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Abstract 
 

Since divergence from our ancestral lineage ~2.8 mya, humans have relied on 

foraged foods to obtain dietary mineral nutrition. Around 12,000 years ago, people began 

shifting towards a lifestyle of food production. The rapid shift in lifestyle significantly 

altered the human diet, and research suggests our genomes have had insufficient time to 

adjust. Due to the discord between genome and environment, unprecedented levels of 

disease and malnutrition are epidemic in certain subsets of the population. Studies 

suggest the most cost effective way to mitigate the risk of these diseases is to find ways 

to increase micronutrient consumption. As a class, wild plant foods appear to be more 

nutrient dense than most modern foods, so including or reintroducing wild foods into the 

human diet should provide a number of health benefits. Unfortunately, little is known 

about the dietary mineral composition of many foraged food plants and even less is 

known about potential differences in nutrient composition between populations or across 

the phenology. The Western Spring Beauty (Claytonia lanceolata) is no exception, 

whereas some information from a proximate analysis conducted in 1938 exists, data 

about micronutrient composition is altogether lacking.  Indigenous people harvested the 

corms (underground stems) of C. lanceolata since prehistory to eat immediately, store for 

delayed consumption, or use as a trade good. Due to the prevalence of its historic use, we 

hypothesized that C. lanceolata corms would be rich in dietary mineral nutrition, and 

compare favorably to cultivated food plants. We also expected differences in the average 

dietary mineral content of corms from different populations, due to the heterogeneity of 

the environments where C. lanceolata grows. Lastly, we expected differences in mean 

dietary mineral content of corms across their phenology due to use/storage of dietary 

minerals over the course of the flowering cycle.  To test these predictions, we sampled 12 

populations across the Columbia Plateau region of North America. We resampled six 

populations about 30 days after our initial harvest. Corms were assayed for dietary 

mineral and toxic metal content using standard ICP-OES methods. We found that a single 

serving of corms (100 g fresh weight) likely provided between 10-25% of the DRI for 

Mg, P, Cu, and Zn, and over 100% of the DRI for Fe and Mn. These values compare 
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favorably to modern foods. The average content of macroelements did not vary 

significantly with mode of preparation (i.e. removal of the periderm), yet concentrations 

of trace elements Fe, Cr, Cu, Mn, and Pb in the samples was significantly higher (p<.001 

for Fe, Cr, Pb, Al; p=.003 Cu; p=.007 Mn) between samples with periderm intact and 

samples with the periderm removed. The average amount of Pb in the samples was 

significantly reduced (p<.001) when the periderm was removed prior to analysis. Of the 

six populations resampled, the average amount of most macroelements and one trace 

element contained in the corms increased significantly (Na; p=.05, Ca; p=.004, Mg; 

p=.015, K; p=.006, Cu; p=.043) in the late samples. Concentrations of toxic metals did 

not change significantly between sample times. The mean weight of corms was 

significantly different among populations (p<.001). Averages concentration of 

macroelements (Ca; p=.04, Mg; p<.001, K; p=.004, Na; p=.004, P; p=.013), trace 

elements (Fe; p=.004, Mn; p=.023, Zn; p<.001) and toxic metals (Cd, Pb, Ba, Al; p<.001) 

differed significantly by sample location. These results suggest that corms are a viable 

but highly variable source of nutrition. Consumption of corms can increase health by 

displacing less nutritious modern foods, and could increase micronutrient consumption. 

Corms may mitigate the risk of common deficiencies, especially when preparation 

methods, time of harvest, and place of harvest are considered. Our results call into 

question the validity of previous studies with low replicate samples. 
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Introduction 

 

History and Importance of Food Plants  

Undoubtedly food plants have an essential role in meeting the nutritional 

requirements of humans. Our genus (Homo) appeared between 2.4 - 2.8 million years ago 

(mya), and the hunting and gathering (foraging) way of life sustained our species for 

most of its existence. Comprehensive nutritional studies on the diet of many foraging 

societies were not conducted prior to westernization, yet reconstructing the traditional 

diet of foragers is possible using modern nutritional information combined with 

ethnographies and the archaeological record (Eaton and Konner 1985, Eaton et al. 1997). 

For example, dietary reconstruction studies from Lee’s (1968) study compiling 

information from 862 societies, initially assumed a plant to animal food ratio of 65:35. 

More recently, studies estimate that about 75% of the evaluated foraging societies derive 

between 35-44% of their sustenance directly from plant foods (Cordain et al. 2000). A 

shift from foraging to food production occurred during the Neolithic Revolution, and 

modern studies estimate that about 90% of caloric intake worldwide now comes from 15 

species, and four of those species (rice, maize, sorghum and wheat) contribute about 50% 

of calories consumed worldwide (FAO 2009).  

Evidence for the Decline of Health Associated with the Neolithic Revolution 

The shift from a foraging lifestyle to food production occurred at the beginning of 

the Holocene, when people in seven regions (Eastern Mediterranean, China, New Guinea, 

Ethiopia, Eastern North America, Mesoamerica and South America) began practicing 

agriculture as a means of food production (Bellwood 2005).  The worldwide shift from 

foraging to agriculture, known as the Neolithic Revolution (Childe 1936), coincides with 

a dramatic increase in artifact remains, which are interpreted as the beginning of a 

continuous period of population growth (Bocquet-Appeal 2011). This shift dramatically 

changed diets and population density worldwide. Decreased diversity and increased 

dependence on marginally nutritious food sources cause physiological changes in 

humans, which are well documented in the archaeological record following the shift to an 
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agricultural lifestyle (Larsen 1995). In addition to increased population density, evidence 

associated with this dietary shift includes decreasing height, age span, and declining oral 

health. 

In the course of a few centuries after the shift to food production, human 

population densities increased from one forager to 20 or more agriculturalists per square 

mile (Johnson and Earle 2000). The growth trend continues, resulting in a thousand-fold 

increase in global population from around six million people at the advent of agriculture 

(Biraden 1979) to the current estimate of 7.2 billion. The population explosion is 

attributed to two major factors. First, having children is less costly for agriculturists, and 

second food production per unit of land increased (Price and Gebauer 1995). Having and 

caring for children interfered with the nomadic lifestyle of many foraging societies 

(Locay 1983). Children in foraging societies contribute little or nothing to family 

subsistence (Kent 1996). In contrast, the children of agriculturalists contributed 

substantially more to food production (Kramer and Boone 2002), and agrarian children 

often began working at an early age (Ulijaszeka 1993). The more reliable and readily 

available food source from agricultural products increased maternal fertility by reducing 

the birth interval (Valeggia and Ellsion 2004). The lower cost of having children coupled 

with increased maternal fecundity increased the human population exponentially. 

The agricultural lifestyle reduced diversity in the diet, increased intake of less 

nutritious foods, and encouraged a more sedentary lifestyle. People began to get most of 

their nutrient intake from relatively few plant cultivars (Grivetti and Ogle 2000). The 

diverse group of edible wild species that foragers once consumed were reduced, and 

eventually eliminated from the diet (Grivetti 1981). Currently, humans get ~90% of our 

caloric intake from 15 species: eight cereals (wheat, rice, corn, barely, millet, sugar cane, 

sorghum, and rye) and four tubers (cassava, potato, sweet potato, and yam). 

Archeological evidence and modern day observations of societies still practicing low-

technology agriculture show that their diets are dominated by one or a few marginally 

nutritious plants, e.g. maize in the Americas, rice in Asia, wheat in Europe, and millet or 

sorghum in Africa (Larsen 1995). Maize is lacking a number of essential amino acids, 

and whereas it contains the essential vitamin niacin, it is chemically bound and thus 

unavailable for absorption. Moreover, iron absorption from maize is poor, thus iron 
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deficiencies are common in maize dominated diets (Ashworth et al. 1973, FAO 1990). 

