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Abstract 

Ticks are known carriers of bacterial pathogens that cause diseases in humans and other 

mammals.  Hosts (mice, chipmunks, rabbits, deer, and elk) must be in the tick’s questing 

range to fulfill the life cycle.  The questing range depends on the life stage of the tick, 

vegetation, and host accessibility.  Mammal densities directly affect the number of 

questing ticks observed in the environment.  The 30 Acre Lake Trail site was selected for 

this study due to the high density of Dermacentor species ticks observed in past studies 

and the only known site of Rickettsia rickettsii pathogen isolated from ticks on the 

Turnbull National Wildlife Refuge (TNWR) to date. I hypothesize that there is a risk of 

infection of Rickettsia at this location, given the large tick density as well as the large 

density of competent hosts.  I trapped small mammals four days per week for six weeks 

from 30 March 2016 to 18 May 2016.  Ticks were collected once per week in all zones 

off the 30 Acre Lake Trail.  Tick DNA was extracted for sequencing to identify Rickettsia 

bacteria.  There were 33 ticks that were positive for Rickettsia spp. bacteria of the 472 

that were tested.  Less than one percent were positive for Rickettsia rickettsii.  A 

vegetation survey was performed and a percentage of cover was determined for each 

zone. More ticks were found in areas with more chipmunks and less deer mice and higher 

percentage of shrub vegetation.  The possibility of a Rickettsia infection is present at the 

30 Acre Lake Trail. 

  



v 
 

ACKNOWLEDGEMENTS 

 Dr. Krisztian Magori has provided me with spot on guidance throughout this 

process.  He provided assistance with the process of designing my study, and in using his 

funds to complete this project and without his help this would not have been possible.  I 

would also like to thank Dr. Luis Matos for sharing his expertise in molecular biology 

and the use of his lab and equipment, not to mention him talking me into continuing my 

education.  His mentorship along with Dr. Peggy O’Connell have been invaluable 

throughout this journey.  I would like to also thank Dr. Jeb Owen for his insight on ticks 

in the discussion we had.  Dr. Stacey Warren was extremely helpful with the maps and 

instructing me on how to make them.  Jarrett Celini’s knowledge of plants and his ability 

to identify them was helpful in the vegetation study that he performed for us.  I would 

like to thank Shelby Hunter for her help trapping the small mammals in the study.  The 

many undergraduate students (490 Disease Ecology) who helped in the collection of ticks 

and other data used in this observational study.  I would like to thank Naomi Matson who 

showed me the PCR process and helped in getting some of the ticks sequenced. I also 

thank everyone else who assisted me in my research.  I would also like to thank the EWU 

Biology department for the mini-grant that they so graciously awarded to me to fund 

some of my research.   

  



vi 
 

TABLE OF CONTENTS 

Abstract…………………………………………………………...………………………iv 

Acknowledgements………………………………………………………………………..v 

Table of Contents………………………………………………...……………………….vi 

List of Figures and Tables……………………………………………………………….vii 

Introduction…………………………………………………..……………………………1 

Material and Methods………………………………………..……………………………6 

Results………………………………………………………......……………………..…11 

Discussion…………………………………………………….………………………….18 

Literature Cited………………………………………………….……………………...22 

Appendix...…………….…………………………………………………………………45 

Vita………………….……………………………………………………………………46 

  



vii 
 

FIGURES AND TABLES 

Figure 1:  Three Stage Life Cycle of Ticks……………………………………………..25 

Figure 2:  Map of Washington with inset of Turnbull National Wildlife Refuge………26 

Figure 3:  Map of Public Use Area Turnbull National Wildlife Refuge………………...27 

Figure 4:  Gel Electrophoresis of Tick Numbers 8-14…………….…………………….28 

Figure 5:  Sanger Sequence Chromatograph ……………………………………………29 

Figure 6:  Mean Tick Density by Date…………………………………………………..30 

Figure 7:  Mean Tick Density by Section……………………………………………..…31 

Figure 8:  Mean Tick Density (Inside/Outside)………………………….………………32 

Figure 9:  Mean Tick Density by Side (East/West) ……………………………………..33 

Figure 10:  Habitat Usage Map of Deer Mice……………………………………………34 

Figure 11:  Habitat Usage Map of Yellow Pine Chipmunks…………………………….35 

Figure 12:  Map of Percent Shrub Cover………………………………………………...36 

Figure 13:  Poisson Regression Between Ticks and Deer Mice…………………………37 

Figure 14:  Poisson Regression Between Ticks and Yellow Pine Chipmunks…………..38 

Figure 15:  Poisson Regression Between Ticks and Percent Shrub Cover ………...……39 

Figure 16:  Poisson Regression Between Ticks and Percent Biocrust Cover……………40 

Figure 17:  Blastn for Spotted Fever Group Rickettsia…………………………………..41 



viii 
 

Figure 18:  Blastn Result of Tick Number 10……………………………………………42 

Table 1:  Capture of Small Mammals by Week.…………………………………………43 

Table 2:  Analysis of Deviance…………………………………………………………..44 

 

 

 

 

  



 

Introduction 

Ticks are known carriers of bacterial pathogens that cause many diseases in 

humans and other larger mammals (Sonenshine and Roe 2014).  Rocky Mountain Spotted 

Fever (RMSF) and Lyme disease are two common tick-borne diseases. While Lyme 

disease tends to have long-term health effects (Klempner et al. 2001), RMSF can be fatal, 

with a 25% case-fatality rate if untreated (Jones et al. 1999).  If RMSF is recognized early 

on during the infection, it can be treated relatively easily with the use of common 

antibacterial drugs (e.g. doxycycline).  Rocky Mountain Spotted Fever can be 

asymptomatic until a rash appears, but many times this late diagnosis is too late to 

effectively treat patients (Childs et al. 2007, Raoult and Parola 2007).  Therefore, 

awareness of the risk of infection from ticks is crucial among the public and in the 

healthcare community to insure timely diagnosis and to prevent unnecessary infections.  

