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ABSTRACT 

Foraging animals face decisions about when and where to forage based, in part, on prey 

availability, which can fluctuate temporally as well as spatially. For temperate 

insectivorous bats, wetlands are important forage habitats because they provide water 

and high abundances of insects. My overall objective was to identify abiotic and biotic 

factors that influence bat foraging activity over wetlands in the channeled scablands of 

eastern Washington. I surveyed 12 wetland sites at Turnbull National Wildlife Refuge 

(TNWR) in Cheney, Washington, 3 or 4 times during summer 2012. Ten stations were set 

up at each site to measure insect abundance using floating aquatic emergence traps and 

pan traps. Bat feeding activity was measured using ultrasonic recording devices. I 

measured vegetation abundance, water temperature and depth, presence/absence of 

fish, and wetland type at each site. I collected 3,127 aquatic insects from 5 different 

orders. I recorded calls from ten bat species, including two species that have not been 

previously detected at TNWR. Feeding buzzes were recorded at all 12 sites during at 

least one sampling period. There was spatial variation in water depth, cattail 

abundance, and calls from high-frequency bats. Water depth was deeper at one 

permanent wetland than at one permanent and one non-permanent wetland. Cattail 

abundance varied across sites. Calls from high-frequency bats were higher at one 

permanent wetland compared to one wetland that dried up during July. There was 

temporal variation in wetland characteristics, insect biomass, and bat activity. Water 

temperature, insect biomass, and bat activity (both total calls and total feeding buzzes) 
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were highest during the first sampling period. Overall, my study showed that bats utilize 

wetlands as foraging habitat. Because wetlands exhibit temporal and spatial fluctuation, 

a broad-scale conservation effort to maintain quality wetlands would provide the 

greatest benefit to bat species at TNWR.   
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As flying mammals, bats have high energy demands due to the costs of flight and 

endothermy. For example, the heart rate of a greater spear-nosed bat (Phyllostomus 

hasatus) in flight increases to 34 times the resting heart rate, compared to a 6 to 8-fold 

increase in similar sized terrestrial rodents during exercise (Thomas and Suthers 1972). 

The energy demand for many insectivorous bats is further increased because they 

typically locate and capture prey that is mobile (Barclay and Brigham 1994). To maintain 

the necessary level of energy, bats should forage in a manner that will allow them to 

maximize their energy intake while reducing costs. Because prey availability for 

insectivorous bats varies temporally and spatially, bats must make decisions about when 

and where to forage to optimize each foraging period (Anthony and Kunz 1977). 

All of the bat species in the Pacific Northwest are insectivorous and belong to the 

family Vespertilionidae. In the winter, these bats hibernate in groups or migrate (Brack 

and Twente 1985; Cryan 2003). After emerging in the spring, the sexes separate (Cryan 

2003). Females roost in maternity colonies or individually and males roost alone 

(Hamilton and Barclay 1994). Females give birth to one pup (rarely two) in late spring or 

early summer (O’Farrell and Studier 1973; Barclay et al. 2003). The young are dependent 

on milk from their mother until the fall, when they fledge (Kurta et al. 1989; Barclay 

1989). Sexes reunite in the fall and mating takes place (Cryan 2003). During this time, 

both sexes begin preparing for winter hibernation or migration. Because the activity of 

Vespertilionidae bats is restricted to three seasons, they must forage efficiently in order 

to gain all the necessary energy.  
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Vespertilionidae bats show considerable plasticity in their feeding behavior and 

may utilize a mixture of foraging strategies depending on the habitat and prey available. 

Norberg and Rayner (1987) classified insectivorous bat foraging strategies into five 

categories. The first, hawking, is used by bats to catch insects in flight. They do this by 

using their wing to hit insects into their tail membrane before consuming them. 

Hawking is further divided into two groups, fast, long range hawking and slow, short 

range hawking. Lasiurus cinerus, the hoary bat is considered a fast hawker. These bats 

generally forage in uncluttered areas, often above canopy level, and are fast, agile fliers. 

They can detect prey at long ranges, about 3-5 m (Simmons et al. 1979). Slow-hawking 

bats, including those in the genus Myotis, are short range echolocators. Because of their 

slower flight they have better maneuverability than fast hawkers and generally forage in 

cluttered areas. Slow flying bat species also trawl for aquatic insects, catching them at 

the surface of the water with their hind limbs. Gleaning bats take non-flying prey from 

surfaces such as the ground (pallid bats, Antrozous pallidus), vegetation, or water.  Some 

species, such as M. evotis (long-eared myotis), can actually hover for brief periods while 

gleaning. Flycatching, in which bats make short attack flights from a perch, is not a 

common strategy for vespertilionids and has only been noted in juvenile M. lucifigus 

(little brown bat)  in our area (Buchler 1980).   

 Two main factors potentially influence where insectivorous bats forage – habitat 

type and insect abundance. Studies of bat habitat use have shown that bats spend a 

significant amount of active time over habitats associated with water (Vaughan 1997; 

Walsh and Harris 1996). During diurnal roosting, bats lose water through urination and 
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evaporative water loss (Kurta et al. 1990). Although bats gain >66% of water through 

their food, 20-22% is obtained by drinking (Kurta et al. 1990). When bats emerge from 

their roosts in the evening, they seek out a water source to re-hydrate before they begin 

feeding (Adams and Hayes 2008). Finding a water source that also provides high 

numbers of insects is beneficial to a bat in order to maximize energy gained during 

foraging flights. Wetlands are therefore important habitat for bats because they provide 

both water and potential prey (Whiles and Goldowitz 2001; Szewczak et al. 1998). 

Insect densities within wetland networks are typically unevenly distributed in 

time and space because species exhibit differential flushes in response to biotic and 

abiotic factors. Biotic factors such as predator abundance and the abundance of 

macrophytes can affect insect biomass. Zimmer et al. (2000) found a negative 

relationship between insect abundance and fathead minnow abundance. Duffy (1998) 

also found that predation by fathead minnows can impact invertebrate communities 

because they consume insect larvae in high numbers, often approaching the estimates 

of yearly invertebrate production in wetlands. In contrast, macrophyte abundance had a 

positive relationship on insect abundance (Zimmer et al. 2000). Batzer and Wissinger 

(1996) showed that litter from emergent plants can support high densities of insects. 

High abundance of macrophytes creates a more complex habitat, providing a place for 

insects to hide from diurnal predators and more food resources for them to utilize 

(Crowder and Cooper 1982). Abiotic factors that can affect insect abundance include 

water depth, water temperature, and wetland type. Zimmer et al. (2000) found negative 

relationship between insect abundance and water depth. Water temperature is another 
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factor in emergence, with insects generally emerging earlier at higher temperatures 

(Gaufin and Hern 1971; Hogg and Williams 1996; Gregory et al. 2000). Wetland type can 

also influence the insect community composition found in wetlands. Permanent 

wetlands are covered by water all year while non-permanent wetlands can dry up 

during the summer. Mosquitoes (order Diptera) and beetles (order Coleoptera) are 

more abundant in non-permanent wetlands wheras midges (order Diptera) and 

odonates (order Odonata) are more common in permanent wetlands (Batzer and 

Wissinger 1996). 