Likewise, rice can inhibit vitamin A uptake, even when vitamin A is procured from other 

sources (Wolf 1980), and millet and wheat are already low in iron, and processing further 

lowers iron content (Carlson et al. 1974 from Larsen 1995).  

Changes in human physiology and anatomy, such as dental health, development, 

and age at death are documented in the archaeological record after the Neolithic 

revolution, and these differences are attributed to the changes in food composition, in 

both dietary diversity and cooking methods.  Because of the diverse, nutrient dense 

characteristics of a foraged diet, foragers would have met or exceeded currently 

recommended vitamin and dietary mineral allowances either absolutely or relative to 

energy intake (Eaton et al. 1996). The foraged foods of pre-agricultural humans contained 

higher levels of micronutrients (vitamins and dietary minerals) relative to energy than 

most commonly consumed agricultural products, especially considering how many 

agricultural products are prepared for consumption (Eaton and Konner 1985). Tooth loss 

is caused by a variety of factors, but many studies suggest that the increase in cavities 

corresponds with an increase in tooth loss, suggesting a relationship between these two 

conditions (Larsen 1995). The decline in oral health is largely attributed to an increase of 

lower fiber foods, carbohydrate rich foods, as well as methods of preparation. High fiber 

foods mechanically cleanse teeth, whereas carbohydrates are linked to increased cavity 

prevalence and tooth loss when organic acids demineralize dental hard tissue during the 

process of bacterial fermentation of dietary carbohydrates (Newbrun 1982). Many 

agriculturalists prepare plant food by boiling them into a soft consistency, which can 

promote the growth of bacterial colonies in areas of the mouth, which are not 

mechanically cleansed by consumption of high fiber foods (Larsen 1995). Since oral 

health is correlated with overall general health good oral health reduces premature 

mortality, and is often a determinant factor for overall quality of life (WHO 2003). 

Studies show an increase in the percentage of teeth with cavities after the adoption of an 

agricultural lifestyle (Larsen 1995). For example, Turner’s (1979) study showed that the 

average frequency of teeth affected by cavities in foragers was 1.7%, compared to 8.6% 

of agriculturalists.  
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Developmental differences such as decreased growth rates, shorter overall stature 

and younger age at death are documented in the skeletal remains of humans after the 

Neolithic Revolution, and are generally attributed to an increased dependency on low or 

poor nutritional quality food (Eveleth and Tanner 1990). Growth rates appear to be a 

reliable indicator of overall nutritional status (Gracey 1987) and people who are short for 

their age are generally unhealthier than individuals that are tall for their age (Cook 1984). 

Children in populations with unmet nutritional requirements are often shorter in stature 

than their counterparts with sufficient nutrition in their diets (Huss et al. 1985, Bogin 

1988, Eveleth and Tanner 1990), and analyses of bones from prehistoric North America 

shows that children of agricultural societies are shorter in stature for their age group than 

their foraging counterparts (Sauders 1992). Adult height is determined by several factors, 

but evidence from studies reveals a strong relationship between growth impediment at a 

young age and terminal body size (Larsen 1995). Many studies show a decline in the 

average height of societies after their adoption of agricultural lifestyle (Perzigian et al. 

1984, Nickens 1976, Meiklejohn et al. 1984, Larsen 1984, Larsen 1982, Kennedy 1984, 

Goodman et al. 1984). Lastly, the skeletal remains of humans from agricultural societies 

suggest they were younger at death than their foraging counterparts, and this provides 

evidence for declining life expectancy after a shift to an agricultural lifestyle (Kobayashi 

1967, Welinder 1979, Goodman et al. 1984, Kennedy 1984, Larsen 1987).  

Back to the Future: Understanding our Evolutionary Past 

Evolutionary theory suggests when the ecosystem stays relatively constant 

stabilizing selection should maintain a genotype that is best suited for the environment. 

However, when the environment begins to change, individuals can experience discord 

between their genome and the environment, and directional selection should shift 

genotypes towards conditions best suited to the new environment. Over several million 

years, the genetic traits of our genus were optimized for a foraging lifestyle, and after the 

Neolithic Revolution, the dramatic shift in diet may have produced a discord between 

environment and genome. Modern people are living in an environment that would be 

unrecognizable to our ancestors.  The change from foraging to food production may have 

occurred too recently on the evolutionary timescale for the human genome to adapt 
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(Eaton and Konner 1985, Eaton and Konner 1988, Nesse 1994, Boaz 2002, Cordain et al. 

2005), which studies suggest can manifest as disease (Nesse 1994), and can cause or 

exacerbate “the diseases of civilization” (Eaton and Konner 1985, Eaton and Konner 

1988, Nesse 1994, Cordain et al. 2005). Diseases of civilization include coronary heart 

disease, obesity, hypertension, type two diabetes, cancers, autoimmune disorders, and 

osteoporosis, which were rare or absent in pre-agricultural (and non-westernized) 

societies (Carrera-Basto et al. 2011). These chronic degenerative diseases are the leading 

causes of death in modern people (CDC 2010), and disproportionately high in subsets of 

the population that have more recently experienced the transition from foraging to 

agriculture, such as Native American groups.   

When compared to the general population, by nearly every indicator, the overall 

health of Native Americans is poor (Welty 1991, Young 1994, Indian Health Service 

1996, Amparo et al. 2011, Cobb et al. 2014, Espey et al. 2014). Levels of obesity are high 

among all groups but are increasing alarmingly fast in young people (Welty 1991, Story 

et al. 1999). Historically, diabetes was absent in Native American populations, yet current 

estimates list diabetes is a major cause of morbidity and mortality in people of Native 

American descent (Welty 1991, Gohdes 1995, Espey et al. 2014). Likewise, 

cardiovascular disease, which was rarely noted in the earlier part of the 1900s, is now the 

leading cause of death in Native Americans (Welty 1991, Espey 2014).  In 2003, the U.S. 

Commission on Civil Rights published A Quiet Crisis: Federal Funding and Unmet 

Needs in Indian Country, which detailed the disparity in overall health between Native 

Americans and the U.S. general population. On average, Native Americans have a lower 

life expectancy by six years compared to other racial groups and the rate of mortality of 

those under 25 is three times the national average. When compared to their non-native 

counterparts, Native Americans are 12.5% more likely to be obese (Cobb et al.2014), are 

eight times more likely to have diabetes (Lang 2006), and almost two times more likely 

to die from cardiovascular disease (Howard et al. 1999). Fortunately, Espey et al. (2014) 

concluded that much of the observed morbidity and mortality could be addressed through 

known risk mitigation strategies such as increasing the consumption of micronutrients, 

exercise, and changes in diet. 
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In contrast to the epidemic levels of disease in modern cultures, the lack of 

disease in pre-agricultural societies, a lifestyle and diet that mimics our foraging 

ancestors could be an effective risk mitigation strategy (Brock and Diggs 2013). To 

combat health problems associated with modern lifestyles, many initiatives espouse the 

benefits of foraging. Finding, harvesting, and preparing foraged foods generally leads to 

increased nutrient intake, displacement of less nutritious foods, and an increase in 

physical activity, all of which can benefit overall health.  In addition, comparative studies 

indicate that wild food plants are often more nutrient dense than their cultivated 

counterparts (Nelson et al. 2000, Booth et al. 1992, Sakai 1983, Coursey 1983, 

Widdowson 1992, Wardlaw and Insel 1995), and increasing micronutrient intake has 

been hypothesized as one of the most cost effective public health interventions available 

(Jamison et al., 1993; Tulchinsky, 2010; Harrison, 2010). Micronutrient deficiencies are 

among the top 20 risk factors for impaired quality of life (Egeland and Harrison 2013). 

