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Abstract

With the meteoric rise of enormous data collection in science, industry, and the cloud,

methods for processing massive datasets have become more crucial than ever. MapReduce

is a restricted programing model for expressing parallel computations as simple serial func-

tions, and an execution framework for distributing those computations over large datasets

residing on clusters of commodity hardware. MapReduce abstracts away the challenging

low-level synchronization and scalability details which parallel and distributed computing

often necessitate, reducing the concept burden on programmers and scientists who require

data processing at-scale.

Typically, MapReduce clusters are implemented using inexpensive commodity hardware,

emphasizing quantity over quality due to the fault-tolerant nature of the MapReduce exe-

cution framework. The nascent explosion of inexpensive single-board computers designed

around multi-core 64bit ARM processors, such as the RasberryPi 3, Pine64, and Odroid C2,

has opened new avenues for inexpensive and low-power cluster computing.

In this thesis, we implement a novel cluster around low-power ARM64 single-board com-

puters and the Disco Python MapReduce execution framework. We use MapReduce to em-

pirically evaluate our cluster by solving the Word Count and Inverted Link Index problems

for the Wikipedia article dataset. We benchmark our MapReduce solutions against local

solutions of the same algorithms for a conventional low-power x86 platform. We show our

cluster out-performs the conventional platform for larger benchmarks, thus demonstrating

low-power single-board computers as a viable avenue for data-intensive cluster computing.
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1 Introduction

MapReduce is a programing pattern and execution framework for transparently distributing

computation across large clusters of commodity computers. Conceived as an execution frame-

work for massive data processing by Google in their seminal 2008 paper [8], MapReduce finds

its roots in a common pattern of the functional programming paradigm often termed “map

and fold” or “map and accumulate”. Users write a map function which processes raw data to

produce an intermediate list of key/value pairs, and a reduce function which performs some

aggregation of all intermediate values by their associated key. Many real-world data process-

ing problems can be expressed in terms of this simple pattern, and programs expressed this

way have desirable properties which facilitate natural parallelism. As an execution frame-

work, the programming pattern is built upon and extended with fault-tolerant distributed file

systems and workload scheduling. When taken together, the pattern and framework enable

programs to be seamlessly executed in parallel across large clusters of potentially unreliable

machines.

In this thesis, we introduce a novel MapReduce cluster composed of small, inexpensive,

low-power ARM64 single-board computers (SBCs). We use MapReduce, both as a local pro-

gramming pattern and as a distributed execution framework, to implement data-intensive

benchmarks for evaluating the performance of our low-power SBC cluster against a conven-

tional low-power x86 platform. This thesis predominately explores the trade-offs between

scale-up and scale-out architectures for data-intensive computing with low-power machines.

1.1 Motivation and Goals

MapReduce, a simple idea at its core, has become of fundamental importance for modern

data processing. Many popular NoSQL databases and other distributed systems for Big Data

management find their underlying implementation relying on MapReduce in some capacity

[4] [21]. At its inception, MapReduce played a central role in Google’s architecture to process

a significant portion of the World Wide Web on a daily basis.

However, as data volumes become enormous, so do the energy and space requirements of

clusters for processing such workloads. Reducing power consumption and increasing density

have become a principal concerns in modern data center architecture, precipitating movements

such as “Green Computing” [29]. While the x86 processor architecture has dominated the data

center market for more than twenty years, the ARM processor architecture has a proven track

record in power and space constrained applications. With the extension to a multi-core 64bit

architecture, ARM has recently seen application beyond its traditional role in mobile and
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embedded computing. Mainstream CPU manufacturer AMD has begun producing ARM64

chips for use in servers [1], and there has been an explosion of single-board computers de-

signed around inexpensive ARM64 processors for the hobbyist market [31] [28] [24]. Some

hobbyists and enterprises have recently begun exploring computing architectures composed

of numerous small ARM64 computers as alternatives to larger x86-based server platforms [32]

[27], and there has been past research into the efficiency of small-node cluster architectures for

data-intensive computing [3] [18].

Our work uses MapReduce to evaluate such an architecture. We construct a MapReduce

cluster around the Odroid-C2 [24] ARM64 low-power single-board computer (SBC) and the

Disco [11] Python MapReduce framework. We evaluate our SBC cluster against a conventional

low-power x86 platform by implementing several data intensive text processing benchmarks.

While the x86 processor family generally delivers considerably more instructions per CPU

cycle and greater memory bandwidth than the average ARM processor [26], data intensive text

processing is an inherently I/O-bound activity [19]. We will show that a cluster of inexpensive

nodes can outperform a single more costly node from a text processing throughput perspective,

when memory and power consumption are considered.

Our text processing benchmarks are based on solving the Word Count and Inverted Link

Index problems for the Wikipedia article dataset. We implement each solution for both our

MapReduce cluster (distributed) and our conventional x86 platform (non-distributed). While

benchmarks for our cluster are inherently phrased as MapReduce solutions, so as to execute

on the Disco MapReduce framework, we also utilize MapReduce as a parallel programming

pattern in some of our non-distributed x86 platform benchmarks.

As the MapReduce framework is inherently external in its execution (i.e. it writes most

intermediate work to disk before processing another record), we implement external variants

as well as in-memory variants of each solution for our x86 platform. When evaluating bench-

marks, we will consider in-memory versus external solutions by factoring peak per-record

memory consumption into the final throughput measurements. Peak per-record memory

consumption serves as a good analogue for a solution’s ability to scale-out versus scale-up.

Algorithms and implementations which cannot perform in an external context or do not have

a constant space complexity are unsuitable for scale-out computing architecture, and thus

unsuitable for massive data processing generally.

Finally, as power consumption is becoming an increasing fraction of total cost of ownership

of cluster computers, sometimes up to 50% over a three year lifespan [17], we will consider

the power consumption of benchmarks in our final throughput calculations.

As a side-effect to the primary goals stated above, we will provide detailed instructions
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on constructing a MapReduce cluster and example code for processing a dataset of theoretical

interest. Exploring MapReduce from an empirical perspective can be inaccessible to many

students and researchers due to the high costs associated with traditional cluster computing.

Furthermore, mainstream MapReduce frameworks such as Apache Hadoop [37] come saddled

with an enormous ecosystem of libraries, utilities, and side-projects which can be overwhelm-

ing to learn and cumbersome to orchestrate, especially to those seeking to study MapReduce

for its elegant simplifications.

These costs and complexities motivate us to provide a more accessible model for pedagogy

and research. Our MapReduce cluster is designed around the lightweight Disco framework

and inexpensive SBCs intended for the hobbyist market. Our cluster consumes less power

at idle load than a laptop computer and is so small it will fit into an office desk drawer.

The low unit cost of hobbyist SBCs puts purchasing the multiple nodes required for cluster

computing within the financial reach of most students. The Disco MapReduce framework,

being driven by the Python programming language [30], is much simpler to use than its

popular industrial counterpart, Hadoop. Therefore, aside from our practical results, our work

provides an accessible experimental model for MapReduce research.

1.2 Thesis Structure

Following this introduction, Chapter 2 gives context to our work by presenting an overview

of data-intensive cluster computing and emerging low-power hardware architecture, introduc-

ing the MapReduce programming pattern and execution framework, and describing the word

count and inverted index text processing problems generally and the MapReduce approach

to solving them. Chapter 3 describes our novel low-power ARM64 cluster and our solutions

to the Word Count and Inverted Link Index problems for the Wikipedia dataset. Chapter 4

presents our analysis of benchmark results comparing our distributed and local implementa-

tions of the solutions. The concluding Chapter 5 gives a summary of the achieved work and

outlines potential future work.
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2 Background

In this chapter we give an introduction to topics related to our work. We cover data-intensive

computing generally, followed by a survey of new evolutions in low-power computing hard-

ware. We then describe the MapReduce programming pattern and execution framework, and

the Word Count and Inverted Index text processing problems and the MapReduce approach

to solving them. We end with a brief survey of prior works related to our own.

