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Abstract

This thesis will examine mathematical interpretations of biolog-

ical situations through the study of differential equations. It will

first explore the interactions of the lynx and hare populations in

Canada based on data retrieved by the Hudson Bay Company.

The purpose of this study is to find a suitable mathematical

model, namely that of a three-variable Lotka-Volterra system.

Also, the paper will explore short-term infectious disease mod-

els as they relate to particular epidemics throughout history,

including the Iowa Mumps outbreak of 1966 and the Bubonic

Plaque. The thesis will then work to make sense of the rise and

fall patterns in the data through analysis of the models. Fi-

nally, the paper will develop the concept of long-term infectious

diseases and cell-to-cell spread as a means for understanding a

component of some very complicate diseases such as HIV and

herpes; it will not get too deep into examples in this last section,

but rather will set up some models to work with and some areas

for further research.
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Chapter 1

Introduction

This thesis will take us on a journey designed to develop understanding of the

role differential equations play in the study of mathematical biology. First,

we will explore the inter-workings of differential equations, discussing what

they are and what their solutions look like. We will also develop how to solve

differential equations both in the general setting and with respect to particular

criteria. After getting a feel for what differential equations are, we will discuss

some ways to work with systems of differential equations. We will establish

how to solve systems of differential equations using differentials, which we will

define, as well as explore Jacobian matrices as they relate to this study. The

topic of equilibria and stability will make up a lot of the material in Chapter

2, as it is the basis for much of what we will be studying in later chapters. We

will develop a strong background of how to use eigenvalues and eigenvectors to

determine stability as it will be integral to later work. Finally, the last piece

to explore before we are ready to move into modeling will be the concept of

invariance which we will use in Chapter 3 to show that if a particular species

becomes extinct in a mathematical model it will not reappear. Once we have
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all these tools in place for working with differential equations, we can begin

to develop models using systems of differential equations that we will use in

varied biological settings.

The first actual model we will explore is the two-variable Lotka-Volterra

predator-prey model. The Lotka-Volterra predator-prey model was proposed

independently by the American biophysicist Alfred Lotka in 1925 and the Ital-

ian mathematician Vito Volterra in 1926. It was one of the earliest predator-

prey models to be based on solid mathematical principles [30]. As we will see,

the model is centered around first-order non-linear differential equations. It is

used to describe the interactions between two species in an ecosystem, one a

predator and the other its prey. This model forms the basis of many of the

models used currently in the analysis of population dynamics.

In our study of the Lotka-Volterra model in Chapter 3 we will attempt

to describe data from the Hudson Bay Company in Canada, a fur-trading

company from western Canada We will be particularly interested in what

they discovered regarding the oscillating relationship between the snowshoe

hare and the lynx populations. This model will be developed and analyzed as

it relates to the data.

After developing the two variable model and analyzing the data from

the Hudson Bay Company, we will work to understand a three-variable model

as an attempt to find a model better suited to what happens in nature. We

will go through much of the same analysis as we did in the two variable case

just with an added layer of complexity. After establishing the characteristics

of this model we will again evaluate it’s reasonableness to the Hudson Bay

data. This will conclude our study of predator-prey models.

The next type of models we will examine deal with infectious diseases.
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We will develop three different models in Chapter 4, as well as examine how

they work in the context of several real life illnesses. We will start with simple

compartmental models and add in some different options for what can hap-

pen to a person after they have contracted a particular disease. The models

for infectious diseases that we will study come from A. G. McKendrick and

W.O. Kermack whom together developed a series of models of how infectious

disease is spread through a population. Their theory was published in a set

of three articles in 1927,1932 and 1933 building off the research of some other

important scientists such as Daniel Bernoulli and Ronald Ross. The models

discussed by McKendrick and Kermack are vast and encompass several differ-

ent modifications, thus we will only be able to discuss a few of the proposed

models.

All of the models we explore in Chapter 4 deal with a relatively short

time scale, thus we are able to neglect non-disease related birth and death

rates, but since not all diseases are short in duration relative to the life of

their host, discussing diseases in which birth and death play a role in the

total population will be an interesting contrast. In Chapter 5, we will develop

models that encompass non-disease related birth and death rates within their

systems. Specifically, we will discuss models developed to study cell-to-cell

spread of diseases, models that could be used to study HIV and herpes for

example.

Finally, the thesis will conclude with some limitations and results of

the research as well as areas for further study.
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Chapter 2

ODE Basics

The mathematical models that we will explore in the upcoming chapters are

centered around ordinary and partial differential equations. Before we can

explore these models we must first understand what ODEs and PDEs are in

addition to how to work with them.

2.1 Basic Definitions and Terminology

Definition 2.1 Differential Equation: An equation containing the derivatives

or differentials of one or more dependent variables, with respect to one or more

independent variables [16].

The first category of differential equations we will look at are called

ordinary differential equations.

Definition 2.2 Ordinary Differential Equation: A differential equation con-

taining only ordinary derivatives of one or more dependent variables, with

respect to a single independent variable [16].
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Example 2.3 An ODE that we classify as a first order ODE, has highest

order differential degree one

dy

dt
− 5y = 1.

A second order ODE highest order differential of degree two

d2y

dx2
− ddy

dx
+ 6y = 0.

Throughout the majority of this thesis we will be primarily looking at

first order ODE’s, but it is good to understand ODE’s of higher order as well.

Another type of differential equation we will see is called a partial differential

equation.

Definition 2.4 Partial Differential Equation: An equation involving the par-

tial derivatives of one or more dependent variables of two or more independent

variables [16].

Example 2.5 An example of a partial differential equation of first order

∂u

∂y
= −∂v

∂x

whereas the following is called a second order partial differential equation

∂2u

∂x2
=
∂2u

∂t2
− 1

∂u

∂t
.

In the sections to follow we will be dealing with both linear and non-

linear differential equations. Linear differential equations are characterized by

two properties:

1. The dependent variable and all its derivatives are of the first degree; that

is, the power of each term involving the dependent variable is one.
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2. Each coefficient depends on only the independent variable.

All other differential equations are classified as non-linear [16].

Example 2.6

Linear:

xdy + ydx = 0

y′′ − 2y′ + y = 0

Non-linear:

yy′′ − 2y′ = x

d3y

dx3
+ y2 = 1

Now that we understand what differential equations are, we can begin

to explore how to solve differential equations and interpret what their solutions

mean.

Definition 2.7 Solution of a Differential Equation: Any function f defined

on some interval I, which when substituted into a differential equation reduces

that equation to an identity, is said to be a solution of the equation on the

interval [16].

We can verify that a particular equation is a solution by substituting

it into a given differential equation.

Example 2.8 Verify that

y = e3x + 10e2x

is a solution to

dy

dx
− 2y = e3x.
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Consider

dy

dx
= y′ = 3e3x + 20e2x

then substitute dy
dx

and y in to the ODE to get

3e3x + 20e2x − 2(e3x + 10e2x) = e3x.

Distributing yields

3e3x + 20e2x − 2e3x − 20e2x = e3x.

then simplifying leaves

e3x = e3x

which is always true; therefore y is a particular solution for the given system.

When solving differential equations we may get a particular solution,

like in the example above, where we have a solution that is independent of

arbitrary of parameters or we may end up with a family of solutions. A family

of solutions is typically a family of curves or functions containing an arbitrary

parameter such that each member of the family is a solution of the differential

equation [16]. The following is an example of of a differential equation with a

family of solutions.

Example 2.9 Verify that y = cx + c2 is a one-parameter family of solutions

to the following equation

y = xy′ + (y′)2.

