
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

Winter 2018

A practical and efficient algorithm for the k-mismatch shortest A practical and efficient algorithm for the k-mismatch shortest

unique substring finding problem unique substring finding problem

Daniel Robert Allen
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Numerical Analysis and Scientific Computing Commons, Other Computer Sciences

Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Allen, Daniel Robert, "A practical and efficient algorithm for the k-mismatch shortest unique substring
finding problem" (2018). EWU Masters Thesis Collection. 470.
https://dc.ewu.edu/theses/470

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/470?utm_source=dc.ewu.edu%2Ftheses%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

A practical and efficient algorithm
for the k-mismatch shortest unique

substring finding problem

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

By

Daniel Robert Allen

Winter 2018

Thesis of Daniel Robert Allen Approved by

DR. BOJIAN XU

GRADUATE STUDY COMMITTEE CHAIR
DATE

DR. PAUL H. SCHIMPF

GRADUATE STUDY COMMITTEE MEMBER
DATE

PROFESSOR ESTEBAN RODRIGUEZ-MAREK

GRADUATE STUDY COMMITTEE MEMBER
DATE

ii

Master’s Thesis

In presenting this thesis in partial fulfillment of the requirements for a masters

degree at Eastern Washington University, I agree that the JFK Library shall make

copies freely available for inspection. I further agree that copying of this project

in whole or in part is allowable only for scholarly purposes. It is understood,

however, that any copying or publication of this thesis for commercial purposes,

or for financial gain, shall not be allowed without my written permission.

SIGNATURE DATE

iii

Acknowledgments

I would like to thank Dr. Bojian Xu for the many hours spent providing me with

guidance, thoughtful feedback, and motivation while serving as my primary advi-

sor on this project. Additionally, I would like to thank Dr. Sharma Thankachan

from University of Central Florida for his feedback to this thesis work. I would

also like to thank Dr. Paul Schimpf and Professor Esteban Rodriguez-Marek for

the time they dedicated to reviewing my work and serving as my second and third

graduate committee members respectively. I want to thank all of the Eastern

Washington University faculty and students that contributed to my learning ex-

perience during my years of study there. Finally, I would like to thank all of the

scholars that have contributed to the body of work upon which this project has

been built. This work would not have been possible without contributions from

all of the aforementioned parties.

iv

Abstract

This thesis revisits the k-mismatch shortest unique substring (SUS) finding

problem and demonstrates that a technique recently presented in the context of

solving the k-mismatch average common substring problem can be adapted and

combined with parts of the existing solution, resulting in a new algorithm which

has expected time complexity of O(n logk n), while maintaining a practical space

complexity at O(kn), where n is the string length. When k > 0, which is the

hard case, the new proposal significantly improves the any-case O(n2) time com-

plexity of the prior best method for k-mismatch SUS finding. Experimental study

shows that the new algorithm is practical to implement and demonstrates sig-

nificant improvements in processing time compared to the prior best solution’s

implementation when k is small relative to n. For example, the proposed method

processes a 200KB sample DNA sequence with k = 1 in just 0.18 seconds com-

pared to 174.37 seconds with the prior best solution. Further, it is observed that

significant portions of the adapted technique can be executed in parallel resulting

in further significant practical performance improvement. As an example, when

using 8 cores to process a 10MB sample DNA sequence with k = 2, two parallel

implementations each achieved processing times less than 1/4 that of the serial

implementation. In an age where instances with thousands of gigabytes of RAM

are readily available for use through Cloud infrastructure providers, it is likely

that trading additional memory usage for significantly improved processing times

will be desirable and needed by many users. For example, the best prior solution

may require years to process a 200MB DNA sample for any k > 0, while this

new proposal, using 24 cores, finished processing a sample of this size with k = 1

in 206.376 seconds with a peak memory usage of 46GB, which is easily available

and affordable for many users. It is expected that this new practical and efficient

algorithm for k-mismatch SUS finding will prove useful to those using the measure

on long sequences in fields such as computational biology.

v

Contents

1 Introduction 1

2 Problem Formulation and Preparation 4

3 The Algorithm 6

3.1 Constructing an order-k partition 7

3.2 Processing members of an order-k partition 10

3.3 Parallel order-k partition construction and processing 12

3.4 Computing SUS intervals . 13

4 Experimental Study 14

4.1 Two parallel strategies . 15

4.2 Results . 16

4.3 Results summary . 21

5 Conclusion 21

List of Figures

1 Processing time and peak memory usage measurements across im-

plementations, given a 200KB input string and varying k values.

HTX from [1], along with the serial and two parallel implementa-

tions of this thesis’ proposed algorithm. 17

2 Processing time and peak memory usage measurements across im-

plementations, given 10MB and 20MB input strings and varying

t (thread count) values. Measurements from the two parallel im-

plementations of this thesis’ proposed algorithm are included along

with measurements from the serial implementation using 1 thread

as a reference point. 18

vi

3 Processing time and peak memory usage measurements across im-

plementations, given input strings of varying sizes and k values of

1 and 2. Measurements from the serial and two parallel implemen-

tations of this thesis’ proposed algorithm are included. 20

vii

1 Introduction

The computer science subfield known as “string processing” focuses on the design

and analysis of algorithms which process sequences of characters, commonly re-

ferred to as strings. The algorithms from this subfield find applications in many

problem spaces. Use cases range from powering fast searches for a word or phrase

in electronic documents on personal computing devices or the Web, to efficiently

processing a body of text in a text editor or word processor application in order to

provide spell-checking and syntax highlighting functionality, to finding faint pat-

terns in DNA and protein sequences [2]. String processing has been said to form

the heart of the field of computational molecular biology, where biological con-

structs such as DNA and proteins are abstracted to sequences of characters which

can be studied independently from their complex biological environments [2].