Since insect abundances vary between wetland sites, bats must be able to locate 

these resource flushes for optimum foraging success. In their study of big brown bats 

(Eptesicus fuscus) on Turnbull National Wildlife Refuge, Rancourt et al. (2007) radio 

tracked female bats and found that individual colonies switched roosts 3.6 during a 2-3 

week tracking period and stayed an average of 3.7 days at each roost. They also looked 

at roost switching behavior for long-eared myotis (Myotis evotis). M. evotis colonies 

moved 3.25 times and spent an average of 2 days at each roost during a 2-3 week 

tracking period (Rancourt et al. 2005). They suggested that one of the reasons colonies 

may move is to exploit patches of newly flushed insects. By evaluating how wetland 

characteristics can influence emerging insect biomass and bat activity, my study will 

help identify quality foraging habitat for bats for conservation purposes. 

I examined the relationship between wetland characteristics (presence/absence 

of fish, macrophyte abundance, water depth, water temperature, and wetland type), 

insect abundance, and bat activity at Turnbull National Wildlife Refuge (TNWR) in 
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eastern Washington. My questions were 1) does insect biomass vary between sampling 

period, site, and wetland type and is this variation explained by wetland characteristics, 

2) does bat activity vary by sampling period, site, and wetland type and is this variation 

explained by wetland characteristics, and 3) is there a relationship between insect 

abundance and bat activity? 

STUDY AREA 

My research was conducted from 29 June to 24 September 2012, at TNWR, 

located in Spokane County 8.05 km south of Cheney, WA. The climate of the region is 

characterized by warm, dry summers averaging 21◦C and cool, moist winters averaging -

1◦C (National Atmospheric Oceanic Administration 2013) (Fig. 1). The average annual 

precipitation is 42 cm (Fig. 2). TNWR encompasses 7,372-hectares of the Channeled 

Scablands on the eastern edge of the Columbia Basin Plateau. Volcanism, glaciation, and 

floods formed the unique environment that is composed of basalt outcrops, flood 

channels, grasslands, ponderosa pine and aspen forests, shrub-steppe habitat and over 

130 bodies of water (U.S. Fish and Wildlife Service 2011). Wetlands comprise 20%, or 

1,214-hectares, of TNWR’s habitat (National Fish and Wildlife Service 2011) ranging in 

size from small (ca 9 m2) vernal pools to large (>161 ha) permanent. There are 10 

confirmed bat species (including several Washington priority species) found at TNWR 

(Table 1). 

 METHODS 

I randomly chose 12 wetlands (Fig. 4) from a pool of 16 sites. The sites in the 

pool were close to an access road and reportedly free of stickleback fish (Michael Rule, 
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TNWR, personal communication). Stickleback are voracious consumers of chironomid 

larvae and pupae and can significantly impact the numbers of insects emerging (Hynes 

1950). Nine sites are classified by TNWR as permanent wetlands and the remaining 3 are 

non-permanent (either semi-permanent or seasonal ephemeral) (Fig. 4). Permanent 

wetlands contain measureable water throughout the entire year, while non-permanent 

wetlands can dry up during the summer depending on weather conditions (United 

States Environment Protection Agency 2013). All 12 sites were sampled 3 times during 

the summer and 5 sites were sampled 4 times. Sampling Period 1 was from 29 June-25 

July, Period 2 was from 27 July-22 August, Period 3 was 23 August-13 September, and 

Period 4 was 15 September-24 September.  

Wetland characteristics 

            I established transects along the edge of each wetland with one station every 50 

meters, 10 stations in total. As the water receded between sampling periods, I moved 

my transects to be in water. I measured water depth (m) and water temperature (◦C) at 

each station during each sampling period. Once insect nets had been placed in the 

water (see: Methods, insect abundance) I counted the stems and species of vegetation 

that fell within a 20 × 50-cm PVC plot frame on all four sides of the trap. The vegetation 

measurements were later grouped into 4 categories: cattails (Typha species), rushes 

(Scirpus species), reeds/sedges (Eleocharis, Sparganium, and other Cyperaceae species), 

or grasses (predominantly Phalaris arundinacea, reed canary grass). I surveyed for fish 

once at each site during the summer. I placed 3 fish traps in the water at each site for a 

24 hour period to survey for presence/absence of fathead minnows, stickleback, or 
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other fish. I used the classifications determined by TNWR managers to group wetlands 

into permanent and non-permanent categories.  

Insect abundance 

Each site had 10 insect stations set 50 m apart along the edge of the wetland. At 

each station, I placed an insect emergence net and a pan trap. The emergence nets were 

1.65 m × 0.6 m floating traps constructed from midge netting and PVC pipe (Fig. 5) 

(modified from MacKenzie and Kaster 2004). They were placed in standing water and 

anchored to nearby vegetation. The pan traps were plastic plates filled with soapy water 

that were placed on the ground approximately 0.3 m away from the water’s edge. Using 

a Summit Backyard Safari Bug Vacuum, I collected insects from all emergence traps after 

a 24 hour period and placed them in 70% ethyl alcohol. I strained the pan traps and 

preserved the contents in 70% ethyl alcohol. I identified the insects to family, measured 

total body length to the nearest mm, and used length-weight regressions from Sabo et 

al. (2002) to calculate biomass (mg). Only insects that had at least one aquatic life cycle 

stage were used in data analysis.  

Bat activity 

I used an Echo Meter EM3 Active Ultrasonic Bat Detector/Recorder (Wildlife 

Acoustics, Inc.) to monitor bat activity at my sites. Acoustic monitoring provides a non-

invasive way to actively or passively monitor bats by recording their echolocation calls. 

Acoustic monitoring is a relative measure of bat activity and cannot be used to identify 

individual bats. I conducted preliminary monitoring at TNWR and found that bat activity 

was highest for a period of 2 hours after sunset and declined sharply after midnight, so I 
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recorded activity from 9 p.m. to midnight during the study. I obtained information on 

lunar phase during sampling nights (The United States Naval Observatory 2013). The 

detectors were set to record in 20 second increments with a 12 kHz trigger. I imported 

these data into Kaleidoscope Pro (Wildlife Acoustics, Inc.) to count the number of 

overall calls and the number of feeding buzzes during each sampling period. Feeding 

buzzes are visible in a call sequence as areas with modulated frequency and a high 

repetition rate (Fig. 6). A feeding buzz is significant because it signifies a bat’s final 

approach and capture of an insect. The Kaleidoscope software has an auto ID feature to 

identify bat calls to species, but the results are not always accurate. After running the 

calls through the auto ID, I visually verified the results using the sonograms. If 

identification to species was not possible (due to call quality or ambiguity), I sorted the 

call based on the minimum frequency into 3 frequency groups – low-frequency bats 

(<30 kHz), mid-frequency bats (30-47 kHz), and high-frequency bats (>47 kHz) (Table 1, 

Fig. 3) (O’Farrell et al. 1999). 