The bacteria that causes RMSF is Rickettsia rickettsii and it can be transmitted by several 

species of ticks (Estrada-Pena et al. 2013).  The primary vectors are Dermacentor 

andersoni (Rocky Mountain Wood Tick) that occurs in the Rocky Mountains and 

Dermacentor variabilis (American dog tick) that is primarily found east of the Rockies 

(Araya-Anchetta et al. 2013, Jongejan and Uilenberg 2004).  The American dog tick has 

been increasing its range into western North America (Anderson and Magnarelli 2008) .  

Ticks can also pass the pathogen onto their offspring (transovarial) when the female lays 

her eggs (Lane 1994).  While there are many species of bacteria in the Rickettsia genus 

that are transmitted by ticks, most of them are non-pathogenic, and can potentially block 

other Rickettsia species, including Rickettsia rickettsii from infecting the tick 

(Dergousoff et al. 2009).   
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Questing is the act of active searching, whether hunting or ambushing a host.  

When a questing tick finds and bites a host that is infected with the bacteria, the tick 

becomes infected and can transmit the bacteria onto other hosts (Sonenshine and Roe 

2014).  Different hosts are bitten in differing life stages of the tick, making the tick’s life 

cycle integral in the transmission of pathogenic bacteria to hosts. 

 Dermacentor tick species (Ixodidae) have a three-stage life cycle: larvae, nymph, 

and the adult; and each stage requires a specific host (Jongejan and Uilenberg 2004).  The 

cycle begins in fall when the adult female drops off of its host to lay her eggs. The adult 

female can lay about 5000 eggs (Sonenshine and Tigner 1969). The eggs hatch into six 

legged larvae and the larvae overwinter on the decomposing vegetation layer in a state of 

diapause; a period of suspended development during unfavorable environmental 

conditions.  In the spring, the larvae quests for its first host, a small mammal (e.g. shrew 

or mouse) and attaches to consume a blood meal.  The larvae fall off of the host in the 

summer months and molt to become nymphs. They then overwinter in diapause again.  

When spring days begin to lengthen, the nymphs break diapause and begin questing for a 

host that will be slightly larger than the previous year’s host (e.g. chipmunk or rabbit).  

After the nymphs feed on this new host during spring or early summer, they fall off of the 

host and molt to the adult stage.  The adults can attach to a host immediately if weather 

conditions are favorable or they can go into diapause again to overwinter.  When the 

adults attach to the third, even larger host (e.g. dog, deer, or human), they will take a 

blood meal. The males will use this blood to produce sperm.  After the blood meal, the 

males go in search of females on the same host. After the males find females and they 

mate, the mated females take a full blood meal, drop off the animal and lays eggs (Fig. 
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1).  The eggs are deposited on the ground where it is humid so they can hatch. In a 

controlled laboratory the tick lifecycle can take between 88 and 134 days, but in nature it 

may take up to three years for the life cycle to be completed (Sonenshine and Roe 2014).  

 Tick movement during questing is a function of the environment: terrain, 

vegetation, microclimates, and host availability. A tick may not move at all, or its 

movements may be extremely short and can be measured in centimeters as it is questing 

for a host (Perret et al. 2003, Crooks and Randolph 2006).  Tick movement varies with 

species. In Ixodes scapularis, for example, the nymph can travel up to 3 meters and adults 

more than 5 meters (Carroll and Schmidtmann 1996).  These distances often require 

many weeks to accomplish. Ticks require a humid environment to live in while questing 

for hosts.  If the conditions are too hot and dry, tick questing rate decreases and/or the 

tick dies (Perret et al. 2000).  When ticks are questing, they can climb vegetation to 

encounter hosts.  They will remain on the vegetation  until the temperature increases and 

the humidity decreases, forcing them back to the cool and humid ground microclimate 

(Randolph and Storey 1999, Crooks and Randolph 2006).  They will continue this 

questing behavior until they either find a host or use up their fat stores and die. 

   During the winter months, ticks will go into diapause, and wait until 

temperatures are warm enough for them to emerge in the spring (Randolph et al. 2002).  

There are two different types of diapause, behavioral and morphogenic.  Behavioral 

diapause occurs when the ticks stop feeding to avoid adverse abiotic conditions 

(particularly low humidity).  Morphogenic diapause delays the molting development of 

larvae and/or nymphs (Randolph 2009).  Photoperiod plays a role in the tick’s emergence 

from diapause, as the days begin to lengthen ticks break diapause (Belozerov and 
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Naumov 2002) and start questing.  Belozerov and Naumov have shown that photoperiod 

may be the preferred indicator to break diapause (instead of temperature and humidity) to 

begin the search for a host.  

 Hosts must be in the ticks’ questing range for the tick life cycle to be completed. 

Mammal densities directly affect the number of questing ticks observed in the 

environment.  Ticks need small mammals to feed on when they are larvae.  As a tick 

molts and develops into a nymph, there is a need for a larger host mammal (e.g. 

chipmunk, rabbit).  Adult ticks require even larger mammals (e.g. dog, deer, elk) so that 

they can take a suitable blood meal to produce gametes and find a mate.  When the 

density of these different sizes of mammals are reduced, the tick density in the area will 

be increased because of a lack of hosts that would export the ticks from the area after the 

tick attaches.  If large mammal densities are low, then more adult ticks will be out 

questing (Ogden et al. 1997, Rand et al. 2003).  These ticks will eventually find hosts, 

move, or die if unsuccessful in questing.  This can cause a decline in the density of the 

ticks over time.  This is true in the life cycle of hard shelled non-nidicolous (occupying 

open habitat) ticks from the family Ixodidae. 

 Turnbull National Wildlife Refuge (TNWR) is a federal wildlife refuge located 

about 32 km south southwest of Spokane Washington and approximately 8 km south of 

Cheney, Washington (headquarters Lat/long are 47°24’57.136”N 117°31’57.479”W, Fig. 