In 2005, Haubold et al. demonstrated that the shortest unique substring (SUS)

is a useful construct for alignment free genome comparison [3]. A SUS as presented

by the authors is described as a substring which only occurs once in a sequence such

that any reduction of its length would result in the loss of its uniqueness property.

These authors presented a string processing algorithm which relies upon general-

ized suffix trees to detect shortest unique substrings across a set of sequences, but

did not analyze the performance of the presented algorithm rigorously.

Nearly a decade later in 2013, the SUS finding problem was revisited by Pei

et al. where the authors noted additional applications for the construct including

intelligent snippet selection in document search, polymerase chain reaction primer

design in molecular biology, identification of unique DNA signatures of closely

related organisms, and context extraction in event analysis [4]. Here the authors

present algorithms which process an input string of length n and can answer SUS

queries, that is, they return a single SUS which spans over a given index of the

input string. One algorithm presented uses a suffix tree and can answer a query

in O(n) time. Another algorithm is presented which can find a SUS for every

index in the string in O(n2) time and subsequently can answer each query with a

precomputed SUS value in O(1) time. Both strategies require O(n) space.

The following year, Tsuruta et al. presented an algorithm which calculated a

SUS for every index of an input string inO(n) time and space using suffix arrays [5].

The same year, another independent O(n) time O(n) space SUS finding algorithm

was presented by İleri et al. in [6] which was demonstrated through empirical data

to be significantly more space efficient in practice than the solution by Tsuruta

et al. while the processing times of the two algorithms were nearly the same.

Another notable work in 2014 by Hu et al. proposed use of an O(n) space indexing

structure which can be constructed in O(n) time and can subsequently be used

to answer queries for a SUS which contains a given substring of the input in O(1)

time [7].

In 2017, Hon, Thankachan, and Xu (HTX) presented a time and space optimal

SUS finding solution in [1]. The solution has O(n) time complexity for finding a

SUS for each index in an input string, and works in the space of the two length n

output arrays which in the end hold the beginning and end indices of the SUS found

for each corresponding index in the input string. Presented experimental data

indicates that the solution has significantly better time and space performance in

practice than comparable existing SUS finding solutions.

An additional contribution of [1] was the proposal of an approximate version

of the SUS finding problem where the uniqueness constraint is more strict than

in the exact version of the problem. The proposed approximate version requires

that the substrings be unique even allowing for up to k mismatches, which is

expected to be useful for applications in subfields such as computational biology

where factors like genetic mutation and experimental error make approximate

string matching necessary. This concept of approximate matching has proven

useful with other constructs, for example in [8] experimental results showed that

increasing a similar k-mismatch parameter applied to average common substring

finding lead to better results when estimating the evolutionary distance between

pairs of primate genomes.

After proposing the k-mismatch SUS finding problem, the authors of [1] pro-

ceed to present an algorithm which solves the problem when k > 0, which is

2

the hard case, for an input string of length n in O(n2) time and O(n) space by

performing a series of calculations and transformations in-place on two length n

arrays. Notably, only one step in the series requires greater than O(n) time.

Contribution.

• This thesis’ primary contribution is to demonstrate how strategies presented

by Thankachan et al. in [8] in the context of solving the k-mismatch aver-

age common substring problem can be adapted and applied to solve the

aforementioned time-expensive step from the HTX k-mismatch SUS finding

algorithm. The adaptation leads to a new algorithm with overall expected

time complexity of O(n logk n) and O(nk) space complexity1, a significant

improvement on the performance of the best prior work for approximate SUS

finding.

• An additional contribution of this work comes in the area of practical perfor-

mance improvement, where it is shown that the most time-expensive step in

the new algorithm can be effectively parallelized to take advantage of mod-

ern multi-core CPUs. Further, it is observed that the concurrency models

applied to the new algorithm are also applicable to the k-mismatch average

common substring finding algorithm presented in [8].

• The newly proposed algorithm for k-mismatch SUS finding has been fully

implemented and is ready for use. The implementation is demonstrated to

have achieved significantly improved processing times for approximate SUS

finding, compared to the implementation of the HTX solution, when k is

small relative to n, which is typically true in genomic sequence research

due to the fact that the error rate of DNA sequencing instruments keeps

coming down. For example, the serial implementation of the new algorithm

processes a 200KB sample DNA sequence with k = 1 in just 0.18 seconds,

1Note that the algorithm presented in [9], which has no implementation yet by the authors
of [9], is similarly adaptable, and solves the k-mismatch SUS finding problem in O(n logk n) time
and O(n) space, in theory. However, this thesis focuses on adapting the algorithm from [8] for
its practicality of implementation and competitive expected time complexity.

3

compared to 174.37 seconds required by the HTX implementation. As an

example of processing time improvement through parallelism, when using 8

cores, the parallel implementations get a further speedup by a factor of over

4, when processing a 10MB sample DNA sequence with k = 2.

• While the new proposal has a higher space complexity than the HTX so-

lution, and does indeed use considerably more memory in practice, this is

likely to be an acceptable and needed trade-off for the improved processing

times in many cases, in an age of affordable Cloud infrustructure. For ex-

ample, projecting out based on observed run times of the HTX solution, it

can be expected that the solution may take more than 7 years to process

a 200MB sample DNA input (for any k > 0), which is too long for a user

to wait. In contrast, the new proposal, using 24 cores, finished processing a

sample of this size with k = 1 in 206.376 seconds with a peak memory usage

of 46GB which is both easily available and affordable from Cloud for many

users. It is expected that this new tool for k-mismatch shortest unique sub-

string finding will prove useful to those using the measure on long sequences

in fields such as computational biology.

