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1  Introduction 

The use of computational fluid dynamics holds many benefits for modeling real-world 

mechanical problems and for creating realistic effects for entertainment media. The 

following project examines the possibility of modeling realistic fluid flows using the 

Lennard-Jones potential and leveraging the power of modern graphics programming 

techniques by using the Graphics Processing Unit (GPU) for simulation of fluids. The 

project strives to solely use shader programs that run on consumer grade graphics 

processing hardware to model and render fluid dynamics governed by the Lennard-Jones 

Potential and to produce realistic looking results using screen-space rendering techniques. 

The use of screen-space rendering techniques requires multiple rendering passes to apply 

effects. 

2 Background 

2.1 Particle Systems 

Particle systems are a computer graphics technique to simulate physical phenomena. 

Particle systems are only loosely defined in computer graphics and can be used to define 

modeling or rendering techniques, and certain kinds of animations. Many times the 

classification of a particle system depends on the application in which it is being used. 

There are, however, certain properties that are common to all particle systems. A 

significant property is that a particle system is a collection of one or more individual 

particles. Every particle in system has attributes that affect how or where a particle is 

rendered either directly or indirectly. Particles themselves are often graphical primitives 



3 
 

like points or lines, although they are not limited to these primitive objects. Complex 

group dynamics, such as the flocking behavior of birds, have been successfully modeled 

using systems that manage multiple particles. The presence of some element of 

randomness in the actions of particles is another commonly seen property, and is used by 

the system developer to control the attributes of the particles. The introduction of 

randomness also allows varying behavior within a system. The attributes that are affected 

by randomness can include position, velocity, color, size, or the lifespan of the particles.  

System particles in a scene are commonly generated by an emitter, an object whose sole 

purpose is to create and emit particles. Each individual particle is typically given an 

attribute called a lifespan. This lifespan determines how long the particle will stay in the 

simulation and is commonly used as a control measure to ensure that the application does 

not slow down because there are too many particles in a scene to calculate updates for. 

The particles that die are flagged to no longer be updated or to render. It is important to 

note that not every particle system has to have an emitter or that particles need a lifespan.  

There are many potential applications of particle systems. They are frequently used to 

model chaotic phenomena due to having the ability to represent random behavior. One of 

the first examples of particle systems was the simulation of the behavior of fireworks. 

Particles in this type of simulation can model the trajectory of a firework object and, with 

additional particles, the subsequent colored explosions and smoke effects. 

Modeling fluid flows using particle systems is not a new topic, however these particle 

systems have not until recent years been implemented on GPUs. Older particle systems 

ran entirely on a central processing unit (CPU) and were a pre-rendered sequence of 
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frames played back at a faster rate to show a smooth fluid flow when modeling natural 

phenomena like water flows, smoke trails, or fire. Leveraging a GPU instead can lead to a 

nearly real-time simulation of the fluid. The drawback to particle systems is that they are 

computationally expensive due to the number of calculations controlling the interactions 

the particles have with each other as well as the environment in which they are rendered. 

Particle systems are classified as an N-body simulation. An N-body simulation is a term 

that defines a system in which there are N objects that interact with each other, while 

under the influence of other physical forces such as gravity. It is derived from the N-body 

problem that tries to predict the individual motions of a group of objects as they interact 

with each other under the effects of gravitation.  

2.2 The Lennard-Jones Potential 

Modeling fluid behavior of particles involves dealing with several types of forces 

affecting the particles. One type of force that particles experience during the modeling 

process is an interparticle force. Interparticle forces are the forces that particles exert on 

each other. A model of this behavior is the Lennard-Jones potential: a mathematical 

approximation of the interaction between a pair of atoms or molecules based on the 

distance separating those atoms or molecules. The Lennard-Jones potential describes the 

potential energy between two non-bonding atoms or molecules based on their distance of 

separation. The Lennard-Jones potential is not considered an accurate potential, however 

it is used extensively in computer simulations due to its computational simplicity. The 

Lennard-Jones potential is defined by the function  
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𝐿𝑒𝑛𝑛𝑎𝑟𝑑 − 𝐽𝑜𝑛𝑒𝑠 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  

𝑘1

𝑟12 –
𝑘2

𝑟6  [2] (1) 

The 𝑘1 and 𝑘2 variables in the function control the attraction and forces that particles 

exert on each other at a certain distance r from each other. The Lennard-Jones potential in 

this form is difficult to use in computer graphics simulations because the large 

exponential powers affecting the r variable are not convenient to calculate. To reduce the 

computational load, it is commonly reformulated to be in the form  

𝐿𝑒𝑛𝑛𝑎𝑟𝑑 − 𝐽𝑜𝑛𝑒𝑠 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  
𝑘1

𝑟4 –
𝑘2

𝑟2  
    [2] (2)  

As stated in Bridson [6], the exponential powers control how much the distance between 

particles affects the potential are popularly changed to being four and two instead of the 

original twelve and six. This change dramatically reduces the computational load.  The 

Lennard-Jones potential can be applied to real world data but only realistically at the 

macroscopic level because of the computational overhead of modeling every molecule or 

atom in a fluid. This issue of scaling makes it inaccurate as a substitute for true fluid 

physics and requires the forces to be manually tuned for the results to look believable in a 

simulation.  

The Lennard-Jones potential has a Big-O complexity of 𝑂(𝑁2). For N number particles 

there are 𝑁2 possible interactions that must be solved. The quadratic complexity of 

Lennard-Jones makes it a non-ideal candidate for real time interactive simulations 

without alteration. There are a few common alterations to Lennard-Jones to ensure the 

algorithm runs faster than 𝑂(𝑁2). Asymptotically, the Lennard-Jones potential 
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approaches 0 with large values of distance. One alteration is the introduction of a cutoff 

distance to take advantage of this property by saving unnecessary computation.  Another 

common refinement to the Lennard-Jones potential is to use a grid system to find 

particles that would have influence on each other. Uniform spatial partitioning at a cutoff 

distance allows faster computation of the Lennard-Jones potential by eliminating most 

particles that are too far to influence each other. Instead of calculating the potential 

between all particles, it is only necessary to consider particles within the cell and the 

neighboring cells in the grid structure. By using a grid system, as long as the particles are 

evenly distributed and the number of particles per cell is held constant, interactions can 

be evaluated in linear time.  