2). The refuge contains about 73 km2 of land and about 9 km2 that are designated as 

public use areas (Fig.3).  TNWR has approximately 30,000 visitors per year who visit to 

observe different species of wildlife in natural settings and enjoy the outdoors.  

Importantly, visitors can walk on many of the refuge’s trails.  This is where people can 
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come into contact with ticks that may be carrying R. rickettsii. Additionally, many of 

these people bring their pet dogs and some (though it is against the rules) will let their 

animals run off-leash. Some people will allow dogs to run on very long leashes that 

permit the dogs access to the areas bordering the trails.  

 Ticks and tick-borne pathogens pose a threat to people who frequent tick habitats.  

While documented cases of RMSF have been confirmed in eastern Washington since 

1971, there were only 4 reported cases in 2015.  Of the cases reported in 2015, only 2 

resulted from a local tick (DOH Annual DC Surveillance Report, 2015).  In the eastern 

United States, the infection prevalence (proportion of population that is infected) for R. 

rickettsii in of D. variabilis is one percent (Paddock 2009, Stromdahl et al. July 2011). If 

there are fewer ticks questing, there is a lower likelihood of humans being selected as a 

host, which decreases the chance of humans contracting RMSF.  The majority of cases 

that have been documented in Washington were imported from the eastern United States 

where Washington residents who were travelling were bitten by ticks infected with R. 

rickettsii.  Most people like to go into the outdoors during the spring and summer months.  

Unfortunately, these are the months when ticks are the most active and questing; and thus 

likely to encounter human hosts.   

In 2014, 120 ticks were collected at TNWR by the drag method (Mills et al. 

1995). The ticks were collected on the 30 Acre Lake Trail. Tick density was 1.4 ticks per 

10 m2. This was the highest tick density relative to other locations that she collected at on 

the TNWR (Fruscalzo et al., in prep), creating a potential threat of acquiring RMSF. 

Twenty-four of those ticks were infected with a Rickettsia spp. pathogen and two of the 

24 ticks were positive for the R. rickettsii [unpublished data; tested by PCR (Simser et al. 
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2001)].  Therefore, in order to characterize the ecology of ticks and Rickettsia rickettsii at 

the 30 Acre Lake Trail, the current study was organized around five separate objectives. 

1. Characterize the spatial and temporal distribution of Dermacentor species ticks. 

2. Characterize the cover of different vegetation types along study area of the trail. 

3. Estimate the population size of small mammals, investigate their spatial 

distribution, and make observations on large mammals. 

4. Test for the presence of R. rickettsia and other Spotted Fever Group Rickettsia 

bacteria in collected ticks. 

5. Investigate the relationship between tick density, the distribution of small 

mammals, and different vegetation types within the study site. 

MATERIALS AND METHODS 

Study site 

 The study site was the northern end of the 30 Acre Lake Trail (longitude: N 47 

25.579', latitude: W 117 34.028') off of the main auto tour route on TNWR (Fig. 3). It is a 

popular trail where many visitors walk around ponds and view wildlife with their dogs (a 

host of D. variabilis). The trail is made of coarse gravel and is well marked. Surrounding 

the trail there are Ponderosa Pine trees and snow berry shrubs. Additionally, there are 

multiple species of grasses and sedges, down wood, bio crust, and barren rocks. There are 

small and large mammal trails that bisect the main trail. The northern part of the trail, is 

220 meters long and ends at a bridge over an ephemeral pond (Figure 3).  This area was 

divided into 88 zones that were 10 X 10 m2.  There were 44 zones on each side (East, 

West) of the trail.  On each side, half of the zones were either closer (directly adjacent 

and noted as Inside zones) or farther (10 m away or noted as Outside zones) from the 
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trail.  These divisions created 4 parallel transects along the trail. The area was grouped 

into three sections along each transect designated as Trailhead (zones 1-8), Middle (zones 

9-16), and Waterside (zones 17-22). 

Tick collections 

 Ticks were collected within each zone once per week beginning on March 30, 

2016 and ending on May 18, 2016.  The ticks were collected for three weeks, then there 

was a three week break between April 14, 2017 and May 3, 2017 for a planned prescribed 

controlled burn of the area.  When the refuge decided to forego the burning, the 

collections began again for three more weeks from May 4, 2016 until May 18, 2016, at 

which time the collections were ended.  The students in Dr. Magori’s Biology 490 

Disease Ecology Capstone class performed the collections using a tick drag.  The tick 

drag is a one meter by one-meter piece of corduroy cloth that is attached to a broom 

handle at one end and a rope to pull behind the user.  The rear end of the drag can have a 

weight attached to hold the material down on the vegetation.  This collection method 

allowed the ticks to cling onto the cloth, and easily be seen and collected.  Ticks were 

picked off of the drag using forceps, placed into 70% ethanol, and stored at -4°C until the 

DNA extraction (Estrada-Pena et al. 2013).  

Vegetation survey 

     The 88 zones were assessed and estimates were made for percent of coverage of 

different vegetation types: shrubs, grass/forbs, wood, biocrust, bare ground. Additionally, 

areas of bare rock were estimated.  Each 10 m2 zone was examined to identify the major 

vegetation type that fit into the six categories that had been characterized.  The 1 m2 
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quadrat method was used for each zone.  Within each zone we assigned a percentage of 

cover for the six major vegetation types that were characterized for this site.  

Small mammal trapping  

 Small mammals were trapped using 88 Sherman traps in the same zones that were 

used to drag for ticks. The traps were placed in each 10 m2 zone and were approximately 

10 meters from other traps in other zones.  Each trap contained bait made of peanut butter 

and oats, and some polyester fiberfill bedding.  Trapping was conducted during the weeks 

of 30 March - 15 April - 10 May and 26 May of 2016 for four nights per week.  During 

the first period, traps were open continually and were checked in the morning (8 am) and 

again in the evenings (5 pm) for a total of 2,112 trap “nights” (1 trap “night” = 1 trap 

checked 1 time). With increased temperatures during the second period, traps were closed 

during the day, opened in the evening (after 4 pm), and checked the next morning for a 

total of 1,056 trap nights.   