2.1 Data-Intensive Cluster Computing

Cluster computing is of fundamental importance to modern data processing. The size of mod-

ern data processing workloads has grown well beyond the capacity of any individual machine;

numerous machines must be grouped together to into a “cluster” to solve most massive data

processing problems. These numerous individual machines are often orchestrated together

as a single logical computer, under the direction of a distributed-parallel software execution

framework such as MapReduce. Some of these clusters become large enough to occupy an

industrial warehouse, giving rise to the notion of a “warehouse scale computer” [5].

In recent years, there has been a trend of diminishing returns in improving the perfor-

mance of individual processing nodes [6]. CPU power consumption grows super-linearly

with per-core performance [3], as does the financial cost and complexity of implementation

[6]. A similar relationship is true of increasing the memory capacity attached to an individual

CPU [14]. Thus the cost of scaling-up performance of individual computers has dramatically

outpaced the cost of scaling-out cluster computers by adding additional nodes. This trade-off

between vertical “scale-up” and horizontal “scale-out” computing architecture is well under-

stood in the context of massive data processing [19]. Data processing is an inherently I/O-

bound activity, where the ability to move data through the system - that is, the bandwidth

capacity or throughput - generally outweigh concerns for latency and processor performance

[5]. Data intensive cluster architecture optimizes for throughput, not latency; increasing stor-

age and network bandwidth are principal concerns when designing data centers and clusters

for handling data-intensive workloads.

Even when distributed across many machines, data-intensive workloads often exceed the

size of any individual machine’s main-memory capacity, thus “external” memories such as

disk or network storage must be swapped to during processing. External memory algorithms

are of key importance to data-intensive computing [36]. Though not explicitly an “external-

memory algorithm” per-se, the MapReduce framework is inherently external in execution, as

it writes most intermediate state to disk between processing each data record. For external
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memory algorithms, data throughput to the external memory is more important that CPU

performance, and is usually the gating factor in overall execution time. It is for this reason

we will evaluate external as well as in-memory variants of our text processing benchmarks for

comparison with our low-power MapReduce cluster.

2.2 Low-Power Hardware

Power consumption is of critical concern for large cluster computers, often representing a sig-

nificant portion of their total cost of ownership. Data centers and warehouse-scale clusters

are being constructed nearby hydroelectric power plants to discount their enormous power

costs [17]. These enormous costs as well as the physical footprints of such computers have

precipitated the emergence of “Green Computing” and similar paradigms for reducing power

and space consumption in the data center [29]. Much of the recent progress in conventional

data center hardware architecture has focused not on increasing absolute performance of in-

dividual machines, but rather on reducing power and space consumption while maintaining

performance.

To this end, the ARM processor architecture has emerged as a tenuous challenger to x86 in

the data center market. Historically, ARM has been dominant in power and space constrained

embedded and mobile computing spaces. As ARM has evolved to include advanced super-

scalar multi-core 64bit microarchitectures, the performance of some high-end ARM64 chips

has approached that typically seen of x86 desktops or servers. It seems natural then, given

the increased concerns for power and space consumption combined with ARM’s proven track

record in low-power and space constrained applications, that ARM would eventually come to

be a viable competitor to x86 for conventional general purpose computing.

As the ARM64 processor architecture gains share beyond mobile and embedded comput-

ing, new avenues are being opened for low-power cluster computing. There has been a recent

explosion of inexpensive single-board computers designed around multi-core ARM64 CPUs,

such as the RasberryPi 3 [31], Pine64 [28], and Odroid C2 [24]. Mainstream CPU manufacturer

AMD has begun producing ARM64 CPUs for use in servers with their “Opteron A-Series” pro-

cessor line [1]. Even some cloud computing providers have begun offering small bare-metal

ARM64 servers as alternatives to similarly priced x86 virtual server slices [32].

Our low-power SBC cluster is constructed around the Odroid C2 “credit-card sized” ARM64

SBC. There is much architectural interchange between cellphone/mobile computing architec-

ture and low-power ARM64 SBCs, since they tend to possess similar CPUs and only differ

in their physical format, peripheral IO, and supported power states. SBCs are typically in-

tended for use in multimedia or embedded applications. In this work, we will explore their
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application to a more traditional data center workload; text processing with MapReduce.

2.3 MapReduce Programming Pattern

MapReduce finds it’s roots in a common pattern of the purely functional programming paradigm.

Pure functional programming differs from more common procedural and object-oriented pro-

gramming paradigms in it tends to enforce properties of functions such as freedom from

side-effects and referential transparency. In this section, we explain these properties and their

importance to MapReduce as a method for facilitating parallel programming.

Ahmdahl’s law [2] implies the theoretical speed-up gained from parallelizing a program

will be bounded by the portion of the program which must execute serially. Parallel programs

must execute serially, or synchronize, in order to deterministically modify shared state be-

tween multiple threads of execution. If there is no shared state in a parallel solution, then

the speed-up gained from adding additional threads of execution should theoretically scale

linearly with the number of threads, unbounded. Of course, in practice this is nearly always

limited by hardware and systems overhead, or the need to ultimately synchronize state to

arrive at a final solution, but nevertheless reducing shared state is a predominant design con-

straint when implementing parallel and distributed programs.

Modifying shared state from within a function is fundamentally a side effect of calling the

function. Functions which are pure in the functional programming paradigm are side effect

free, that is they depend only on their inputs and always create new outputs, no external or

otherwise global shared state is modified by calling a pure function. Such functions are said

to have referential transparency, that is they return the same output for a given input. As such

functions do not depend on nor modify any shared or internal state, it is possible to make

multiple calls to pure functions in parallel, one for each distinct input.

If an input dataset can be divided into many distinct records, and a data processing so-

lution can be implemented in terms of pure functions, then the solution can be parallelized

almost infinitely over the dataset, limited only by the need to synchronize or coalesce the re-

sults of these parallel function calls at the end of execution to produce a final result. This is

the essence of MapReduce as a parallel programming pattern; many parallel calls to a pure

function, each call operating over a distinct input record and producing an intermediate result,

followed by a coalescing of all intermediate results into a final result. Operating a function

over a set of distinct input records to produce an intermediate set of output records is often

termed a map. The coalescing or accumulation of many records into a single, smaller, record

is often termed a fold or reduce.

As a functional programming pattern, MapReduce is most frequently encountered under
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the names “map and fold” or “map and accumulate”. The general data flow between these

two concepts working in unison to process a large dataset is shown figure 1.

Figure 1: Data Flow in MapReduce

2.3.1 Map

Functional programs frequently operate over lists, more so than typical procedural or object-

oriented programs. Another key concept of functional programming applied to MapReduce is

that of higher order functions. Higher order functions are functions which take other functions

as their arguments.

Map is a higher order function which takes as its input a function f and a list. Map then

applies the input function f to every element of the list, producing a new list which is the

result of that application. Conceptually, map produces a new output list which is f mapped

onto the input list.

In a parallelized map implementation, each instance of f in figure 2 is executed in a dis-

tinct thread. Thus f must be a side-effect free pure function to be suitable for a parallel map

implementation.

Function Map(func, list)
Input: list: A list to iterate over. f unc: A function to apply to each element in the list,

which returns a new element.

Output: A new list, representing f unc applied to every element of list.

newlist←− empty list;

foreach element in list do

newlist.append( f unc(element));

Figure 2: Map
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2.3.2 Fold / Reduce

Reduce has many pseudonyms, and is commonly encountered under the names “fold” or

“accumulate”. Similar to map, reduce is a higher order function which takes a list and a function

g as its inputs. In contrast to map, reduce requires an additional argument; an accumulator

value which will be both passed as input to and returned as output from each successive call

to the function g while iterating over the input list. This accumulator value is represented by

the grey box in figure 3. Whereas map returns a new list as its output, reduce returns only the

final value of the accumulator.