2 Problem Formulation and Preparation

Consider a string S of n characters each drawn from an alphabet. S[1] references

the first character in S, S[n] references the last character, and S[i] references the

ith character in the string. A substring of S spanning from S[i] to S[j] (inclusive,

i ≤ j) is represented as S[i..j]. An index m of S is covered by a substring S[i..j]

iff i ≤ m ≤ j. The length of a substring S[i..j] is denoted |S[i..j]|. The suffix of

S which begins at index i is represented by Si.

The Hamming distance between two equal length strings is defined as the

number of indices at which characters differ between the two strings. A substring

S[i..j] is said to be k-mismatch unique if there exists no other substring of equal

length S[i′..j′], i′ 6= i, such that the Hamming distance between the two substrings

4

is ≤ k. A substring that is not k-mismatch unique is a k-mismatch repeat.

Definition 2.1. Of a given string S, a k-mismatch shortest unique substring cov-

ering index m, denoted as SUS k
m, is a k-mismatch unique substring covering index

m, such that no other k-mismatch unique substring covering m with a shorter

length exists.

It is said that a k-mismatch SUS is an exact SUS when k = 0, and an approx-

imate SUS when k > 0.

Problem (k-mismatch SUS finding). For a string S of length n and a value k,

1 ≤ k ≤ n − 1, output two length n arrays A and B such that, for every index

i in S, S[A[i]..B[i]] is the rightmost SUS k
i , using expected O(n logk n) time and

O(nk) space.

This work focuses on the hard case where 1 ≤ k ≤ n−1, because: (1) an optimal

and practical solution with O(n) time and space complexities already exists for the

exact SUS case (k = 0) [1]. (2) The solution for the case where k ≥ n is trivial,

as SUSn
m ≡ S for any index m.

Definition 2.2. The k-mismatch longest common prefix of two suffixes Sp and

Sq, denoted as LCPk(Sp, Sq), represents the k-mismatch longest common prefix

to suffixes Sp and Sq, that is, the longest prefix which has Hamming distance ≤ k

between the two suffixes.

The notation of LCP0(Sp, Sq) is often simplified as LCP(Sp, Sq) when it is clear

from the context.

Definition 2.3. The k-mismatch left-bounded longest repeat starting at index i,

denoted as LLRk
i , is a k-mismatch repeat S[i..j] such that j = n or S[i..j + 1] is

k-mismatch unique.

Clearly, |LLRk
i | = max{|LCPk(Si, Sj)|, j 6= i}, for every i.

5

Idea of the solution. Given an array of length n which at every index i holds

the value |LLRk
i |, algorithms presented in [1] can be directly applied to calculate

SUS k
i for every index i in S in O(n) time and O(n) space. Calculating all |LLRk

i |

values for the string S is the one algorithm presented in [1] that has O(n2) time

complexity when k > 0. The dynamic programming-based strategy used in their

work involves comparing every pair of distinct suffixes of S which clearly takes

O(n2) time. In [8], an algorithm for finding the k-mismatch average common

substring of two input strings X and Y is presented. A step of the algorithm

involves calculating, for every index i in X, maxj{|LCPk(Xi, Yj)|} in expected

O(m logkm) time, where m is the combined length of X and Y . This is clearly

similar to the calculation of |LLRk
i | values for each index in S. In the next section,

it will be demonstrated that, with modifications, the same strategy from [8] can

indeed be applied to calculate all |LLRk
i | values in expected O(n logk n) time.

3 The Algorithm

This section presents an adaptation and modification of the algorithm and asso-

ciated analysis from [8], to make it operate on the single input string S and to

calculate |LLRk
i | for every index i in S.

Definition 3.1. An order-h partition, denoted Ch, where h is an integer 1 ≤ h ≤

k, is a collection {P1, P2, . . .} of subsets of the set of all suffixes of S, such that for

each (Si, Sj), i 6= j pair of suffixes of S, there exists a subset P in Ch where

|LCPh−1(Si, Sj)| = min
{
|LCPh−1(s, s′)| | s, s′ ∈ P

}
The weight of Ch, W (Ch), is the sum of sizes of all P ∈ Ch. Let Ψh−l(P) =

min{|LCPh−1(s, s′)| | s, s′ ∈ P}.

The following subsections will demonstrate how an order-k partition with ex-

pected weight O(n logk n) can be constructed, and that an order-k partition can be

used to populate an array holding every |LLRk
i | value in linear time with respect

6

to the partition’s weight.

3.1 Constructing an order-k partition

The approach presented here to construct an order-k partition is iterative. First,

an order-1 partition is constructed using the suffix tree of S, then an order-2

partition is constructed using the order-1 partition, and so on until finally an

order-k partition is constructed.

For the purposes of this algorithm, two properties of compact tries over sets of

suffixes (for which no suffix is a prefix of any other suffix) are important:

1. Each non-leaf node is the lowest common ancestor of at least 2 suffixes since

each non-leaf node has at least 2 non-empty sub-trees descending from it.

2. Every pair of suffixes contained in such a trie will have 1 lowest common

ancestor non-leaf node.

In order to ensure that no suffix is a k-mismatch prefix of another, each suffix of

S has a sequence $1$2 . . . $k+1 of k + 1 special characters which do not appear in

S appended to its end. Now, as an initial step, a suffix tree (a compact trie over

all suffixes) of S is constructed which will be maintained throughout the LLRk

finding algorithm. The suffix tree requires O(n) space and construction takes O(n)

time [10].