 Captured mammals were identified to species, examined for ticks, and given a 

unique numbered ear tag. Ticks were collected off the mammals and were stored in 70% 

ethanol at -4°C for future testing of Rickettsia parasites.   

Large mammal activity survey 

Game trail cameras were attached to trees along the 30 Acre Lake Trail and near 

game trails to identify the large mammals that were using the area.  Four trail cameras 

were put onto ponderosa pine trees using a six foot cable lock,  where game trails crossed 

the gravel trail.  The coordinates for camera 1 was latitude 47°26’8.088”N longitude 

117°32’24.622”W, for camera 2 it was 47°26’9.157”N 117°32’26.278”W, camera 3 was 
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placed at 47°26’10.115N 117°32’28.608”W, and camera 4 was located at 

47°26’11.328”N 117°32’29.479”W.  Moultrie A-7i cameras that could take pictures day 

or night were used.  The cameras were placed on 30 March - 15 April 2016. Because of 

proposed prescribed burn at TNWR, the cameras were removed for three weeks and 

placed again on 10 May - 15 Jun 2016 for a total of 53 days/nights. This recorded animal 

and human traffic on the trail during this time. The photographs showed the different 

types of  large mammals in the area and when they moved through the 30 Acre Lake 

Trail area. 

Molecular testing for Rickettsia bacteria 

 DNA was extracted from the collected ticks using a previously developed protocol in 

preparation for PCR testing (Appendix 1).  PCR was used to identify the presence or 

absence of the Rickettsia bacteria. This approach is the most effective and preferred 

method of identifying the pathogen (Estrada-Pena et al. 2013).  A 431 base pair fragment 

of the 17kDa ompB gene was amplified with two primers: Rr17.61p and Rr17.492n 

(Simser et al. 2001).  To prepare the samples for PCR, a mixture was prepared that 

contained 12.5 μl Master Mix, 1μl forward primer (Rf 17.492), 1μl reverse primer (Rf 

17.61), 9.5 μl pure water, and 1μl of sample.  The PCR amplification was performed by 

denaturing at 95º C for two minutes, then 60 cycles of denaturation (30 seconds at 95°C),  

followed by primer annealing (60 seconds at 55°C), and elongation (72°C for 60seconds). 

A final extension for five minutes at 72º C was conducted to finalize the reaction.  The 

PCR products were electrophoresed in a 1% gel in 1XTAE and 0.35µg/mL of Ethidium 

Bromide (EtBr). The gel was electrophoresed for one hour at 80V and imaged (Fig. 4). 
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 Samples positive for Rickettsia spp. were sent to Genewiz Inc. for Sanger sequencing 

(Fig. 5).  Both the forward and reverse strands of the DNA were sequenced.  The forward 

and reverse sequences were combined using free software from DNAbaser.com. Low 

quality bases at the extremities were trimmed and the resulting sequences were compared 

to the Genbank database using BLASTN 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch).  The BLAST 

search returned many “hits” and the hit with the lowest E score was chosen as the best 

match for the respective sequence that was queried. 

Statistical Analysis  

To estimate tick density a Poisson regression was used in the statistical software 

R (R Core Team, 2012) with the number of ticks collected in each zone as a response 

variable. This method was selected because tick density was not normally distributed.  To 

investigate the spatial distribution of ticks the predictor variables were the section, the 

side, and the position of each zone in relation to the trail.  To investigate the temporal 

distribution of ticks the predictor variable was the week of collection.  To estimate the 

population densities of small mammals Mark program was used.  A closed model was 

used because of the small number of collected mammals.  The small mammal captures 

per week were tabulated by capture and the model was run.  Small mammal range was 

estimated by including all zones in between capture locations.  For example, if a single 

chipmunk was captured in zone A4 and D6; that single chipmunk would be counted as 

present in all the zones in which it could have traveled (e.g. A4-A6, B4-B6, C4-C6, D4-

D6).  The number of animals using each zone was summed as a measure of habitat usage.  

To investigate the relationship between tick density and distribution of small mammal, 
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and vegetation cover we started with a full model including the following predictor 

variables (habitat usage of deer mice and chipmunks, cover percent of shrub, biocrust, 

wood, rock, grass-forb).  Non-significant predictors were removed from the model one by 

one until all remaining predictors were significant. 

Results 

Tick collections 

Two species of tick were captured, Dermacentor andersoni and Dermacentor 

variabilis.  During the first week 393 ticks collected.  During the second and third weeks, 

171 and 113 ticks were collected, respectively.  After the three week break for the 

prescribed burn, we began again with collection.  The fourth week of tick collection 

netted 78 ticks, the fifth week netted 36 ticks, and during the final week of collection 38 

ticks were collected.  All of the ticks that were collected during the dragging were adult 

Dermacentor spp. ticks. Additionally, 47 nymph ticks were collected from captured 

chipmunk. 

Tick density was significantly different across the weeks in which ticks were 

collected (p-value< 2.2e-16), between the different sections of trail (p-value=1.347e-11), 

and between the zones closer (inside) and further away (outside) to the trail (p-value< 

2.2e-16), but not between the two sides of the trail (East vs. West) (p-value=0.602).  

Specifically, mean tick density on the first week of collection was significantly higher at 

4.466 ticks per 10 m2 compared to all other subsequent weeks (Fig. 6).  Tick density 

during the second week, at 1.943 ticks per 10 m2, was still significantly higher than all 

subsequent weeks.  Tick density during the third and fourth weeks (at 1.284 and 0.886 
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ticks per 10 m2, respectively) were still significantly higher compared to the subsequent 

weeks, but not significantly different from each other.  Tick density did not significantly 

change from the fifth (at 4.091 ticks per 10 m2) to the sixth week (at 0.432 ticks per m2).  