Differentiating y gives y′ = c; therefore

y = xy′ + (y′)2 = xc+ (c)2 = cx+ c2

which is y as defined in the family of solutions. The following image shows the

family of solutions for this differential equation with each line representative

7



of a different pick of for the constant c, including both positive and negative c

values. Each of the lines in this image represent a unique solution.

While it is wonderful to be able to verify solutions for differential equations,

at some point we do need to be able to solve these equations. Separating

variables is a process that allows us to integrate both sides of the equation

with respect to a particular variable which equivocally allows us to be able to

solve DE’s.

2.2 Separable Equations

Definition 2.10 A differential equation of the form

dy

dx
=
g(x)

h(y)

is said to be separable, or to have separable variables. This means we can write

it so that all terms and functions with respect to y can be written on one side

and all x on the other side of the equation [16].

8



Example 2.11 Solve the following differential equation:

dx− x2dy = 0.

Adding the second term to both sides yields

dx = x2dy.

Dividing by x2 then gives

dx

x2
= dy

then integrating both sides with respect to the respective variables results in

−1

x
+ c = y

The following image shows the family of solutions for this differential equation

with each line representative of a different pick of for the constant c., each

representing a unique solution for the DE.

Separating variables is a technique for solving DE’s that will be used in

the remaining chapters frequently. The goal is to be able to write the equation
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without differentials in order to solve the equation. Now that we are able to

write an equation without differentials, we are ready to take the next step of

evaluating the DE subject to an initial condition.

2.3 Initial-Value Problems

In the chapters to follow we will often be interested in solving a differential

equation

dy

dx
= f(x, y)

subject to a side condition y(x0) = y0, where x0 is a number in an interval

I and y0 is an arbitrary real number. Geometrically, we are seeking at least

one solution of the differential equation such that the graph of the solution

passes through the predetermined point (x0, y0). We call problems of this type

initial-value problems and the side condition mentioned is known as an initial

condition [16]. Initial-value problems usually present themselves as shown

below:

Solve
dy

dx
= f(x, y) subject to y(x0) = y0.

The example to follow demonstrates how to solve a particular differen-

tial equation subject to a specific the initial condition.

Example 2.12 Solve

y′ + 2y = 1

subject to the initial condition

y(0) =
5

2
.

10



Since y′ = dy
dt

we can re-write this equation as

dy

dx
+ 2y = 1.

Then separating variables

dy

dx
= 1− 2y

becomes

dy

1− 2y
= dx.

Integrating gives

− ln(|2y − 1|)
2

= x+ c1

and solving for y yields

ln(|2y − 1|) = −2x− 2c1.

Exponentiating gives

2y − 1 = e−2x−2c1

which is equivalent to

2y = e−2xe−2c1 + 1.

Now since e−2c1 is just a constant we can replace it with c such that e−2c1 = c

so we can write

2y = ce−2x + 1.

Thus,

y =
ce−2x + 1

2
.

The following image shows possible solution curves through satisfying this equa-

tion. The curves all vary by the constant c just as in the previous two examples.

11



Now that we have solved the differential equation for y we can use the

initial condition y(0) = 5
2

to write

5

2
=
ce−2(0) + 1

2

so

5

2
=
c+ 1

2
.

Thus,

c = 4.

Finally we are able to write the equation for y with respect to this initial value:

y =
4e−2x + 1

2
.

Which is represented by the red curve in the image to follow.
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The next example we will consider is a rather trivial example of an

initial value problem, but it is one that we will see again in our study of

infectious diseases thus, it is good to get a feel for it now.

Example 2.13 Let

I(τ)

dτ
= −γI,

with initial condition

I(0) = I0.

In our study of infectious diseases in Chapter 4, we use I to denote the num-

ber of infectious individuals, τ to represent time and γ to denote the rate of

recovery from disease. We can solve this equation to get the number of people

in the infectious class at time τ given by

I(τ) = I0e
−γτ

since as defined

I ′(τ) = −γI0e−γτ = −γI.

13



Notice if γ > 0 this represents an exponential decay function.

Each family of solution curves corresponds to a particular I0 with varied γ

values.

Also, it is interesting to note that for τ 6= 0,

I(τ)

I0
= e−γτ

gives the proportion of people who are still infectious at time τ . Further from

this we can define

F (τ) = 1− e−γτ , τ 6= 0

to represent the probability of recovering or leaving the infectious class in the

interval of time [0, τ).

This concludes our study of differential equations in solitary.

2.4 Systems of Differential Equations

Now that we have a feel for differential equations in singular, we will begin our

study of how systems of differential equations interact. A system of differential

14



equations consists of a set of n differential equations with variables x1, ..., xk.

The mathematical models that are introduced in the chapters to follow are

based on systems of differential equations, thus it will be useful to obtain a

solid understanding of these systems and how they are solved now, so that we

have some background exposure as we explore more complicated systems.

Definition 2.14 Solution of a System: A solution of a system of differential

equations is a set of differentiable functions fi(t) that satisfies each equation

of the system on some interval I for any t.

Example 2.15 Solve the following system of linear equations
dx
dt

= 4x+ 7y

dy
dt

= x− 2y

In order to make these easier to deal with we will re-write them with

differential operators. The symbol D, called a differential operator possesses a

linearity property which means that if D is operating on a linear combination

of two differentiable functions, this is equivalent to the linear combination of

D operating on the individual functions. Thus, this will allow us to solve the

system using simple algebraic techniques.

Re-writing the system with differential operators yields Dx− 4x = 7y

x = Dy + 2y

Factoring out the x in the first equation and a y in the second equation, then

multiplying the second equation by D − 4 yields (D − 4)x = 7y

(D − 4)x = (D2 − 2D − 8)y

15



Subtracting the equations using a process of algebraic elimination gives

0 = (D2 − 2D − 15)y.

This is a second-order equation in terms of the differential D.

Note that if this was a first-order equation dy
dx

+ ay = 0, where a is

a constant, we would have a general solution of the form y = c1e
−ax. For a

second order equation ay′′+by′+cy = 0. A solution of the form y = emx implies

that y′ = memx and y′′ = m2emx, thus we have am2emx + bmemx + cemx = 0

or equivalently emx(am2 + bm+ c) = 0. Then since emx 6= 0 for any real value

of x, it is clear that the only way we can satisfy the differential equation is to

choose m so that it is a root of the quadratic equation am2 + bm+ c = 0. This

equation is called the characteristic or auxiliary equation. If the roots of the

characteristic equation are real and different from each other we end up with

a solution of the from y = c1e
m1x + c2e

m2x [16].

Going back to our example with 0 = (D2 − 2D− 15)y we now consider

the characteristic equation,

m2 − 2m− 15 = 0.

Factoring gives

(m− 5)(m+ 3) = 0

so that

m1 = 5 and m2 = −3.

Thus, since our characteristic equation has distinct real roots, according to [16]

the general solution is of the form

y(t) = c1e
m1t + c2e

m2t.

16



Therefore, for the particular m-values found we have

y(t) = c1e
5t + c2e

−3t.

Now to find an equation for x(t) we can proceed using the same process

or take our solution above and substitute this value into one of the equations

in our system. Since we have Dx− 4x = 7y

x = Dy + 2y

with

y(t) = c1e
5t + c2e

−3t

choosing either equation from the system (the second chosen here) and substi-

tuting y yields

x = D (c1e
5t + c2e

−3t) + 2 (c1e
5t + c2e

−3t)

= 5c1e
5t − 3c2e

−3t + 2c1e
5t + 2c2e

−3t

= 7c1e
5t − c2e−3t

Thus we conclude

x(t) = 7c1e
5t − c2e−3t

and

y(t) = c1e
5t + c2e

−3t.