The accumulator value is a mechanism to preserve state between subsequent calls to the

input function g while iteratively applying g to the input list. Thus reduce itself cannot be

parallelized - each successive call to g depends on the result of a previous call to g. In the

MapReduce programming pattern, reduce serves the purpose of coalescing or reducing the

intermediate output of map into a smaller or otherwise useful final result.

Function Fold(acc, func, list)
Input: acc: An accumulator value. f unc: A function which takes a list element and a

value, then returns a new value. list: A list to iterate over.

Output: The final value of acc.

foreach element in list do

acc←− f unc(acc, element);

Figure 3: Fold / Reduce

2.4 MapReduce Execution Framework

As a parallel cluster computing execution framework, the MapReduce programming model

described in section 2.3 above is extended with fault-tolerant distributed workload scheduling

and distributed filesystems. The core design which all MapReduce execution frameworks

share was first described by Dean and Ghemawat of Google in 2008 [8] as a method for

simplified data processing on large clusters.

As a distributed execution framework, the MapReduce runtime is generally split into two
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phases; a Map phase and a Reduce phase, which conceptually mirror the map and reduce func-

tions of the parallel functional programming pattern, extended into the distributed computing

context.

2.4.1 Mappers and Reducers

Whereas the map and reduce of the functional programming pattern operate on lists and raw

values, the Map and Reduce of the distributed execution framework operate over (key,value)

tuples. This is in order to facilitate the movement of data through the distributed system by

key, which can act as a conceptual tag for determining where to direct data in the system.

Throughout the execution of the MapReduce runtime, values associated with a particular key

are brought together on cluster nodes which have been assigned responsibility for processing

that key.

In many ways, the Map phase of execution serves to structure, filter, and tag an otherwise

unstructured raw dataset. The structure taken on is that of keys (tags) and values (structured

data), or in the broader computer science parlance, simply a dictionary. That is, Map is

primarily a method for converting a flat list of unstructured input data into a dictionary. Often

the size of the data output from the Map phase is on-order of the input size.

After the Map phase, the execution framework will bring together all values output with

the same key to aggregate and sort them before passing to the Reduce phase. As all values for

a given key represent a sorted list, each list and its key can be processed by a separate call to

the Reduce function. In this way, the Reduce phase can be parallelized similar to Map. The

output from the Reduce phase is a final list of (key, value) tuples. The conceptual flow of (key,

value) tuples through the MapReduce execution framework is shown in figure 4, where:

• (K1, V1) is typically an input document identifier or filename (K1), and the document’s

raw contents (V1).

• (K2, [v2, v2, ...]) is some intermediate key (K2) output by a Mapper, and all values

associated with that key output by any Mappers, subsequently aggregated and sorted

into a list ([v2, v2, ...]) by the execution framework.

• (K3, v3) is some final key (K3) output by a Reducer and the value (v3) resulting from

some aggregation by the Reducer for that key.

In the cluster computing context, each potential hardware execution thread available in the

cluster is a “Worker” for the MapReduce execution framework. Thus a cluster of 5 machines

each having 4 CPU cores would supply 20 Workers to the execution framework. Map and
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Figure 4: KeyValue Flow

Reduce functions are assigned to Workers as tasks during the execution of a MapReduce job.

When a worker is executing a Map task, it is frequently referred to as a “Mapper”, and when

executing a Reduce task, it is a “Reducer” [19].

The overall flow of MapReduce execution as outlined by Dean and Ghemawat in the origi-

nal MapReduce paper, and as implemented by the Disco [11] and Hadoop [37] frameworks, is

shown in figure 5.

Figure 5: MapReduce Execution [8]

The execution steps as labeled in the figure [8]:

1. User code submits a MapReduce job to the cluster through a library or some other

mechanism. The input dataset residing on the cluster is expected to have been split into

M files by the user.

2. One node of the cluster is special - the master. The other nodes are workers and are

assigned tasks by the master. There will be M map tasks and R reduce tasks to assign.

The master assigns map tasks to workers which are preferably idle and have the input

data stored locally.
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3. A worker assigned a map task reads its input split and applies the user supplied function

to be mapped over the dataset to each input.

4. As records from the input split are processed, they are written to the local disk of the

map worker as intermediate results.

5. When enough intermediate results become available, the master notifies the reduce work-

ers of the location of the data and they begin executing.

6. The reduce workers read data, possibly remotely over the network, from the map work-

ers, and aggregate and sort the intermediate data by key before processing the data

through the user defined reducer function.

7. As the reduce workers process the intermediate data, they write final results to their

local disks. Once all final results are ready, the user program from step 1. is notified.

Altogether this would seem to be a complex framework, with much synchronization and

orchestration required between moving parts. However, its important to note that users of the

system need only understand the basics of the MapReduce functional programming pattern.

All the challenging low-level details of parallel-distributed computing are hidden behind the

execution framework. Users need only supply a dataset split, a mapper function, and a reducer

function, to take full advantage of massive clusters using MapReduce.

2.4.2 Distributed File System

The MapReduce framework was designed to handle data volumes which exceed the storage

capacity of any single machine. Distributed file systems orchestrate data across multiple ma-

chines in a cluster, allowing data capacity to scale horizontally with the number of machines.

Prime examples of such distributed filesystems are Google’s Big Table [7] and the Google File

System [13], as well as Hadoop’s HDFS [37].

A key idea underlying the efficiency of the MapReduce execution framework is to move

computation to data. Programs are small, but data is large - if programs can be co-located

with the data they are dependent on, then data fetched remotely (over the network) can be

minimized. In the context of MapReduce, a “program” is any individual mapper or reducer

task. The MapReduce framework will attempt to schedule and assign a tasks to worker nodes

such that tasks execute on nodes which host the data those tasks will consume, as much as is

possible. Therefore, the MapReduce execution framework must have insight into the structure

of the cluster’s distributed file system, and frameworks and their file system implementations

are typically tightly coupled. The framework used in our cluster, Disco, relies on DDFS, the

Disco Distributed File System [11].

14



It is important to note, however, that MapReduce distributed file systems are not file sys-

tems in the traditional sense, in they do not manage underlying block devices. Rather, MapRe-

duce file systems primarily serve as a mechanism to orchestrate data and know the location

of many replicated data sources across a cluster, in order to assign tasks to nodes for optimal

data-locality during execution. Underlying physical block device management is usually dele-

gated to the operating system. MapReduce file systems function more like directed graphs for

unstructured data blocks residing on top of many traditional Linux file systems distributed

across the cluster. In MapReduce file systems, there is a “Name Node” which keeps an author-

itative index, or representation of this graph, with tags (graph nodes) pointing to other tags

or to blocks of data (leaf nodes) residing on one or more cluster nodes. It’s worth mentioning

that this Name Node can sometimes represent a single point of failure for the cluster.

Figure 6: Distributed File System [19]

Another key feature of distributed file systems which improves both fault-tolerance and

data-locality is data replication. Figure 6 shows an example of a distributed file system with a

replication factor of two. Notice that each data block resides on at least two nodes. Therefore,

it is possible for exactly one node to fail, yet no data will be lost. More generally, a distributed

file system with a replication factor of N can have at most (N − 1) nodes fail before experi-

encing data loss. This is a key property of distributed filesystems employed by MapReduce’s

fault tolerance, as MapReduce clusters are frequently implemented with low-cost and unreli-

able machines. Data replication can also aid the MapReduce execution framework in assigning

tasks to nodes for maximum data locality. Higher replication factors give the execution frame-

work more options in node assignment. Specifically, a task which depends on a particular data

block can be assigned to any of N possible nodes in a cluster with a data replication factor of

N.
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2.5 Text Processing with MapReduce

Massive text processing is the quintessential data-intensive computing problem space. Every-

thing from natural language processing, to web-crawling, to cloud-scale log parsing falls into

the domain of massive text processing. For an excellent treatment of the subject of text pro-

cessing in the context of MapReduce, see Lin and Dyer’s work “Data-Intensive Text Processing

with MapReduce” [19], to which our work owes much.