Tick density in the Trailhead section was significantly higher at 2.04 ticks per 10 m2 

compared to both the Middle section at 1.141 ticks per 10 m2, and to the Waterside 

section at 1.514 tick per m2, which were also significantly different from each other (Fig. 

7).  Tick density was significantly higher closer to the trail at a mean tick density of 2.205 

per 10 m2 compared to a mean tick density of 0.936 per 10 m2 (Fig. 8).  Mean tick density 

on the East side of trail at 1.599 per 10 m2 was not significantly different from mean tick 

density of 1.542 ticks per 10 m2 on the West side (Fig. 9). 

Small mammal trapping 

The total trap effort of 3,168 trap nights during the six weeks of trapping yielded 

193 captures of 48 individual yellow-pine chipmunks (Tamias amoenus), 110 captures of 

36 individual deer mice (Peromyscus maniculatus), and 3 captures of 3 individual 

vagrant shrews (Sorex vagrans). Typically, chipmunks were caught during daylight hours 

and deer mice were caught when the traps were left out overnight.  During the last week, 

all of the animals captured had been captured previously and marked with ear tags (Table 

1).  

 A population size estimate analysis was conducted on the two small mammals 

(deer mice, chipmunks) that were trapped using the Mark online program (White and 

Burnham 1999).  A closed model was used with a full likelihood of probability of capture 

and recapture on the weekly collections for both species of small mammals, assuming 
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that the two probabilities are equal.  For the deer mice, the Mark program estimated the 

population at 47 animals per 880 m2 with a 95% confidence interval of 42.3 and 61.9, the 

lower and upper limits respectively with an AIC of 65.4.  The estimated chipmunk was 

61 per 880 m2 and a 95% confidence interval between 57.4 and 72.0 with an AIC of 84.1. 

Habitat usage of deer mice was significantly different across different sections of 

zones (p-value=0.016), and between the two sides of the trail (p-value=4.331e-06), but 

not between closer and further away from the trail (p-value=0.871).  Zones in the 

Trailhead section were used by 5.2 deer mice on average, while zones in the Middle 

section were used by 5.4 deer mice, which was significantly higher than the average 

habitat usage of zones in the Waterside section at 3.8 (p-value of 0.018).  Zones on the 

west side of the trail have been used by significantly more deer mice at 6 compared to 

zones on the east side that were used on average by 3.8 deer mice (Fig 10).  

Habitat usage of yellow-pine chipmunks was significantly different across 

different sections of zones (p-value= 0.0002), and between the two sides of the trail (p-

value= 4.278e-10), but not between closer and further away from the trail (p-value= 

0.0657).  Zones in the Middle section were used by 13.2 chipmunks on average, 

significantly higher than zones in the Trailhead section at 10.7 chipmunks, as well as 

zones in the Waterside section at 9.5 chipmunks, which were not significantly different 

from each other.  Zones on the west side of the trail have been used by significantly more 

chipmunks at 13.5 on average compared to zones on the east side that were used on 

average by 9.051 chipmunks (Fig 11). 
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Large mammal activity survey 

 The game cameras recorded qualitative evidence that larger mammals use the 

public use area at TNWR, typically when people were not present.  Photographs 

indicated most of the people who used the trail did so on the weekends, holidays, or when 

weather was clear in the afternoon.  The large mammals that were photographed included 

turkeys (Meleagris gallopavo), coyotes (Canis latrans), white-tailed deer (Odocoileus 

virginianus), mule deer (Odocoileus hemionus), elk (Cervus canadensis), and moose  

(Alces alces).  The animals typically moved during late afternoons at dusk, and early 

evenings. 

Vegetation 

Percentage cover of shrub vegetation type was significantly different across 

different sections of zones (p-value< 2.2e-16), and between the two sides of the trail (p-

value< 2.2e-16), as well as between closer and further away from the trail (p-value= 

1.724e-13).  Zones in the Trailhead section had the highest percentage of shrub cover at 

33.75% on average, which was significantly higher than the percentage shrub cover in 

zones in the Middle section at 6.22% (p-value < 1e-05), as well as in zones in the 

Waterside section at 28.5% shrub cover (p-value=8.34e-05), which were also 

significantly different from each other (p-value<1e-05).  Zones on the west side of the 

trail had significantly higher percentage of shrub cover at 29.48% on average compared 

to zones on the east side that had on average 15.14% shrub cover.  Zones closer to the 

trail had significantly higher shrub cover on average at 25.29%, compared to an average 

shrub cover of 19.19% in zones further away from the trail (Fig 12).  
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Percentage cover of biocrust vegetation type was significantly different across 

different sections of zones (p-value< 2.2e-16), and between the two sides of the trail (p-

value< 2.2e-16), as well as between closer and further away from the trail (p-value= 

2.207e-15).  Zones in the Trailhead section had the highest percentage of biocrust cover 

at 14% on average, which was significantly higher than the percentage biocrust cover in 

zones in the Middle section at 10.8125% (p-value= 0.000307), as well as in zones in the 

Waterside section at 7.33% biocrust cover (p-value<1e-04), which were also significantly 

different from each other (p-value<1e-04).  Zones on the west side of the trail had 

significantly lower percentage of biocrust cover at 5.6% on average compared to zones 

on the east side that had on average 16.4% biocrust cover.  Zones closer to the trail had 

significantly lower biocrust cover on average at 7.1%, compared to an average biocrust 

cover of 15.1% in zones further away from the trail. 

Percentage cover of grass-forb vegetation type was significantly different across 

different sections of zones (p-value< 2.2e-16), and between closer and further away from 

the trail (p-value= 0.0002), but not between the two sides of the trail (p-value= 0.5852).  