This example shows a particular method for solving systems of differ-

ential equations which we will see later on in this thesis. In addition to solving

systems however, we will also be highly interested in finding equilibria points

and determining their stability, thus in the section and subsequent subsections

to follow, we will extensively develop these ideas. In order to make sense of

solutions to systems such as these we will be using phase portraits or phase

17



diagrams. The next subsection will discuss what these are and how they are

developed.

2.4.1 Phase Portraits

For a system of linear differential equations X ′ = AX, we can create a phase

portrait, or graph showing a representative set of its solutions plotted as para-

metric curves with parameter t. Similar to a vector field (direction field), a

phase portrait is a tool used to visualize how the solutions of a given sys-

tem behave in the long run. It can also be used to predict the behaviors of

a systems solutions, and is especially useful for systems that are difficult to

solve.

We will explore the phase portrait attributed to the system from the

previous example


dx
dt

= 4x+ 7y

dy
dt

= x− 2y

with solutions

x(t) = 7c1e
5t − c2e−3t

and

y(t) = c1e
5t + c2e

−3t.

We can re-write this system in X ′ = AX form as follows:

 x′

y′

 = A

 x

y



18



where

A =

 4 7

1 −2


The Cartesian plane where the phase portrait for this system resides

is called the phase plane. The parametric curves traced by the solutions are

sometimes also called their trajectories.

Graphing the phase portrait for a given system is rather labor intensive,

but it is possible to do by hand even without solving the system first. To do

so we draw a grid on the phase plane, then at each grid point x = (a, b) we

calculate the solution trajectory’s instantaneous direction of motion at that

point by using the given system of equations to compute the tangent/velocity

vector, x′. In short this says we can plug in x = (a, b) to compute x′ = Ax.

This allows us to create a vector field or direction field. The image below

shows the vector field associated with the system
dx
dt

= 4x+ 7y

dy
dt

= x− 2y

19



To find the phase portrait of this system we choose a starting point and

trace curves by following the vectors shown. This is possible to do by hand,

but computer algorithms have made this process much easier. The following

image represents possible phase portraits for the system.

20



The curves in this phase portrait are graphed using computer software

following the trajectories found from the vector field associated with the sys-

tem. The curves represent possible solution curves for the system with varied

constants c1 and c2 from the solutions

x(t) = 7c1e
5t − c2e−3t

and

y(t) = c1e
5t + c2e

−3t

already found. Note that in this phase portrait, if c1 = 0, the function exists

only for negative x-values and further takes the shape of a line from the origin

with slope -1, as depicted by the lines in purple and gray. If c2 = 0 then the

graph exists for only positive x-values and has a slope of 1
7

from the origin

as we can see from the light blue and yellow lines. Further we note that in
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general if c1 > c2 the influence of e5t is stronger as seen in the the red curve

where c1 = 3 > c2 = 1. Whereas if c2 > c1 the influence of e−3t is stronger,

which can be seen in the graphs of the green and dark blue curves.

Now that we have an understanding for what phase portraits are and

how they can be calculated we are ready to move into a discussion of equilibia

points. Note however, phase portraits will appear throughout this thesis as

tools for understanding and visualizing relationships in complicated systems.

Phase portraits will also be used in 3-dimensional spaces in a similar way in

the chapters to follow.

2.5 Equilibria and Stability

Equilibria, also known as stationary points, are points where there is no move-

ment in the system. Throughout the remaining chapters we will determine

stability of different equilibrium points in order to determine how certain sys-

tems behave near a particular point. It will be helpful to get a thorough un-

derstanding the the terminology surrounding these concepts before we move

on to the remaining chapters thus, this is what we will aim to do in the next

several pages.

Intuitively, an equilibrium is stable if the system returns to the equi-

librium when perturbed and unstable otherwise. More precisely, a system is

locally stable if for an arbitrary perturbation away from the equilibrium, the

systems stays near the equilibrium. If additionally, the system approaches the

equilibrium through time, it is said to be locally asymptotically stable. One

way to think about a stable point is to think about a marble in the bottom of

a bowl; if we tap the marble it will return to the bottom of the bowl. Unstable

on the other hand is like balancing a pencil on a table; a small tap will knock
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this pencil away, not to return to it’s original location.

The concept of global stability will also come up since this allows us to

consider perturbations of an arbitrary size within the confines of a particular

model, unlike local stability. This is useful when we do not want to restrict

ourselves to arbitrary small perturbations. Note though, that we still need

to stay within the confines of the particular model or system in which we

are working. This means we cannot introduce anything new into our model

or remove anything that is not present in the beginning. Biologically, in the

models we will explore in Chapter 3 for example, this implies no introduction

of new species or extinction of species in the model, as well as no negative

populations.

Before we can begin to understand stability analysis we first must define

eigenvalues and eigenvectors which will help us to algebraically determine the

stability of each equilibria point.

2.6 Eigenvalues, Eigenvectors and Jacobian Ma-

trices

Eigenvalues are a special set of scalars associated with a linear system of

equations, sometimes called characteristic roots or characteristic values. De-

termination of eigenvalues and their corresponding eigenvectors for a particular

system arise in common applications such as stability analysis, the physics of

rotating bodies and small oscillations of vibrating systems.

The study of eigenvalues and eigenvectors is linked to the study of

matrices. Several times throughout this thesis we will consider the Jacobian

matrix of a system which is formed by the partial derivatives of the system as
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we can see in the following example.

Example 2.16 Given the linear system


f(x) = x1 + 2x2 + x3

g(x) = 6x1 − x2

h(x) = −x1 − 2x2 − x3

we can find the Jacobian matrix of this system by considering


df
dx1

df
dx2

df
dx3

dg
dx1

dg
dx2

dg
dx3

dh
dx1

dh
dx2

dh
dx3

 =


1 2 1

6 −1 0

−1 −2 −1

 .
Re-writing a system of linear equations as a Jacobian matrix, will

be helpful in determining valuable information for our ODE systems as we

progress. We say that an eigenvector of a square matrix A is a non-zero vec-

tor V that, when multiplied by A, yields the original vector multiplied by a

single number λ, where λ is called an eigenvalue.

Definition 2.17 Eigenvalues and Eigenvectors: Let A be an n×n matrix. A

number λ is said to be an eigenvalue of A if there exists a nonzero solution

vector V of the linear system AV = λV. The solution vector V is said to be

an eigenvector corresponding to the eigenvalue λ [16].

Example 2.18 To find the eigenvector V we begin by looking at

det(A− λI) = 0.

Let A be defined from the system in Ex 2.16 so that the Jacobian matrix
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A =


1 2 1

6 −1 0

−1 −2 −1

 .
The determinant can be found

det(A− λI) =


1− λ 2 1

6 −1− λ 0

−1 −2 −1− λ


= (1− λ)[(−1− λ)(−1− λ)− (−2 · 0)]− 2[(6 · (−1− λ)− (−1 · 0)] + 1[(6 · −2) + (−1− λ)]

= (1− λ)[1 + 2λ+ λ2]− 2[−6− 6λ] + 1[−12− 1− λ]

= 1 + 2λ+ λ2 − λ− 2λ2 − λ3 + 12 + 12λ− 13− λ

= −λ3 − λ2 + 12λ

= −λ(λ2 − λ− 12)

= −λ(λ− 4)(λ+ 3)

= 0

So λ1 = 0, λ2 = 3 and λ3 = −4.