To generate C1, iterate over each non-leaf node u of the suffix tree of S, and

at each such node, collect a subset P ∈ C1 which consists of all of the suffixes

corresponding to leaves which are descendants of u. For correctness, observe that

each pair (Si, Sj), i 6= j of suffixes will be included in the subset P , collected at

the non-leaf node that is their lowest common ancestor in the tree, and that both

|LCP0(Si, Sj)| and Ψ0(P) are equal to the string-depth of this node. Additionally,

since each suffix of S belongs to at most 1 non-leaf node at each level of the suffix

tree, it can immediately be seen that W (C1) ≤ nH, where H is the height of

the suffix tree. Another way to think about each subset P collected is that, each

contains at least 2 suffixes that have different characters at index Ψh−1(P) + 1,

7

while all of the included suffixes have length Ψh−1(P) prefixes that are within

Hamming distance h − 1 of each other; this is clearly the case in the outlined

h = 1 case, and will be maintained as an invariant across each iteration to generate

subsequent higher order partitions.

Now it will be demonstrated generally how a partition Ch can be generated

from a partition Ch−1. For each P in Ch−1, create a new set P ′ which consists of

the suffixes from P with each having had its first Ψh−2(P) + 1 characters deleted,

and create a compact trie ∆ over the suffixes in P ′. Then, iterate over each non-

leaf node w in ∆, and at each such node collect a subset P ′′ ∈ Ch which has one

entry for each suffix corresponding to a leaf node in the trie which is a descendant

of w. Rather than adding the suffix for each descendant leaf node directly to P ′′,

instead the original suffix which had a prefix deleted to create the corresponding

entry in P ′ is used. This can be equivalently expressed as, for each P in Ch−1:

P ′ = {Si+Ψh−2(P)+1 | Si ∈ P}

and, where Z is the set of suffixes corresponding to the descendant leaves of w:

P ′′ = {Si | Si+Ψh−2(P)+1 ∈ Z}

Conceptually, the Ψh−2(P) + 1 length prefix deletion when generating each P ′

can be thought of as accepting and moving past the mismatch occurring at index

Ψh−2(P) + 1 in at least 2 of the suffixes in P . The subsequent processing of P ′

follows the same logic used when processing the set of all suffixes of S in the

h = 1 case, once again a compact trie structure is used to identify indices where

next mismatches occur between suffixes with length Ψh−1(P ′′) prefixes that are

within Hamming distance h− 1 of each other. Note that the height of ∆ is ≤ H,

this is clear because the compact trie is created over a subset of the suffixes over

which the suffix tree of S was created. It follows that W (Ch) ≤ H ·W (Ch−1)

since W (Ch−1) is the total number of suffixes across all P ′, and each suffix in a

particular P ′ corresponds to a leaf node which is the descendant of just 1 non-

8

leaf node per level in the corresponding ∆. Combining this observation with the

known bound on W (C1), it is seen that W (Ck) = O(nHk).

3.1.1 Correctness

Under the assumption that Ch−1 is an order-(h − 1) partition, it will now be

formally proven that the collection Ch, generated as specified previously, is an

order-h partition. By the assumption, it is the case that for any (Si, Sj), i 6= j

pair there exists a P ∈ Ch−1 such that |LCPh−2(Si, Sj)| = Ψh−2(P). Consider ∆

to be the trie constructed while processing P . Based on the definition of P ′ over

which ∆ was created, and previously noted trie properties, it is known that a node

w exists in ∆ which is the lowest common ancestor of the leaves corresponding

to suffixes Si+Ψh−2(P)+1 and Sj+Ψh−2(P)+1 and the string-depth of w in ∆ is equal

to |LCP(Si+Ψh−2(P)+1, Sj+Ψh−2(P)+1)|. It follows then, based on its definition, that

the new set P ′′ ∈ Ch constructed at w contains both Si and Sj. Further, it is clear

that Ψh−1(P ′′) = |LCPh−1(Si, Sj)| since exactly one additional mismatch between

Si and Sj was bypassed when processing P . This completes the proof.

3.1.2 Time and space complexity

When processing each P ∈ Ch−1, the set P ′ can be collected in O(|P |) time.

Construction of the corresponding compact trie ∆ can be completed in overall

O(|P ′| log|P ′|) time by lexicographically sorting the suffixes in P ′, computing the

longest common prefix lengths between all pairs of suffixes which are consecu-

tive in the sorted order in O(|P ′|) time, and then using a standard linear time

suffix tree construction technique [11, 8]. Combining for all P ∈ Ch−1 the to-

tal time spent constructing the compact tries while generating Ch from Ch−1 is

O(W (Ch−1) log n). Producing the P ′′ sets from the generated tries takes, in to-

tal, time proportional to the sum of sizes across all of the sets that are generated,

which is known to be O(W (Ch)) = O(W (Ch−1)H). Adding the time for trie

creation with the time spend generating P ′′ sets results in the total time spent

generating Ch from Ch−1: O(W (Ch−1)(log n + H)). The total time for creating

9

Ck is then (log n+H)
∑k−1

h=1 W (Ch) = O(nHk−1(H + log n)).

On the topic of space complexity, observe that when creating a P ′′ ∈ Ch only

a single P ∈ Ch−1 is needed. Based on this observation, it is clearly possible to

generate the members of Ck in a depth-first manner in which there is only ever

one member in existence at a time for each Ch for 1 ≤ h < k. Using this strategy,

O(nk) space complexity can be achieved.

Lemma 3.1. Members of an order-k partition Ck of total weight O(nHk) can be

generated in sequence using O(nk) working space in O(nHk−1(H + log n)) time.