Zones in the Middle section had the highest percentage of grass-forb cover at 77.4% on 

average, which was significantly higher than the percentage grass-forb cover in zones in 

the Trailhead section at 47.9% (p-value<1e-08), as well as in zones in the Waterside 

section at 55.8% biocrust cover (p-value<1e-08), which were also significantly different 

from each other (p-value= 2.05e-08).  Zones closer to the trail had significantly lower 

higher grass-forb cover on average at 62.7%, compared to an average grass-forb cover of 

58.8% in zones further away from the trail.  Zones on the west and east side of the trail 
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did not have a significantly different percentage of grass-forb cover at 60.5% and 61.1% 

on average, respectively. 

The relationship between total ticks collected and small mammal habitat usage and 

vegetation cover 

As a reminder, the full model used was a Poisson regression with the total number 

of adult ticks collected in each zone as the response variable, and the following predictor 

variables, including their interaction: the habitat usage for deer mice, the habitat usage for 

yellow-pine chipmunks, the percentage cover of shrub, biocrust, grass-forb and rock 

vegetation type.  The overall model explained 71.7% of variation in the total number of 

tick collected in each zone, with an AIC of 901.8.  However, the coefficient for the 

vegetation type “Rock” was not significant (p-value=0.507). In order to simplify the 

model, the vegetation type “Rock” was removed from the list of predictor variable, and 

the model was rerun.  This reduced model still explained 51.76% of the variation in the 

total number of ticks collected, with an AIC of 711.05, which was much lower than the 

AIC of the full model.  The direction of the effect of any of the remaining predictors in 

this reduced model were consistent with the direction of their effects in the full model, 

supporting our decision to remove the vegetation type “Rock” from the model.  However, 

even in this model, the coefficient of vegetation type “Grass.Forb” was non-significant 

(p-value=0.06067).  To further simplify the model, we also removed this vegetation type 

as a predictor.  This final model still explained 34.15% of the variation in the total 

number of ticks collected, with an AIC of 754.1.  All the coefficients of the remaining 

covariates were statistically significant (Table 2), with the direction of their effects the 

same as their direction in the full and reduced models.  Several interaction terms were 
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also statistically significant, including three-way interactions between small mammal 

habitat usage and the remaining vegetation type percentages, supporting including the 

interaction terms in the model.  The total number of ticks collected was significantly 

lower in zones used by higher number of deer mice, with a 23.3% reduction in total ticks 

collected with every additional deer mice using a zone (Fig. 13).  In contrast, 

significantly more ticks were collected in zones used by higher numbers of yellow-pine 

chipmunks, with an 8.9% increase in the number of ticks collected with every additional 

yellow-pine chipmunk using a zone (Fig. 14).  In addition, the number of ticks collected 

significantly increased with both increasing percentage of shrub vegetation type (Fig. 15) 

as well as with increasing percentage of biocrust vegetation type (Fig. 16). The number of 

ticks collected increased by 1.36% with every one percent increase in Shrub cover, and 

by 0.75% with every one percent increase in biocrust cover. 

Molecular testing for Rickettsia bacteria 

Molecular testing was performed on the ticks that were caught from 30 March 

2016 to 18 May 2016. DNA was extracted and PCR was performed on the DNA of 472 

ticks.  This accounted for all the ticks captured in all the zones on the first sampling day 

and all the zones on the last two sampling days.   Out of the 472 total ticks, 33 had a 

positive band which corresponds to a 7% infection rate with Rickettsia spp. (Fig. 4).  

There were 27 ticks positive for R. rhipicephali, which is a non-pathogenic bacteria.  Of 

the other four ticks, three were positive for spotted fever group rickettsia (Fig. 17) 

bacteria and one was positively identified as R. rickettsii, the causative bacteria of Rocky 

Mountain Spotted Fever (Fig. 18).   
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Discussion 

The distribution of tick density was heterogeneous within the site, with the 

number of ticks collected widely varying between sections of the trail at a small spatial 

scale (Fig. 10, 11).  We observed that adult ticks are questing more in the early months of 

spring (March and April) relative to later in the year.  There were more ticks collected in 

the first week than in the last three weeks combined.  This relates to the importance of the 

photoperiod for the emergence of the ticks from their diapause (Belozerov and Naumov 

2002).  When the day lengthens and the sun reaches the proper angle in the sky, it signals 

the ticks to break their diapause.  Their research shows that photoperiod is a stronger 

predictor as to when ticks will emerge from diapause.  It is likely that that is why more 

ticks were collected in the early spring than later in the year.  The reduction in the 

number of questing ticks is a result of the combination of increasing temperatures, 

decreasing humidity, and the attachment of ticks to hosts (Sonenshine and Roe 2014).  

While no ticks (larvae or nymphs) were seen on any of the deer mice, some nymphs were 

collected from some of the chipmunks.  Likely, this is because deer mice are better 

groomers than chipmunks (Collinge and Ray 2006) and because the tick larvae are 

smaller and will only remain on the deer mice for a brief period (about a day). The tick 

nymphs may also prefer the chipmunks as better intermediate host.  This might explain 

the positive relationship that was observed between the total number of ticks collected 

and the number of chipmunks using each zone, but a negative relationship with the deer 

mice. 

There was a significant positive relationship between the number of ticks 

collected and shrub coverage in each zone, leading to higher tick density in zones with 
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high percent shrub cover.  One potential explanation for this observation could be that 

adult ticks are questing in taller vegetation to increase their chance to latch onto a larger 

mammal to complete their three-year, three-stage life cycle (Sonenshine and Roe 2014).  

The taller shrub vegetation increases the probability of a larger mammal wandering by or 

foraging in the shrubs.  Micro habitat conditions (temperature, humidity) might also be 

affected by vegetation cover, which could also impact tick density. 