These three numbers are the respective eigenvalues of A. Each eigen-

value has its own corresponding eigenvector. The eigenvector corresponding

to each can be found as follows by substituting the particular λ’s in and row-

reducing using Gauss-Jordan elimination:

• For λ1 = 0 we get

(A− 0I) =


1 2 1 0

6 −1 0 0

−1 −2 −1 0

 =

R1

−6R1 +R2

R1 +R3


1 2 1 0

0 −13 −6 0

0 0 0 0


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=

R1

1
−13R2

R3


1 2 1 0

0 1 6
13

0

0 0 0 0

 =

−2R2 +R1

R2

R3


1 0 1

13
0

0 1 6
13

0

0 0 0 0


Therefore,

v1 =
−1

13
v3 v2 =

−6

13
v3 v3 = t

where t is some parameter. If we choose t = 13 then the eigenvector we

get corresponding to λ1 = 0 is

V1 =


−1

−6

13


• For λ2 = 3 we can solve in a similar fashion to yield

v1 = −v3 v2 =
−3

2
v3 = t

where t is some parameter. Therefore, if we choose t = 2 the eigenvector

we get corresponding to λ2 = 3 is

V2 =


−2

−3

2


• For λ3 = −4 we can solve to get the third eigenvector

V3 =


−1

2

0

 .
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This was a simple example designed to give us an idea of how eigenval-

ues and eigenvectors are found. Next we will see a more complicated example

in which we calculate eigenvalues and eigenvectors, that will be used in our

study of Lotka-Volterra predator-prey models.

Example 2.19 Suppose we have the Jacobian matrix at a particular point:

J

(
j

r
,
q

a
, 0

)
=


0 −a j

r
0

r q
a

0 −b q
a

0 0 −k + c q
a

 ,

det(J− λI) =


−λ −a j

r
0

r q
a

−λ −b q
a

0 0 −k + c q
a
− λ



= (−k + c
q

a
− λ) det

 −λ −a j
r

r q
a
−λ



=

(
−ka+ cq

a
− λ
)(

λ2 + jq
)

= 0

Thus,

λ =
−ka+ cq

a

and

λ2 = −jg.

Finally solving for λ we get

λ = ±i
√
qj.

Therefore, the eigenvalues of this matrix are λ = cq−ka
a

and the purely imagi-

nary numbers λ = ±i
√
qj.
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We can find the eigenvectors using the same techniques as we did in

the previous example to conclude that an eigenvector corresponding with

λ =
cq − ka

a

is 〈
1,
r(cq − ka)

ja2
,
r

j
+
r(cq − ka)2

qja2

〉
and eigenvectors corresponding to

λ = ±i
√
qj

are

〈
b

2r
,
bi
√
qj

a
, 1

〉
and

〈
i
√
qj

rq
, 0, 1

〉
.

In most of what follows in the remaining chapters we will be primarily

concerned with eigenvalues rather than their corresponding eigenvectors, but

it is good to get a feel for them anyways. Now that we have an understanding

of eigenvalues we are read to move into stability analysis.

2.6.1 Stability Analysis

Linear systems can be classified in a number of ways. The behavior of the

points around each equilibria, or stationary point, give us a way to under-

stand a particular system. We use eigenvalues to help us understand what is

happening at each equilibrium point so that we can deduce stability proper-

ties. For example, if we have complex eigenvalues, in general, we can expect

to see rotational motion around the stationary point. Real eigenvalues on the

other hand tend to show direct motion. Before we get into the classifications
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for stable and unstable it’s important to make note of how the signs of the

eigenvalues relate to the systems. In the following general matrix A we can

explore the eigenvalues and discuss stability.

Let

A =

 a b

c d


The characteristic polynomial

P (x) = λ2 − (a+ d)λ+ (ad− bc)

with solutions:

λ =
τ ±
√
τ 2 − 4δ

2

where τ = a+ d and δ = ad− bc.

Notice this results in two solutions for each degree two characteristic

polynomial. The following classifications in R2 give us a way to understand

these eigenvalues as they relate to stability.

• If both of the real parts of eigenvalues, are negative, the equilibrium

point is stable. We can see this graphically by examining the points

around the equilibrium and noticing that they will be attracted towards

the stationary point as we will see in the phase portraits to follow. We

can further classify the stable equilibrium in the following ways:

– If both of eigenvalues are real and negative, the equilibrium is called

a stable node.
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– If the eigenvalues are complex conjugates with negative real parts,

the equilibrium is called a stable focus and the system approaches

the stationary point in a rotational manor.

As an aside, we say that an equilibrium point is asymptotically stable

if and only if the real part of each eigenvalue is negative and if the

equilibrium point is a sink. An equilibrium point is called a sink if

any solution with initial conditions sufficiently close to the equilibrium

approaches the equilibrium asymptotically as t → ∞. Asymptotically

approaching means that for point near the equilibrium, the difference

between the point and the equilibrium point approaches zero as t→∞.

Stable nodes and stable focuses are classified as asymptotically stable.

Now that we have discussed asymptotically stable points we will move

to a discussion of unstable points. Unstable points arise when one of the

real parts of the eigenvalues is positive.
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• If one of the real parts of the eigenvalues is positive the equilibrium is

unstable, this means that the points surrounding the equilibrium will

be repelled from the stationary point. We can further classify unstable

equilibria points in the following ways:

– If both eigenvalues are real with opposite signs, one negative and

one positive, the equilibrium is called a saddle.

– If both eigenvalues are real and positive, the equilibrium is called

an unstable node. They look like stable nodes, just with direction

away from the origin.

– If the eigenvalues are complex conjugates with positive real parts,

the equilibrium is called an unstable focus. Similar to the stable

focus just with direction moving away from the origin.
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Again as an aside, we say that an equilibrium point is a source if all

solutions that start sufficiently close to the point move away from it as

t → ∞. Unstable nodes and unstable focuses are classified as sources.

Sources appear to spiral outwards. The last case to consider for equilibria

is when both the the real parts of the eigenvalues are zero.

• If both of the real parts of the eigenvalues are zero, the equilibrium is

called a center. If an eigenvalue has zero as a real part and eigenval-

ues that appear as complex conjugate pairs, this means that the points

surrounding the equilibrium will oscillate around the stationary point.

A center is an equilibrium point which is stable, but is not asymptotically

stable since it never approaches the equilibrium point.

Now that we have defined all possible stability classifications in R2

we are ready to explore some examples to give us a feel for how we will use
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eigenvalues and eigenvectors in stability analysis.

Example 2.20 Given the system


dx1
dt

= −x1 − x2
dx2
dt

= x1 − 2x2

The Jacobian matrix for the system is

A =

 −1 −1

1 −2


with eigenvalues

λ = −2± i.

We can find real solutions to this system corresponding to the complex eigen-

values according to the following theorem:

Theorem 2.21 Let λ1 = α + iβ be a complex eigenvalue of the real valued

coefficient matrix A and let B1 = Re(V1) and B2 = Im(V1), where V1 is the

eigenvector corresponding to λ1, then

x1 = (B1 cos βt−B2 sin βt)eαt

x2 = (B2 cos βt−B1 sin βt)eαt.

are linearly independent solutions of the corresponding system [16].

Note λ2 = α − iβ is also an eigenvalue and we could have chosen this

value instead to yield essentially the same results.