Additionally, micronutrient deficiencies among indigenous groups tend to be at higher 

levels than that of the general population, thus foraging could improve their overall 

health.  National initiatives, such as the Center for Disease Control’s Traditional Foods 

Project provides funding to educate groups on how to properly identify, harvest, process 

and cook traditional foods. Many tribal groups have their own traditional food programs, 

and in a report by the Traditional Foods of Puget Sound Project, there are at least 14 

programs in the Puget Sound Area of Washington State alone that offer training in 

foraging and preparing traditional foods (Krohn 2010). More regionally, initiatives such 

as the Kalispel Educators Encampment, Colville Confederated Tribes Diabetes Program, 

and the Northwest Indian College’s Traditional Plants and Foods Project encourage 

people to forage foods as a way to mitigate the risk of modern disease. 

Forming nutritional plans that include foraged foods is difficult without 

comprehensive nutritional information. Access to comprehensive nutritional information 

and an understanding about how nutritive content can differ spatially and temporally in 

foraged foods could benefit foragers and may support increased consumption of 

traditional foods (Phillips et al. 2014). Unfortunately, little is known about the nutritional 

quality of many foraged plant foods (Kuhnlein and Turner 1991, Kuhnlein 2000, Grivetti 

and Ogle 2000), and nutritional information is difficult to locate and assemble, especially 
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without formal training (Grivetti et al. 1987, Grivetti and Ogle 2000).  Where nutritional 

information on foraged plants is available, the data are usually regional and based on   

incomplete studies.  However, the growing attention on foraging has led to recent studies 

that use modern techniques to assess the nutrient values of some wild food plants 

(Phillips et al. 2014). Typically, research on foraged foods are from a single (or few) 

samples at a single point in time, which may not be representative of the actual nutritional 

value. For example, the nutritive content of some agricultural products differs due to time 

of harvest (phenology) (Remorini et al. 2008, Venneria et al. 2012) and environmental 

conditions (population).  Potential differences between populations or phenology are 

generally not examined in wild food plants (Grivetti and Ogle 2000).  To further 

complicate matters, inconsistent project designs and methods makes comparison difficult 

at best (Kuhnlein and Turner 1991, Kuhnlein 2000, Grivetti and Ogle 2000). As a case in 

point, the available nutritional information on Claytonia lanceolata is based on a single 

incomplete study. A proximate analysis of C. lanceolata corms was performed in 1938 

and to date this single analysis has served as the sole source of nutritional information for 

the species (Yanovsky and Kingsbury 1938).  Moreover, Yanovsky and Kingsbury’s 

(1938) test does not address the taxonomy of the species (i.e., no deposited voucher 

specimen), so independent confirmation of species identification is not possible and data 

on the population where the corms were procured is not published, thus, their tests appear 

to be from a single population at a single point in time.  

Traditionally, indigenous peoples harvested the underground stems (corms) of C. 

lanceolata, a subalpine to montane herbaceous perennial in the family Montiaceae to eat 

immediately, trade, or store for later consumption (Teit 1928, Verne 1932, Turner et al. 

1980, Mastrogiuseppe 2000, Palmer et al. 2000, Ross 2011). Claytonia lanceolata was 

likely one of the first available food plants in the spring, due to the early flowering cycle 

(i.e., April and May) and grows in a number of different environments. In modern times, 

C. lanceolata is often overlooked as a food plant, yet early records list the corms as an 

important food source (Teit 1900, Teit 1928, Verne 1932). For example, Teit’s 

ethnography (1928) about the Salishian tribes of the Western Plateau, Claytonia sessifolia 

(a synonymous scientific name for C. lanceolata) is listed as one of the most important 

food plants to the Thompson and Okanagan People. Some plateau groups included C. 
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lanceolata in their religious ceremonies (Teit 1928, Verne 1932, Turner et al. 1980, Ross 

2011), and even incorporated C. lanceolata into their cultural explanation of the stars 

(Boas 1921). In addition, bereaved women in some groups were told to pull up and 

spread the dried stems to areas they didn’t grow as a way to ease their suffering (Turner 

2015).  

 

Purpose and Hypothesis 

 

To better understand how the nutritive content of C. lanceolata corms may have 

influenced the health of native peoples in this area, I assayed the mineral content of C. 

lanceolata corms. I analyzed the dietary mineral and toxic metal content of corms from 

multiple populations, compared samples that had the periderm removed prior to analysis, 

and measured dietary mineral and toxic metal concentrations from a subset of the same 

populations at different times (phenology). Due to its historical use, I predicted C. 

lanceolata corms would be a good source of dietary minerals for regional native peoples 

(Table 1; Appendix 1), yet hypothesized mineral nutrition would vary due to mode of 

preparation (i.e., removal of the periderm versus periderm intact), time of harvest (early 

versus late) and site location. Because we sampled at sites with known toxic metal 

contamination (i.e. the Coeur d’Alene basin), toxic metals detrimental to human health 

were also assayed (Table 2; Appendix 2).   

 

Methods 

 

Site Location and Sample Collection Protocol  

The 12 selected sample sites encompass a range of environments where C. 

lanceolata grows (Map 1).  Sampled populations were identified by word of mouth 

(Badger Mountain, St. Paul’s Mission, Huetter Rest Area, Kamiak Butte), by herbarium 
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specimen record (Leader Lake, Sherman Creek, Mud Lake, Tubbs Hill, Robinson Park, 

Moscow Mountain) and by searching without prior knowledge (Leader Lake, Elk, 

Chattaroy). I collected C. lanceolata corms from April and May of 2014 (Table 3), and 

six populations (Mud Lake, Huetter Rest Area, Chattaroy, Elk, and Tubbs Hill) were 

resampled approximately 30 days after their initial sampling date (Map 2).  

GPS coordinates (WGS-84) for each site were recorded using a handheld GPS 

unit (Magellan eXplorist 310). Individuals were sampled within 50 m of the initial 

coordinate reading. Corms from every other noticed individual, irrespective of plant size, 

were dug using a slender pry bar to minimize disturbance to the site. About 50 g of fresh 

corms were collected from each site, and whole individuals were placed in a gallon 

storage bags (Ziploc) in a cooler, and returned to the lab for processing.  

Sample Processing 

Individuals were examined and a representative series of photos were taken to 

characterize diversity at each site. Voucher specimens for each population and at each 

sample time were prepared and are stored in the Eastern Washington University 

Herbarium. 

Corms were removed from their above ground biomass, triple rinsed by hand in 

de-ionized water and air dried prior to weighing. Weighed corms were randomly assigned 

to peeled or unpeeled treatment groups. Corms in the peeled treatment had the periderms 

manually removed with a razor blade. Peeled and unpeeled corms were oven dried at 

57oC for seven days after which they were randomly divided into 1.5 g groups, hand 

homogenized using a mortar and pestle, and stored in 5 ml polyethylene tubes (Fisher 

Scientific) at room temperature prior to subsequent analysis.  