3.2 Processing members of an order-k partition

An array B of length n is initialized such that all elements are 0. As each member

P ∈ Ck is generated, it is processed, possibly resulting in updates to elements in

B, and then it is discarded. When processing of all members P ∈ Ck is complete,

B will hold at each index i the value |LLRk
i |. Processing of each member P consists

of the following steps:

1. For each suffix s ∈ P , obtain a suffix s′ by deleting the length (Ψk−1(P) + 1)

prefix from s, then find the lexicographic rank of s′ amongst all suffixes of

S, and place this rank in a pair with s′. Conceptually, the s′ suffixes are

the remainder of the suffixes in P after deleting prefixes up to and including

the character at the index of the first kth mismatch occurrence across all of

the suffixes in P . Note then, that the first mismatch occurring between any

two s′ suffixes will be no greater than the (k + 1)th mismatch between the

corresponding two members of P . The lexicographic rank of a given s′ can

be computed in O(1) time using the suffix tree of S [8].

2. Sort all pairs from the previous step in an array V by their s′ rank. Note

that this sorting step moves pairs which have the longest common prefixes

between their s′ suffixes closer together.

3. Let δ = (Ψk−1(P)+1) and lcaStringDepth(Sx, Sy) be a function that returns

the string-depth of the lowest common ancestor node of the two leaf nodes in

10

the suffix tree of S which correspond to the distinct suffix arguments Sx and

Sy. Iterate over the indices into the array V of sorted pairs from index p = 1

to p = |V |. At each index, let i be the index in S at which the suffix s starts,

where s is the suffix in P from which V [p].s′ was created, and calculate two

candidate values based on adjacent pairs:

a =

δ + lcaStringDepth(V [p].s′, V [p− 1].s′), if p > 1

0, otherwise

and:

b =

δ + lcaStringDepth(V [p].s′, V [p+ 1].s′), if p < |V |

0, otherwise

then update:

B[i]← max{B[i], a, b}

Note that lcaStringDepth(Sx, Sy) can be computed in O(1) time using the

suffix tree of S [12].

3.2.1 Correctness

Observe that the candidate values used to update an element at index i in B

are always either less than or equal to |LCPk(Si, So)| where So is the other suffix

s corresponding to the s′ from the relevant adjacent pair in V . This is clear

because it is known that all members of P had at most k mismatches up to

and including index (Ψk−1(P) + 1), and by adding the string-depth of the lowest

common ancestor of the two s′ suffixes to this index, the index just prior to the

next mismatch between Si and So was calculated. From this observation, and the

fact that no suffix Si appears multiple times in the same P ∈ Ck, it follows that

the final value at index i in B after processing all members of Ck is no greater than

maxj 6=i|LCPk(Si, Sj)|. Let j = m be the index where |LCPk(Si, Sj)| is maximized

for any given i. By definition, Ck must include a member P such that Si, Sm ∈ P

and Ψk−1(P) = |LCPk−1(Si, Sm)|. During processing of this P , the sorting in

11

step 2 will arrange the pairs corresponding to Si and Sm to be adjacent and B[i]

will be updated to the value |LCPk(Si, Sm)|. This concludes the proof that after

processing all members of Ch, the array B will have been correctly updated to

hold at each index i the value |LLRk
i |.

3.2.2 Time complexity

The processing of Ck consists of sorting and iterating over sets which altogether

have a total size of O(nHk), so a time complexity bound of O(nHk(log n)) is obvi-

ous. However, as described in section 2.2 of [8] the log n factor can be eliminated

by observing that all of the sorting required is over integers in the range from 1

to n and thus can be accomplished using linear time sorting algorithms like count

sort. This optimization leaves a time complexity of O(nHk).

Lemma 3.2. An array B of length n containing at each index i the value |LLRk
i |

can be computed by processing Ck in O(nHk) time.

Combining Lemma 3.1 and Lemma 3.2 yields the following theorem.

Theorem 3.1. Given a string S of length n, and an integer k ≥ 1, an array B of

length n can be computed such that for every index 1 ≤ i ≤ n the value at B[i] is

equal to |LLRk
i | in O(nHk−1(H + log n)) time using O(nk) space.

Since the expected height of a suffix tree for a string of length n is O(log n) [13, 8],

it can be concluded that the expected run time for computing the array B of

|LLRk| values is O(n logk n).

3.3 Parallel order-k partition construction and processing

It has been demonstrated in the prior subsections that each member of an order-

k partition can be constructed through independent processing of each non-leaf

node of the suffix tree of S. Further, it has been shown that each member of an

order-k partition can be processed independently to generate candidate values for

each index i of the |LLRk| array, and that the maximal candidate value generated

in this way for any index i will be equal to |LLRk
i |. A contribution of this thesis

12

is the observation that this independence means that multiple members of Ck can

be computed and processed concurrently, each independently on separate com-

puting threads with some form of synchronization only required when comparing

candidate values, for the same index of the |LLRk| array, which were generated

by different threads. While this parallelism can provide significant practical im-

provement to processing times on modern multi-core machines, these gains clearly

come at the cost of an additional factor t, the number of concurrent threads, on

the space complexity of the solution. However, it is shown in section 4 that with a

good choice of concurrency model, the additional space usage observed in practice

is often fairly minimal and that significant processing time improvements can be

achieved even with a relatively low t value. It is worth noting that this strategy for

parallelism can be similarly applied to the k-mismatch average common substring

finding proposal from [8].

3.4 Computing SUS intervals

Definition 3.2. The k-mismatch left-bounded shortest unique substring that starts

at index i, denoted as LSUS k
i , is a k-mismatch unique substring S[i..j], such that

i = j or otherwise every proper prefix of S[i..j] is a k-mismatch repeat.