2.3 The Navier-Stokes equations 

The governing equations for fluid flows are considered to be the Navier-Stokes 

equations, which are derived from the application of Newton’s Second Law of Motion to 

fluids. Navier-Stokes equations are formulated using an Eulerian frame of reference for 

fluid flows. The Eulerian frame of reference formulates equations by viewing fluid 

motion from the point of view of space through which parcels of fluid pass over a given 

period of time [2]. The other frame of reference for fluid flows is the Lagrangian frame of 

reference, which views fluid motion from the perspective of an individual parcel of a 

fluid traveling through both space and time [2].  

The Navier-Stokes equations are a system of non-linear coupled partial differential 

equations. The Navier-stokes equations can also be reformatted into a single equation. 

The Navier-Stokes equations can also be simplified for different kinds of flows. One of 



7 
 

these simplifications is for incompressible flows. Incompressible flows remove sound 

propagation or shock waves that may be present in a fluid. This simplification puts the 

Navier-Stokes equation into the form of 

 

 ⍴ (
𝜕𝑣

𝜕𝑡
+ 𝑣 ∙ 𝛻𝑣) =  −𝛻𝑝 + µ𝛻2𝑣 + 𝒇 [1] (3) 

This mathematically represents a portion of Newton’s 2nd law which states that a net 

force is equal to a mass multiplied by acceleration. The 
𝜕𝑣

𝜕𝑡
 term is the unsteady 

acceleration of the fluid where 𝑣 ∙ 𝛻𝑣 is the convective acceleration [1]. The sum of these 

accelerations is the total acceleration and ⍴ is the density of the fluid. Since density is 

mass per unit of volume, it is analogous to the mass in F= mass * acceleration. The right 

hand side of the Navier-Stokes equation is to show the sum of all forces that act on the 

fluid to produce acceleration. These forces include the pressure that the fluid is under, the 

viscosity of the fluid, and body forces. The −𝛻𝑝 term is the pressure gradient and shows 

the non-linear effect pressure has on a fluid. Pressure is a surface stress that acts normal 

and inward to the surface of a fluid. It can be considered analogous to the normal force in 

solid mechanics, which is a force acting on an object in contact with another stable 

object. The µ𝛻2 term of the Navier-Stokes equations for incompressible flows depicts the 

viscosity of the fluid. The µ value is the dynamic viscosity of the fluid. It does not need to 

be constant. The 𝛻2 term denotes the Laplace operator. Larger values of µ model more 

viscous fluids. Viscosity is a stress on a fluid that acts parallel to the fluid surface of a 

fluid. In solid dynamics this force is called the friction force. 𝒇 represents body forces 

that are acting on the fluid. Body forces affect the entire fluid at once. A common body 
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force is gravity. Gravitational force works exactly the same on a fluid as it does on solid 

objects in solid mechanics. Gravitation force on earth is calculated as 𝐹𝑔 = 𝑔 ∗

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 where g = 9.8 meters/sec2.  

The non-linearity of the Navier-Stokes equations makes these equations particularly 

difficult to solve, and in some cases a solution cannot be found. Being non-linear means 

that the equations cannot be expressed as a linear combination of first order differential 

equations which could be useful to put the equations into a form that is easily solved. The 

equations are non-linear due the presence of convective acceleration acting on the fluid. 

An example of this kind of acceleration would be a fluid passing through a narrow nozzle 

[9]. The compression of fluid within a nozzle causes the fluid to accelerate in narrower 

channels. This acceleration is based on the space they pass through not the force applied 

to project the fluid.  

Due to the non-linear nature of these problems, they are commonly approximated through 

a numerical solution instead of explicitly solved as a closed-form solution. These kinds of 

problems do not have a standard method for solving them and require different 

techniques depending on the nature of the problem. The characteristics technique is one 

such approach of solving partial differential equations. The method of characteristics 

reduces a partial differential equation into a family of ordinary differential equations, 

which allows the solution to be obtained numerically via integration from some initial 

data.  

One method of applying the Navier-stokes equations to a particle system is through the 

use of a method called Smoothed Particle Hydrodynamics or SPH. In order to solve the 
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Navier-Stokes equations it is necessary to create smooth, continuous fields from the 

properties of the particles at discrete locations in space. As stated in Bridson [3], this is 

essentially what SPH does. SPH will smooth discretely sampled attribute fields using 

smoothing kernels. In order to model a fluid flow as a particle system it is necessary to 

utilize a graphics library in order to create rendered images of the fluid. 

2.4 The OpenGL Rendering Pipeline and OpenGL features 

OpenGL is cross-language and multi-platform application programming interface (API) 

for rendering both 2D and 3D graphics. The primary use of the library is for interaction 

with a GPU for hardware-accelerated rendering. OpenGL can be viewed as a client-

server model for processing commands on the GPU. The OpenGL API prepares and 

sends commands to the GPU to be processed in an application. The GPU then interprets 

and executes the commands. Modern OpenGL and graphics cards support the sending of 

programs to be executed on the graphics hardware. These programs are called shader 

programs; in OpenGL shader programs are written in the OpenGL Shader Language also 

known as GLSL. GLSL is a high-level programming language with syntax similar to the 

C programming language. The advent of shader programs has created the idea of the 

programmable GPU. Programmable graphics hardware has allowed more general-

purpose computation on the GPU, as well as more elaborate graphics. This is possible 

because shader programs can be executed in various stages of the graphics rendering 

pipeline.  

The first stage of this pipeline is called vertex processing. This stage handles all of the 

creation and movement of three dimensional points in a scene. In vertex processing, all of 
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the vertices in a scene are processed as a list of vertices.  A 

shader, called a vertex shader, can be bound and run in this 

stage of the pipeline. A vertex shader performs a processing 

task using the stream processor on the GPU. This means that 

the task is performed in parallel on the entire list of vertices. 