 

Statistical analysis 

My data included 1) five measures of wetland characteristics – average water 

temperature, average water depth, stem counts for emergent vegetation, 

presence/absence of fish, and wetland type, 2) insect abundance (biomass of 

insects/m2), 3) number of bat calls/night, and 4) number of feeding buzzes/night. The 

bat call data were also broken down into number of calls per night by each frequency 
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group (high, mid, and low-frequency) and number of feeding buzzes per night by each 

frequency group.  

When comparing means between sampling periods, sites, or wetland type, I first 

used Levene’s test to determine if the assumption of equal variance was met. As 

indicated in tables 1-7, if the variance was equal, I used one-way ANOVA and Tukey’s 

test. If this assumption was not met, I used Welch’s ANOVA and the Games-Howell post 

hoc test. In all analyses involving total number of calls or feeding buzzes, the variables 

were transformed using log10
 to improve issues with equal variance. For all stepwise 

regressions, significant factors were left in the equation if the individual p   ≤ 0.1. All 

statistical analyses were completed using SAS 9.3. Means, standard error, and ranges for 

all analyses can be found in appendices 1-3. 

For wetland characteristics, I compared both the mean water temperature and 

mean water depth of all 12 sites combined between the four sampling periods. I 

compared the mean stem counts for cattails, rushes, reed/sedges, and grasses between 

individual sites and wetland types. I also compared mean water temperature and depth 

across sites and wetland types. 

For insect biomass, I compared mean biomass across sampling periods, sites, and 

wetland type. I used stepwise regression to determine which, if any, wetland 

characteristics explained variation in insect biomass. 

 For bat activity, I compared the mean number of total calls by sampling period, 

individual site, and wetland type. I also compared mean number of calls by frequency 

group, mean number of total feeding buzzes, and mean number of feeding buzzes by 
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frequency group across sampling periods, individual sites, and wetland type. I used 

stepwise regression to examine the relationships between total bat calls and wetland 

characteristics, calls by individual species group and the wetland characteristics, number 

of feeding buzzes and wetland characteristics, and number of feeding buzzes from each 

species group by wetland characteristics.   

Finally, I used a simple linear regression to examine the relationship between the 

total number of bat calls and insect biomass as well as the total number of feeding 

buzzes and insect biomass.  

RESULTS 

Wetland characteristics 

 Mean water temperature declined 10.6◦C throughout the summer (Fig. 7, Table 

2), but did not vary significantly by site or wetland type. Mean water depth did not vary 

by sampling period or wetland type (Appendix 1).  Site 105a, a small, non-permanent 

wetland had a significantly higher mean water depth than medium-sized wetlands 21a 

(non-permanent) and 54a (permanent) (Fig. 8). Although emergent macrophyte cover 

was variable between sites, only one site had a significantly higher abundance of 

reeds/sedges (Fig. 9). The ANOVA for cattails abundance by site indicated that there was 

a significant difference in the means, but Tukey’s post-hoc test did not separate means. 

Vegetation abundance did not vary by wetland type (Appendix 1). Although water 

noticeably receded at all sites throughout the summer, only one (21a) completely dried 

up during the course of the study. Juvenile Centrarchidae species, most likely bluegill, 



11 

 

 

 

were present at one non-permanent and five permanent wetlands (Fig. 4). I did not find 

any fathead minnows or stickleback. 

Insect abundance 

I collected a total of 3,127 aquatic insects representing 5 different orders (Fig. 

10). Chironomidae and Ephydridae, both belonging to the order Diptera, were the two 

most common families collected. Total insect biomass per site ranged from 0 to 8,837 

mg between all sampling periods. Within a single site, total insect biomass could range 

from 0 mg to >1,000 mg from one sampling period to the next. Sampling Period 1 had 

significantly higher insect biomass than the fourth sampling period (Table 3, Fig. 11). 

There was no difference in overall insect biomass by site or by wetland type (Appendix 

2). Insect biomass increased with increasing water temperature (F1,35 = 4.56, p = 0.04, R2 

= 0.12) (Appendix 3). 

Bat activity 

I recorded a total of 2,784 calls from 10 species (Table 1). I was able to identify 

approximately 24% of these calls to species and the rest I sorted into high, mid, or low-

frequency groups. Calls were recorded at all 12 sites during the study. The mean 

number of bat calls by was variable between sampling periods (Table 4). There were 

significantly more calls recorded during sampling Period 1 than Period 4 (Fig. 12), but 

calls did not vary by wetland type or site (Appendix 4). There were significantly more 

calls from low-frequency bats during sampling Period 1 than Period 4 (Fig. 12). The 

mean number of calls from mid and high-frequency bats did not vary by sampling period 

(Appendix 4). The mean number of calls varied between sites (Table 5), one permanent 
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wetland (LT1) had significantly more calls from high-frequency bats than the wetland 

that dried up (21a) (Fig. 13). There were no differences in calls from mid or low-

frequency bats across all sites (Appendix 4). 

There was a positive relationship between the total number of calls and water 

temperature (F1,34 = 4.73, p = 0.04, R2 = 0.12). There was a significant positive 

relationship between high-frequency calls and water depth (F1,37= 10.63, p = 0.002, R2 = 

0.22) (Appendix 3). There was a significant positive relationship between mid-frequency 

calls and rush and grass abundance (F2,27= 4.5, p = 0.02, R2 = 0.25).  There was no 

significant relationship between low-frequency calls and any wetland characteristic. 

There was no relationship between total calls or calls from any species group and moon 

phase. 

I recorded a total of 332 feeding buzzes. Feeding buzzes were recorded at least 

once at every site. There were significantly more feeding buzzes during Period 1 than 

Period 4 (Fig. 14). Feeding buzzes did not vary by site or wetland type (Table 6, Appendix 

4). There was a significant positive relationship between the total number of feeding 

buzzes and water temperature (F1,35 = 7.24, p = 0.01, R2 = 0.17). 

  More feeding buzzes from mid-frequency bats were recorded at one permanent 

site (UT1) than all other sites (Fig. 15). However, the mean number of feeding buzzes 

from high or low-frequency bats did not vary (Table 7, Appendix 4) and there was no 

variation between wetland type for any species group (Appendix 4). 

There was no relationship between the number of feeding buzzes by high-

frequency bats and any wetland characteristic. There was a significant positive 
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relationship between the number of feeding buzzes by mid-frequency bats and rush 

abundance and presence of fish (F2,28= 3.97, p = 0.03, R2 = 0.22). Feeding buzzes by low-

frequency bats increased as grass abundance increased (F1,29 = 4.73, p = 0.04, R2 = 0.14). 

There was no relationship between total feeding buzzes or feeding buzzes from any 

frequency group and moon phase. Complete regression results for bat activity during 

each sampling period are presented in Appendix 5.  