We have implemented several variants of the Word Count and Inverted Index solutions

over the Wikipedia article text dataset as our data-intensive benchmarks covered in chapter 3.

Here we describe the Word Count and Inverted Index text processing problems generally and

the MapReduce approach to solving them.

2.5.1 Word Count

The simplicity of Word Count belies it’s fundamental importance in practical computing. It

appears everywhere, under term count, event count, and any other name where “counting” is

somehow involved. Word Count is the proverbial “Hello Word” program of MapReduce, but

is of great practical importance and utility in real world text processing.

WordCount

class Job:

method Map(docid a, doc d):

forall term t ∈ doc d do
Emit(term t, count 1)

method Reduce(term t, counts[c1, c2, ...]):

forall count c ∈ counts[c1, c2, ...] do
sum←− sum + c

Emit(term t, count sum)

MapReduce jobs are typically implemented as “classes” in object-oriented programming li-

braries designed to interface with a MapReduce execution framework, where the user-defined

Map and Reduce functions are supplied as member methods of a MapReduce “Job” class.

This is reflected in our pseudocode implementation of Word Count.

Word Count takes as input a dictionary mapping document identifiers (docid) to docu-

ment contents (doc) and returns as output a dictionary mapping each term occurring in any

document to the number of times that term occurs over all documents. Notice the document

identifier is discarded. A simplified example of how Word Count might execute over a few

documents containing only the terms a, b, and c is sown in figure 7.
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Figure 7: Word Count Execution [19]

2.5.2 Inverted Index

Inverted Index is only slightly more complex than Word Count. Inverted Index takes as input

a dictionary mapping document identifiers (docid) to document contents (doc) and returns as

output a dictionary mapping each term to a list of documents in which that term appeared,

as well as the number of time it appeared. This solution is of fundamental importance in

web-crawling, and forms the basis of the PageRank query input when terms are replaced with

web links [19] [25]. A visual example of simple Inverted Index execution is shown in figure 8.

In our work, we focus on index construction, not access, compression, nor the data re-

trieval problem generally. Storing and compressing indexes for efficient access and retrieval of

information is a deep area of research, with much activity. For an excellent treatment of these
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related topics, see [20] and [22].

InvertedIndex

class Job:

method Map(docid a, doc d):

H←− new AssociativeArray

forall term t ∈ doc d do
H{t}←− H{t} + 1

forall term t ∈ H do
Emit(term t, posting (a, H{t}))

method Reduce(term t, postings[(a1, h1), (a2, h2), ...]):

P←− new List

forall posting(a, f) ∈ postings[(a1, h1), (a2, h2), ...] do
P.Add((a, f))

P.Sort()

Emit(term t, postings P)

Figure 8: Inverted Index Execution [19]
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2.6 Related Work

Our general distributed text processing work draws heavily on the work “Data Intensive Text

Processing With MapReduce” [19] by Lin and Dyer.

“The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Ma-

chines” by Barroso, Clindaras, and Hölzle [5] serves as an excellent in-depth introduction to

cluster computer architecture, and we owe much inspiration to their musings on the subject.

Their notion of many clustered nodes orchestrated together as a single logical computer is

particularly important to this work and works on cluster computing in-general.

FAWN, a “Fast Array of Wimpy Nodes” [3] by Andersen, et. al. is a closely related

work to ours. FAWN presents a fast key-value lookup using a cluster of low-power nodes.

FAWN’s cluster architecture is similar to our own, being composed of “wimpy” nodes with

fast flash memory. The FAWN work shows that such a cluster architecture can improve power

consumption per key lookup by two orders of magnitude over a conventional implementation.

FAWN has inspired further work, aside from our own, on the subject of “wimpy” versus

“brawny” CPU architectures applied to throughput intensive problems [18].

At the time of this writing, we are only aware of two prior works related to evaluating

ARM64 processor architecture in data-intensive applications. Neither of these prior works

have treated low-power single-board computers specifically, but deal with emerging ARM64

hardware for the server market.

“ARM Wrestling with Big Data: A Study of ARM64 and x64 Servers for Data Intensive

Workloads” by Kalyanasundaram and Simmhan [16] presents a comparison of the latest AMD

ARM64 CPUs [1] with x86 CPUs for data intensive text processing.

“Comparing the Performance and Power Usage of GPU and ARM Clusters for Map-Reduce”

by Delpace, et. al, [10] compares a highly integrated ARM64 server architecture against GPUs

using MapReduce. Delpace is of note as the only usage of the Disco [11] MapReduce frame-

work on an ARM64 cluster that we are aware of outside our own work.
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3 Implementation

In this chapter we introduce our novel MapReduce cluster composed of low-power ARM64

single-board computers. We describe a conventional low-power x86 platform used for compari-

son. We outline benchmark implementations solving the Word Count and Inverted Link Index

problems for the Wikipedia article dataset. We implement external versions and in-memory

versions of each solution for our x86 platform, to compare with the intrinsically external ex-

ecution of the MapReduce framework versions for our cluster. We also implement parallel

versus serial versions for our x86 platform, with similar motivation.

3.1 Low-Power SBC Cluster

As a core part of our work, we construct a MapReduce cluster using the Odroid-C2 [24]

ARM64 single-board computer, running the AArch64 port of Debian [9] Linux and the Disco

[11] MapReduce execution framework.

Figure 9: Cluster Hardware

3.1.1 SBC Nodes

The Odroid-C2 is a low-power “credit-card-sized” computer manufactured by Hardkernel, Inc.

Like many SBCs, the Odroid-C2 supports all peripheral I/O expected of a standard desktop

computer, including USB, video, networking, and storage. We considered similar ARM64

SBCs for our cluster implementation, such as the Pine64 [28] and RasperryPi 3 [31]. While

the RaspberryPi 3 is certainly the most popular single board computer on the market today

[35], we found it had poor support for the AArch64 port of Linux at the time we began our
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work. Similarly, the Pine64 may be a more cost-effective hardware selection than the Odroid-

C2 today, but it had not yet been brought to market at the time. When we began our work, the

Odroid-C2 had the highest hardware specifications relative to other card-sized ARM64 SBCs

available on the market, when price was accounted for. We only considered SBCs with a unit

cost of less than $50 US dollars.

The Odroid-C2 supports eMMC [38], a faster flash based storage mechanism not commonly

supported in inexpensive SBCs. The support for eMMC contributed to our decision to use the

Odroid-C2 for our cluster. Since we are evaluating our cluster in the space of data-intensive

or I/O-bound computing, we elected to include the faster eMMC flash storage in every node.

Purchasing eMMC has significant cost, increasing the price of each node by nearly 50%. How-

ever, eMMC has considerably better I/O throughput than MicroSD storage, increasing disk

read performance by as much as 347% and write by up to 826% (based on benchmarks by

Hardkernel). The results of FAWN [3] showing that fast flash storage can compensate for

weak processor capability in I/O intensive tasks have inspired us to use faster flash storage in

our cluster implementation.

We include both eMMC and MicroSD storage in each cluster node. We install the base

operating system for each node to the slower MicroSD storage, reserving the eMMC storage

for the MapReduce distributed filesystem and workload processing.