Vertex shaders are commonly used to apply transforms to the 

list of vertices e.g., to translate or rotate vertices around an 

axis or point. However, more complex processing can be 

done via shader programs in other stages of the rendering 

process.   

The second stage of the pipeline is the construction of 

primitive objects. This is done by parsing a list of vertices 

into primitives. The commonly used primitive objects are 

points, lines, and triangles. In OpenGL, an application 

developer specifically states of the data is for points, lines, or 

triangles and the objects are constructed based on how many 

vertices is needed for each primitive. For example, setting the 

primitive type for the data for triangles assumes that every 

triplet of vertices that is read from the list is the position data 

for the 3 points representing a triangle. The primitive objects have been constructed after 

this stage finishes and proceeds to the primitive processing stage. 

The primitive processing stage is done in static functions by OpenGL. After the 

consturction of primitive objects, OpenGL performs functions on the primitives. The 

 

Figure A Diagram of 

the OpenGL 

Rendering Pipeline 
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most common functions performed in this stage are clipping and rasterization. The 

clipping function determines if a primitive object will be visible in the final rendered 

scene; if it is not, the primitive is not processed. Rasterization is a fixed function in 

OpenGL that converts the 3D vertices of the scene into 2D pixel (or fragment) 

addresses of where those points will be on the computer’s display. The rasterization 

process leads directly into the next stage of the pipeline which is the fragment processing 

stage.  

The fragment processing stage allows processing over all the fragments in an image after 

rasterization. The portion of a shader program that is written for this stage is called a 

fragment shader. When a fragment shader is executed, the shader program processes a list 

of all pixels in an image. The most common use of fragment processing is for shading 

surfaces of 3D objects to give the illusion of depth. Shading in this sense means selecting 

the color value for each pixel in the final image. Other common uses of fragment 

processing include applying filters to alter the quality of the final image. The use of 

fragment shaders also allow sampling another image for the composition of two images.  

The rendering pipeline then performs several types of tests on fragments produced in the 

fragment processing stage. This is the per-sample processing stage of the OpenGL 

rendering pipeline. In this stage, the fragments created in the fragment shader are 

processed and their data is written to various buffers in OpenGL. In order to determine 

the specific fragments that will be processed in the creation of the final image, several 

per-fragment tests are performed. An example of one such test is the pixel ownership test 

which is run to make sure that fragments aimed at pixels not owned by OpenGL are 
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discarded. This test is necessary because the default framebuffer is an external resource to 

OpenGL; it is possible that some pixels are not owned by OpenGL, but may be used by 

the Operating System or some other program. Another optional test that can be done in 

this stage is blending. Blending allows each of the colors in the fragment to be blended 

with the pixel color already present in the buffer to which the OpenGL program is 

writing. Combining this technique with RGBA colors allows alpha blending. The alpha 

value in an RGBA color controls the appearance of transparency on a particular color. An 

alpha value of zero makes the pixel completely transparent and a value of one causes 

complete opacity. Alpha blending is a technique that allows compositing of images using 

differing alpha values in the source and destination buffers. For example, an image of an 

object with a completely transparent background can be imposed on top of another image 

through sampling this image and discarding fragments that are completely transparent. 

After all of these stages have been traversed, the final image is constructed. The image is 

then stored in a framebuffer to be displayed on 

a screen or to be further manipulated. 

2.4.1 The Memory Model of a GPU 

 

OpenGL abstracts the allocation of memory on 

the GPU away from the developer. Even though 

the developer may not know where their data 

resides on the device, there are explicit places 

that data can be written via the client computer. 

As stated in The NVIDIA CUDA Programming  

Figure B The GPU memory model as 
described by NVIDIA 
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Guide [6], these memory spaces are global memory, constant memory, and texture 

memory as shown in Figure B. Global memory is addressable from any thread being 

executed on any GPU in the client system. Both the video device and the client computer 

can read and write to this portion of memory, but it is slower than any other type of 

memory on the device. Data written to the global memory space persists even after 

computation on the device. Constant memory space is similar to global memory space 

because it can be addressed anywhere. Constant memory space is very small in size, 

usually a few dozen kilobytes.  The constant memory space is cached and can be 

accessed as fast as registers on the GPU. It also persists after execution of a program on 

the GPU. The last memory space is texture memory. Texture memory also resides in 

global memory space but is optimized for read operations giving slightly faster read 

performance than global memory space. Textures can be large in size and have random 

access. These memory spaces can be freed by the application that is using the GPU or in 

the case that the application using the GPU ends. 

2.4.2 Data Management in the OpenGL Rendering Pipeline 

 

Data in OpenGL is commonly stored in buffers known as buffer objects. Buffer objects 

are an OpenGL object that store an array of unformatted memory allocated on the GPU 

by the OpenGL context. One of the most common of these objects is called a vertex 

buffer object (VBO). These are buffer objects designed to store vertex data. Vertex buffer 

objects allow data to be transferred to the GPU for non-immediate-mode rendering. Non-

immediate-mode rendering means that the data is sent to the GPU and is stored on the 

GPU for rendering [8]. The data does not need to be sent from system memory for 
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multiple draws. The data in a VBO contains information relative to a set of vertices. For 

example, a VBO could contain the positions of a set of vertices, their color information, 

or the normal vectors for each vertex. The use of a VBO is a requirement for the initiation 

of a rendering pass using shader programs in OpenGL 3.3 or newer.  

In order to accommodate more data being processed on the GPU, data can be sent as a 

texture. Using textures to send data allows the use of large blocks of memory to store a 

larger number of vertices and related information. A texture is an OpenGL object that 

contains one or more images in the same image format. The data in the texture does not 

necessarily represent an image to be displayed on the screen. Textures of data are sent to 

the video card using texture buffer objects. Texture buffer objects allow shader programs 

to access a large table of memory managed by a buffer object. Textures reside in a large 

global space of memory on the GPU. 