I recorded calls from 10 different bat species during my study. Rancourt (2000) 

netted eight of these but also captured 2 additional Myotis species that I did not record, 

M. thysanodes and M. volans. However, I recorded calls from Antrozous pallidus and 

Parastrellus hesperus which have not yet been captured at TNWR. A. pallidus is 

classified as a priority species in Washington because they often congregate in large 

numbers, making them vulnerable to disturbance (Washington Department of Fish and 

Wildlife 2011). A. pallidus has been captured in Spokane County (Ella Rowan, 

Washington Department of Fish and Wildlife, Personal communication). They generally 

prefer areas with rocky outcrops and dry shrub or dry forest environments near water 

(Washington Department of Fish and Wildlife 2011). I confirmed calls from A. pallidus at 

one permanent wetland, UT2, and one non-permanent wetland, 21a. There were low 

basalt outcroppings to the south of site 21a that could provide roosting areas for the 

pallid bat and the surrounding area was dominated by dry shrubby grassland. Site UT2 

was mostly surrounded by grassland habitat so it is unlikely that pallid bats are roosting 

near the site. Because UT2 is a permanent site, A. pallidus may frequent the area for 

feeding and drinking only. P. hesperus has not been documented in Spokane County, but 
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has been found in neighboring Whitman and Lincoln counties (Washington Department 

of Fish and Wildlife 2011). P. hesperus is generally found in lowland arid habitats such as 

dry grasslands, shrub-steppe, and associated riparian zones (Washington Department of 

Fish and Wildlife 2011). I confirmed calls from P. hesperus at one non-permanent 

wetland, 105a. Site 105a was a lowland area that was surrounded by grasslands that 

occasionally flooded. Although recording multiple calls from these two species is strong 

evidence that they are found at TNWR, confirmation of their presence should be 

confirmed by capture before their known ranges are expanded. 

Insect abundance and bat activity 

 There was a significant positive relationship between total number of calls and 

insect biomass (F1,37 = 7.49, p = 0.01, R2 = 0.17) (Appendix 6). Likewise, feeding buzzes 

also increased with increasing insect biomass (F1,38 = 7.03, p = 0.01, R2 = 0.27)  

(Appendix 6). 

DISCUSSION 

 The wetland network at TNWR fluctuates spatially and temporally. These 

variations in wetland characteristics in turn impacted insect abundance and bat activity. 

The variation in insect abundance due to changing wetland characteristics also 

influences bat activity. The positive relationship between insect abundance and bat 

activity also suggests that bats are able to locate and exploit variable insect flushes. 

 There was spatial variation in both abiotic and biotic wetland characteristics. 

Mean water depth was significantly higher at one small, seasonal wetland, 105a, than at 

one permanent wetland, 54a, and another non-permanent wetland, 21a. Wetlands 54a 
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and 21a have human-made drainage outlets that allow refuge managers to control 

water levels, whereas wetland 105a does not. Because there was an increase in 

precipitation in June, all the wetlands would have re-flooded. Drainage outlets could 

have lowered water depth at 54a and 21a but not at 105a. Macrophyte cover also 

varied spatially. The higher presence of reeds/sedges at site ET could be due to 

differences in soil chemistry and composition. Newman et al. (1996) found higher levels 

of potassium and nitrogen in one Eleocharis species than in one Typha and one Cladium 

species. McJannet et al. (1995) classified Eleocharis species as plants that prefer infertile 

soils such as sand or gravel.  

Spatial differences in vegetation abundance can cause spatial variation in bat 

activity. The total number of bat calls and feeding buzzes were both positively affected 

by rush and grass abundance. Rush abundance was higher at permanent wetlands, so 

rushes could be indicators to bats of reliable water sources that will not dry up during 

the summer. High abundance of rushes and grasses could also provide habitat for 

insects. Although I did not find any relationship between insect biomass and vegetation 

abundance in this study, other studies have shown that insect abundance increases with 

macrophyte cover (Crowder and Cooper 1982; Batzer and Wissinger 1996; Zimmer et al. 

2000). 

 Variation in wetland permanence across a landscape can also impact bat activity. 

There were significantly more calls from high-frequency bats at one permanent wetland 

than at one non-permanent wetland, 21a, which was completely without standing water 

by late July. M. yumanensis is a high-frequency bat whose habits are closely tied to 
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water (Brigham et al. 1992; Evelyn et al. 2004). Herd and Fenton (1983) observed M. 

yumanensis foraging predominantly over water and feeding on aquatic insects such as 

Ephemeroptera and Trichoptera. The lack of water at 21a could have caused M. 

yumanensis individuals to abandon the site as a source of water and food, which would 

lead to a decrease in high-frequency calls at that site.  

Additionally, there were more feeding buzzes from mid-frequency bats over one 

permanent wetland (UT1) than one non-permanent wetland. The mid-frequency group 

is made up mostly of Myotis species, which are smaller bats. To maintain their mass 

specific metabolic rate, small bats need to eat a relatively larger volume of insects 

compared to bigger bats. Because Myotis are morphologically limited to small prey 

items, they need to catch a large number of small insects to meet this required volume, 

which could account for the significantly higher number of feeding buzzes. I found a 

significant positive relationship between feeding buzzes by mid-frequency bats and rush 

abundance. Rushes were more abundant at permanent sites, which suggests that this 

wetland would be quality foraging habitat for mid-frequency bats. 

Insects exhibited temporal variation in their abundance at TNWR, with 

abundance highest during sampling Period 1 and declining throughout the summer. The 

decrease in water temperature between early periods and late periods explains the 

temporal difference in biomass. Changes in mean water temperature throughout the 

summer could be due to cooler air temperatures in August and September. The mean 

low temperature during these two months was 5-10 ◦C cooler than in July, leading to 

the decreased water temperature. Insect development is closely tied to temperature 
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(Ward and Standford 1982; Hogg and Williams 1996; Gregory et al. 2000). Insects have a 

minimum threshold temperature that must be reached before development can begin 

and they must remain above this threshold for a certain number of “degree days” 

before the insect emerges (Byrd and Castner 2000). Because the average water 

temperature was highest during the first sampling period, insect larvae would reach the 

required number of degree days sooner than during the other sampling periods, leading 

to a greater emergence of insects.  

 Bat activity also varied temporally. The increased number of bat calls and feeding 

buzzes during sampling Period 1 coincides with the highest period of insect biomass. In 

addition to responding to the presence of more insects, many North American bat 

species give birth in late June or early July (Frick et al. 2009; Davis 1969; Christian 1956; 

Grindal et al. 1992). The juveniles generally do not leave the roost and forage on their 

own until late August or September, so the females would be foraging more frequently 

to produce enough energy for lactation. Female M. lucifugus use 32% of their energy for 

milk production during lactation, which amounts to 33.8 kJ/d-1 on the first day of 

lactation and 60.3 kJ/d-1 during peak lactation (Kurta et al. 1989). A 9-g lactating M. 

lucifugus will eat 5.5 g of insects a night to meet these energy requirements (Kurta et al. 

1989). The significant increase in low-frequency bat calls could also be related to 

lactation energetics. The species that make up the low-frequency group are larger bats 

and thus would require a larger total amount of food to meet their own energy 

demands as well as those of their offspring. Barclay (1989) found that foraging time of L. 

cinereus females increased 73% between the beginning of lactation and the fledging of 
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young but declined as the offspring became more independent. I did not see an increase 

in bat activity in August when the juvenile bats begin leaving the roost. As water 

temperature drops and water depth decreases over the summer, bats may begin to 

forage more often over terrestrial areas, which could account for the lack of increased 

activity when juveniles begin foraging independently.  