Thus, for λ = −2+i in the example in which we are working, we have α = −2,

β = 1 and corresponding eigenvector

V1 =

 i

1


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which gives B1 = Re(V1) =

 0

1

 and B2 = Im(V1) =

 1

0

. Thus we get

a particular solution given by

xi =

 0

1

 cos t−

 1

0

 sin t

 e−2t

or more simply,

 x1(t) = −e−2t sin t

x2(t) = e−2t cos t

The family of solution curves has a stable focus at the origin which is what we

would expect, since the eigenvalues are complex conjugates with negative real

parts.
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2.6.2 Linear Systems in R3

Now that we have explored stability in R2, let’s see what happens when we

introduce a third variable into our system and a third eigenvalue. This is an

important area to discuss now since many of the systems we will study in

the coming chapters are systems in three variables. Stability definitions for

systems in three variables follow similarly as they do in two variables just now

we are talking about three-dimensional stability.

• If all of the eigenvalues have negative real parts the equilibrium point is

called a sink and the system spirals inward towards the equilibrium as

depicted in the following image:

• If all of the eigenvalues have positive real parts the equilibrium point is

called a source and the system spirals outward away from the equilibrium

as depicted in the following image:
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• If at least one of the real parts of the eigenvalues is positive and at least

one of the real parts is negative then the equilibrium point is called a

saddle as depicted in the following image:

Stability analysis is a key idea in understanding how different biological

models work and in testing their applicability. Thus, it is crucial to have a

comprehensive understanding of the classifications discussed in this section.

Still, one more concept remains to be discussed before we are ready to move

on to the applications in the chapters to follow, the topic of invariance.
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2.7 Invariance

A surface S is called invariant with respect to a system of differential equations,

if every solution that starts on S does not escape S. This is desirable from a

biological standpoint because it implies that if a species becomes extinct then

it will not reappear in the system.

To get an understanding of invariant surfaces let’s first consider a func-

tion F (x, y, z) such that F (x, y, z) = k is a surface S. Let r(t) = 〈x(t), y(t), z(t)〉

be a curve C of surface S.

Then by the chain rule, the derivative of F (x, y, z) = k is

∂F

∂x
· dx
dt

+
∂F

∂y
· dy
dt

+
∂F

∂z
· dz
dt

= 0.

The gradient of F is

5F =

〈
∂F

∂x
,
∂F

∂y
,
∂F

∂z

〉
and the tangent vector to r(t) is

r′(t) =

〈
dx

dt
,
dy

dt
,
dz

dt

〉
.

For use in later work we label r′(t) = η, so that

∂F

∂x
· dx
dt

+
∂F

∂y
· dy
dt

+
∂F

∂z
· dz
dt

= 0

which can be re-written as

5F · η = 0.

We can interpret this as saying that5F is perpendicular to η at every point on

S. To develop an understanding of this idea, let’s revisit a previous example.

Example 2.22 Example 2.15 Revisited

Given the system
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
dx
dt

= 4x+ 7y

dy
dt

= x− 2y

with solutions

x(t) = 7c1e
5t − c2e−3t

y(t) = c1e
5t + c2e

−3t

The Jacobian matrix corresponding to this system being

J =

 4 7

1 −2


with eigenvalues 5 and -3 and eigenvectors

V5 = 〈7, 1〉 and V−3 = 〈−1, 1〉

We can see the eigenvalues are both real, one negative and the other

positive, therefore the system creates a saddle point at the origin.

We claim that these eigenvectors represent invariant subspaces. We

can verify this by looking at the eigenvectors one at a time. The eigenvector

V5 = 〈7, 1〉
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at the origin corresponds to the equation

y =
1

7
x

which we can write as the invariant surface

F (x, y) = y − 1

7
x

with curve

F (x, y) = 0.

We find

5F =

〈
−1

7
, 1

〉
and

η =

〈
dx

dt
,
dy

dt

〉
= 〈4x+ 7y, x− 2y〉

Thus,

5F · η = −1
7
(4x+ 7y) + 1(x− 2y)

= −4
7
x− y + x− 2y

= 3
7
x− 3y

but since we defined y = 1
7
x, this gives

= 3
7
x− 31

7
x

= 0.

Thus 5F · η = 0. This gives us a way to calculate invariance for a system

in R2 at the origin (0, 0). We can use similar techniques for more difficult

systems and for points centered around equilibria points away from the origin

as well.

Theorem 2.23 Let S be a smooth surface in R3 and
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
dx1
dt

= F (x1, x2, x3)

dx2
dt

= G(x1, x2, x3)

dx3
dt

= H(x1, x2, x3)

Suppose that for all (x1, x2, x3) ∈ S we have that

η ·
〈
dx1
dt
,
dx2
dt
,
dx3
dt

〉
= 0

where η is a normal vector to the surface S at (x1, x2, x3). Then S is invariant

with respect to the system above [7].

We will use the ideas from this theorem when we explore the three-

variable Lotka-Volterra model, but it would be good to get a feel for how this

theorem works.

Example 2.24 Given


dx1
dt

= 2x1

dx2
dt

= x2 − x3
dx3
dt

= x2 + x3

The corresponding Jacobian matrix is

J =


2 0 0

0 1 −1

0 1 1


yielding

Eigenvalues Eigenvectors

2 V2 = [1, 0, 0]

1 + i Vi+1 = [0, i, 1]

1− i V1−i = [0,−i, 1]
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Notice that the differential equation dx1
dt

is independent of x2 and x3,

thus it is clear that the x1-axis is invariant. Also this independence allows us

to solve the equation dx1
dt

= 2x1 as in Section 2.4 to yield x1 = c1e
2t.

Additionally, we have dx2
dt

and dx3
dt

both independent of x1 with eigen-

values that are complex conjugates. Thus, for λ = 1 + i and corresponding

eigenvector [i, 1] (ignoring the x1 portion), according to Theorem 2.21, we have

generic solutions

xi =

 0

1

 cos t−

 1

0

 sin t

 cie
t

for i = 2, 3. Therefore yielding solutions x2 = c2e
t sin t and x3 = c3e

t cos t.

We can also verify the x2x3 -plane is invariant, as we will see in the following

exploration.

• Let

F (x1, x2, x3) = x1.

Notice that the surface

F (x1, x2, x3) = 0

is the x2x3-plane so with

η = 〈0, x2 − x3, x2 + x3〉

and

5F = 〈1, 0, 0〉

we get

η · 5F = 0.

Thus the x2x3-plane is invariant.
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Putting everything together we have that a generic solution to this system is


x1 = c1e

2t

x2 = c2e
t sin t

x3 = c3e
t cos t

Now that we have had a chance to explore some of the ODE basics and

dynamical system interactions to be used in later work, we are ready to apply

our techniques to biological models. The first we explore is the Lotka-Volterra

predator prey model established in the early 20th century.
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Chapter 3

Predator-Prey Relationships

3.1 Hudson’s Bay Company

To begin the study of predator-prey models we are going to examine

data regarding snowshoe hares found by the Hudson Bay Company in Northern

43



Ontario Canada between 1845 and 1935. The Hudson Bay Company, a fur

trading company involved in purchasing pelts from trappers and selling them

to furriers, kept meticulous records of the number of furs traded from across

Canada. For our study we are specifically interested in the number of lynx

and snowshoe hare pelts traded. It is reasonable to assume that the success

of trapping each species was roughly proportional to the number of species in

the wild at any given time, thus we have significant set of data regarding the

fluctuations in populations of lynx and hares in this time period.

Some of the interesting observations made from the data:

1. The population of the snowshoe hare tends to vary on a 10-year oscillat-

ing cycle.

2. The lynx, a known specialist predator of the snowshoe hare, has a rise

and fall in population numbers that mirrors the rise and fall of the snow-

shoe hare populations, with a slight lag time.