 

Dietary Mineral Analysis  

Claytonia lanceolata dietary mineral content was determined by Inductively 

Coupled Optical Emission Spectrometry (ICP-OES, Thermo iCap 6200) under the 

supervision of Dr. Carmen Nezat, in the Eastern Washington University Environmental 
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and Analytical Geochemistry Laboratory. Approximately 1 g of homogenized tissue per 

sample was transferred to pre-weighed 150 ml beakers, and digested according to EPA 

Method 3050B. Prior to use, all lab wear was soaked in 5% HNO3 for 24 hours and 

thoroughly rinsed with deionized water. In the fume hood, 10 ml of 1:1 HNO3 to H20 was 

added to each beaker, mixed by swirling, and covered with a watch glass. Each beaker 

was placed on a hot plate and the sample heated to approximately 95oC, then refluxed 

(cooled without evaporative loss) for 15 minutes then removed from the hot plate to cool 

to room temperature. After cooling, 5 ml of concentrated nitric acid (67-70%, 

OmniTrace) was added to each sample, and heated to approximately 95oC. Each time 

brown fumes were observed, an additional 5 ml of concentrated HNO3 was added until 

no further reaction occurred. Samples were then reduced until total volume was 

approximately 5 ml, and then 2 ml of H2O, and 3 ml of H2O2 (35% H2O2, Hydrogen 

peroxide for Analysis by Acros Organics) were added to each beaker. If bubbles formed 

rapidly, additional H2O2 was added in 1 ml increments (not exceeding 10 ml) until no 

reaction was observed. Samples were then reduced to approximately 5 ml, allowed to 

cool, and filtered through Whatman 41 (GE) filter papers in funnels into 50 ml 

volumetric flasks. Beakers and funnels were flushed with nanopure water until the 

solution was diluted to 50 mL. The solution was then placed in 50 ml polyethylene vials 

(Fisherbrand) and stored at room temperature overnight.  

Reported dietary mineral concentrations represent the total recoverable portions 

from each sample (Table 5).  Reference standards for soil and orchard leaves (CRM-Soil 

B and CRM-OL: High Purity Standards) were analyzed to monitor the accuracy of 

dietary mineral analysis. Further quality control measures were taken by regularly 

analyzing procedural and reagent blanks during the course of analysis.  The following 

elements were quantified: Aluminum (Al), Barium (Ba), Calcium (Ca), Cadmium (Cd), 

Chromium (Cr), Copper (Cu),  Iron (Fe), Potassium (K), Magnesium (Mg), Manganese 

(Mn), Sodium (Na), Phosphorus (P), Lead (Pb), and Zinc (Zn).  Only those dietary 

minerals and toxic metals relevant to human health were further analyzed. The average 

dietary mineral composition of corms will be entered into the USDA Nutrient Database 

for Standard Reference, release 20 (USDA, 2007) in a distinct food group, I.e. American 

Indian/Alaska Native foods (USDA, 2011). 
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Serving Size Estimation  

Serving size seems to be a mostly arbitrary construct, so using a 100 g fresh 

weight allowed for ease of comparison of other reported dietary mineral values in other 

foods. A serving size is defined by the FDA as the amount of food customarily consumed 

per eating occasion (FDA 2015). The exact formulas used to determine serving size are 

not published, but demographic and socioeconomic characteristics, as well as the age 

class of the relevant population are considered. Potatoes and yams are generally 

considered to have a 110g fresh weight serving size and the serving size for many other 

vegetables is 85g fresh weight. For the purpose of this study, we assumed a single serving 

to be 100 g fresh weight, close to the average between a potato and vegetable (97.5g).  

Statistical Analyses 

To determine if subsets of corms from different populations, subsets with 

periderm removed, and subsets from early and late sample times contained statistically 

significant differences in the average concentration of the dietary mineral and toxic 

metals, we compared the averages using a series of Kruskal-Wallis tests, due to 

nonparametric data.  Except as noted, statistical tests were performed using Systat 13 and 

SigmaPlot 11.0 (Systat Software, Inc.). The significance level for all analyses was (α ≤ 

0.05).  The average macroelement, trace element and toxic metal concentration was 

reported using the mean value for all unpeeled samples (n=72). To determine if 

preparation (i.e., periderm removal) affected the concentration of dietary minerals and 

toxic metals, we pooled subsets with periderm removed (n=18) and periderm intact 

(n=54). Early and late harvest was compared by pooling unpeeled sample subsets from 

both harvest times (n=18), and then to determine which populations varied from early to 

late sample time,  we compared subsets (n=3) from each specific population sampled 

multiple times using a series of paired T-tests (e.g. Mud Lake early versus late).  
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Results 

 

Corms from 12 populations, 72 samples total, contained elements essential to 

human health (Ca, Mg, K, Na, P, Cu, Fe, Mn, Cr, Zn; Tables 2 and 3), and the fresh 

weights of the individual corms varied from 0.006 g to 11.546 g (mean weight 0.811g; 

n=1270; Figure 1). On average, a single serving of corms provides >10% of the DRI of 

the macroelements Mg and P, >10% of all trace elements (Cu, Fe, Mn, Cr, Zn), and are 

generally low (<.01 mg/100g) in heavy metals such as Cd, Pb, and Ba. When compared 

to cultivated foods with similar morphologies , such as potatoes and turnips, corms have 

higher values for the macroelements Mg, and P,  and most trace elements (Fe, Mn, Cr, 

Zn) (Figure 5).  

The effect of the mode of preparation (i.e., removal of the periderm or periderm 

intact) did not alter the average content of macroelements, yet concentrations of trace 

elements Fe, Cr, Cu, Mn in unpeeled samples was significantly higher (p<.001 for Fe, Cr, 

Pb; p=.003 Cu; p=.007 Mn). The average concentration of Ba and Cd was not 

significantly different in peeled versus unpeeled samples, however the average amount of 

Pb was significantly reduced (p<.001) when the periderm was removed prior to analysis. 

Lead over the European Union Maximum Limit (EUML; Pb >.10 mg/100 g) was found 

in three populations: Huetter Rest Area, Sherman Creek, and St. Paul’s Mission.  The 

Mud Lake and Tubbs Hill populations were also close to the EUML (Table 2), and Cd 

levels that surpassed the EUML (>.15 mg/100 g) where found in two populations: 

Sherman Creek and St. Paul’s Mission. 

Averages concentrations for most micronutrients increased (Na; p=.05, Ca; 

p=.004 Mg; p=.015, K; p=.006) and one trace element (Cu; p=.043) increased over the 

phenology. Concentrations of toxic metals did not change significantly between sample 

times.  

All sites varied in their dietary mineral concentrations, however there were no 

populations with uniformly high or low values. The mean weight of corms was 

significantly different among populations (p<.001), as was the average content of 
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macroelements (Ca; p=.04, Mg; p<.001, K; p=.004, Na; p=.004, P; p=.013), trace 

elements (Fe; p=.004, Mn; p=.023, Zn; p<.001) and toxic metals (Cd, Pb, Ba; p<.001). 

More specifically, corms assayed had a wide range of variation for macroelements:  

The average Ca  was 22.1 mg /100 g, and ranged from 14.5 – 46.8 mg/100 g;  the 

average Mg concentration was 38.4 mg /100 g and ranged from 21.6 -89.0 mg /100g; the 

average K concentration was 250.1 mg / 100 g, and ranged from 171.2 to 475.9;  the 

average Na concentration was 3.2  mg / 100 g, and ranged from 1.8 to 7.7 mg / 100 g;  

the average  P concentration was 95.6  mg / 100 g, and ranged from 51.7 – 253.8 mg / 

100 g. Trace elements concentrations for corms was also highly variable: the average Cu 

concentration was 0.12  mg / 100 g, and ranged from .08 - .31 mg / 100 g; the average Fe 

concentration was 23.1  mg / 100 g, and ranged from 4.0 – 120.9 mg / 100 g; the average 

Mn concentration was 2.1  mg / 100 g, and ranged from 0.7 – 5.1 mg / 100 g; the average 

Cr concentration was 0.03  mg / 100 g, and ranged from 0.01 – 0.18 mg / 100 g; the 

average Zn concentration was  95.6  mg / 100 g, and ranged from 51.7 – 253.8 mg / 100 

g. The toxic metal concentration of corms assayed was variable:  the average Cd 

concentration was 0.05 mg / 100 g, and ranged from 0.01-0.36 mg / 100 g; the average Pb 

concentration was 0.10 mg / 100 g, and ranged from 0.01 – 0.49 mg / 100 g; the average 

Ba concentration was 1.0 mg / 100 g, and ranged from 0.2 – 2.1 mg / 100 g. 