 Abiotic and biotic wetland characteristics vary temporally and spatially at TNWR. 

These differences can, in turn, lead to variation in insect abundance and bat activity. 

Insect abundance varied with changing seasonal water temperatures, which in turn led 

to temporal differences in bat activity. Bat activity also varied spatially, with high and 

mid-frequency groups showing significantly more activity at permanent wetlands. The 

overall goal of my study was to identify quality bat foraging habitat for conservation 

purposes. Since successful foraging bouts are critical for lactating females during June 

and July, wetlands that produce large numbers of insects during this time period are 

crucial. In this study, wetlands with higher mean water temperatures in late June-late 

July produced the highest abundance of insects during this time. Wetlands in areas with 

an open canopy will receive more sunlight and will thus have higher temperatures and 

produce more insects than wetlands in shaded areas. Although my results suggest that 

bats may utilize permanent wetlands slightly more than non-permanent wetlands, 

maintaining a mosaic of wetland types is important to promote the temporal and spatial 

variability of resources required by bats.  
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Table 1 - Bat frequency group based on minimum call frequency in kHz. Low-frequency  

< 30 kHz, mid-frequency 30-47 kHz, high-frequency > 47 kHz. Species marked with R 

were captured by Rancourt (2000), S were recorded in this study, and B were found 

in both. Fig. 3 illustrates examples of calls from each frequency group.  

 

Species group Species Common name Study 

Low-frequency Lasionycterus noctivagans Silver-haired bat B 

 Lasiurus cinereus Hoary bat B 

 Eptesicus fuscus Big brown bat B 

 Antrozous pallidus Pallid bat S 

 Myotis thysandoes Fringed myotis R 

Mid-frequency Myotis ciliolabrum Small-footed myotis B 

 Myotis evotis Long-eared myotis B 

 Myotis lucifugus Little brown bat B 

 Parastrellus hesperus Canyon bat S 

 Myotis volans Long-legged myotis R 

High-frequency Myotis californicus California myotis B 

 Myotis yumanensis Yuma myotis B 
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Table 2 – ANOVA results for wetland characteristics by sample period, site, and wetland 
type at TNWR in 2012. Significant results are in bold. Significant results are in bold. 
Variance test’s marked with a “W” are Welch’s test values. All other variance tests are 
Levene’s test.  

 

  F(NDF, DDF) P 
Variance 
test p 

Water temperature Sample period 17.863,33 <0.001 0.3 

 Site 0.9311,25 0.94 0.62 

 Wetland type 0.091,25 0.77 0.63 

Water depth Sample period 0.493,36 0.69 0.6 

 Site 2.7411,28 0.02 0.03 W 

 Wetland type 0.251,38 0.62 0.02 

Cattail abundance Site 3.1411,19 0.014 0.25 

 Wetland type 0.051,29 0.83 0.63 

Rush abundance Site 1.6411,19 0.16 0.20 

 Wetland type 0.671,29 0.42 0.52 

Grass abundance Site 1.1411,27 0.39 0.13 

 Wetland type 0.071,37 0.79 0.34 

Reed/sedge abundance Site 0.6711,27 0.42 0.52 

 Wetland type 1.741,37 0.2 0.31 
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Table 3 – ANOVA results for insect biomass by sampling period, site, and wetland type at 
TNWR in 2012. Significant results are in bold. Significant results are in bold. Variance 
test’s marked with a “W” are Welch’s test values. All other variance tests are Levene’s 
test. 

 

 F(NDF, DDF) P 
Variance 

test p 

Sampling period 2.813,36 0.024 0.56 

Site 1.2411,28 0.31 0.001 W 

Wetland type 2.781,38 0.10 0.15 
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Table 4 – ANOVA results for number of bat calls by sampling period, site, and wetland 
type at TNWR in 2012. Significant results are in bold. 

 
 

 F(NDF, DDF) P 
Levene’s test 

p 

Sampling period 3.43,35 0.03 0.79 

Site 1.4711,27 0.2 0.08 

Wetland type 0.71,37 0.41 0.82 
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Table 5 – ANOVA results for number of calls for each species group by sampling period, 
site, and wetland type at TNWR in 2012. Significant results are in bold. Significant results 
are in bold. Variance test’s marked with a “W” are Welch’s test values. All other 
variance tests are Levene’s test. 

 

  F(NDF, DDG) P 
Variance  

test p 

# calls – high-freq Sample period 0.283,35 0.84 0.58 

 Site 2.1611,27 0.05 0.02 W 

 Wetland type 0.001,37 0.9 0.07 

# calls– mid-freq Sample period 2.733,35 0.06 0.14 

 Site 0.9411,27 0.52 0.10 

 Wetland type 1.081,37 0.37 0.38 

# calls – low-freq Sample period 3.543,35 0.02 0.08 

 Site 0.811,27 0.64 0.15 

 Wetland type 0.751,37 0.39 0.49 
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Table 6 – ANOVA results for number of bat feeding buzzes by sampling period, site, and 
wetland type at TNWR in 2012. Significant results are in bold. Significant results are in 
bold. Variance test’s marked with a “W” are Welch’s test values. All other variance tests 
are Levene’s test. 

 

 F(NDF, DDF) P 
Variance test 

p 

Sampling period 4.373,36 0.001 0.06 

Site 1.1911,28 0.33   0.25 W 

Wetland type 1.831,38 0.18 0.79 
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Table 7 – ANOVA results for number of feeding buzzes for each species group by 
sampling period, site, and wetland type at TNWR in 2012. Significant results are in bold. 
Variance test’s marked with a “W” are Welch’s test values. All other variance tests are 
Levene’s test. 

 

     F(NDF,DDF)     P 
Variance  
test p 

# buzzes – high-freq Sample period 1.323,36 0.28 0.14 

 Site 0.8111,28 0.63 0.92 W 

 Wetland type 1.651,38 0.2 0.55 

# buzzes – mid-freq Sample period 1.083,36 0.37 0.38 

 Site 4.3511,28 <0.001 0.75 W 

 Wetland type 2.222,38 0.14 0.29 

# buzzes – low-freq Sample period 1.633,36 0.2 0.33 

 Site 0.9211,28 0.54 0.10 

 Wetland type 0.971,38 0.33 0.49 
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Figure 1 – Average monthly low temperature from 2010-2012 in Spokane, WA (NOAA  
2013). 
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Figure 2 – Average monthly precipitation from 2010-2012 in Spokane, WA (NOAA  
2013). 
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Figure 3 – Spectrographs illustrating calls from a high-frequency bat (A), a mid-
frequency bat (B), and a low-frequency bat (C). 
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Figure 4 – Map of 12 study sites at TNWR. Non-permanent wetlands are indicated by 
circles and permanent wetlands are indicated by squares. Sites with fish: 105, 54a, LT1, 
TLES, UT1, and UT2. 
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Figure 5 – A) Emergence trap frame built from PVC pipe.  The 4 elbow joints were 
bonded using purple PVC primer. The T-joints were left un-bonded to allow the arms to 
fold flat for easier transport. B) Midge netting (1.5 m) was glued to the frame using 
waterproof silicon caulking and small pieces of PVC cut lengthwise to act as clips. 
 