The small mammal host community of ticks at the 30 Acre Lake Trail study site 

consisted of chipmunks, deer mice and shrews. The density of chipmunks and deer mice 

at this location was comparable to other locations on the refuge (Mike Rule, pers. 

comm.), indicating that the increased tick density, as well as the presence of Rickettsia 

bacteria is likely not due to increased small mammal density. The cameras showed that 

larger mammals are passing through the area via the trail, providing the ticks with large 

mammal hosts to complete the adult life cycle.  There was a variety of species of large 

animals on the trail and in the area as well, despite the large numbers of visitors to the 

trail.  Large mammals can import engorged mated female ticks to the area, which drop 

off of them, and lay on average 5380 eggs (Sonenshine and Tigner 1969). Sufficient 

presence and transit of large mammals will sustain the local tick population year-to-year 

as long as at least one female tick can lay her eggs in this area each year.  Studies have 

shown that elk and other game animals move into the public use area of TNWR to avoid 

hunters in the fall, when TNWR does allow draw hunting to manage the elk populations 

(Katherine Farrell MSc Thesis). Given that this particular trail is right at the edge of the 

public use area, it would make sense that it would be an important transit point for large 

mammals and the ticks being transported on them. 



20 
  

 The molecular testing showed that some of the ticks are, in fact infected with 

Rickettsia rickettsii. Therefore, there is a chance of contracting the pathogen from ticks 

acquired on the 30 Acre Lake Trail.  Most of the ticks that were positive for Rickettsia 

species contained R. riphicephali, which is a non-pathogenic bacterium in humans, 

although it has mild-to-moderate effect on small mammals (Sonenshine and Roe 2014). 

Less than 1% of the ticks tested were positive for R. rickettsii, the causative agent of 

Rocky Mountain Spotted Fever, a potentially lethal disease. This agrees with other 

studies that have shown infection prevalence in ticks around one percent.  It was reported 

in 2009 that there was an infection prevalence of 0.6% for D. andersoni ticks collected in 

1992 from western Montana.  In D. variabilis ticks collected in Ohio in 1981, there was a 

1.9% infection rate. (Paddock 2009, Stromdahl et al. July 2011).  The detection of this 

pathogen in ticks in 2016 confirmed our previous detection in 2014 (unpublished results), 

indicating a persistent and low-level risk of infection for people using this trail at TNWR.  

 The objectives of my study were to characterize one location, the 30 Acre Lake 

Trail at the TNWR, looking at the densities of the small and large mammals and the ticks 

that can potentially transmit RMSF.  Since this area is open to the public there is a 

possibility for there to be contact between visitors and wildlife even if it is not direct 

contact.  As I have shown above, there is a small, but non-negligible threat to contract 

RMSF from the many ticks that are present during the spring months at this site.  Since I 

only looked at this one site the 30 Acre Lake Trail, follow-up research should be done on 

more areas of TNWR in order to map tick densities and RMSF infection risk across the 

refuge.  
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 I would like to see the refuge ask hunters to collect ticks and blood samples from 

animals that are harvested during the fall hunt so that they can be tested.  This might help 

explain why the 30 Acre Lake Trail contains RMSF and high densities of ticks.  If the 

larger animals are using this area during hunting seasons this could explain why there are 

so many ticks on this part of the trail. 

  I would like to recommend that TNWR put up signs and flyers to educate the 

public who use the public use area to raise awareness of ticks and tick-borne diseases 

specifically.  The public should be informed that there is a small risk of contracting 

RMSF, and what the signs and symptoms are.  While communicating this risk is 

important, we need to make sure to avoid causing unnecessary levels of concern by 

communicating the magnitude of the risk. TNWR could also put out a pamphlet to get 

this information out and what to do if you do go home with a tick and it is embedded in 

the skin.  This would allow the public to better communicate with the health care 

community about their symptoms and the potential for RMSF as a differential diagnosis.  

Early detection and care are imperative to a sound diagnosis and treatment plan with the 

correct antibiotics.  This also can serve to inform the WA Department of Health and CDC 

that there is a potential threat of RMSF in eastern Washington.   
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FIGURES 

 

 

Figure 1:  Life cycle of Dermacentor spp. ticks. It shows the timing of the different life 
stages with the most common time of year. It also shows an example of the size of host 
that particular life cycle is interested. This image was taken from the CDC website 
(www.cdc.gov/dpdx/ticks). 
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Figure 2:  Location of Turnbull National Wildlife Refuge.  The inset shows where 
TNWR is in relation to Spokane Wa. 
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Figure 3:  Map of the public use of area at Turnbull National Wildlife Refuge, with an 
arrow pointing at the study site. 
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Figure 4:  Gel electrophoresis of Positive Rickettsia spp. bands for Tick numbers 8 to 14.  
All of the bands are consistent with a 431bp amplicon, indicating a positive result of 
Rickettsia spp. Lane 1 is the DNA size standard, lane 2 a Positive control, lane 3 is a 
negative control, lane 4 is tick number 8, lane 5 is tick number 9, lane 6 is tick number 
10, lane 7 is tick number 11, lane 8 is tick number 12, lane 9 is tick number 13, and lane 
10 is tick number 14.   
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Figure 5:  This chromatogram is the result of Sanger sequencing of Tick number 10 that 
was positive for R. rickettsii.  All sequences were high quality with distinct peaks.  
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Figure 6:  Mean tick density across the study area as a function of the date of collection 
based on 10 m2.  Error bars show 95% confidence intervals based on Poisson regression 
model.  Letters differentiate weeks in which tick density was significantly different. 
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Figure 7:  Mean tick density with in the different sections of the study site.  Error bars 
show 95% confidence interval based on the Poisson regression.  Letters differentiate 
sections in which tick density are significantly different. 
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Figure 8:  Mean tick density within the zones closer to the trail (inside), and further away 
from the trail (outside).  Error bars show 95% confidence interval based on Poisson 
regression. Tick density is significantly different between the inside and outside zones. 
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Figure 9:  Mean tick density in the zones based on cardinal directions of East or West of 
the 30 Acre Lake Trail.  Error bars show 95% confidence interval based on Poisson 
regression. Tick density is not significantly different between the two sides of the trail. 
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Figure 10:  Habitat usage map of Deer Mice across the study site in relation to the total 
number of ticks collected in each zone. 