Also, it was determined that the 10-year hare cycles seems to occur

in synchrony across broad regions, thus immigration or emigration does not

explain the population changes.
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The oscillating population densities of the hare and lynx populations

have intrigued scientists for years and since the scientific community often

looks for ways to quantitatively understand the world, focus fell on the Lotka-

Volterra Predator-Prey model to provide a possible explanation for the oscil-

lations discovered by the Hudson Bay Company. Our goal in exploring this

theoretical model is to test it’s generality and to determine the correlation

between the model and the data in an attempt to analyze it’s usefulness. Of

course we would need to test this model on several different scenarios to estab-

lish generality, but for now let’s try to determine if the Lotka-Volterra model

can be used to make sense of the Hudson Bay data. If the model appears to

fit the data and if the parameters have a plausible biological interpretation,

then the model may be useful for similar ecological systems and further, for

experimenting with manipulations to the system.

3.2 Lotka-Volterra Models

The Lotka-Volterra predator-prey equations were established separately by

Alfred Lotka in 1925 and Vito Volterra in 1926. The Lotka-Volterra model

is the earliest known model proposed for a predator-prey system, thus many

consider Lotka and Volterra to be the instigators of theoretical ecology [4].

The model we are about to explore is intended to aid in understanding the

global features of the system studied rather than make qualitative predictions

for the future.

In our exploration of the Lotka-Volterra model we will be using dif-

ferential equations and dynamical systems, both of which were discussed in

Chapter 2. Before we can dive too deep into the systems we will be modeling,

we must consider the set of assumptions that Lotka and Volterra worked under:
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1. The prey is limited only by the predator. This implies that without

predation, the prey population grows exponentially.

2. In the absence of prey, the predator dies off exponentially.

3. The “per predator rate,” the rate at which the prey are killed, is a linear

function of the number of prey.

4. Every prey death contributes identically to the growth of the predator

population.

With these assumptions we are ready to move forward in our exploration.

Let the number of prey be denoted by H, since we will consider the

example with hare as the prey, and the number of predators be denoted by L

for the predatory lynx. Then in words, {rate of change of H} = {net rate of

growth of H without predation} - {rate of loss of H due to predation} and

{rate of change of L} = {net rate of growth of L due to predation} - {net rate

of loss of L without prey}.


dH
dt

= rH − bHL
dL
dt

= cHL− kL (3.1)

where r represents the intrinsic rate of increase of the prey in absence

of the predator, k denotes the rate of decline of the predator in the absence of

prey and b and c are constants of proportionality.

Going back to our assumptions:

1. The first assumption means that if the predator population is zero, cor-

responding to L = 0 then, dH
dt

= rH so H = CHe
rt for some constant
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CH . This means that without the lynx, the hare population would grow

exponentially.

2. The second assumption implies that if prey is absent, H = 0, then we

have dL
dt

= −kL so L = −CLekt for some constant CL. This would imply

that the lynx population would die off exponentially without their food

source.

3. The third assumption says that the death rate of the prey from preda-

tion is proportional to the product of the prey and predator populations.

Therefore, we write bHL in our system with b a constant of proportion-

ality representing the effect of predation on the prey population. Note

that since b represents the effect of predation on the prey population, bH

represents the number of hare eaten by an individual lynx during a brief

period of time. Thus subtracting bHL in the first equation accounts for

the rate at which the number of hare is being removed from the hare

population as the result of predation by the lynx population.

4. Similarly, the forth assumption says that the contribution of predation

to the growth rate of the predator population is given by cHL, where c is

a constant of proportionality representing the efficiency and propagation

rate of the predator in the presence of prey. Here we have c representing

a growth rate for the predator population dependent upon the prey, thus

cH shows the growth rate of one lynx in the presence of hare during a

brief period of time and cHL contributes to the growth rate for the entire

lynx population in that brief period. Thus, adding cHL in the second

equation shows the increase in the lynx population due to successful

predation on the hare.
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Now we are ready to explore the dynamics of this system. For clarity we

re-state the parameters.

Parameters Use in the 2-Variable Lotka-Volterra Equations

r intrinsic rate of increase of the hare in the absence of the lynx

k rate of decline of the lynx in the absence of the hare population

b effect of predation by the lynx on the hare population

c efficiency and propagation rate of the lynx in the presence of the hare

3.2.1 Dynamics of the two equation Lotka-Volterra model

First let’s analyze this system graphically. To do this we are going to need to

find the equilibria or stationary points of the model. Let F (H,L) = dH
dt

be the

growth rate of the hare population and let G(H,L) = dL
dt

be the growth rate

of the lynx population. We can find stationary points by setting both F = 0

and G = 0, since this means both the hare an lynx populations, H and L, are

no longer changing. When F = 0 we have

rH − bHL = 0 or equivalently H(r − bL) = 0

Thus we conclude trivially H = 0 or non-trivially L = r
b
.

Similarly, for G = 0 we have

cHL− kL = 0 or equivalently L(cH − k) = 0

Thus we conclude trivially L = 0 or non-trivially H = k
c
.

Therefore, there are two stationary points for the model; one with both

species zero, and one in which both the lynx and hare populations are nonzero,

namely

(0, 0) and

(
k

c
,
r

b

)
.
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In order to determine the stability of the two equilibria we can either explore

graphically or we can use eigenvalues to make an algebraic case. We will

consider eigenvalues here.

In two dimensional systems the eigenvalues of the Jacobian matrix are

related to the local change at a point. If we consider complex eigenvalues, the

sign of the real parts of the eigenvalues will determine the behaviors points

surrounding each equilibria point. We can determine equlibria stability by

considering the Jacobian matrix formed by the partial derivatives of the ODE

functions. For the two-variable Lotka-Volterra model the Jacobian matrix

follows:

J =

 ∂F
∂H

∂F
∂L

∂G
∂H

∂G
∂L

 =

 r − bL −bH

cL cH − k


For the stationary point (0, 0) the Jacobian matrix is

J(0, 0) =

 r 0

0 −k


the eigenvalues are r and −k, hence it is unstable and further a saddle-point.

We can create a phase portrait depicting the solution curves using computer

software the same way we discussed in Chapter 2 to see the saddle point.
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From the phase portrait we can see that each contour is a periodic

oscillation and that any perturbation can drive the oscillation into a different

cycle, especially near the origin. Note that this seems logical, since we just

showed that equilibrium point (0, 0) is an unstable saddle. When we graph

the image with computer software we can see in the x-direction (H-direction)

our graph is repelling moving way from the origin, but in the y-direction (L-

direction) the graph is attracting, being pulled toward the origin again. The

biological interpretation of this diagram is that when the lynx population is

low the hare population increases over time. Then, in the presence of hare, the

lynx population has a large food source so it can begin to increase, which slowly

lowers the hare population. Eventually the system ends up with more lynx

than the hare population can support which causes a crash in both species,

bringing the system back to near equilibrium.

For the stationary point (H,L) =
(
k
c
, r
b

)
the Jacobian matrix is

J

(
k

c
,
r

b

)
=

 r − b r
b
−bk

c

c r
b

ck
c
− k

 =

 0 −bk
c

c r
b

0


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The eigenvalues in this case are not as obvious so we will need to do some

work to find them. We set the determinant of J − λI to be zero, then solve

for λ.