There are other forms of storage besides buffer objects. One of the specialized forms of 

data storage is the frame buffer object (FBO). An FBO is a specific type of buffer object 

that allows a user to create and define their own framebuffer as opposed to the default 

framebuffer which is setup by OpenGL. Framebuffers usually represent a window or a 

display device as a collection of buffers which are write-only. These buffers are used in 

OpenGL for the rendering of an image to a display device or window. They control 

various properties of the image, including the colors of the pixels in the image. The use of 

a frame buffer object allows the definition of additional framebuffers to be managed by 

the OpenGL client code. The framebuffer also contains a special buffer called a 

renderbuffer. A renderbuffer is the specific buffer that holds an image. The difference 

between a renderbuffer-stored image and an image stored in a texture is that a 
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renderbuffer-stored image is optimized for use as a rendering target, whereas texture may 

not be optimized. Renderbuffers are used primarily in cases where you do not need to 

sample from a produced image. Texture-stored images are optimized for image sampling. 

Frame buffer objects reference the images that are stored in renderbuffers or textures. As 

mentioned the use of textures for image storage is used for sampling an image. This 

allows sampling the image for additional effects to be applied to the image. Image 

processing in this fashion is commonly called a post-process effect, because it is 

additional processing pass after the initial processing of a single frame. It is also called 

multi-pass rendering because multiple passes of the rendering pipeline run to create a 

single final image for output to a display device. This rendering technique is used heavily 

for processing visual effects on images. Commonly, the effects rely on filtering to alter 

the perceived quality of an image by altering the color intensities in the original image.  

Processing over a list of vertices in OpenGL does not keep any copies of the previous 

state of the vertices. Certain types of simulation will require the previous state of the 

vertices for the calculation of the forces involved. When it is necessary to have the 

previous state for all vertices using a feature in OpenGL known as transform feedback 

can produce this state data. All vertices processed in the vertex processing stage of the 

rendering pipeline are stored into a user defined buffer object. If many vertices are being 

processed, the best buffer object in which to store the vertex data is a vertex buffer object.  

In order to utilize transform feedback a few objects are needed in OpenGL. These objects 

are called transform feedback objects and transform feedback buffers. Transform 

feedback buffers are VBOs that are set up to store vertex data during vertex processing, 

while transform feedback objects are used as an abstraction to encapsulate information 
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about the transform feedback. Transform feedback buffers and transform feedback 

objects stay in dedicated graphics memory. Transform feedback was necessary for the 

calculation of the Lennard-Jones potential interparticle forces. The transform feedback is 

used to store the previous frame positions for the vertices, which are needed to calculate 

the change in the Lennard-Jones potential 

for the next frame in animation.  

In order for particles in a simulation to look 

like pieces of water or anything other than a 

single pixel on the screen some sort of 

fragment processing is necessary to make 

them appear larger or change shape. One 

method of doing this in OpenGL is through 

the use of point sprites. Point sprites is a 

technique to swap the points after being rasterized to a quadrilateral which commonly 

referred to as a quad in computer graphics. This quad can have any texture or image 

mapped onto itself. In order to perform his mapping it is necessary to know where the 

fragment processor is within the rasterized point and map that to the same position in an 

image we want to map onto the quad. In OpenGL, it is possible to find where inside the 

rasterized point the fragment processor is by using a built-in variable called 

gl_PointCoord. It is possible to be within a point because a rasterized point in OpenGL 

may be comprised of several pixels or fragments, and therefore gl_PointCoord allows the 

traversal of these fragments. The gl_PointCoord variable gives two values, s and t, which 

give normalized coordinates of the current location within a point primitive. S gives a 

 

Figure C Diagram of gl_pointCoord 

mapping and the red dot of the second 

image shows the position in which we 

want to calculate distance from to 

construct the outline. Any pixels greater 

than a distance D should be discarded. 
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value of 0.0 to 1.0 that represents a location along the x axis that runs along the left and 

right side of the point which maps to the x axis within the context of an image. The value 

of t is a similarly normalized value but gives the location of where in the current point the 

fragment processor is at from the bottom to the top of the point which maps to the y axis 

in an image. To map an image onto the point sprite, it is necessary to calculate the texture 

coordinates for the image that is being imposed onto the sprite using the values s and t. 

The s and t values of gl_PointCoord directly translate to the texture coordinates in 

OpenGL, however it is necessary to find the distance of the current fragment from the 

center of the point sprite in order to draw the circular outline for each point sprite sphere. 

3 Working in OpenGL  

3.1 The Reformulation of the Lennard-Jones Potential 

The work of this thesis strove to model fluids as particle systems.  Previous research on 

using the Lennard-Jones potential for interparticle forces did show that the forces were 

particularly hard to adjust or fine tune in graphics simulations which is why the forces are 

commonly reformatted from their form shown in equation (1) into the form in equation 

(2). The Lennard-Jones potential modeling did lead to some particular issues of tuning 

that were not entirely discussed in previous works on the subject.  

As mentioned previously, the values of r in the Lennard-Jones potential represent the 

distance between two particles. The exponential powers in the original formulation are 

computationally expensive. This causes the original formation to be extremely difficult to 

tune as the forces are affected greatly by distance. The forces were very sensitive to 

changes; the new formulation tries to compensate by lessening the sensitivity to changes.  
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During testing it was determined that even the common reformulation suggested by 

Bridson [3] was non-intuitive and more direct tuning of the individual properties of the 

interparticle forces was needed. The new formulation is  

 
4 ∗ 𝜀 ∗ (

⍴4

𝑟4
−

⍴2

𝑟2
) (4) 

This form of Lennard-Jones is based off a popular formulation of Lennard-Jones which is 

 

 
4 ∗ 𝜀 [(

⍴

𝑟
)
12

− (
⍴

𝑟
)
6

]  [7] 
(5) 

The form in equation (4) is derived by lowering the powers of the potential and 

distributing the exponentional values of 4 and 2 instead of 12 and 6. 

This reformulation allows individual tuning of the force between particles and simplifies 

the Lennard-Jones potential into accelerations instead of forces. The mass of the particles 

is the same for all particles in the simulation, so it is immaterial when reformatted in this 

way because all particles will have the same weight.  ⍴ in this reformulation controls the 

distance of crossover between repulsion and attraction.  𝜀  is the maximum attractive 

acceleration that particles can experience and is a negative value.  

The Lennard-Jones potential calculation is a large bottleneck in the performance of the 

overall program. The computational complexity of the Lennard-Jones potential is O(n2). 