 

Discussion 

 

Our results corroborate what generations of Native peoples likely understood. The 

wild foraged food, C. lanceolata is an excellent but highly variable source of dietary 

mineral nutrition. Claytonia lanceolata corms contain all analyzed macroelements and 

trace elements, and are an excellent source of some elements people are often deficient in 

(Mg, Fe, Zn), but harvest location matters. 

This study assessed the dietary mineral composition of C. lanceolata corms from 

the Columbia Plateau region of the Pacific Northwest to determine the overall dietary 
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mineral content, and to determine if dietary mineral concentrations varied by method of 

preparation (peeled vs. unpeeled), time of harvest (early vs. late), or by harvest location. 

Overall, our results suggest that inclusion or reintroduction of C. lanceolata corms into 

the diet may be useful in mitigating health problems by increasing dietary mineral 

nutrition intake and displacing less nutritious foods. These findings add to a growing 

body of knowledge that suggests that wild food plants can be nutritionally superior to 

modern cultivars.  

Dietary Mineral Nutrition 

Claytonia lanceolata corms are a good source of Mg (38mg/100g) and surpass 

many modern foods considered high in Mg, such as avocados (29mg/100g), and bananas 

(27mg/100g). Whereas most people get adequate levels of P in their diets, some 

conditions such as diabetes, alcoholism, and starvation can cause levels of phosphorus in 

the body to decline. On average, a serving of C. lanceolata corms provides a portion of 

all macroelements, and  > 10% of the DRI of the macroelements Mg and P. Magnesium 

deficiency (hypomagnesemia) is common and affects between 2.5 -15% of the general 

population and only about 32% of the U.S. population meets the RDI for magnesium 

(Ayuk 2014).  

Trace elements in C. lanceolata corms were also found at high levels (Table 2), 

and on average a single serving of corms would provide > 100% of the daily values of Fe, 

Mn, and Cr, and between 10-25% of Cu and Zn. Deficiencies in Fe and Zn are relatively 

common.  The World Health Organization (WHO) estimates that 3.7 billion people are 

iron deficient with two billion considered anemic (WHO 2011), and in the US alone, 

around nine million people are clinically deficient with about 7% of the population 

ingesting less than 50% of the RDI (Wilson et al. 1997). Zinc deficiency is likewise 

problematic in some developing countries, with low zinc intake contributing to pregnancy 

complications, decreased disease resistance, impaired growth, and genetic disorders 

(Allen et al. 2006).  Deficiencies in other trace elements such as Cu, Mn, and Cr are rare, 

but problematic to human health. Copper deficiency can be caused by increased 

consumption of Zn used in the prevention or treatment of common colds, ulcers, celiac 

disease, acne and other ailments. The daily requirement of Mn is low (2mg/day), thus 
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deficiencies are unlikely and Cr deficiency has only been observed in hospital patients 

who were intravenously fed for long periods of time (Review of Chromium 2002).  

Although our results suggest a single serving of C. lanceolata corms could 

provide adults with adequate amount (or more) of iron on a daily basis, we make note of 

the fact that the Fe in C. lanceolata corms is not the heme iron found in meats, which 

generally has higher bioavailability and is less affected by other dietary components that 

affect iron uptake, such as vitamin C (which increases uptake of nonheme iron).  

Toxicity 

Our regional proximity to known contamination sites (i.e., Coeur d’Alene basin) 

made us sensitive to the potential for exposure to toxic metal contaminants by modern 

foragers. To this end, we analyzed corms for toxic metal content with and without the 

periderm where adherence of soils particles increases the likelihood of toxic metal 

ingestion. Concentrations of the toxic metals we tested for (Cd, Pb, and Ba) were 

generally low, with the exception of the Huetter Rest Area, Sherman Creek, and St. 

Paul’s Mission sites where we saw elevated levels of Cd and Pb.  

We hypothesize the proximity of these sites to potential contamination sources 

(e.g. highways, major water bodies, previous mining locations, and agricultural areas) is 

one possible explanation for the observed elevated concentrations. Sherman Creek and 

St. Paul’s Mission are proximate to the Columbia River and a major highway (US-2), 

both of which provide a potential means for contamination from Cd and Pb.  High levels 

of Cd and Pb at the Huetter Rest Area site are likely explained by its proximity to a major 

Interstate (I-90). Cadmium and Pb are both contaminates from fossil fuel combustion. 

Additional analyses examining the relationship between proximity to major highways and 

elevated Cd and Pb levels in wild food plants are warranted.  

Although the effects of barium on human health are not well understood, the EPA 

has determined that drinking water should contain no more than 2.0 mg of barium per 

liter of water. To determine the safe levels of Ba in food, we used a 4 mg/per serving 

limit extrapolated from the EPA safe levels in drinking water limits. All populations 

tested contained quantities much lower than this threshold.  
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When, Where and Whether to Peel or Not to Peel 

The average concentration of various dietary minerals and toxic metals 

significantly changed with exclusion of the periderm, phenology and sample site location. 

We suggest that soil adhesion to the periderm may be a critical contributor to these 

differences. Our results suggest that removal of the periderm decreases the average 

dietary mineral content of trace elements and Pb in corms. At sites with a low likelihood 

of toxic metal contamination, leaving the periderm intact can increase dietary mineral 

intake.  

Harvesting later in the above ground growth cycle (phenology) increases the 

concentration of most macroelements, but has no effect on trace element concentrations. 

This result is consistent with our hypothesis and can be explained by the storage of 

nutritive content in the corms over the course of the above ground growth cycle. As 

spring ephemerals, C. lanceolata preform their flowers for the next year and use stored 

nutrients to resume growth early in the following year, prior to the expansion of their 

photosynthetic leaves. Dietary mineral content appears to increase incrementally over the 

course of the above ground growth cycle (Fig. 9 and 10), suggesting that mineral content 

stored in the corm is allocated to vegetative growth early in the season and that storage of 

mineral content begins again after photosynthetic leaves are expanded. The single 

exception is P, which is required in large amounts for vegetative growth.  Additional 

studies might examine if the P content of soils influences the distribution and growth 

characteristics of C. lanceolata.  

At the population level, we began to notice site-specific dietary mineral 

concentrations (Table 2, Maps 2, 3, 4).  One possible explanation for this wide range of 

dietary mineral concentration is variation in soil types. The Soil Survey Geographic 

Database (SSURGO) data, overlain with reference points of known C. lanceolata 

populations provides evidence for of the wide range of soil types in which C. lanceolata 

grows. For example, in one four mile area around the St. Paul’s Mission site, at least 20 

specific soil types exist, and C. lanceolata grows in at least six of these soils. This pattern 

of high soil type diversity over relatively small spatial scales is consistent across all 
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sample sites (Map 6), and may explain the highly variable, yet inconsistent pattern of 

dietary mineral nutrient content we see over our sample sites.  