 

  



35 
  

 

Figure 11:  Habitat usage of Chipmunks across the study site in relation to the total 
number of ticks collected in each zone. 

. 
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Figure 12: Map showing shrub vegetation percentages within the study area in relation to 
the total number of ticks collected in each zone. 
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Figure 13:  Total number of ticks collected per zone as a function of deer mice habitat 
usage. The gray band indicates the 95% confidence interval based on Poisson regression. 
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Figure 14: Total number of ticks collected per zone as a function of chipmunk habitat 
usage. The gray band indicates the 95% confidence interval based on Poisson regression  
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Figure 15:  Total number of ticks collected per zone as a function of percent of shrub 
cover. The gray band indicates the 95% confidence interval based on Poisson regression. 
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Figure 16:  Total number of ticks collected per zone as a function of percentage of 
biocrust. The gray band indicates the 95% confidence interval based on Poisson 
regression. 
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Figure 17:  BLASTN result for tick number 81 showing hits to the Spotted Fever group 
(SFG) rickettsia species.  The e score (693) and the percent match (100%) is the same for 
these SFG showing that this may be a conserved area of the ompB gene shared by these 
bacteria. Some of these bacteria are R. rickettsii, R. parkerii, and R. philipii. 
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Figure18: BLASTN result for Tick number 10.  It shows that the sequence is a 99% 
match to the 17kDa ompB gene on file for R. rickettsia from Mexico. 
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Table 1:  Total captures of small mammals. Table 1-A This table shows all the animals 
captured in each of the 6 weeks of trapping.  PEMA is the Peromyscus maniculatus 
commonly called the Deer Mouse.  TAAM is the Tamias amoenus commonly called the 
Yellow Pine Chipmunk.  Table 1-B This table shows all the first time captured animals 
in each of the 6 weeks of trapping.  The abbreviations are the same as in Table 1-A. 

Table 1-A 

 

 

Table 1-B 

 

 

  

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
PEMA 7 22 16 17 12 36
TAAM 56 62 41 13 7 14

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
PEMA 7 6 6 8 9 0
TAAM 34 8 2 2 1 0
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Table 2: Analysis of deviance table for the final Poisson regression model for the total 
number of ticks collected in each zone. P-values test the null hypothesis that the addition 
of the listed predictor variable or interaction does not reduce the deviance significantly, 
using a Chi-square approximation. Bolded p-values are lower than the significance level 
of 0.05. 

 
Predictor variable p-value 
Deer mice habitat usage 0.0001304 
Yellow-pine chipmunk habitat usage 3.436e-13 
Shrub vegetation cover < 2.2e-16 
Biocrust vegetation cover 0.0124468 
Deer mice habitat usage x Yellow-pine chipmunk habitat 
usage 

0.0019148 

Deer mice habitat usage x Shrub vegetation cover 0.7273643     
Yellow-pine chipmunk habitat usage x Shrub vegetation 
cover 

0.1775907     

Deer mice habitat usage x Biocrust vegetation cover 0.7478732     
Yellow-pine chipmunk habitat usage x Biocrust vegetation 
cover 

0.3200438     

Shrub vegetation cover x Biocrust vegetation cover 0.0617408 
Deer mice habitat usage x Yellow-pine chipmunk habitat 
usage x Shrub vegetation cover 

0.4160123     

Deer mice habitat usage x Yellow-pine chipmunk habitat 
usage x Biocrust vegetation cover 

0.0014025 

Deer mice habitat usage x Shrub vegetation cover x 
Biocrust vegetation cover 

0.0021315 

Yellow-pine habitat usage x Shrub vegetation cover x 
Biocrust vegetation cover 

0.5707964     

Deer mice habitat usage x Yellow-pine chipmunk habitat 
usage x Shrub vegetation cover x Biocrust vegetation cover 

0.1027415 

 
 
 

 

  



45 
  

APPENDIX 

DNA Isolation Protocol with DNAzol 
(For Ticks) 

 
1. HOMOGENIZATION 

a. Homogenize ticks for 10 seconds with 5-10 Zirconium beads 
(depending on tick size) in .500mL of DNAZOL reagent.   

i. It may be necessary to do multiple homogenizations at 10 
second intervals.  In 10 second intervals, homogenize until 
the abdomens are visibly opened.   Try to minimize this as 
excessive heat can denature the DNA.  

ii. If necessary, use a flame sterilized scalpel to longitudinally 
cut the tick in half to expose the tick’s gut.  

b. Incubate the homogenized samples for 10 minutes at room 
temperature 

2. PHASE SEPARATION 
a. Centrifuge the samples for 10 minutes at >5,000g at 4°C  
b. Following centrifugation, transfer the resulting viscous supernatant 

to a fresh tube, careful to not transfer exoskeleton remains.  
3. DNA PRECIPITATION  

a. Add 0.5mL of 100% ethanol per 1mL of DNAzol used to the tube 
containing the fresh supernatant 

b. Mix samples to form a homogenous solution by inverting tubes 5-8 
times  

c. Incubate samples for 3 minutes at room temperature 
i. DNA should quickly become visible as a cloudy precipitate 

d. Centrifuge the precipitated DNA at >5,000g for 5 minutes at 4°C 
i. This should produce a gel-like whitish pellet on the side 

and bottom of the tube 
ii. Remove supernatant and discard 

4. DNA WASH 
a. Add 1.0mL of 75% ethanol 
b. Mix the samples by vortexing then centrifuge at 5,000g for 2 

minutes at 4°C 
c. Discard the ethanol  
d. Repeat steps 4a-4c 
e. Quick spin the tubes and use a pipette to discard extra ethanol at 

the bottom of the tubes 
5. DNA SOLUBILIZATION 

a. Dissolve DNA 
i. Add 0.05mL TE  

ii. Agitate sample by flicking 
iii. Store samples in -20° freezer 
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