Every particle in a simulation must calculate the force that every other particle exerts 

onto itself. To save computation many simulations will have a distance cutoff that will 

not calculate forces between particles far enough away from each other that the Lennard-
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Jones potential is nearly negligible. This distance cutoff can cause discontinuity issues in 

the calculation of forces at the cutoff distance. The ideal solution is the implementation of 

a grid system to calculate the forces. A uniformly divided grid system subdivides the 

simulation space into cells and allows the execution of the potential to be fast by 

eliminating distant pairings of particles. However, it is possible to use any grid system to 

save computation for negligible particles due to large distances.  

3.2 Implementation in OpenGL 

3.2.1 Java and JOGL 

This project has been developed in OpenGL using the Java OpenGL binding (JOGL). 

JOGL allows the Java programming language to access the OpenGL API.  JOGL is 

responsible for communication with the OpenGL library, as well as setting up the 

rendering environment for OpenGL applications. The rendering environment includes the 

rendering window for displaying the frames rendered in OpenGL. The OpenGL client 

program in Java is also responsible for using JOGL to send data from the CPU to the 

GPU using OpenGL. JOGL also is responsible for managing the execution of all shader 

programs on the GPU. In order for a shader program to run, it must be checked for 

correctness, this happens by being linked and compiled by OpenGL. JOGL facilitates this 

process through the API. My project is a modification on the approach done by Simon 

Green at NVIDIA [3]. Simon Green’s project modeled fluid flows using particle-based 

flows using the Direct3D and DirectCompute APIs. Although compute APIs like 

DirectCompute are a good use of the GPU, they lack compatibility across hardware. In 

order for my project to best use the GPU on many systems, all rendering and particle 
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movement is done through a series of shader programs managed by the Java OpenGL 

client code. 

3.2.2 Shader Programs 

All drawing in the rendering window is done through shader programs of varying 

complexity. Shader programs at minimum have a vertex shader to utilize in the vertex 

processing stage of the rendering pipeline. A single shader program can also bind a 

fragment shader into the program as well. If both a vertex shader and fragment shader are 

bound to a shader program both shaders execute on a single rendering pass in OpenGL.  

Several of the shader programs used in this project are simple. These simple shaders are 

used to build a scene with objects or to display the interactions that the particles have on 

each other and the environment. This project also contains several shader programs that 

draw objects such as a background that provides contrast to allow the particles appear 

more easily in the scene. Other objects include a set of colored axis lines and a line 

rendering of the vessel, which collects the particles emitted by 

the particle system. The first shader program is responsible for 

the simulation of the physical forces bearing on the particles 

and the creation of the rasterized particles through point 

sprites. A diagram of the specific stages for this shader 

program is given in figure D.  

3.2.2.1 Physics Simulation of Particles 

 

 

Figure D Outline of particle 
physics shader program 
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As mentioned previously, the first shader program is a shader that drives the physics 

simulation of the fluid and the rasterization of the particles. For the simulation of the 

particle physics, it is necessary to use the vertex processing stage of the graphics pipeline 

by using a vertex shader. This specific vertex shader is responsible for tracking the 

motion of each particle in the simulation. To accomplish this the center of each particle is 

modeled as a single vertex being processed in the vertex processing stage of the rendering 

pipeline. This shader updates velocity and position data for all particles through the time 

of the simulation. In order to update this data several pieces of uniform data are passed 

into the shader for the physics calculation. The uniform variables include the 

gravitational acceleration being applied to the particles and how many particles are in the 

total simulation. To properly calculate the Lennard-Jones potential it is necessary to have 

the previous position values of all particles. These values are stored in a Texture that can 

be accessed by subsequent shader calls. The function that allows lookup into a texture is 

called a TexelFetch. The TexelFetch function is a large source of slowdown in the overall 

program due to the fact that calculating the Lennard-Jones potential is an O(n2) operation 

and the operation of n2 memory lookups is very costly.  The simulation and the rendering 

of the particles were separated into separate shaders because the overall program 

performance suffered greatly from having a single shader and having separate shaders 

makes the logic of the programs easier. It was too much for a single shader to process the 

simulation updates and draw the vertices as particles. It is very common for the physics 

updates and rendering to be separated in particle simulations for tuning and debugging 

purposes. The shader programs use the vertex processing stage to manipulate the position 

and velocity of each particle in the simulation. As mentioned previously these processed 
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vertices are then passed into a fixed function stage in which the vertices are clipped and 

rasterized.  

3.2.2.2 Point Sprite Rendering of Particles 

As shown in figure D, the next portion of the shader program handles the process of the 

actual rendering or drawing of the particles. These particles are rendered as point sprites 

using a fragment shader. In order for particles to be rendered looking like masses of water 

or fluid it is necessary to render vertices as point sprites. As mentioned point sprites are a 

technique that can be used in OpenGL to replace a set of vertices that would be rendered 

as points with rectangular objects called quads. These sprites allow the display of a 

texture in place of a rasterized point. For the purpose of this project this shader 

transforms the rectangular point sprites into what looks like a sphere centered on the 

position of each vertex. 

3.2.2.3 Shaping the Particles 

To give the appearance that each vertex is a particle of water, it is necessary to make a 

circular outline for the texture used by the point sprite. This can be done procedurally 

with a fragment shader to make the texture for the point sprites. With proper coloring of 

these textures they will appear as spheres with transparency. In order to create the 

circular outline for these spheres some fragments or pixels are explicitly discarded and 

not processed by the fragment processor. This requires the position of the particle to help 

find the position of a pixel relative to the center of the point sprite.  
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This is done by using the fixed gl_PointCoord function which gives the coordinates of 

where the fragment processor currently is in the current point sprite. These coordinates 

are translated to make the origin of coordinate system center around the vertex position.  

In order make the circular shape of the sphere we want to discard any pixels found at a 

particular radial distance from the center of the sphere. To calculate the distance from the 

center of the point sprite we first the location of the current fragment using 

gl_PointCoord and translate these coordinates to be centered on the vertex. 