It is likely that indigenous peoples with dietary mineral deficiencies, through a 

process of trial and error, could have discovered specific harvest areas with increased 

levels of dietary mineral nutrition that could alleviate deficiency symptoms. Symptoms of 

dietary mineral deficiencies are wide ranging, but often come in the form of malaise, and 

after ingestion of sufficient dietary mineral nutrition, alleviation of the symptoms occurs 

rapidly. Iron deficiency during the winter months when food scarcity was highest would 

have manifested as weakness, fatigue, headaches, shortness of breath, and difficulty 

concentrating (Table 1), which would have been quickly alleviated by ingesting C. 

lanceolata corms from populations with high Fe content. Sites with high levels of Fe in 

the soil and/or corm would have provided an important nutritional boost to women, 

juveniles, and the elderly in particular. Our current understanding of iron deficiency 

especially during pregnancy suggests it can cause low birth weight, premature birth, and 

impaired cognitive and behavioral ability, as well as adverse and often irreversible 

cognitive and psychological affects in infants (Aggett 2012, Baker and Greer 2010). 

Insufficient iron in the elderly, especially those with other health conditions (cancer, 

celiac disease, heart disease) is associated with increased risk of hospitalization and 

mortality (Riva et al. 2009). In our study, iron content of corms from specific sample sites 

ranged from 4 to 121 mg per serving. For comparison, modern iron supplements come in 

ranges of 35 to 100 mg per pill. Harvesting from specific areas with high levels of iron in 

the soil would have been as effective as modern supplements for curing iron deficiency.  

Protecting Indigenous Knowledge 

Traditional or cultural knowledge about harvest areas and preparation methods of 

plant foods is disappearing at an alarming rate (Inglis 1993, Heyes and Jacobs 2008, 

Garcia et. al 2013). Information about places of harvest that have higher nutritive content 

would likely be preserved in cultural knowledge. There is some evidence of this today in 

the maintenance of family or community harvest areas (Krohn 2007). Hunn (1981) 

estimated that people of the plateau culture area got up to 70% of their calories from plant 

foods, and about 50% of those calories from root foods, thus protection of indigenous 
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harvest areas are as equally important to preserving indigenous tradition and knowledge 

as other cultural concerns, such as protection of salmon runs or language preservation. 

Our results suggest greater consideration for the protection and preservation of historical 

harvest areas is warranted if we aim to protect and preserve traditional knowledge of the 

plateau culture area.  

Modern Nutritional Testing of Wild Plant Foods  

 Reported values of wild food plant nutritive content is often based on studies with 

low replicate samples, and our results suggest that these studies are incomplete. Studies 

with low replicate samples can significantly over or under report average dietary mineral 

concentrations. Using these reported values to inform management decisions, or in 

downstream publications could misrepresent the factual importance of a particular 

species. If the nutritional content of other food plants is similar to C. lanceolata, studies 

should consider sampling more broadly across a species distribution and where relevant 

across the phenology. Unfortunately, some studies suggest nutritional testing of wild food 

plants is limited by funding, availability of sample material, and time (Kuhnlein and 

Turner 1991, Kuhnlein 2000), however in light of our results; we question the validity of 

these studies with limited sample replicates.  
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Figure 1. Mean weight of C. lanceolata corms from select populations (n=11). Error bars 
represent +/- 1 standard deviation.   
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Figure 2. Macroelement content of C. lanceolata corms from all populations (n=72). 
Solid lines represent the median values; dotted lines represent the mean values; outliers 
are represented as solid circles.  
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Figure 3. Trace mineral content of C. lanceolata corms from all populations (n=72). 
Solid lines represent the median values; dotted lines represent the mean values; outliers 
are represented as solid circles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

31 
 

  
 
 
Figure 4. Toxic metal content of C. lanceolata corms from all populations (n=72). Solid 
lines represent the median values; dotted lines represent the mean values; outliers are 
represented as solid circles.  
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Figure 5. Percentage of  DRI for dietary minerals in a 100g serving of various plant 
foods.  
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Figure 6. Mean macroelement content of peeled C. lanceolata corms compared to 
unpeeled corms. Error bars represent +/- 1 standard deviation.  
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Figure 7. Mean trace element content of peeled C. lanceolata corms compared to 
unpeeled corms. Error bars represent +/- 1 standard deviation.  
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Figure 8. Mean toxic metal content of peeled C. lanceolata corms compared to unpeeled 
corms. Error bars represent +/- 1 standard deviation.  
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Figure 9. Average dietary mineral content of C. lanceolata corms from populations 
sampled ~30 days apart (n=18). Error bars represent +/- 1 standard deviation. Iron (Fe) is 
added to this graph due to its high average concentrations.  
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Figure 10. Mean dietary mineral content of C. lanceolata corms from populations 
sampled ~30 days apart (n=18). Error bars represent +/- 1 standard deviation.  
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Figure 11. Mean toxic metal concentration in C. lanceolata corms from populations 
sampled ~30 days apart (n=18). Error bars represent +/- 1 standard deviation.  
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Figure 12. Mean Fe, Mg, Zn content of C. lanceolata corms from various populations (n=3).   
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Table 1. Summary of benefits and symptoms of deficiency associated with the mineral nutrients important to human health 
analyzed in this study.  

M
ac

ro
el

em
en

t 
Mineral DRI* (mg/day) Function Symptoms of deficiency Toxicity Level 

Ca 1000 Biological function of numerous tissues, important 
cofactor, physiological performance in general  

Muscle cramps, brain function, 
osteoporosis  - 

Mg 365 Energy metabolism, release of neurotransmitters, cell 
function 

Nausea, irritability, muscle 
weakness, twitching, cramps, 
cardiac arrhythmias 

>5000mg/day 

K 6350 Maintain fluid balance, assists nerve function, related to 
heart muscle contraction  

Cramping, muscle weakness, mood 
changes and irregular heartbeat  - 

Na 4700 Maintains the balance of fluids, and is related to blood 
pressure, kidney function, nerve and muscle function  

Nausea, dizziness, poor 
concentration, and muscle 
weakness 

- 

P 700 Required to produce ATP as a source of energy, and 
may regulate numerous protein activities  

Sore bones, irregular breathing, 
anxiety, fatigue, and changes in 
body weight  

- 

T
ra

ce
 E

le
m

en
t 

Cu 0.9 Related to enzyme function and the development of 
connective tissue and nerve coverings  

Hematological symptoms and 
skeletal disturbances  >2.6 mg/day 

Fe 11.3 Synthesis of hemoglobin and myoglobin needed for O2 
transport, and energy release 

Weakness, fatigue,  headaches, 
shortness of breath, difficulty 
concentrating 

10-20 mg/kg 

Mn 2.05 Enzyme cofactor involved in antioxidant reactions  Reduction in red blood cells, 
cholesterol  0.16 mg/kg 

Cr 0.028 Essential for normal blood glucose and lipid 
metabolism  

Glucose intolerance and weight 
loss  1.9 -3.3 mg/kg 

Zn 9.5 
Required in the production and activity of over 100 
enzymes , in the synthesis of nucleic acids, for cellular 
differentiation, and insulin secretion  

Impairs DNA synthesis, dulls the 
sense of taste and smell, affects the 
immune system, and can cause hair 
loss  

>225 mg/day 
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Table 2. Summary of the detrimental effects of some metals toxic to human health. 

 
 

To
xi

c 
M

et
al

s 
Metal Effect on Human Health 

Cadmium (Cd) Increased cancer risk, impaired bone metabolism, 
and poor endocrine system function 

Barium (Ba) 
Not well understood. Some animal studies show 
increased swelling, changes in organ weights, and 
decreased survival  

Lead (Pb) 

Acute symptoms include headaches, nausea, birth 
defects, and miscarriage. Chronic affects include 
anemia, infertility, kidney damage, and 
hypertension.  
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Table 3. Sampling/resampling dates, GPS coordinates, elevation, culture area and soil data for C. lanceolata corm collection 
sites. 
 