 
 

A) 

B) 
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Figure 6 – A) A portion of an echolocation call from a low-frequency bat viewed in 
Kaleidoscope.  B) A high-frequency bat call and feeding buzz (circled) viewed in 
Kaleidoscope 
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Figure 7 - Mean (±SE) water temperature of 12 wetland sites at TNWR across 4 sampling 
periods in 2012. Periods marked with the same letter are not statistically different. 
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Figure 8 – Mean (± SE) water depth across 12 wetland sites at TNWR in 2012. Water 
depth at 105a was significantly higher than at permanent wetland 54a and non-
permanent wetland 21a. 
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Figure 9 – Mean (± SE) abundance of grasses, rushes, and reeds/sedges at 12 wetland 
sites at TNWR in 2012. ET had a significantly higher abundance of reeds/sedge than any 
other site. 
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Figure 10 - Percent composition by order of 3,127 insects collected from 12 wetland 
sites at TNWR using emergence nets and pan traps in 2012.  
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Figure 11 – Mean (± SE) insect biomass at 12 wetland sites at TNWR across 4 sampling 
periods in 2012. Biomass was significantly higher during sampling Period 1 than 
sampling Period 4. 
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Figure 12 – A) Mean (± SE) number of bat calls per night recorded at 12 sites in TNWR 
during 4 sampling periods in 2012. Number of calls during sampling Period 1 was 
significantly higher than Period 4. B) Mean (± SE) number of low-frequency bat calls per 
night recorded at 12 sites in TNWR during 4 sampling periods in 2012. Number of calls 
during sampling Period 1 was significantly higher than sampling Period 4. 
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Figure 13 – Mean (±SE) number of calls from high-frequency bats at 12 wetland sites at 
TNWR in 2012. Site LT1 had a significantly higher mean number of calls than site 21A. 
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Figure 14 – Mean (±SE) number of feeding buzzes from 12 wetland sites at TNWR across 
4 sampling periods in 2012. Sampling Period 1 had significantly a higher mean number 
of buzzes than sampling Period 4. 
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Figure 15 – Mean (±SE) number of feeding buzzes/night from mid-frequency bats at 12 
wetland sites at TNWR in 2012. Permanent wetland UT1 had a significantly higher 
number of feeding buzzes than all other sites. 
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Appendix 1: Means, standard error, and ranges for wetland characteristics. 

   
   SE Range |x| 

Water temperature 
  

21.83 0.22 12-33.5 

 (◦C) Sample period 1 24.19 0.97 19.72-32.35 

  
2 23.29 0.50 21.13-25.6 

  
3 19.09 0.67 16-23.25 

  
4 14.34 0.92 12.2-16.75 

 
Site 105a 22.35 2.46 16.4-26.2 

  
21a 23.20 0.00 23.2 

  
53a 18.60 2.42 12.2-24.7 

  
54a 19.16 1.96 12.4-21.88 

  
C. Lash 22.02 1.54 18.25-24.2 

  
ET 19.59 0.77 17.9-21.15 

  
Helms 21.10 1.78 16.75-23.5 

  
LT1 23.31 2.55 17.12-27.2 

  
LT2 22.26 1.75 19.25-26.4 

  
TLES 22.36 1.46 16-23.95 

  
UT1 21.75 1.38 19.35-25 

  
UT2 27.07 2.23 23.25-32.35 

 
Wetland type Non-permanent 21.94 1.33 16.4-26.2 

  Permanent 21.40 0.77 12.2-32.35 
  

 4
7
 



 

 

 

 

    ve        SE Range |x|  

Water depth 
  

0.25 0.01 0-1.7   

 (m) Sample period 1 0.27 0.04 0.11-0.64 

  
2 0.15 0.02 0-0.27 

  
3 0.32 0.05 0-0.58 

  
4 0.20 0.06 0-0.37 

 
Site 105a 0.47 0.09 16.4-26.2 

  
21a 0.03 0.02 23.2 

  
53a 0.19 0.03 12.2-24.7 

  
54a 0.13 0.02 12.4-21.88 

  
C. Lash 0.26 0.07 18.25-24.2 

  
ET 0.29 0.05 17.9-21.15 

  
Helms 0.21 0.05 16.75-23.5 

  
LT1 0.32 0.09 17.12-27.2 

  
LT2 0.29 0.12 19.25-26.4 

  
TLES 0.30 0.04 16-23.95 

  
UT1 0.22 0.02 19.35-25 

  
UT2 0.26 0.04 23.25-32.35 

 
Wetland type Non-permanent 0.22 0.07 0-0.64 

  
Permanent 0.25  0.02 0.08-0.58 
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    ve        SE Range |x| 

Rush abundance 
  

100.61 15.84 0-340 

 (# stems) Site 105a 10.67 0.27 10-11 

  
21a 299.00 0.00 299 

  
53a 137.50 53.82 0-302 

  
54a 67.00 16.08 14-96 

  
C. Lash 31.00 10.84 8-54 

  
ET 88.33 31.45 32-162 

  
Helms 2.00 0.00 2 

  
LT1 169.00 54.84 48-280 

  
LT2 129.67 58.72 18-264 

  
TLES 79.50 30.75 18-141 

  
UT1 220.00 69.28 100-340 

  
UT2 57.50 10.10 40-75 

 
Wetland type Non-permanent 97.44 26.99 11-280 

  
Permanent 101.91  18.63 0-340 
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    ve        SE Range |x| 

Cattail abundance 
  

9.76 2.29 0-52 

 (# stems) Site 105a 6.00 3.40 0-14 

  
21a 31.00 0.00 31 

  
53a 8.00 3.67 2-20 

  
54a 2.00 0.61 0-3 

  
C. Lash 20.67 3.31 14-28 

  
ET 15.33 7.85 2-34 

  
Helms 0.00 0.00 0 

  
LT1 3.67 1.36 2-7 

  
LT2 32.67 11.59 5-52 

  
TLES 8.00 4.00 0-16 

  
UT1 0.00 0.00 0 

  
UT2 0.00 0.00 0 

 
Wetland type Non-permanent 7.33 80.97 0-34 

  
Permanent 10.67 105.39 0-52 
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    ve        SE Range |x| 

Grass abundance 
  

105 27 0-683 

 (# stems) Site 105a 106.00 23.80 50-148 

  
21a 12.50 10.83 0-50 

  
53a 173.00 121.17 0-586 

  
54a 167.00 86.46 0-417 

  
C. Lash 170.67 144.51 0-458 

  
ET 53.67 26.63 2-114 

  
Helms 185.67 75.93 0-288 

  
LT1 85.00 41.56 0-176 

  
LT2 50.00 30.47 0-123 

  
TLES 244.67 179.35 0-683 

  
UT1 0.00 0.00 0 

  
UT2 0.00 0.00 0 

 
Wetland type Non-permanent 92.50 33.32 0-288 

  
Permanent 109.38 6.37 0-683 
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    ve        SE Range |x| 