Prior to passing the array B as input into the standalone algorithms presented

in [1], it is necessary to make a final transformation such that the array holds, at

every index i, the ending index of LSUS k
i , or NIL if no such LSUS k

i exists. Fact

4.2 from [1] can be used to update B, holding all |LLRk
i | values, such that at each

index i it instead holds the ending index of LSUS k
i , if it exists, and NIL otherwise,

in one O(n)-time iteration as follows.

B[i] =

NIL, if B[i] = n− i+ 1

i+B[i], otherwise

Finally, a new array A of length n can be passed along with B into Algorithms 3

and then 4 from [1] in succession to update the two arrays in place such that,

13

for every index i in S, S[A[i]..B[i]] is the rightmost SUS k
i . These algorithms

each require O(n) time and O(1) additional working space. Clearly, the time and

space spent creating and processing the order-k partition Ck dominates, and thus

the overall expected time complexity of this k-mismatch SUS finding algorithm is

O(n logk n) while the space complexity is O(kn).

Theorem 3.2. Given a string S of size n and an integer k, one can find SUS k
i of

S for every index i using O(n logk n) expected time and O(kn) space.

4 Experimental Study

Note that the new proposal and implementation can also be applied to the exact

SUS finding problem (k = 0). However, the experimental results are uninteresting

and thus have been omitted, since the optimal O(n) time and space in-place

solution for exact SUS finding presented in [1] is clearly superior. This is consistent

with what was claimed earlier in the thesis that the main contribution of this work

lies in the approximate SUS finding (k > 0), which is the harder case, and for which

the best prior work has an any-case O(n2) time complexity and thus does not scale

well to long strings.

Setup. Experiments were run on a dedicated c5.9xlarge EC2 instance hosted by

Amazon Web Services,2 featuring 3.0 GHz Intel Xeon Platinum processors with 36

cores, and 72GB RAM, running the Amazon Linux 2 operating system. In each

experiment, the input string S of length n was drawn from the first n characters

of the largest DNA file available from the Pizza&Chili corpus.3 The peak memory

usage data presented in this section was collected using the GNU time executable.

The presented timing data was collected by adding code to the implementations

which records the start and end time of processing. This internal timing strategy

was used in order to focus on processing times of the implementations without

including time spent on disk I/O operations required to read input and write

2https://aws.amazon.com/
3http://pizzachili.dcc.uchile.cl/texts.html

14

https://aws.amazon.com/
http://pizzachili.dcc.uchile.cl/texts.html

output.

Implementation. In order to explore the practical performance of the algorithm

presented in this thesis, the C++ implementation from [8] was modified to use

the presented algorithm to calculate SUS k
i values for every index i of an input

string.4 The adapted implementation maintains the same strategy for simulating

operations on the suffix tree, using a suffix array (SA), inverse suffix array (ISA),

LCP array, and range minimum query (RMQ) tables. SA construction makes

use of the libdivsufsort library [14], while the ISA, LCP array, and RMQ

tables are built using the SDSL library [15]. As [8], the implementation did not use

supported compression techniques on the structures produced by the SDSL library

in order to optimize for time performance. The executable used for collecting

experimental results was compiled using version 7.2.1 of the GCC C++ compiler

with the -O3 optimization option applied.

4.1 Two parallel strategies

It was noted in section 3.3 that construction and processing of relevant order-k

partitions can be completed in parallel across t threads. In order to demonstrate

the practicality and effectiveness of this parallelization, two parallel strategies,

each using a different concurrency model, were implemented and evaluated in

addition to the serial algorithm.

• The first strategy uses a simple non-shared approach wherein each thread

has its own independent length n array in which to store candidate values for

the final B array holding |LLRk
i | values. Then, after all members have been

constructed and processed, passes are made in serial over each of the t arrays

to populate the final B array with the overall maximum value occurring at

each index.

• The second strategy uses a shared approach where a single length n array

B is shared across all t threads. This implementation uses lock-free atomic

4The C++ implementation: https://github.com/dra4/k_mismatch_sus_finding

15

https://github.com/dra4/k_mismatch_sus_finding

operations when accessing or updating a value stored at a particular index

in the shared B array to control data races and ensure correctness.

In both of the parallel strategies, non-leaf nodes of the suffix tree of S (from

which members of the order-k partition are generated) are initially divided evenly

among the t threads. The non-shared implementation distributes the nodes such

that nodes with a lower string-depth in the suffix tree will be processed first, in

an effort to ensure that the most expensive, with regards to the amount of work

necessary to construct them, members of the order-k partition are constructed

early, and in an attempt to roughly balance the number of expensive members

initially assigned to each thread. The shared implementation shuffles the non-

leaf nodes and distributes them randomly to the threads, in an effort to avoid

collisions between updates to the value at the same index of the shared B array,

while maintaining an expected rough balance of expensive members across threads.

Each thread of both parallel implementations uses a simple work-stealing strategy

to dynamically rebalance remaining work any time an individual thread finishes its

assigned work, until no work remains across all threads. The non-shared approach

has the advantage of being quite simple and not needing to worry about possible

performance degradation due to update collisions, but this clearly comes at the

cost of additional memory use.

4.2 Results

A note regarding the experimental results on peak memory usage presented in this

section is that, a brief initial spike in memory usage was generally observed during

the RMQ table construction. As a result, expected slopes in peak memory usage

plots (as explained later in this section by varying t or k values) do not emerge

until these values are sufficiently high, as to cause memory use during partition

construction to surpass the initial RMQ construction spike. This factor should be

kept in mind when interpreting the peak memory usage graphs presented in the

rest of this section.

16

Performance affected by the values of k.