Node Specifications:

• Operating System: Debian Linux 8.0, AArch64

• CPU: Amlogic S905 quad-core ARMv8 @ 1.5GHz

• Memory: 2GB DDR3 SDRAM

• Storage: 16GB HS400 eMCC + 16GB UHS-1 MicroSD

• Network: Gigabit Ethernet

• Power Consumption: 1.65 Watts (idle)

We measured an individual Odroid-C2’s ambient idle power consumption to be 1.65 watts.

While idle power consumption is no indication of power efficiency under load, it does establish

a baseline. In our evaluation in section 4.4, we will consider power consumption during load

(benchmark execution), and factor that into our throughput calculations.

3.1.2 Cluster Specifications

Our cluster is composed of five identical SBC nodes built around a simple stacking enclosure

and 5-port GbE switch. The master node, which is also running the Disco MapReduce master

process, acts as a gateway router between the cluster’s internal GbE network and a household

wireless network. Therefore, the master node is equipped with a Ralink RT5370 Wireless-N
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USB adapter to serve as the external interface. The general arrangement is show in figure 10.

Below, we list the specifications for our cluster as if it were a single machine. Obviously, this

method of specification does not account for the communication costs incurred by distributing

computation across multiple machines, but is simply a roll-up of available resources.

Figure 10: Cluster Network

Theoretical Aggregate Specifications:

• CPU: 20 cores (combined 30GHz ARMv8)

• Memory: 10GB DDR3

• “Fast” Storage: 80GB eMMC (combined 4Gbps read I/O)

• “Slow” Storage: 80GB MicroSD

• Network: 1000base-T (GbE) Switched

• Power Consumption: 8.25 Watts (idle)

Since our cluster is constructed from “credit-card-sized” SBCs, the final assembly is incred-

ibly space-efficient for a cluster in the traditional sense, and can even fit into an office desk

drawer. See figure 9.

The actual cluster construction and systems installation is an involved process, wherein

we encountered many challenges. For a complete guide detailing how to replicate our cluster,

refer to additional resources in appendix 6.2.

3.2 Disco MapReduce Framework

To take our cluster from being merely a network of single-board-computers to being a true

“cluster computer” with which we can solve data-intensive text processing problems, we em-

ploy the Disco MapReduce execution framework.

22



Disco [11] is a lightweight MapReduce framework produced by Nokia, Inc. While Disco

is primarily interfaced with via the Python [30] programming language, most underlying

systems code of the framework is implemented using Erlang [12], a purely functional pro-

gramming language designed for building fault-tolerant distributed systems. MapReduce, as

a technology for fault-tolerant distributed computing rooted in the functional programming

paradigm, finds an ideal match with the predominate themes of the Erlang programming

language.

However, no knowledge of Erlang programming is required to use Disco. Disco MapRe-

duce solutions are implemented using Python, making them relatively simple and minimal

when compared to the more popular Hadoop [37] (which uses Java). Indeed, Disco’s motto

is “Massive Data, Minimal Code”. We chose Disco for its simplicity, as well as the “batteries

included” philosophy of the Python programming language.

In our cluster implementation, the Disco MapReduce master process is installed to node-1

of Figure 10. While production MapReduce clusters typically do not use the master node as a

worker node, our implementation allows this. Thus all five nodes, with four CPU cores apiece,

are available to the Disco framework, giving us a total of 20 MapReduce workers.

Similar to our cluster hardware construction, the installation and configuration of the Disco

framework (or any piece of suffieciently complex distributed systems software) is an involved

and lengthy process. Refer to appendix 6.2 for an in-depth guide on how to install and

configure Disco for our cluster.

Disco Distributed Filesystem As outlined in section 2.4.2, MapReduce relies on a distributed

filesystem to orchestrate data across the cluster. The Disco framework includes the Disco

Distributed File System (DDFS) to fulfill this requirement.

Like all MapReduce filesystems, DDFS provides data replication of blocks to multiple

nodes in the cluster. In our cluster, we configure DDFS with a replication factor of two (2).

This replication factor was chosen for practical reasons; our Wikipedia dataset is roughly 15GB

in size, thus a replication factor of two results in our dataset consuming approximately 30GB

of the available 80GB of storage across the cluster. This leaves ample storage for intermediate

processing and result data, while also providing the execution framework with single-node

fault tolerance and the ability to choose between two possible nodes when assigning tasks for

data locality.

23



3.3 Conventional x86 Platform

With the goal in mind of evaluating scale-out versus scale-up architecture in low-power com-

puting, our scale-out architecture is obviously our SBC MapReduce cluster. For a low-power

conventional (i.e. non-distributed) scale-up computer, we will turn to a high-end x86 laptop.

While the choice to use a laptop to fulfill this role may appear to be a convenience for the ex-

perimenter, there are many similar design constraints between laptops and SBCs. Card-sized

ARM64 SBCs share much underlying hardware architecture with smartphones and embedded

multimedia systems. Therefore, both card-sized SBC and laptop designs are based on archi-

tectures low power enough to sustain battery power for prolonged periods of time. Both tend

to be optimized for some form of mobile computing. Both are heavily space constrained.

The laptop we employ as our conventional x86 platform is a Lenovo ThinkPad t460s, man-

ufactured recently (in 2017) and possessing a latest generation Intel Skylake CPU. Our x86

platform has flash-based SSD storage, similar to our cluster, but with higher throughput ca-

pacity compared to a single SBC node.

Platform Specifications:

• Operating System: Debian Linux 9.0, i686

• CPU: Intel Skylake i5-6300U quad-core x86-64 @ 2.4GHz

• Memory: 12GB DDR4 SDRAM

• Storage: 128GB SATA3 SSD

• Power Consumption: 9.8 Watts (idle, lid-closed)

Being a conventional computer and not a cluster, our x86 platform will not run a MapRe-

duce execution framework. While it is possible to run a MapReduce framework such as Disco

on a stand-alone computer (typically for development purposes), MapReduce frameworks

come with considerable runtime overhead. This overhead is only overcome by the increased

throughput capacity of running in a clustered context. Furthermore, the MapReduce frame-

work demands solutions be implemented within the restricted MapReduce programming pat-

tern. To maximize the advantages of non-distributed scale-up computing, we do not subject

our conventional platform benchmarks to these restrictions. We implement serial in-memory,

serial external, and parallel external versions of each solution (c.f. 3.4.3) directly for the plat-

form. The parallel external versions will take advantage of MapReduce as pattern for facili-

tating parallel programming, but the solutions are otherwise implemented to be as direct as

possible.
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3.4 Text Processing with Wikipedia and Python

We benchmark our systems by solving two common data-intensive text processing problems

for the Wikipedia article dataset. We choose Wikipedia as both a dataset of practical interest,

proverbially being “the sum knowledge of mankind”, and one possessing convenient proper-

ties which support our research goals. The text processing problems we chose to solve for the

Wikipedia dataset are Word Counting and Inverted Link Index. We implement our solutions

using the Python programming language. The Python programming language was chosen for

it’s convenient built-in text-processing facilities, and because it is the predominate language of

the Disco MapReduce framework and a popular language for data processing in-general [34].

3.4.1 Wikipedia Article Dataset

Wikipedia, aka “The Free Encyclopedia”, is a free on-line encyclopedia supported by the Wiki-

media Foundation [41]. At the time of this writing, the English language Wikipedia has

5,573,912 articles, or individual documents, in its database [33]. Due to its size and its struc-

tured text document format, the Wikipedia article database makes an ideal dataset for explor-

ing data-intensive text processing.

Dumps of the Wikipedia database can be downloaded as compressed XML from the Wiki-

media foundation website [39]. The entire content of Wikipedia can be downloaded, or se-

lected subsets. In our benchmarks, we use the English language “multistream” article dump,

which includes the text content of all articles, while omitting “talk”, “user”, or “about” pages,

article revision history, and images.

