 $75,000.00 1.0

Primary Fines & Judgements $5,000.00 $22,000.00 $25,000.00 1.0

Primary Reputation Costs $2,500.00 $11,000.00 $12,500.00 8.0

Secondary Productivity Cost $5,000.00 $5,750.00 $10,000.00 4.0

Secondary Response Cost $2,500.00 $3,350.00 $3,500.00 4.0

Secondary Replacement Cost $3,500.00 $9,025.00 $10,000.00 4.0

Secondary Competitive Advantage Losses $5,000.00 $6,500.00 $15,000.00 1.0

Secondary Fines & Judgements $4,500.00 $8,750.00 $9,500.00 8.0

Secondary Reputation Costs $1,000.00 $1,850.00 $2,000.00 4.0

Vulnerability 0.25 0.5 0.74 4.0

Secondary Loss Event Frequency 0.1 0.44 0.5 4.0

Contact Frequency 10 25 75 8.0

Probability of Action 0.5 0.75 0.9 8.0

Table 30: FAIR inputs for Scenario 2.

62

Input Minimum Mode Maximum Gamma

Primary Productivity Cost $10.00 $15.00 $20.00 4.0

Primary Response Cost $10.00 $15.00 $20.00 4.0

Primary Replacement Cost $10.00 $15.00 $20.00 4.0

Primary Competitive Advantage Losses $10.00 $15.00 $20.00 4.0

Primary Fines & Judgements $10.00 $15.00 $20.00 4.0

Primary Reputation Costs $10.00 $15.00 $20.00 4.0

Secondary Productivity Cost $10.00 $15.00 $20.00 4.0

Secondary Response Cost $10.00 $15.00 $20.00 4.0

Secondary Replacement Cost $10.00 $15.00 $20.00 4.0

Secondary Competitive Advantage Losses $10.00 $15.00 $20.00 4.0

Secondary Fines & Judgements $10.00 $15.00 $20.00 4.0

Secondary Reputation Costs $10.00 $15.00 $20.00 4.0

Primary Loss Event Frequency 1.0 1.5 2.0 4.0

Secondary Loss Event Frequency 0.5 0.55 0.6 4.0

Table 31: FAIR inputs for Scenario 3.

63

VITA

Author Forrest L. Ireland

Place of Birth Spokane, Washington

Undergraduate Education Whitworth University

Degrees Awarded Bachelor of Science, 2015, Whitworth University

Professional Experience Software Engineer, RiskLens, Spokane, Washington, 2017

64

	GPU accelerated risk quantification
	Recommended Citation

	tmp.1531931436.pdf.eaOEp