• Time: (1) In the processing time graph included in fig. 1, it can be seen

that all three implementations of this thesis’ proposed algorithm perform

significantly better than the existing HTX solution from [1], when k values

are small, which is typically true due to the error rate of DNA sequencing

instruments decreasing over time. (2) Also seen is the expected exponential

growth in processing time as k increases. It is clear that after k grows be-

yond a certain point, relative to the input string length, the HTX solution

(which has a processing time independent of k) offers superior time perfor-

mance. (3) The non-shared and shared parallel implementations consistently

outperform the serial implementation of this thesis’ proposal. Time perfor-

mance between the two parallel implementations is quite similar, with the

non-shared approach achieving slightly faster times.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

k

200KB Input

HTX

Serial

Shared, t=8

Non-shared, t=8

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
M

B
s)

k

200KB Input

HTX

Serial

Shared, t=8

Non-shared, t=8

Figure 1: Processing time and peak memory usage measurements across imple-
mentations, given a 200KB input string and varying k values. HTX from [1],
along with the serial and two parallel implementations of this thesis’ proposed
algorithm.

• Space: (1) The graph in fig. 1 showing peak memory usage shows that, as

expected, all implementations of this thesis’ proposal use more memory than

the in-place HTX algorithm. (2) This graph also illustrates the expected

linear relationship between the k value and peak memory usage by this thesis’

implementations while t and n values are held constant. (3) As anticipated,

among this thesis’ implementations, the serial version of the algorithm uses

17

the smallest amount of memory, while the non-shared parallel strategy uses

the most.

Performance improvement via parallelism. Graphs in fig. 2 depict the im-

pact of the thread count, t, on processing time and peak memory usage required by

the parallel implementations of the new proposal. Note that the advantage of the

new proposal against the HTX solution has been demonstrated in fig. 1, and thus

this figure focuses on the comparison of the serial and parallel implementations of

the new proposal.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

t

10MB Input, k=2

Serial (Reference)

Shared

Non-shared2

4

8 12 24 36

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

t

10MB Input, k=2

Serial (Reference)

Shared

Non-shared

2 4

8

12

24

36

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

t

20MB Input, k=2

Serial (Reference)

Shared

Non-shared2

4
8 12 24 36

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30 35 40

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

t

20MB Input, k=2

Serial (Reference)

Shared

Non-shared

2 4
8

12

24

36

Figure 2: Processing time and peak memory usage measurements across imple-
mentations, given 10MB and 20MB input strings and varying t (thread count) val-
ues. Measurements from the two parallel implementations of this thesis’ proposed
algorithm are included along with measurements from the serial implementation
using 1 thread as a reference point.

• Time: (1) The processing time plots included in fig. 2 show that the first

additional threads result in the largest step improvements to processing time

with returns diminishing and eventually leveling out and subsequently even

18

starting to degrade. (2) Notably, the level point occurs later for the larger

input string. This pattern is fairly intuitive, as there must be enough work

available for assignment to each thread to offset the costs associated with

allocating that thread and dividing and/or combining work across additional

threads. This trend was observed to continue in an additional experiment

with the shared parallel implementation which processed a 200MB input

string when k = 2 in 1,367.22 seconds with t set to 12, and processed the

same input in 1,249.94 seconds with t set at 24. (3) The processing time

results in these graphs show that with sufficiently high values of t in these

scenarios both parallel implementations were able to achieve speeds more

than 4 times faster than the serial implementation, with the non-shared

implementation again slightly faster than the shared implementation.

• Space: While the peak memory usage of both parallel implementations di-

verges from the reference point set by the serial implementation as t grows

large, as expected, growth is much steeper for the non-shared implementa-

tion.

Scalability. The graphs of fig. 3 present the scalability of the new proposal when

the input string size n gets larger. Again, here focus is on the comparison of the

serial and parallel implementations of the new proposal, as their advantage against

the HTX solution has been well demonstrated by fig. 1.

• Time: (1) When k is relatively small, the new proposal scales well when the

string size grows, showing its nearly linear time complexity, in its both serial

and parallel implementations. (2) Comparing the processing time graphs for

k = 1 and k = 2, it can be observed that the factor, by which parallelism

increases processing speed, is consistently larger in the k = 2 case, where

there is overall a greater amount of work to be done in the partition gener-

ation and processing stage. (3) In both cases, the parallel implementations

show consistent significant improvements in processing time, when compared

to the serial implementation. (4) Once again, processing times differ only

19

slightly between the two parallel implementations, with the non-shared im-

plementation showing a relatively small speed advantage when compared to

the shared implementation.

• Space: (1) The peak memory usage graphs show that in the k = 1 cases,

neither parallel implementation needs more space than the serial implemen-

tation, because all implementations do not need enough extra memory to

overcome the initial memory peak seen during RMQ table construction. (2)

However, in the k = 2 cases, the non-shared implementation does surpass

that point and starts diverging upwards as n increases, as expected.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

Input Size (MBs)

k=1

Serial

Shared, t=8

Non-shared, t=8

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

Input Size (MBs)

k=1

Serial

Shared, t=8

Non-shared, t=8

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

Input Size (MBs)

k=2

Serial

Shared, t=8

Non-shared, t=8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

Input Size (MBs)

k=2

Serial

Shared, t=8

Non-shared, t=8

Figure 3: Processing time and peak memory usage measurements across implemen-
tations, given input strings of varying sizes and k values of 1 and 2. Measurements
from the serial and two parallel implementations of this thesis’ proposed algorithm
are included.