Even with these omissions, the Wikipedia article dataset is quite large, nearly 56GB when

uncompressed. The article content includes much extraneous formatting and meta-data. To

strip this extraneous data and make articles generally simpler to parse, we use Wikiextractor,

a tool written at the Multimedia Laboratory of the University of Pisa, Italy [40]. Wikiextractor

allows us to strip all useless formatting and metadata, while preserving article titles and links

(titles and links will be required for our Inverted Link Index solution).

Post-processing the Wikipedia article dump through Wikiextractor reduces the size to

around 15GB. While 15GB may not seem large, “data-intensive” computing is more about

I/O throughput-bound problems than necessarily “big-data” sizes. A mentioned in 3.2, 15GB

fits nicely into our cluster’s distributed filesystem when using a replication factor of 2. 15GB

is relatively large in the context of the small, low-power, platforms we are evaluating.

The extracted Wikipedia article dump is provided as a single, massive, text file. Wikiex-

tractor provides a mechanism to split the dump into evenly sized files while preserving the

individual document structure of each article. Using this mechanism, we split our dataset into
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3,771 4MB files. This 4MB “chunk” containing a stream of Wikipedia articles forms the unit of

the numerous dataset sizes used in our benchmark evaluations in chapter 4.

Dataset Specifications:

• Number of Articles: 5,573,921

• Number of Files: 3371

• File Size: 4MB

• Total Size: 15GB

3.4.2 Word Count and Inverted Link Index

The text processing problems we chose to solve over the Wikipedia dataset are Word Count

and Inverted Link Index. These problems are described more generally in sections 2.5.1 and

2.5.2. Here we cover a few specific implementation details worth noting in the context of

processing the Wikipedia article dataset.

Word Count Word Count is fairly straightforward. Our benchmark solutions return a dictio-

nary mapping any unique word contained in the input dataset with the number of times that

word occurs across the entire dataset. Each dictionary key is a word (string), and the value is

an integer.

We disregard all case, punctuation, and numbers in the dataset. All words are coerced to

lower case. For reference, the Python method in our implementation responsible for this is

clean_words(s) in util.py (c.f. 6.1). Additionally, words shorter than 3 characters in length are

ignored. These choices are merely convenient simplifications. Our purpose here is to evaluate

systems, not to rehash a semantically robust word count implementation.

Inverted Link Index Our Inverted Link Index benchmarks return a dictionary mapping any

article title in the input dataset to a list of all articles which contain a link to that article

title. This is a practical application of the more general Inverted Index problem described in

section 2.5.2. Wheres general Inverted Index considers any word as key, our implementation

only considers links. This was implemented to diversify our benchmarks. Word Count above

already outputs a key, value for every term in the dataset. In contrast, the key, value output

of Inverted Link Index is more sparse; a key, value is only output when a link is encountered.

Furthermore, the value output of Inverted Link Index is a list of article titles (strings), whereas

Word Count values are simple integers.

Inverted Link Index can provide a basis for future work in processing the link-graph struc-

ture of the article dataset (for instance, a PageRank [25] implementation for Wikipedia).

26



Similar to Word Count above, we disregard case and punctuation. Furthermore, Wikipedia

has various meta-articles which serve as aliases, redirects, and indexes. We do not resolve

those to their terminal articles. In a production environment, this sort of processing would

likely be handled as a post-processing step, after bulk processing had reduced the data to a

more manageable size.

It’s worth noting that every page on the officially hosted Wikipedia provides a link on the

side-bar which will return to users a list of all inbound links to that page’s article (see https:

//en.wikipedia.org/wiki/Help:What_links_here). That is, each Wikipedia page hosts it’s

own Inverted Link Index. Naturally, this proves quite useful for spot-validation during the

development and demonstration of our inverted link index solution.

3.4.3 Implementation Variants

We implement several variants of the Word Count and Inverted Link Index solutions described

in section 3.4.2 above, with the goal of exploring the trade-offs between serial, local parallel,

and distributed computing models, and benchmarking our low-power SBC cluster against our

conventional x86 platform. The first three variants described are the non-distributed imple-

mentations for our conventional x86 platform. The last variant is the distributed / MapReduce

implementation to be run on our cluster.

These implementation variants will form the basis for our benchmark comparisons and

analysis in chapter 4.

In-Memory (conventional x86) Both the Word Count and Inverted Index solutions outlined

in section 3.4.2 output a key, value dictionary as their final result. Since our conventional

x86 platform has 12GB of system memory, we can maintain this dictionary in-memory while

processing all data records. No expensive latency costs are incurred by writing intermediate

state to disk. However, memory usage grows with the size of the input data. This is analogous

to scale-up architecture.

The in-memory variants are single threaded.

Source files (6.1):

• word_count_inmemory.py

• inverted_index_inmemory.py

External (conventional x86) The MapReduce framework is inherently external in it’s execu-

tion (i.e. it writes most intermediate work to disk before processing another record), thus

we implement external variants in addition to the in-memory variants of each solution for
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our x86 platform. When evaluating benchmarks, we will consider in-memory versus external

solutions by factoring peak per-record memory consumption into the final throughput mea-

surements (c.f. 4.3). Our external implementation variants make use of the Python shelve

standard library module, which provides a buffered dictionary implementation which can be

flushed to disk between processing input records. Thus, memory consumption is bounded by

the individual record size, and is roughly constant over all input dataset sizes.

This variant is single-threaded, and establishes a baseline for the next variant.

Source files (6.1):

• word_count_external.py

• inverted_index_external.py

Parallel External (conventional x86) This implementation variant extends the previous with

local MapReduce-style parallelism. The Python multiprocessing standard library module pro-

vides a map function which functions much like the mapper of a MapReduce execution frame-

work, but in a machine-local context. We use multiple Python shelve objects, one per thread,

and merge them after processing all records. This is in-essence a limited MapReduce imple-

mentation.

This variant is multi-threaded, and uses all 4 cores of our x86 platform.

Source files (6.1):

• word_count_parallel.py

• inverted_index_parallel.py

MapReduce (ARM64 SBC cluster) Our MapReduce implementations closely follow the gen-

eralized forms described in sections 2.5.1 and 2.5.2 for Word Count and Inverted Index, respec-

tively.

The MapReduce variants are inherently parallel, external, and distributed. They may exe-

cute on up to 20 cores across our cluster.

Source files (6.1):

• word_count_mapreduce.py

• inverted_index_mapreduce.py
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4 Evaluation and Analysis

In this chapter, we present our benchmark results. We first define the benchmarks and envi-

ronment. We then measure execution time, memory consumption, and power consumption

of our benchmarks. We wrap up by calculating the raw throughput for each benchmark, and

throughput adjusted for power and memory consumption.

4.1 Benchmark Setup

Benchmarks are based around the Wikipedia text processing solution variants outlined in

section 3.4.3. We refer to these solution variants throughout this chapter in graphs and analysis

as In Memory, External, Parallel Ext., and MapReduce variants or implementations. To recap

them here:

• In-Memory: for x86 platform. Does all processing in-memory.

• External: for x86 platform. Saves intermediate data to disk between processing each

record, minimizing main memory usage.

• Parallel Ext.: for x86 platform. Similar to above, but parallelized using the MapReduce

programming pattern.

• MapReduce: for low-power SBC cluster. Executes in the parallel-distributed MapReduce

framework.

We consider each of the above variants for both our Word Count (3.4.2) and Inverted Link

Index (3.4.2) solutions. Thus there are eight total benchmark implementations.

We test each benchmark implementation with dataset sizes of 10, 20, 40, 80, 160, 320, 640,

1280, and 2560 files. Each file is a 4MB stream of Wikipedia articles, as detailed in section 3.4.1.