Det(J − λI) =

∣∣∣∣∣∣ −λ −b
k
c

c r
b
−λ

∣∣∣∣∣∣ = λ2 + rk = 0

The polynomial λ2 + rk is the characteristic polynomial whose roots are the

eigenvalues, λ = ±i
√
rk. Thus, since the eigenvalues have no real parts, only

imaginary, in the Lotka-Volterra model the equilibrium point (H,L) = (k
c
, r
b
)

is a center. Graphically this means that the system is stable, but not asymp-

totically stable about the equilibrium. This means that the graph is centered

around (H,L) = (k
c
, r
b
) but over time does not approach or move away from

the point.

Looking again at the phase portrait we can imagine a center in all of the

curves. All cycles oscillate around this center, specifically the equilibrium point(
k
c
, r
b

)
but never approach the point. Depending on the picks for constants

k, c, r, b the center may shift, but still remains a center point in the system, as
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seen in the following phase portraits with varied parameters:

where the center shifts right on the horizontal axis.

where the center shifts up the vertical axis.
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3.2.2 Application to Hudson’s Bay Data

Now that we have explored the stability of the system we can explore a graph

of the model to see how well it aligns with the data. Graphing the same

information as in the previous phase diagram displayed a little differently,

with the cycles of both the hare and lynx shown with respect to time, we get

the the following image.

The model predicts a phase shifted periodic behavior in the populations

of both species with a common period. Each species exhibits peaks then drops,

with the peaks of the hare population occurring slightly before the lynx. This

behavior definitely looks close to what we saw for when we looked at the

Hudson Bay data however, an argument can be made that it neglects some

key players. The hares require a food source! To examine what happens if we

include a third species in our system, this will require exploration of a three-

variable Lotka-Volterra model. In the three-variable system we will have two

levels of predator-prey relationships. The first between the hare the vegetation

in which they feed and the next between the hare and the lynx.
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3.3 Three Species Lotka-Volterra Model

To begin examining the three species model, let V represent the vegetation, the

first level of prey, and for consistency let’s stick with H for the hare population

and L for the lynx population. For clarity let’s restate our variables as well as

introduce some new ones:

• Let q represent the natural growth rate of the vegetation in the absence

of hares.

• Let a represent the effect of predation by the hares on the vegetation.

• Let j represent the natural death rate of the hares in the absence of

vegetation.

• Let r represent the efficiency and propagation rate of the hares in the

presence of the vegetation

• Let b represent the effect of predation on the hare population by the lynx

population.

• Let k represent the natural death rate of the lynx in the absence of prey,

in this case the hare.

• Let c represent the efficiency and propagation rate of the lynx in the

presence of the hare.

3.3.1 Assumptions for 3-Variable System

Many of the assumptions used in the two-variable model hold for the three-

variable model as well; we will revisit those that still hold and discuss any

additions and/or adaptations.
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1. The vegetation population is limited only by the hare, thus without

predation will grow exponentially.

2. In the absence of the hare population, the lynx population will die off

exponentially.

3. The “per predator rate,” the rate at which the prey are killed, at both

levels (vegetation-hare; hare-lynx), is a linear function of the number of

prey.

4. Every prey death contributes identically to the growth of the predator

population.

5. The hare population is impacted by both the vegetation population and

the lynx population.

This gives us a system of three differential equations as follows:


dV
dt

= qV − aV H
dH
dt

= −jH + rV H − bHL
dL
dt

= −kL+ cHL

(3.2)

Going back to our assumptions in an attempt to make sense of the system:

1. The first assumption means that if the hare population is zero, H = 0, we

get dV
dt

= qV , so V = CV e
qt for some constant CV . Thus, the vegetation

population will grow exponentially.

2. The second assumption implies that if the hare population is absent

H = 0, then dL
dt

= −kL so L = CLe
−kt for some constant CL. Thus, the

lynx population dies off exponentially without food.
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3. The third assumption means that the death rate of the prey from preda-

tion is proportional to the product of the prey and predator populations.

This assumption holds both with the vegetation-hare relationship and

the hare-lynx population. Therefore we write a as the effect of predation

on the vegetation population and b as the effect of predation on the hare

population. We subtract aV H from the first equation since for a brief

period each hare eats a quantity of aV vegetation. Similarly, we subtract

bHL from the second equation since each lynx contributes bH hare.

4. Similarly, the forth assumption implies that the contribution of preda-

tion to the growth rate of the predator population is proportional to the

product of the prey and predator populations. Therefore we write r as

the growth rate of hare population in the presence of the vegetation pop-

ulation and c as the growth rate of the lynx population in the presence

of the hare population. We see rV H as a gain term for the hares since in

the presence of vegetation the hare population grows and we see cHL as

a gain term for the lynx since successful propogation of the lynx happens

when they have each cH hares to feed upon.

5. The final assumption says that both the growth of the vegetation and

the effect of predation by the lynx play a role in the hare population.

Since populations are non-negative we can restrict our domain to the non-

negative region {(V,H, L)|V ≥ 0, H ≥ 0, L ≥ 0} ⊂ R3, and without extinction

we could restrict it further to only positive values for V,H and L, denoted R3
+.
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3.3.2 Analysis of the Model

First, let’s begin by showing that each coordinate plane is invariant with re-

spect to the system described. Recall that a surface S is called invariant with

respect to a system of differential equations if every solution that starts on S

does not escape S. This is desirable from a biological aspect because it implies

that if some species becomes extinct, it will not reappear.

• If F1(V,H, L) = L with the surface L = 0 corresponding to a lynx

population of zero, the system reduces to


dV
dt

= qV − aV H
dH
dt

= −jH + rV H

dL
dt

= 0

The gradient 5F1 =
〈
0, 0, 1

〉
is normal to S and at a point (V,H, 0) we

have

η =

〈
dV

dt
,
dH

dt
,
dL

dt

〉
=
〈
qV − aV H,−jH + rV H, 0

〉
.

Clearly,

5F1 · η =
〈
0, 0, 1

〉
·
〈
qV − aV H,−jH + rV H, 0

〉
= 0.

Therefore, the V H plane is invariant.

• If F2(V,H, L) = H with the surface H = 0 corresponding to a hare

population of zero, the system reduces to
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
dV
dt

= qV

dH
dt

= 0

dL
dt

= −kL

The gradient 5F2 =
〈
0, 1, 0

〉
is normal to S and at a point (V, 0, L) we

have

η =
〈
qV, 0,−kL

〉
.

Clearly,

5F2 · η =
〈
0, 1, 0

〉
·
〈
qV, 0,−kL

〉
= 0.

Therefore, the V L plane is invariant.

• If F3(V,H, L) = V with the surface V = 0 corresponding to vegetation

population of zero, the system reduces to


dV
dt

= 0

dH
dt

= −jH − bHL
dL
dt

= −kL+ cHL

The gradient 5F3 =
〈
1, 0, 0

〉
is normal to S and at a point (0, H, L) we

have

η =
〈
0,−jH − bHL,−kL+ bHL

〉
.

Clearly,
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5F3 · η =
〈
1, 0, 0

〉
·
〈
0,−jH − bHL,−kL+ cHL

〉
= 0.

Therefore, the HL plane is invariant.

Now that we have shown invariance in the absence of any species, thus showing

that if any population becomes extinct it does not reappear, we are ready to

take it further to examine the impact extinction of any one species has on

the remaining species in the system. To do this we will solve each of the

three corresponding planar (2-variable) systems in their respective coordinate

planes.