Reed/sedge abundance 
  

32 14 0-428 

 (# stems) Site 105a 0.00 0.00 0 

  
21a 0.00 0.00 0 

  
53a 0.00 0.00 0 

  
54a 56.25 29.43 0-137 

  
C. Lash 23.33 23.33 0-70 

  
ET 254.67 106.20 0-428 

  
Helms 0.00 0.00 0 

  
LT1 5.33 4.35 0-16 

  
LT2 58.33 33.67 0-138 

  
TLES 0.00 0.00 0 

  
UT1 0.00 0.00 0 

  
UT2 0.00 0.00 0 

 
Wetland type Non-permanent 0.00 0 0 

  
Permanent 43.10 3.47 0-428 
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Appendix 2: Means, standard errors, and ranges for insect biomass (mg). 

   
 ve        SE Range |x| 

   
1,457 1,487.49 0-8,837  

 
Sample Period 1 2,781.02 713.59 3.49-8,837 

  
2 1,052.12 463.84 0-5,556 

  
3 1,113.85 536.31 0-6,717.1 

  
4 12.46 11.148 0-62.32 

 
Site 105a 1,116.72 459.59 1.62-1,808.11 

  
21a 0.87 8.95 0-3.49 

  
53a 324.08 177.55 0-853.4 

  
54a 1,212.18 664.42 0-3,1943.31 

  
C. Lash 770.23 362.36 38.72-1,571.37 

  
ET 1,111.52 708.87 0-2,822.54 

  
Helms 570.93 430.04 0-1,623.05 

  
LT1 2,144.14 1566.77 0-5,972.73 

  
LT2 1,174.60 938.86 0-3,474.16 

  
TLES 3,614.71 1882.48 3.62-8,836.98 

  
UT1 4,083.81 1079.22 2,565.8-6,717.1 

  
UT2 1,596.34 632.11 423.27-3,058.06 

 
Wetland Type Non-permanent 506.64 239.12 0-1,808.1 

  
Permanent 1,774.86 420.62 0-8,836.98 
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Appendix 3: Complete regression results for overall insect biomass and overall bat activity with wetland characteristics. Only 
significant regressions are presented.  

 
Significant factors 

Relationship  
+/- 

Individual 
 R2 

Individual 
 p 

F(NDF, DDF) Model  
R2 

Model  
p 

Insect biomass Water temperature + 0.12 0.04 4.561,35 0.12 0.04 

Total calls Water temperature + 0.122 0.04  
  

     
4.731,34 0.122 0.04 

Total feeding buzzes 
    

 
  High-frequency calls Water depth + 0.22 0.002  
  

     
10.631,37 0.22 0.002 

Mid-frequency calls Rush abundance + 0.16 0.03  
  

 
Grass abundance + 0.09 0.09  

  

     
4.52,27 0.25 0.02 

Total feeding buzzes Water temperature + 0.17 0.01  
  

     
7.241,35 0.17 0.01 

Mid-frequency buzzes Rush abundance + 0.1 0.09  
  

 
Fish presence + 0.12 0.04  

  

     
3.972,28 0.22 0.03 

Low-frequency buzzes Grass abundance  + 0.14 0.04  
  

     
4.731,29 0.14 0.04 
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Appendix 4: Means, standard errors, and ranges for bat activity (number calls/night). 

   
Overall    SE Range |x| 

Total calls 
  

63.4 14 1-511 

 
Sample Period 1 131.167 35.99 10-447 

  
2 64.2727 16.12 0-194 

  
3 32.2727 6.10 0-70 

  
4 21.6 10.14 0-60 

 
Site 105a 136.5 73.03 10-263 

  
21a 17 5.30 0-29 

  
53a 17.75 12.05 0-59 

  
54a 71.25 37.21 25-200 

  
C. Lash 74 5.89 64-88 

  
ET 39.6667 13.30 20-72 

  
Helms 32 12.19 9-60 

  
LT1 114.667 25.72 55-162 

  
LT2 46.3333 17.72 15-88 

  
TLES 167.5 88.62 12-447 

  
UT1 113.667 35.75 54-199 

  
UT2 38.6667 16.23 0-66 

 
Wetland Type Non-permanent 48.5556 24.51 0-263 

  
Permanent 76.9 16.38 0-447 
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    ve        SE Range |x| 

High-frequency calls   15.38 3.03 0-98 

 
Sample Period 1 19.42 0.49 0-98 

  
2 15.10 0.16 1-50 

  
3 12.73 0.33 0-44 

  
4 12.20 0 1-30 

 
Site 105a 51 0.27 4-98 

  
21a 0.75 0 0-1 

  
53a 3 0 1-6 

  
54a 17 0.43 4-33 

  
C. Lash 23.67 0 13-31 

  
ET 4 0 2-8 

  
Helms 12 0 3-30 

  
LT1 38.67 0.27 22-50 

  
LT2 10.33 0.82 4-14 

  
TLES 19.5 0.83 2-39 

  
UT1 14.67 1.36 10-19 

  
UT2 9 0.82 0-16 

 
Wetland Type Non-permanent 51 9.62 0-98 

  
Permanent 0.75 2.5 0-50 
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    ve        SE Range |x| 

Mid-frequency calls 
  

28.8 5.5 0-166 

 
Sample Period 1 47.83 13.84 0-166 

  
2 31.73 8.39 4-114 

  
3 15.82 2.99 3-38 

  
4 5.6 3.76 0-22 

 
Site 105a 43.5 23.38 3-84 

  
21a 9.25 2.81 0-15 

  
53a 11.5 4.80 1-26 

  
54a 13.5 5.15 0-28 

  
C. Lash 41.33 1.44 38-44 

  
ET 24.33 4.82 17-36 

  
Helms 10.33 4.77 5-22 

  
LT1 32 10.53 7-50 

  
LT2 25.67 11.47 4-52 

  
TLES 72.25 35.10 4-166 

  
UT1 55.67 22.21 26-110 

  
UT2 14.67 6.84 0-29 

 
Wetland Type Non-permanent 17.22 7.74 0-84 

  
Permanent 32.33 6.70 0-166 
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    ve        SE Range |x| 

Low-frequency calls 
  

27.3 7 0-232 

 
Sample Period 1 57.08 19.44 1-232 

  
2 25 4.22 3-49 

  
3 8.36 3.67 1-37 

  
4 2.2 1.34 0-8 

 
Site 105a 42 22.52 3-81 

  
21a 7 3.50 0-18 

  
53a 7.75 5.32 0-26 

  
54a 50.5 25.76 1-137 

  
C. Lash 9 3.77 1-17 

  
ET 12.67 6.87 1-29 

  
Helms 10.33 4.12 3-20 

  
LT1 43 19.67 4-87 

  
LT2 10.33 5.36 1-23 

  
TLES 71.75 47.04 2-232 

  
UT1 42 17.44 2-75 

  
UT2 16.33 8.76 1-37 

 
Wetland Type Non-permanent 15.89 7.57 0-81 

  
Permanent 30.67 8.80 0-232 
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    ve        SE Range |x| 