Thus test datasets range in size from 40MB all the way up to 10GB. There are (8× 9) 72 total

benchmarks to be run. We automated much of the benchmark testing through scripts.

4.2 Execution Time

The first and foremost performance metric identified for any data processing implementation

is typically execution time; the time elapsed before arriving at a solution. In our benchmarks,

execution times are measured as total data processing execution duration in milliseconds, from

the launch of data processing functions until result dictionaries are ready.

The execution time results for Word Count based benchmarks are show in figure 11. The

execution time results for Inverted Link Index based benchmarks are show in figure 12. Refer

to appendix 7 for full numerical data.
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Figure 11: Word Count Execution Time
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Figure 12: Inverted Link Index Execution Time
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As we can see, the conventional x86 platform in-memory implementations are the fastest

executing, especially for small dataset sizes. However, as dataset size grows, our SBC MapRe-

duce cluster begins to catch-up. Both our scale-out implementation and best scale-up imple-

mentation perform almost identically for the largest dataset size (2560 files or 10GB) under

either text processing solution. Under Word Count, our MapReduce cluster is competitive

even for smaller datasets, down to 160 files or 640MB.

Inverted Link Index is much sparser in its (key, value) output for a given dataset input,

implying a reduced constant of proportionality in its IO complexity. This becomes apparent

when comparing the Inverted Link Index and Word Count execution times. For small inputs,

Inverted Link Index is not as dominated by IO throughput as Word Count, and thus the In-

Memory implementation of Inverted Link Index out-performs all other benchmarks before
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the largest dataset size (2560). In contrast, the added throughput capability of the scale-out /

MapReduce implementation performs competitively even for small datasets down to 160 files

in the more IO-bound Word Count problem.

This illustrates the importance of IO throughput over CPU capability for data intensive

tasks. There is a clear trend showing our scale-out / MapReduce cluster performing com-

mensurately (or possibly better than) the best scale-up conventional solution (In-Memory) as

dataset size grows asymptotically.

4.3 Memory Consumption

Execution time alone does not give a complete picture of the overall efficiency of an implemen-

tation. When allowed “unlimited” space, it is often possible to make trade-offs to gain better

execution time. Thus, we measure not just a benchmark’s execution time, but also it’s memory

consumption.

The conceptual “size” of an individual machine is often analogous to its CPU performance

and main DRAM capacity. Individual machine costs grow super-linearly with CPU Perfor-

mance and DRAM capacity. The ability to swap to disk, network, or other external device is

a good measure of the decomposability of a solution to run on many “small” and thus less

expensive machines. Intuitively, the more efficiently a data processing solution executes when

it’s peak per-record DRAM occupation is constrained by swapping to external memories, the

more amenable to executing on a small machine that solution is and the more effectively it

will execute in a distributed / scale-out setting.

The DRAM utilization of our benchmarks is measured as peak per sub-task resident seg-

ment size (RSS), as reported by the Linux Kernel in /proc/self/statm, or by the htop [15]

process monitoring utility for MapReduce and Parallel External implementations. What we

mean by “per sub-task” is the individual sub-processes which make-up the (potentially) paral-

lelized execution of a data processing job, either in the Mapreduce framework or in our local

serial and multi-processing variants of the solutions. That is, an individual map or reduce

worker in a MapReduce variant, or a Python multiprocessing sub-process in our parallel exter-

nal variant, or the entire task in our local in-memory and external variants. These tasks have

processing functions which are called for each record. In our external implementation vari-

ants, where intermediate data is swapped to disk after each record, the peak per-task memory

consumption is generally the same as the per-record memory consumption.

We do not measure external solid-state memory utilization, or storage, as the cost of this is

fractional and the availability nearly unlimited when compared to the expense of main system

memory (DRAM).
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Figure 13: Per-Task Memory Usage
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As expected, figure 13 confirms that external implementation variants (External, Parallel

Ext., MapReduce) have a constant DRAM consumption in their input size, whereas the In-

Memory implementation’s DRAM consumption grows linearly with the input size. To ac-

count for this large disparity, we will factor these measurements into our adjusted throughput

calculations in section 4.5.

4.4 Power Consumption

We factor-in the power consumption of each solution in our analysis of final throughput num-

bers. In doing so, we can account for the overall efficiency of our x86 platform versus SBC

cluter hardware architecture. The rough power consumption measurements for each variant

of each benchmark are listed in table 1.

Table 1: Average Power Consumption

In Memory External Parallel Ext. MapReduce
Word Count 16.2W 16.0W 16.0W 17.25W
Inverted Link Index 17.2W 16.1W 16.2W 20.0W

ARM64 Cluster As our cluster is powered via a multi-port USB power supply, we obtained a

USB power meter which will give a voltage (V) and amperage (I) readout when placed in-line

between a cluster node and the power supply. From this, the power consumption in watts (PW)

of a single node can be calculated using the simple power formula PW = VI. We periodically

sample (by visual inspection of the meter) power draw of an individual node to obtain an

average power draw during the execution of each MapReduce algorithm implementation. We
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then multiply this average by the number of nodes in the cluster (5), to achieve a rough overall

average for the combined cluster’s power draw during the execution of each implementation.

x86 Platform Our x86 platform, being a laptop, has an internal battery from which power

draw in watts can be read while not connected to AC power. We take advantage of this to

measure power consumption of our local in-memory, external, and parallel external imple-

mentations, by periodically sampling the battery draw in watts while executing each imple-

mentation. From this, we derive a rough average power draw for each local implementation.

The battery draw in watts can be read from Linux via the command:

cat /sys/class/power_supply/BAT0/ power_now

Most modern x86 platforms have advanced power governors which scale CPU frequency

and floating point performance to optimize for power savings when on battery or at idle-

load. To get a fair measurement, this behavior must be disabled by statically assigning a

high performance CPU frequency governor in the Linux Kernel via sysfs. This overrides any

benefits the x86 platform would gain from battery power conservation mechanisms.The CPU

frequency governor is set for high performance via the command(for every CPU in the system

cpu0 cpu1 cpu2 cpu3):

echo performance > /sys/bus/cpu/devices/cpu0/ cpufreq/scaling_governor

4.5 Throughput Analysis

For any solution to a data-intensive problem, the ultimate metric of performance is often

data throughput. That is, how many bits of raw input data can be processed or otherwise

rendered useful per unit time. Given our execution time measurements above (4.2) and our

known dataset sizes (3.4.1), calculating the raw throughput achieved by each implementation

is trivial. We will also present an adjusted throughput which factors both power consumption

and memory utilization into the raw throughput metric, giving a more holistic hardware-

software-scalability perspective to our final analysis.

Raw throughput in Megabits per Second at Dataset Size i is calculated as:

Mbpsi =
(i)× (4MB)× (8bits)
(Execution Timei)

× (1000ms)

To factor-in memory consumption, we adjust the above value by dividing in the per-task

RSS memory usage at dataset size i (RSSi), converted to Megabits. Similarly, to consider

power consumption, we further divide that value by the average wattage consumed for the

implementation, as measured in section 4.4 above.
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Figure 14: Word Count Throughput
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Figure 15: Inverted Link Index Throughput
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Mbpsiadj =
(Mbpsi)

(RSSi)
× (1000KB)× (8bits)× 1

(Wattsavg)

Intuitively, this represents the amount of data which can be processed in Megabits for

dataset size i, given 1 Megabit of per-task or per-record RSS consumption, 1 Watt of power,

and 1 second of time.

The raw and adjusted throughputs for each solution are graphed on the left and right

blocks, respectively, of figures 4.5 and 4.5.