 Creating a two dimensional vector of these positions and performing the dot product of 

the vector with itself will give the scalar distance of the current pixel is from the center of 

the Sprite. A simple test checking if the radial distance is greater than one is all that is 

needed to determine which pixels should be discarded, since the coordinates are 

normalized.  After the creation of the Point Sprite outlines, an image is created with each 

vertex changed into the circular outlines of the particles. 

The color data of these point sprite spheres is actually 

encoded as the position data for each particle. The 

selection of the color of the point sprites will be done in 

an additional rendering pass. In order to perform extra 

rendering passes and image effects, the image is saved 

into a texture via a user defined framebuffer. 

3.2.3 Multi-Pass Rendering 

After the execution of the previous shader programs, the 

particles are rendered as circular sprites instead of single 

 

Figure E Outline of stages 

used by the fluid rendering 

shader 
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pixel points on the screen. The color used to fill these point sprites is not sufficient to 

produce a realistic rendering of the fluid and is actually position data for each particle. In 

order to make the fluid look realistic, multiple rendering passes are needed to color and 

apply effects to the point sprite spheres. 

3.2.3.1 Shading of Fluid Particles using Phong Shading 

 The first of these passes runs a shader program to color the individual particles so they 

appear more realistically shaded. This shader calculates the color of the fluid by using 

Phong shading. The Phong lighting model (also known as Phong shading) simulates light 

as it reflects off a surface. Phong shading takes into account several features of lights in a 

scene. The first property modeled is the ambient light in a scene. Ambient lighting is a 

fixed-intensity and color lighting in a scene and can be thought of as a background light 

that appears to come from all directions. The intention of ambient light is to model light 

that strikes an object after being reflected off other objects in a scene. Ambient light is 

modeled as  

 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑙𝑖𝑔ℎ𝑡 = 𝐼𝑎 ∗ 𝐾𝑎 [3] (6) 

where 𝐼𝑎 represents the intensity of one wavelength of ambient light that strikes the 

object and Ka represents an object’s reflection coefficient for the same wavelength of 

light. Separate equations are necessary to 

maintain for red, green, and blue wavelengths 

[3]. 

 

Figure F Diagram of vector 

quantities needed for the calculation 

of Phong Shading [6] 

 

Figure F  
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Next is the diffuse reflection, modeled through Lambertian reflection. Diffuse reflections 

are the reflections seen on most real world materials. Most surfaces are made of materials 

that are not completely reflective. The materials will absorb some of the light that their 

surfaces receive and this must be considered in the final calculation of surface shading. 

Lambertian reflection also allows 2D projections of an object to appear as a 3D object by 

creating shadows from the light sources in a scene. Lambertian reflection applies 

Lambert’s Law which states that the light intensity on a surface depends on the angle of 

the incoming light. [3] Figure F depicts the vector quantities needed for the calculation of 

the diffuse reflection. The Vector L⃗  is a unit vector showing the direction of the light 

source from the surface.  Vector N⃗⃗  is the normal vector from the surface that is to be 

shaded. Vector R⃗⃗  is a unit vector that signifies the direction of the light’s reflection off 

the surface. The final vector, known as the view vector, which is needed for the 

calculation of diffuse color, is Vector V⃗⃗  which represents the direction of the viewer in 

relation to the surface. The calculation of the intensity of diffuse color for N lights in a 

scene uses the aforementioned vector quantities and is given by the equation 

 
𝐼𝑑 = ∑

𝐾𝑑 (L⃗⃗ ∙N⃗⃗ )

𝑑

𝑛
𝑖=1  [3] (7) 

The value Kd is similar to the Ka constant in the calculation of the ambient light in a 

room. Kd represents the reflection coefficient for the diffuse color. L⃗ ∙ N⃗⃗  varies the 

intensity of the diffuse color depending on the angle of the light source to the lit surface. 

The equation divides these values by constants d and k for attenuation of the light based 

off distance. The d value represents the distance from the light source to the eye or 

camera in the scene.  [6] 
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The final portion of the Phong lighting model models the specular reflection on the 

surface. This creates specular highlights on a surface from the lights in a scene. In order 

to calculate the influence of specular lighting it is necessary to use the equation  

 𝐼𝑠𝑝𝑒𝑐 = ∑ 𝐼𝑖𝐾𝑠(R⃗⃗ ∙ V⃗⃗ )𝑛/(𝑑)𝑛
𝑖=1  [3] (8) 

The equation states that specular color intensity is equal to the sum of the intensity 𝐼𝑖 of 

each light in the scene and its Ks constant which represents the reflection coefficient for 

the specular color of the light. This value is dependent on the viewing angle, which can 

be represented as the dot product of the R⃗⃗   and V⃗⃗  unit vectors. As mentioned before, V⃗⃗  

represents the vector from which the viewer sees the object and R⃗⃗  is a unit vector that 

shows the direction of the reflection off of the surface. The value of n is used as a 

shininess factor of the surface. This factor is used to control the specular reflection’s 

glossiness level. The final lighting equation sums the intensity from ambient, diffuse, and 

specular lighting for all N lights in a scene into a single equation. Thus the final equation 

is 

 
𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑎𝐾𝑎 + ∑

𝐼𝑖𝐾𝑑 (L⃗⃗ ∙ N⃗⃗ )+𝐾𝑠 (R⃗⃗  ∙V⃗⃗ )

𝑑

𝑛
𝑖=1  [3] (9) 

The final lighting equation is applied via a 

fragment shader to the particles. To do this we 

take the view space positions of all of our 

particles that have been saved into the texture 

and use them to apply specular shading 

highlights based on the light sources in the 

Figure G Shows pixel values in the image. Each 
pixel contains the position data for the particle. 
These using 3 of these values allows the 
calculation of a normal for a single pixel. 
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Figure H Sample image of the lighting 
calcuation per particle 

scene. To correctly shade a specular highlight, it is necessary to use a normal vector from 

the surface that would have the appearance of the highlight. This normal vector 

represents the direction that light reflects off the surface and to the eye of the viewer.  

3.2.3.2 Calculating Normal vectors for a Surface in a Rasterized Image 

To create the normal vector for doing the Phong 

shading calculation for each pixel in the image it is 

necessary to find the cross product of two vectors. 