Total feeding buzzes 
  

7.55 2.4 0-82 

 
Sample Period 1 16 6.70 0-82 

  
2 6.83 2.50 0-32 

  
3 2.45 1.02 0-12 

  
4 0.2 0.18 0-1 

 
Site 105a 5.67 2.42 0-10 

  
21a 0.5 0.25 0-1 

  
53a 2.75 2.10 0-10 

  
54a 10.5 5.23 01-27 

  
C. Lash 4.33 1.66 1-8. 

  
ET 2.67 1.19 0-5 

  
Helms 0.33 0.27 0-1 

  
LT1 4.67 1.44 2-8 

  
LT2 3.67 1.19 1-6 

  
TLES 28.5 16.87 0-82 

  
UT1 19 10.03 0-42 

  
UT2 4 2.16 0-9 

 
Wetland Type Non-permanent 2 1.06 0-10 

  
Permanent 9.4 3.06 0-82 
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 ve        SE Range |x| 

High-frequency buzzes 
  

0.53 0.19 0-5 

 
Sample Period 1 1 0.49 0-5 

  
2 0.17 0.16 0-2 

  3 0.64 0.33 0-3 

  
4 0 0 0 

 
Site 105a 0.33 0.27 0-1 

  
21a 0 0 0 

  
53a 0 0 0 

  
54a 0.5 0.43 0-2 

  
C. Lash 0 0 0 

  
ET 0 0 0 

  
Helms 0 0 0 

  
LT1 0.33 0.27 0-1 

  
LT2 1 0.98 0-3 

  
TLES 1.5 0.96 0-4 

  
UT1 1.67 1.36 0-5 

  
UT2 1 0.82 0-3 

 
Wetland Type Non-permanent 0.1 0.09 0-1 

  
Permanent 0.67 0.25 0-5 
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 ve        SE Range |x| 

Mid-frequency buzzes 
  

3 1.05 0-32 

 
Sample Period 1 4 1.91 0-24 

  
2 5 2.73 0-32 

  
3 1.09 0.38 0-3 

  
4 0 0 0 

 
Site 105a 1 0.47 0-2 

  21a 0 0 0 

  
53a 0 0 0 

  
54a 1.25 0.41 0-2 

  
C. Lash 1.67 0.72 0-3 

  
ET 2 0.82 0-3 

  
Helms 0 0 0 

  
LT1 2.33 0.72 1-4 

  
LT2 2.33 0.27 0-4 

  
TLES 7 4.36 0-18 

  
UT1 18.67 7.85 0-32 

  
UT2 1 0.82 0-3 

 
Wetland Type Non-permanent 0.3 0.20 0-2 

  
Permanent 3.9 1.36 0-32 

  

61
 



 

 

 

 

 
   ve        SE Range |x| 

Low-frequency buzzes 
  

4.8 1.8 0-68 

 
Sample Period 1 10.25 5.38 0-68 

  
2 4.08 1.18 1-12 

  
3 1.27 0.84 0-10 

  
4 0.2 0.18 0-1 

 
Site 105a 4.33 1.78 0-7 

  
21a 0.5 0.25 0-1 

  
53a 2.75 2.10 0-10 

  
54a 8.75 4.51 1-23 

  
C. Lash 2.67 1.36 1-6 

  ET 0.67 0.54 0-2 

  
Helms 0.33 0.27 0-1 

  
LT1 1.67 0.98 0-4 

  
LT2 0.33 1.19 0-1 

  
TLES 20 16.25 0-68 

  
UT1 7.67 3.21 0-13 

  
UT2 2 0.82 0-3 

 
Wetland Type Non-permanent 1.6 0.79 0-7 

  
Permanent 5.7 2.35 0-68 
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Appendix 5: Complete regression results for insect biomass and bat activity with wetland characteristics for sampling periods 1-3   

     

 

  
SAMPLING PERIOD 1 Significant factors 

Relationship  
+/- 

Individual 
 R2 

Individual 
 p 

F(NDF, DDF) Model  
R2 

Model  
p 

High-frequency calls Water depth + 0.66 0.001  
  

     
19.81,10 0.66 0.001 

Mid-frequency calls Fish presence + 0.37 0.04  
  

 
Water temperature - 0.065 0.03  

  

     
8.282,9 0.65 0.009 

 
 
SAMPLING PERIOD 2     

 

  

High-frequency calls Water temperature + 0.37 0.08  
  

 
Grass abundance + 0.38 0.07  

  

 
Water depth - 0.09 0.05  

  

 
Fish presence - 0.2 0.08  

  

     
13.934,4 0.93 0.01 

Mid-frequency calls Grass abundance + 0.57 0.007  
  

     
12.121,9 0.57 0.007 

Low-frequency calls Water depth + 0.47 0.04  
  

     
6.31,7 0.47 0.04 

High-frequency buzzes Grass abundance + 0.77 0.0002  
  

     
32.971,10 0.77 0.0002 

Mid-frequency buzzes Rush abudance + 0.1 0.09  
  

 
Fish presence + 0.12 0.04  

  

     
3.972,28 0.22 0.03 

Low-frequency buzzes Grass abundance + 0.47 0.04  
  

     
4.442,7 0.47 0.04 
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SAMPLING PERIOD 3 Significant factors 

Relationship  
+/- 

Individual 
 R2 

Individual 
 p 

F(NDF, 

DDF) 
Model  

R2 
Model  

p 

Insect biomass Cattail abundance - 0.68 0.02  

  

     
10.831,5 0.68 0.02 

Total buzzes Water temperature + 0.92 0.0007  

  

 
Cattail abundance - 0.07 0.009  

  

     
0.022,4 0.99 0.0002 

Mid-frequency calls Cattail abundance + 0.89 0.001  

  

     
10.831,5 0.89 0.001 

Low-frequency calls Water temperature + 0.63 0.006  

  

     
13.521,8 0.63 0.006 

Low-frequency buzzes Water temperature + 0.71 0.01  

  

 
Water depth - 0.18 0.07  

  

     
 0.89 0.01 
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Appendix 6: Complete regression results for bat activity with insect abundance for the overall study and sampling periods 1-3. 

Because of the small sample size, sampling period 4 was not included. 

 

 

 

  

OVERALL F(NDF, DDF) R2 P 

Total calls 7.491,37 0.17 0.01 

Total feeding buzzes 7.031,38 0.27 0.01 

    SAMPLE PERIOD 1 
   Total calls 4.511,10 0.31 0.06 

Total feeding buzzes 2.671,10 0.13 0.13 

    SAMPLE PERIOD 2 
   Total calls 0.641,9 0.07 0.44 

Total feeding buzzes 2.31,10 0.19 0.16 

    SAMPLE PERIOD 3 
   Total calls 0.081,9 0.009 0.78 

Total feeding buzzes 0.521,9 0.05 0.49 
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