Sample Site Name Sample Date Resample Date  Latitude** Longitude** 
SSURGO 
MUKEY* Elevation (m) Culture Area 

St. Paul's Mission 5/3/2014 - 48°37'56.995"N  118°6'10.634"W   158261 421 Coeur d'Alene 

Huetter Rest Area  4/11/2014 5/16/2004 47°42'47.53"N  116°52'35.496"W   79439 658 Coeur d'Alene 

Tubbs Hill 4/11/2014 5/16/2014 47°40'17.785"N  116°47'10.35"W   79453 698 Coeur d'Alene 

Lewis Trail 4/4/2014 - 46°48'47.508"N  116°58'17.755"W   1387525 949 Coeur d'Alene 

Robinson Park 4/5/2014 - 46°45'4.857"N  116°54'35.286"W   1689277 839 Coeur d'Alene 

Sherman Creek 4/19/2014 5/17/2014 48°35'41.228"N  118°9'35.99"W   70171 572 Colville 

Mud Lake  4/19/2014 5/18/2014 48°16'11.72"N  117°39'56.244"W   158233 826 Colville 

Elk, WA  4/20/2014 5/18/2014  48°2'41.198"N  117°15'24.531"W  621133 590 Kalispel 

Leader Lake 5/3/2014 -  48°22'4.494"N 119°41'43.469"W  1899793 432 Mid-Columbia River Salishian 

Badger Mountain 5/2/2014 - 47°36'4.097"N  120°8'14.973"W   704240 1125 Mid-Columbia River Salishian 

Kamiak Butte 4/13/2014 - 46°51'31.403"N  117°10'50.724"W   68481 1094 Sanpoil 

Chattaroy, WA  4/11/2014 5/15/2014 47°53'42.698"N  117°23'57.919"W   620934 601 Spokan 
 

*SSURGO MUKEY is the reference number for the information on the soil type as collected by the National Cooperative Soil 

Survey of the USDA-NCRS. The MUKEY allows interested parties to query the database for detailed soil information.  

**Latitude and Longitude are based on the WGS-84 Coordinate system.  
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Table 4. Population averages for moisture, mineral, and toxic metal content of C. lanceolata corms from all populations and 
sample times.  
 
Population (n=3) 

C
ol

le
ct

io
n 

D
at

e 
20

14
 % 

Water 
Concentration (mg/100g fresh weight)  
Macroelements Trace Elements  Heavy Metals  

C
a*

 

M
g*

 

K
* 

N
a*

 

P*
 

C
u 

Fe
* 

M
n*

 

C
r 

Zn
* 

C
d*

 

Pb
* 

B
a*

 

A
l*

 

Chattaroy  4/1 83 14.5 28.1 156.2 2.8 78.1 0.08 24.3 1.8 0.03 0.5 0.01 0.03 1.7 17.7 

Chattaroy  5/5 69 20.9 45.3 275.7 2.4 75.5 0.11 20.1 1.9 0.02 0.8 0.01 0.02 1.9 14.0 

Elk 4/20 78 18.1 29.9 206.9 2.8 83.0 0.08 10.3 1.9 0.02 0.8 0.01 0.03 1.1 9.5 

Elk 5/16 66 28.0 38.2 303.2 3.9 95.6 0.09 15.1 2.1 0.03 1.7 0.01 0.05 1.1 13.4 

Huetter  4/11 69 46.8 89.0 475.9 7.7 253.8 0.31 60.4 5.1 0.07 4.1 0.03 0.18 2.1 44.7 

Huetter  5/16 72 21.7 45.8 292.2 5.4 109.0 0.11 16.0 1.7 0.02 2.0 0.02 0.04 1.3 16.0 
Mud Lake  4/19 81 18.0 35.3 214.3 2.5 53.2 0.08 5.6 0.8 0.01 0.6 0.01 0.01 1.1 6.4 
Mud Lake  5/18 64 38.8 64.6 434.9 6.0 202.3 0.26 120.9 4.4 0.18 1.5 0.02 0.09 2.0 77.2 

Sherman Creek 4/11 77 16.4 36.5 209.8 1.8 51.7 0.09 12.4 2.6 0.03 1.8 0.19 0.45 0.3 10.5 

Sherman Creek 5/17 69 28.0 49.4 277.9 3.3 86.5 0.15 14.1 3.2 0.03 3.2 0.36 0.49 0.4 12.8 

Tubbs Hill  4/11 83 16.2 26.8 195.1 2.0 126.9 0.11 8.9 1.2 0.01 1.0 0.02 0.05 0.7 6.7 
Tubbs Hill  5/16 76 22.5 31.6 199.7 2.5 64.9 0.12 14.4 2.2 0.02 1.0 0.02 0.08 0.8 13.5 
Badger Mountain 5/2 84 21.6 35.0 248.2 2.0 84.3 0.09 17.0 1.5 0.02 0.9 0.01 0.02 1.1 11.1 
Kamiak Butte  4/3 75 18.2 25.8 183.5 2.7 55.0 0.08 14.9 1.5 0.02 1.3 0.01 0.02 0.6 10.0 

Leader Lake 5/3 81 13.0 30.6 197.6 2.6 62.7 0.08 4.0 0.7 0.01 0.5 0.01 0.01 0.2 3.7 

Lewis Trail 4/4 78 22.8 34.3 257.0 3.0 98.4 0.10 38.8 2.3 0.05 1.6 0.01 0.03 1.0 27.7 

Robinson Park 4/4 74 14.9 21.6 171.2 1.9 80.4 0.09 13.3 1.6 0.03 0.6 0.01 0.05 0.7 15.0 

St. Paul's Mission 5/3 78 17.0 24.1 203.2 2.9 60.0 0.10 5.8 1.6 0.02 2.0 0.15 0.24 0.2 2.9 

Average  n/a 75 22.1 38.4 250.1 3.2 95.6 0.12 23.1 2.1 0.03 1.4 0.05 0.10 1.0 17.4 
-Light shading represents the corms that had between 10-25% of the DRI of the mineral per 100g serving; medium shading represents between 25-50% 
of DRI; dark shading represents 50-75% of DRI; outlined boxes represent populations that contained >100% of DRI. 
-Double outlined boxes represent populations with average sample concentrations over the EUML for toxic metals. 
-The average minerals content of corms that differed significantly (p<.05) between populations are denoted with an asterisk (*) after the element. 
-Populations and elements listed in bold include significantly different average concentrations of elements between harvest times. 
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Table 5. Percent of recovery for each element from check standards CRM-Soil B and CRM – OL from High Purity Standards.  

 

 

Standard Al As Ba Ca Cd Cr Cu Fe K Mg Mn Na P Pb Zn 
CRM-Soil B 112 108 113 104 113 125 110 104 156 100 105 100 161 113 107 
CRM - OL 92 116 110 99 100 90 112 105 108 99 100 120 156 111 107 
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Map 1. Map of C. lanceolata corm collection sites. 
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Map 2. Map of resampled C. lanceolata corm collection sites. 
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Map 3. Map of macroelement concentrations for C. lanceolata corm collection sites. 
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Map 4. Map of microelement concentrations for C. lanceolata corm collection sites. 
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Map 5. Map of sample site mineral concentrations represented as a horizontal bar figure of toxic metals with individual metals 
separated by color. 
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Map 6. Map of SSURGO data overlain with known sites where C. lanceolata grows. Listed are sites sampled in this study (St. 
Paul’s Mission and Sherman Creek), places I saw C.lanceolata growing and took a GPS coordinate (PersObs1 and PersObs2), 
and sites from PNW Consortium of Herbia records (111937 and 31473). 
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Appendix 1. Dietary Minerals Essential to Human Health 

 

Throughout this paper, I reference the Dietary Reference Intake (DRI). The DRI are 

published by the Institute of Medicine (IOM) and represent the most current scientific 

knowledge on the nutrient requirements of healthy populations. Individuals may need 

more or less of individual nutrients, but the DRI is a good point of reference for 

comparison of foods and health (IOM 2011). The DRI allowance of a specific nutrient is 

defined as the intake level that minimizes the risk of deficiency or access (WHO/FAO 

2004).  