These two vectors are constructed with the view 

space positions stored in an image. This is done by 

using a pixel in the image with two of the current 

pixel’s neighboring pixels. The x,y, and z position 

values are stored in the red, green, and blue color 

channels respectively. In order to create the normal, 

it is required to create two vectors sharing a common vertex and then perform the cross 

product of these vectors. This will create a normal vector for that particular pixel in the 

image. Using the lighting position data and the normal vector created for every pixel in 

the image, it is possible to apply Phong shading to every particle in the scene allowing 

definition of final color information for the fluid. Figure E outlines the different stages of 

the rendering pipeline that are utilized in the creation of the image of the particles having 

lighting and coloring calculations. Figure H is a sample image of the output of the 

particles after Phong shading has been applied to the point sprite particles. 

3.2.3.3 Rendering to a Full Screen Quad  
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Although the lighting calculations have been placed and are now ready to be written into 

a framebuffer, the process of writing the image has changed.  The vertex processing stage 

of the rendering pipeline is only necessary as it is required to create a valid shader 

program. It is not necessary to use the Vertex Processing Stage to perform transforms to a 

set a vertices. Instead of processing vertices, we have a rasterized image that needs to be 

displayed to the screen. This is done by a technique known as rendering to a full screen 

quad. Rendering to a full screen quad creates an image onto the display device from a 

sampled image. As in the previous shader, both the vertex and fragment processing stages 

are used. The vertex processing step is essentially a pass-through stage because it is no 

longer needed to process over a list of vertices that represent the positions of each particle 

in the scene. Instead the vertex processing stage processes a different list of vertices that 

define the boundary viewable area of the virtual camera. This is viewable area, called a 

full screen quad, and it is a specific quadrilateral that is positioned to be in the entire 

viewable area of the virtual camera. It allows scenes that have been rendered to a texture 

to be displayed on screen via a fragment shader that samples the texture and outputs the 

pixels to the display device. The rendering process was not entirely finished after the 

calculation of the color data per pixel for the image with the point sprite spheres as they 

do not look realistic. Despite having the coloring of water, the resulting frames do not 

resemble a smooth fluid surface due to distinctly defined spherical edges associated with 

each particle. An additional rendering pass is necessary to blur the particles together into 

what looks like a fluid surface.  
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3.2.3.4 Image Filtering 

As detailed in the Simon Green presentation at GDC 2010 [5], to make a fluid created 

from point sprite particles appear more realistic, it is necessary to apply a blurring filter to 

the image of the point sprites. Image blur gives the particles the appearance of a fluid. 

Image filters, such as the Gaussian filter used in this project, commonly sharpen or blur 

images for the removal of artifacts in the source image. The Gaussian filter is built from 

the Gaussian function, which is of the form 

 
𝑓(𝑥) = 𝑎 exp( −

(𝑥 − 𝑏)2

2𝑐2
) + 𝑑 (10) 

 The variables a, b, c, and d are arbitrary constants. The Gaussian Function expresses a 

normalization distribution and is the characteristic bell curve-shaped function. An 

example graph of a three-dimensional Gaussian function is given in figure I. An example 

of a two-dimensional Gaussian blurring filter is the equation  

 
 𝐺(𝑥, 𝑦) =

1

2𝜎2
𝑒

−𝑥2+𝑦2

2𝜎2  (11) 

 

In this formula, the terms x and y control the 

distance from the origin in the horizontal direction 

and the vertical direction respectively. 𝜎 is the 

standard deviation for the Gaussian distribution.   

 

Figure I  An Example graph of 

a two –dimensional Gaussian 

function 
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The Gaussian blur filter is commonly used to reduce image noise and reduce detail.  The 

strength of a Gaussian blur filter is a term that defines the strength of the normalization of 

the averaging function. A higher value for strength will produce a blurrier image through 

the manipulation of the Gaussian function. A single pixel in the image will have the color 

value be set to the weighted average of neighboring pixels. This area is called the kernel 

filter and can be adjusted in size. The Gaussian filter is considered a separable filter 

because it can be applied to a two dimensional image as two independent one 

dimensional calculations. Separating the filter is computationally cheaper, but in the 

current state the project does not have two separate filters: this would require another 

shader program to be run over the image. In order for the current solution to be optimal 

the filtering should be separated. The Gaussian function uses a kernel function for the 

distribution of the weights it assigns to pixels. For the sake of speed these weights are 

pre-computed within the filtering kernel. However silhouette edges can appear in the 

final rendering, because the filtering kernel could be averaging pixels that do not have 

color values of the particles. Silhouette edges are a collection of points whose outward 

surface normals are perpendicular to the view vector. Blurring across silhouette edges 
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causes artifacts due to the discontinuities along such edges. Solutions to this issue can 

include different types of blurring filters or preserving edges in another texture and 

combining the results.  

One potential solution to these silhouette edge artifacts is to use Bilateral filtering instead 

of Gaussian blurring [5]. A Bilateral filter is better at preserving edges by detecting sharp 

changes of color in an image and changing the weights and filter kernel to ensure there is 

no averaging across these boundaries. This is a non-separable filter and is slower than a 

separable Gaussian filter. 

3.2.3.4.1 Gaussian Blur Filtering using GLSL As stated 

previously, in order to construct a surface for the fluid using 

particles, it is necessary to apply a blur filter to the image of 

the point sprite particles. In this project a Gaussian blur 

filter is applied to this image using another rendering pass 

and using the fragment processor to apply the filter to the 

image. The outline of the various stages of this shader 

program is shown in Figure J. As with the final lightning 

calculation shader, the vertex processing stage is essentially 

a pass-through the vertex processor using vertex positions 

for the full screen quad onto which the blurred image will 

project. The fragment processing stage applies a Gaussian 

blur to the image of the point sprite particles, and alpha 

testing is then used to separate and discard the rendered 

background from the particles to ensure that the background color does not become 

 

Figure J Outline of the 

Rendering Pipeline 

stages for a Gaussian 

filtering shader 

program 
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blurred into the particles. The final settings for the 

Gaussian blur include a filtering kernel that is a nine-by-

nine kernel with 4 as the strength of the kernel. These 

settings for the blur gave the best mix of speed and 

quality for rendering the fluid surface. For testing 

purposes, both bilateral and Gaussian blurs were used. 