20

4.3 Results summary

As demonstrated by the experimental results presented in this section, the primary

advantage of the newly proposed algorithm over the prior best solution from [1] is

significantly lower processing times when k is small relative to n. The improved

processing times clearly come at the cost of additional memory usage. In an age

where instances with thousands of gigabytes of RAM are readily available for

use through Cloud infrastructure providers, this is expected to be an acceptable

trade-off in many cases where the improved processing times make processing

much longer input strings feasible. The results from the parallel implementations

demonstrate that further significant practical improvement to processing times

can be achieved through parallelism. When multiple CPU cores are available, it

is expected that the shared parallel implementation will be preferable as it has

been observed to consistently perform nearly as well as the non-shared parallel

implementation while using considerably less memory with high n and t values.

Choosing an initial t value which is equal to the number of available cores may be

sensible since little degradation of processing time was observed for having “too

high” of a t value. If memory is constrained, choosing a lower t value may be

preferable and still provide significant practical performance improvement since

the first few additional threads were observed to provide the largest incremental

processing time improvements.

5 Conclusion

This thesis revisited the k-mismatch shortest unique substring finding problem

proposed by [1] and demonstrated that techniques presented in [8] could be adapted

to help solve the hard case where k > 0 in improved expected time complexity

of O(n logk n) while maintaining a practical space complexity of O(kn). Further,

it was observed that the techniques from [8] could be executed in parallel both

in this problem’s context as well as in the context of the k-mismatch average

common substring problem which was worked on in the referenced paper. Ex-

21

perimental study showed that the new algorithm is practical to implement and

demonstrated significantly improved processing times for small k values relative

to n when compared to the implementation of the best prior solution from [1]. Ex-

perimental results were also presented which showed further practical performance

improvement achieved through parallelism using two simple concurrency models.

It is expected that this new practical and efficient algorithm for k-mismatch short-

est unique substring finding will prove useful to those using the measure on long

sequences in fields such as computational biology.

References

[1] W.-K. Hon, S. V. Thankachan, and B. Xu, “In-place algorithms for exact

and approximate shortest unique substring problems,” Theoretical Computer

Science, vol. 690, pp. 12 – 25, 2017.

[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology. Cambridge University Press, 1997.

[3] B. Haubold, N. Pierstorff, F. Möller, and T. Wiehe, “Genome comparison

without alignment using shortest unique substrings,” BMC Bioinformatics,

vol. 6, p. 123, 2005.

[4] J. Pei, W. C.-H. Wu, and M.-Y. Yeh, “On shortest unique substring

queries,” in Proceedings of IEEE International Conference on Data Engi-

neering (ICDE), pp. 937–948, 2013.

[5] K. Tsuruta, S. Inenaga, H. Bannai, and M. Takeda, “Shortest unique sub-

strings queries in optimal time,” in Proceedings of the International Confer-

ence on Current Trends in Theory and Practice of Computer Science (SOF-

SEM), pp. 503–513, 2014.

[6] A. M. Ileri, M. O. Külekci, and B. Xu, “A simple yet time-optimal and linear-

space algorithm for shortest unique substring queries,” Theoretical Computer

Science, vol. 562, pp. 621–633, 2015.

22

[7] X. Hu, J. Pei, and Y. Tao, “Shortest unique queries on strings,” in Proceed-

ings of the International Symposium on String Processing and Information

Retrieval (SPIRE), pp. 161–172, 2014.

[8] S. V. Thankachan, S. P. Chockalingam, Y. Liu, A. Apostolico, and S. Aluru,

“Alfred: A practical method for alignment-free distance computation,” Jour-

nal of Computational Biology, vol. 23, pp. 452–460, 2016.

[9] S. V. Thankachan, A. Apostolico, and S. Aluru, “A provably efficient algo-

rithm for the k-mismatch average common substring problem,” Journal of

Computational Biology, vol. 23, pp. 472–482, 2016.

[10] P. Weiner, “Linear pattern matching algorithms,” in Proceedings of the An-

nual Symposium on Switching and Automata Theory (SWAT), pp. 1–11, 1973.

[11] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan, “On the sorting-

complexity of suffix tree construction,” Journal of the ACM, vol. 47, pp. 987–

1011, 2000.

[12] J. Fischer and V. Heun, “Theoretical and practical improvements on the

rmq-problem, with applications to lca and lce,” in Proceedings of the Annual

Symposium on Combinatorial Pattern Matching (CPM), pp. 36–48, 2006.

[13] L. Devroye, W. Szpankowski, and B. Rais, “A note on the height of suffix

trees,” SIAM Journal on Computing, vol. 21, pp. 48–53, 1992.

[14] Y. Mori, “libdivsufsort: A lightweight suffix-sorting library,”

https://github.com/y-256/libdivsufsort.

[15] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug

and play with succinct data structures,” in Proceedings of the International

Symposium on Experimental Algorithms, pp. 326–337, 2014.

23

VITA

Author: Daniel Robert Allen

Place of Birth: Everett, Washington

Undergraduate School Attended: University of Washington

Degrees Awarded: Bachelor of Arts, 2010, University of Washington

Honors and Awards: Graduate Assistantship, Computer Science Department,

2012–2013, Eastern Washington University

Professional Experience:

• Zillow Group, Seattle, WA:

– Principal Software Development Engineer, Search Services: 2018

– Senior Software Development Engineer, Search and Maps: 2016–2017

– Software Development Engineer, Search and Maps: 2013–2015

– Software Development Engineer Intern, Search and Maps: 2012

– GIS Analyst: 2011–2012

– GIS Intern: 2009–2011

24

	A practical and efficient algorithm for the k-mismatch shortest unique substring finding problem
	Recommended Citation

	Introduction
	Problem Formulation and Preparation
	The Algorithm
	Constructing an order-k partition
	Processing members of an order-k partition
	Parallel order-k partition construction and processing
	Computing SUS intervals

	Experimental Study
	Two parallel strategies
	Results
	Results summary

	Conclusion