Dietary mineral nutrients are the chemical elements other than carbon (C), oxygen (O), 

hydrogen (H), and nitrogen (N) present in organic molecules. The dietary mineral 

nutrients essential  to human health are generally categorized in two groups; 1) the 

macroelements which are required by humans in larger quantities, and include calcium 

(Ca), magnesium (Mg), potassium (K), sodium (Na), and phosphorus (P) and 2) trace 

elements which include copper (Cu), iron (Fe), manganese (Mn), chromium (Cr) and zinc 

(Zn). Toxic Metals offer no benefits to human health, such as Cd, Ba, and Pb.  

Calcium (Ca) 

Calcium content of food plants varies widely (Martinez-Ballesta et al. 2010), and is an 

essential nutrient for human health. Calcium participates in biological functions of 

various tissues (musculoskeletal, nervous and cardiac, bones and teeth, parathyroid 

gland), acts as a cofactor in numerous enzyme reactions, and is involved in physiological 

performance in general (Theobald 2005, Huskisson et al. 2007, Morgan 2008, Williams 

2008). The recommended daily allowance is 800-1300 mg/day. 

Magnesium (Mg) 

In general, food plants contain 5-190 mg/100g fresh weight of Mg. Magnesium is related 

to energy metabolism, release of neurotransmitters, and cell function (Bo and Pisu 2008). 

Additionally, Mg acts as a cofactor of up to 300 enzymes (Huskisson 2007). An increased 

intake of magnesium has shown to mitigate the risk of diabetes, hypertension, and 
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cardiovascular conditions (Bo and Pisu 2008).   The recommended intake is 200-400 

mg/day.  

Potassium (K) 

Food plants generally contain potassium from 20 to 730 mg/100g fresh weight, although 

some food plants contain much higher levels (many seeds and nuts, potatoes, banana, 

avocado). Potassium helps maintain the balance of the physical fluid system, assists nerve 

function, and is related to heart muscle contraction (Rosenthal and Gilly 2003, Schwarz 

and Bauer 2004, Ko et al. 2008, Lambert et al 2008). Symptoms of deficiency include 

cramping, muscle weakness, mood changes and irregular heartbeat (Sobotka et al 2008). 

Recommended intake is around 3500 mg/ day. 

Sodium (Na) 

Food plants generally contain low levels of Na (between 2 and 94 mg/100g fresh weight). 

Na helps maintain the balance of fluids, and is related to blood pressure, kidney function, 

nerve and muscle function (Martinez-Ballesta et al. 2010).  Deficiencies are rare, but 

symptoms can include nausea, dizziness, poor concentration, and muscle weakness 

(Smith et al. 2000). Recommended intake is 2400 mg/day. 

Phosphorus (P) 

Generally present in food plants in the range of 16-440 mg/100g fresh weight, 

phosphorus is required to produce ATP, GTP and CP as a source of energy, and may 

regulate numerous protein activities (Sobotka et al 2008). Symptoms of deficiency 

include sore bones, irregular breathing, anxiety, fatigue, and changes in body weight 

(Martinez-Ballesta et al. 2010). The recommended daily intake of P is 800-1300 mg/day. 

Copper (Cu) 

Generally, copper is present in food plants in low levels (.004 to .5mg/ 100g fresh 

weight). Primarily, Cu is related to enzyme function and the development of connective 

tissue and nerve coverings (Huskisson et al. 2007, Shenkin 2008). Cu can be stored in the 

adult human body at up to 80mg so deficiencies are rare, but can include haematological 
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symptoms and skeletal disturbances (Guerrero-Romero and Rodriguez-Moran 2005, 

Huskisson et al. 2007). The recommended daily uptake of Cu is between 1 and 1.6 mg/ 

day. 

Iron (Fe) 

Iron contents of food plants are usually low, ranging from 0.1 to 3 mg/100g fresh weight. 

The main functions of Fe are the synthesis of haemoglobin and myoglobin needed for O2 

transport and energy release (Huskisson et al. 2007, Shenkin 2008). Symptoms of 

deficiency include anemia. The recommended daily intake is 8-18 mg/day. 

Manganese (Mn) 

Low levels of Manganese in the range of 0.01 to 0.08 mg/100g fresh weight are present 

in many food plants. Manganese is an enzyme cofactor involved in antioxidant reactions 

(Rodriguez-Moran 2005). Deficiencies are rare, but symptoms include a reduction in red 

blood cells, cholesterol, and other abnormalities (Shenkin 2008). The recommended daily 

intake of Mn is 2mg/day. 

Chromium (Cr) 

Chromium in food plants is generally found in trace amounts (4x10-5 to 6x10-3 mg/100 g 

fresh weights). Chromium is essential for normal blood glucose and lipid metabolism 

(Huskisson et al. 2007) as well as gene expression, lipid synthesis, and metabolism 

regulation (Shenkin 2008). Deficiencies appear symptomatically as glucose intolerance 

and weight loss (Shenkin 2008). Recommended intake of chromium is between 25-35 

µg/day. 

Zinc (Zn) 

Zinc concentrations in food plants generally vary from 0.05 to 12 mg/ 100 g fresh weight. 

Zinc is required in the production and activity of over 100 enzymes (Shenkin 2008), in 

the synthesis of nucleic acids, for cellular differentiation, and insulin secretion (Lukaski 

2004). Zn deficiency is relatively frequent, and impairs DNA synthesis, dulls the sense of 
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taste and smell, affects the immune system, and can cause hair loss (Shenkin 2008). The 

recommended intake of Zn is 8-11mg daily. 
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Appendix 2. Select Toxic Metals Detrimental to Human Health 

 

One problem with foraged foods in modern times is the presence of environmental 

contaminants such as toxic metals. A summary of some toxic metals and their detriment 

to human health is outlined below.  

 

Cadmium (Cd) 

Cadmium in certain forms is highly toxic to humans.  It is used in a number of industrial 

processes  is readily taken up by root plants (carrots, parsnips), leafy vegetables 

(spinach), and grains (wheat), and Cd accumulates in the body with many toxic effects, 

such as increased cancer risk, impaired bone metabolism, and poor endocrine system 

function (Mudgal et al. 2010).  

 

Barium (Ba) 

Barium is a potentially toxic metal that is sometimes found naturally in the environment, 

and occasionally in foods. Information is being collected on how exposure to barium 

affects human health. Animal studies show increased swelling and irrational, changes in 

organ weights, and decreased survival (DHS).  

 

Lead (Pb) 

Lead is a naturally occurring heavy metal used by people since ancient times in a number 

of products. Inhalation or ingestion of lead is associated with a number of acute and 

chronic adverse health effects. Acute symptoms include headaches, nausea, birth defects, 

miscarriage, and others. Chronic affects include anemia, infertility, kidney damage, and 

hypertension. The effects are especially dangerous to children, as lead affects the 

development of the nervous system, and can cause permanent learning and behavioral 

problems.  Lead can stay in the body for years and is stored in bone and soft tissue, and 

can be re-released into the bloodstream during times of high calcium demand, such as 

pregnancy, menopause, and aging (NIH 2015).  
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