Aside from painting a clearer picture for comparative purposes, raw throughput is rela-

tively uninteresting as merely a different presentation of the execution time data in section

4.2 above. Of note again, due to its comparatively sparse (key, value) output, the Inverted

Link Index solution is not as IO-bound as Word Count. This can be seen in the higher raw

throughput achieved by Inverted Index when compared to Word Count.
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Of greater interest is the throughput adjusted for power and memory consumption. From

figures 4.5 and 4.5, we can see that for larger dataset sizes both our Word Count and Inverted

Link Index MapReduce solutions out-perform the conventional x86 platform solutions. Fur-

ther note this is in-spite of the marginally higher power consumption of our ARM64 cluster

per table 1. This demonstrates a core result of our work; clusters of inexpensive low-power

machines can out-perform conventional machines with stronger CPUs in data-intensive work-

loads, from a throughput perspective, when power consumption and scalability of the imple-

mentation are considered. Even omitting adjustment for power and memory consumption,

our novel low-power MapReduce cluster performs competitively with the conventional x86

platform for the largest dataset sizes, at a fraction of the overall cost.
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5 Conclusions and Future Work

We have demonstrated that, in the context of external solutions for data-intensive problems,

CPU performance is of little importance compared to combined I/O throughput capacity of a

system. A small cluster of low-power and inexpensive machines with comparatively “weak”

CPUS can out-perform a relatively expensive single machine with a “strong” CPU, when

power and per-record memory consumption are considered.

As a throughput-oriented parallel programming model and execution framework, MapRe-

duce has served as an ideal vehicle for evaluating scale-up versus scale-up computing architec-

tures in the data-intensive context. We have shown our novel MapReduce cluster constructed

from low-power ARM64 single-board computers performs comparably to a conventional low-

power x86 platform in the space of data-intensive text processing, thus demonstrating the vi-

ability of ARM64 single-board computers and similar low-power space-constrained machines

for use in data-intensive computing.

In the process of demonstrating this result, we have implemented an accessible model

for empirical distributed systems research with MapReduce. Our cluster is inexpensive, low-

power, and space efficient enough to be convenient for students and researchers. We have

provided practical examples of text processing with MapReduce through our straightforward

solutions to the Word Count and Inverted Index problems for the Wikipedia dataset. We hope

that our examples and cluster construction inspire further research into computing architec-

tures composed of numerous small and low-power nodes, as well as make MapReduce and

general distributed systems research more accessible to those with limited resources.

5.1 Future Work

Having established two solid baseline text processing solutions for the Wikipedia dataset,

we would like to develop further solutions exploring more analytical problems. Given the

structured document graph format of Wikipedia, it serves as an ideal scaled-down model for

exploring the structured document graph of the World Wide Web. For example, our Inverted

Link Index solution would make a good first step towards a PageRank [25] implementation

for Wikipedia. Word Count and Inverted Link Index are particularly straightforward, both

from a complexity analysis standpoint and in their practical implementation. Exploring more

complex / non-linear graph processing solutions could provide additional insights to the im-

plications of distributed systems hardware architectures on data-intensive workload, beyond

those of IO throughput versus CPU capability, or scale-up versus scale-out approaches.

As low-power computer hardware architecture is constantly evolving, keeping up-to-date
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with the latest innovations and their implications for distributed systems is an area of bound-

less research. We look forward to new evolutions in low-power hardware, such as the embed-

ding of many-core GPUs into ever smaller and more power-efficient packages [23], as well as

the ongoing emergence of ARM64 as a mainstream processor architecture for use beyond the

embedded and mobile computing space. We believe these innovations will continue to drive

movement towards numerous small yet densely distributed nodes in data centers and cluster

computing. Studying the application of low-power embedded hardware architecture to tradi-

tional data center workloads can give an early look towards the ultra-dense data centers of the

future.
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6 Additional Materials

6.1 Source Code

The Python source code for our Inverted Index and Word Count solutions for the Wikipedia

dataset, and associated scripts and utilities used in all experiments, as well as possible code

for future work, is available on the author’s personal website at:

http://dmcdm.org/repo/wikidata

6.2 Cluster Construction

In-depth instructions on how to replicate our Odroid-C2 cluster running Disco MapReduce

are available as a two-part setup guide on the author’s personal website.

• Part 1 covering initial cluster hardware setup and systems software installation:

http://dmcdm.org/posts/arm64-cluster.html

• Part 2 covering installation of the Disco MapReduce framework to the cluster, and prepa-

ration and deployment of the Wikipedia dataset:

http://dmcdm.org/posts/arm64-mapreduce.html

6.3 Slides

Presentation materials which accompany this work are available on the author’s personal

website at:

http://dmcdm.org/slides/defense.pdf

Related to this work, the authors lectured on the topic of MapReduce during the Summer

School for Massive Data at TÜBİTAK in Gebze, Turkey. The slides accompanying that lecture

are also available:

http://dmcdm.org/slides/mapreduce.pdf
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7 Data

Here we collate the full data from our benchmarks. The ”Dataset” column of each table is the

number of input files, and thus total number processing function calls in our local benchmarks,

or the total map jobs to be executed in our MapReduce benchmarks. Each Wikipedia dataset

input file is 4MB, and so to obtain total input data size for each Dataset row, multiply the

value therein by 4MB. Execution times are reported as total processing job execution time

milliseconds, from the launch of dataprocessing tasks until results are ready. Per-Task Memory

Usage is measured by a single representative sample of Resident Segment Size (RSS) memory

occupation taken during execution of one sub-process in the Parellel-External case, one Map

job in the MapReduce case, or the whole process peak memory utilization in the the local

In-Memory and External implementations’ columns, as reported by the Linux Kernel for that

process in /proc/self/statm or by the htop process monitoring utility.

Table 2: Execution Time (ms) - Word Count

Dataset In Memory External Parallel Ext. MapReduce
10 5,034 13,985 15,651 16,218
20 10,336 29,573 27,291 22,282
40 20,376 62,755 47,900 40,418
80 40,172 116,754 85,210 52,586

160 83,674 236,370 156,745 95,689
320 171,577 457,303 281,182 192,731
640 346,589 939,571 633,939 337,125

1,280 745,528 1,978,995 1,173,625 720,337
2,560 1,468,463 4,408,490 2,482,904 1,587,387

Table 3: Per-Task RSS Memory Usage (KB) - Word Count

Dataset In Memory External Parallel Ext. MapReduce
10 21,544 40,472 53,856 52,920
20 30,700 40,768 52,176 50,096
40 35,780 40,804 52,744 53,272
80 56,032 44,384 50,652 53,064

160 92,996 44,504 54,952 49,744
320 109,324 44,952 50,088 51,068
640 190,572 41,812 54,304 53,160

1,280 242,504 44,372 52,584 52,709
2,560 430,248 40,472 49,920 50,182
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Table 4: Execution Time (ms) - Inverted Index

Dataset In Memory External Parallel Ext. MapReduce
10 1,082 2,712 3,503 16,322
20 2,062 6,395 7,514 16,396
40 4,068 13,162 14,538 40,562
80 8,084 35,607 28,768 52,797

160 17,764 69,950 59,245 89,684
320 69,457 162,748 136,050 182,525
640 133,227 396,375 303,268 329,442

1,280 321,407 1,041,561 751,684 694,177
2,560 1,109,818 3,479,578 2,387,131 1,279,975

Table 5: Per-Task RSS Memory Usage (KB) - Inverted Index

Dataset In Memory External Parallel Ext. MapReduce
10 41,716 41,312 38,952 20,562
20 50,244 41,532 39,556 21,642
40 68,248 41,916 38,512 20,900
80 93,336 42,712 39,810 21,880

160 132,100 44,276 40,042 20,824
320 182,864 47,856 39,212 20,816
640 305,636 49,996 39,204 20,892

1,280 539,968 54,068 38,972 21,656
2,560 1,077,320 66,488 40,816 20,728
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