Gaussian blurring did not produce artifacts if the blurring 

happened after the final lighting and shading calculations 

for coloring the particles were completed. Switching the 

stages, or doing the blurring before the final shading 

calculations, did create artifacts on silhouette edges with 

a standard Gaussian blur. This is where my project 

deviated from the method described by Simon Green in 

his presentation [5]. Green applied his filtering before 

calculating his final lighting and shading values for the 

fluid using a separable bilateral filter. Attempts to use a 

bilateral filter for blurring did not solve the artifacts created from silhouette edges when 

blurring occurred before final lighting calculations. However, bilateral filter also did not 

produce artifacts when the blurring process happened after the final shading of the fluid 

surface. As noted in Figure J, the shader program for blurring of the image uses both a 

vertex and fragment shader. The vertex shader is like the previous the vertex shader used 

in the shader program for the final lighting calculations; it functions only for the use of a 

full screen quad for rendering. The fragment shader samples the image with the final 

 

Figure K Stages needed 

by the final shader 

program to write the 

blurred image into the 

framebuffer.  
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Figure L Final results of 

rendering process after 

blurring 

lighting calculations and applies a Gaussian filter to blur the appearance of the particles. 

The image is once again saved to a framebuffer so the last rendering pass can make the 

final display image.  

The final image is read to the screen after being composited with the default framebuffer 

in OpenGL. The outline of the stages used in the rendering pipeline is given by Figure K. 

The default framebuffer holds an image of the background with our box vessel used to 

collect the fluid. Similarly, to the rendering technique for both the final lighting and 

blurring shaders a full screen quad is used to render the image of the smoothed particles. 

Using alpha blending, the image of the particles is 

imposed on top of the background image, thus 

creating the final image that will be displayed on the 

screen. Alpha blending is a technique that uses a 

value of transparency to combine two separate 

images into a single image by mixing pixel color 

values between the two images using the alpha value 

for each pixel. The weighting of the color is 

determined by the alpha values in both images. An 

example image of the final output of the fluid is 

given in Figure L. 

4 Conclusion 

In conclusion, it is possible to generate fluid flows using only OpenGL and the OpenGL 

shading language. Despite being able to render what appears to look like flows solely 
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using the Lennard-Jones potential, it is not an adequate model for giving realistic results 

on its own. More complicated physics models like the Navier-Stokes equations appear to 

be necessary to give fluid animations realistic appearing flows. In order to implement 

Navier-Stokes based simulation other technologies are needed other than using 

exclusively shader programs.  Another shortcoming when using OpenGL and GLSL is 

that they are unintuitive in this case due to the nature of the types of calculations being 

done in the shader programs. This is because shader programs are designed for the 

graphics pipeline and fit nicely for rendering processes. They are not intuitive for general 

purpose GPU (GPGPU) calculations and modeling physics.  Other technologies like 

NVIDIA’s CUDA or the OpenCL programming framework are common for these kinds 

of simulations, due to lacking the necessity of a deep understanding of the graphics 

pipeline or a graphics library. Also, these frameworks are similar syntactically to writing 

in the C programming language which many developers are familiar with. Many of these 

frameworks also have spatial partitioning structures that can be used for the speed up of 

the calculations of the Lennard-Jones potential. Due to these features these technologies 

are more useful for generalized programming using the GPU than GLSL. GLSL has 

recently added support for compute shaders that could potentially be able to do the 

physics calculations required for SPH. GLSL would be a good supplement to OpenCL or 

CUDA; since it is tightly coupled to the graphics rendering pipeline it can handle the 

rendering and shading processes. Using the GPU for heavy calculations and rendering is 

a major problem for OpenGL due to how rapidly graphics hardware has changed. In light 

of this the Khronos Group (developers of OpenGL) and have begun work and announced 

a successor API to OpenGL at GDC 2015 called Project Vulkan. Project Vulkan is a 
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substantially different API than OpenGL that gives more low-level access to the 

hardware in a C-like language for both rendering and generic calculations on the GPU. 

The low-level access to the hardware shows significant improvement to real time 

graphics applications. Project Vulkan has already gained support from hardware 

manufactures and game development studios.  

Although there is a visible fluid flow using GLSL shaders, the overall performance is 

fairly low. A simulation of 60,000 particles interacting in the vessel animates at 3 to 6 

frames per second (FPS) depending on how many of the particles have been emitted. This 

is not ideal as animations for many real-time applications would like to animate at a 

minimum of 15 frames per second. Animations lower than 15 FPS appear very slow and 

choppy to the human eye. Many modern video games in contrast, try to run at 60 FPS, as 

this is the upper limit what most human eyes can perceive. At that frame rate, all 

animations seem lifelike and smooth. Most video game engines would not try to use 

60,000 particles at a time due to the computational complexity.  

5 Future Work 

There are many aspects of this project that are considered for future work. For one, this 

project fell short of utilizing full SPH simulations. SPH simulations of fluid flows can 

create much more realistic looking results. Therefore, as future work creation of SPH 

simulations using the OpenCL framework for the fluid solver would be more beneficial 

than extension of existing shader programs. The current rendering code would be 

sufficient for the updated solving method because OpenCL can be used in conjunction 

with OpenGL for the rendering process. The code presented in this thesis is also not 
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optimized. The use of SPH would entail the use of a grid system for solving the 

simulation which would increase the compute performance of the simulation. The 

optimization shader program code as well as communication between the GPU and CPU 

a difficult problem but could be beneficial to examine to increase performance. Due to 

familiarity with JOGL and Java programming, the JOGL library was initially chosen for 

this project, however due to issues with cross platform compatibility in JOGL across 

hardware vendors of GPUs, conversion of the codebase to C++ and standard OpenGL 

could be useful for better multiplatform support of this program. In the future this project 

will be translated into the Vulkan API as it already is seeing massive support from 

graphics card vendors and game developers, however the Vulkan API is currently not 

near a full public release. 
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