3.3.3 Absence of the Hare

First, we notice that in the absence of the hare, the system reduces to


dV
dt

= qV

dH
dt

= 0

dL
dt

= −kL

(3.3)

The equation dL
dt

= −kL yields

L = CLe
−kt

for some constant CL. This implies that the lynx population decreases ex-

ponentially as time increases (i.e. L(t) → 0 as t → ∞). Also, dV
dt

= qV

yields

V = CV e
qt

for some constant CV , This implies that the vegetation population grows ex-

ponentially as t→∞.
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This seems to fit biologically since if the hare population dies out, the

vegetation will exhibit unbounded growth without predation. Meanwhile, the

lynx population will die out without a food source. The trajectories in the

V L-plane can be directly computed from the separable equation:

dL

dV
=

dL
dt
dV
dt

=
−kL
qV

Through a process of separating variables, first by moving both of the

terms with the variable L on one side and the two terms with variable V on

the other side

dL

−kL
=
dV

qV
.

Integrating with respective variables yields

− lnL

k
=

lnV

q
+ C.

Multiplying both sides by −k in an effort to isolate L gives

lnL =
−k
q

lnV + C.

Finally, exponentiating both sides we get

L = CV −k/q

where C is just an arbitrary constant and any solution to the system must

satisfy this equation. Notice that plugging in the solutions we found earlier,

namely L = CLe
−kt and V = CV e

qt,

L = CV −k/q

becomes

CLe
−kt = C

(
CV e

qt
)−k/q

.
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Simplifying exponents yields

CLe
−kt = CC

−k/q
V e−kt

and from this we can see equality with

C =
CL

C
−k/q
V

.

This tells us that

L = CV −k/q

is a solution curve containing the solutions already found. Thus, we can be

confident that the solution curves can be represented by equations found using

the above technique of separating variables. Seeing this relationship will be

helpful when looking at the absence of lynx and absence of vegetation models

when the solution curves are not as simple.

3.3.4 Absence of the Lynx

Now we can examine what happens in the absence of the top predator, the

lynx. Notice the system reduces to
dV
dt

= qV − aV H
dH
dt

= −jH + rV H
(3.4)

which is just the classic Lotka-Volterra equations, now for the hare and vegeta-

tion relationship. This system is centered at the equilibrium point
(
j
r
, q
a

)
which

is calculated identically as it was in the previous section using the Jacobian

matrix. The following phase portrait shows the dynamics of the system. We

have an unstable saddle at the origin and a center at
(
j
r
, q
a

)
. The vegetation

grows along the x-axis, then the hare population increases, slowly lowering the
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vegetation population until eventually there are more hares present than the

vegetation can support, thus resulting in a population crash for both species.

In the next subsection, we will show how to calculate the equilibrium

points for the entire three-variable model and further explore the dynamics,

but for now we will focus our attention on finding the solutions to the equations

in the absence of the lynx. Solutions to the equations in 3.4 can be calculated

by separating variables and integrating and are of the form:

dV

dH
=

qV − aV H
−jH + rV H

=
V (q − aH)

H(−j − rV )

Separating yields

dH
( q
H
− a
)

=

(
−j
V

+ r

)
dV

then integrating with respect to respective variables on each side gives

q ln H − aH = −j ln V + rV + C.

Thus, for some constant C, the solutions are of the form
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C = q ln H − aH + j ln V − rV (3.5)

.

This means that any solution must satisfy this equation or lie on this surface.

Notice q, a, j, r will all play an important role in deciding what happens in the

system. For example if q → 0 in the above equation the hare population will

die out, which makes sense, considering q represents the growth rate of the

vegetation. Similarly, we can see the role limiting any of the parameters will

play from this solution.

In the following image we see what happens to the vegetation popula-

tion when we increase the q value. The light blue shows q = 5 where the dark

blue leaves q = 1. We can see that the vegetation grows to a much higher pop-

ulation, but also crashes a lot harder and takes significantly longer to rebuild

it’s population as we increase the q value.

For reasonable parameters, the system in the absence of lynx looks just

as it did in the two variable model we studied earlier; now with the vegetation
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as the prey, peaking first followed by the hare population.

The final case to consider is what happens in the absence of vegetation.

3.3.5 Absence of the Vegetation

Finally, let’s consider when V = 0, no vegetation present


dV
dt

= 0

dH
dt

= −jH − bHL
dL
dt

= −kL+ cHL

(3.6)

since dH
dt
≤ −jH and we know that b,H, L > 0, then as t → ∞ it’s evident

H(t)→ 0, since the rate of change is negative. This will in turn cause L(t)→ 0

as well since dL
dt

= −kL + cHL → 0 when H → 0 since k, L > 0. Thus, in

the absence of vegetation both the hare and lynx populations will die out,

which is what we would expect to happen biologically if the lowest level food

source dies out. If the bottom level prey dies out, all higher level predators
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will follow.

Note that dL
dH

is also separable with solutions of the form:

dL

dH
=
−kL+ cHL

−jH − bHL
=
L(−k + cH)

H(−j − bL)

Separating yields

dH

(
−k
H

+ c

)
=

(
−j
L
− b
)
dL.

Integrating by respective variables then yields

−k lnH + cH = −j lnL− bL+ C

for some arbitrary integration constant C. Thus, any solution must satisfy the

equation

C = −k lnH + cH + j lnL+ bL.

Again, this equation determines all possible surfaces the solutions lie on. For

clarity, let’s revisit how our parameters so that we can refer to them in the

next subsection.

Parameters Use in the 3-Variable Lokta-Volterra Equations

q natural growth rate of the vegetation in the absence of hares

a effect of predation by the hares on the vegetation

j natural death rate of the hares in the absence of vegetation

r efficiency and propagation rate of the hares in the presence of vegetation

k natural death rate of the lynx in the absence of the hare

b effect of predation on the hare population by the lynx population

c efficiency and propagation rate of the lynx in the presence of hare

65



3.3.6 Dynamics of the three equation Lotka-Volterra

Model

Using the same method as before we can calculate the equilibria for this model

by solving

dV

dt
= 0,

dH

dt
= 0, and

dL

dt
= 0.

• From the first equation dV
dt

= qV −aV H = V (q−aH) = 0 implies V = 0

or H = q
a
.

• The third equation dL
dt

= −kL + cHL = L(−k + cH) = 0 implies L = 0

or H = k
c
.

• The second equation dH
dt

= −jH + rV H − bHL = H(−j + rV − bL) = 0

implies H = 0 or −j + rV − bL = 0. Now depending on which variable

we solve for in the second equation, we have V = bL+j
r

or L = rV−j
b
.

From this we are able to find and analyze the equilibria points. We have:

• The trivial fixed point

(0, 0, 0).

• When L = 0 we find that another point obtained for the two equation

system at (
j

r
,
q

a
, 0

)
since V = bL+j

r
= j

r
when L = 0.

• Additionally, from the calculations we made we see that since H = q
a

and H = k
c
, this implies q

a
= k

c
. This yields an invariant ray of fix points

parameterized by: (
s,
q

a
,
rs− j
b

)
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where s represents a particular population of vegetation, H = q
a

and

L = rV−j
b

= rs−j
b

for V = s. Also, from the equation V = bL+j
r

calculated

above we know that V = s = bL+j
r

= bL
r

+ j
r
≥ j

r
, so s ≥ j

r
regardless of

the population of L, a fact we will use shortly.

Now to determine the stability of the equlibria we explore what happens near

each of the fixed points using Jacobian analysis.

J =


∂f
∂V

∂f
∂H

∂f
∂L

∂g
∂V

∂g
∂H

∂g
∂L

∂h
∂V

∂h
∂H

∂h
∂L

 =


q −aV 0

rH −j −bH

0 cL −k


The origin is an unstable saddle point since

J (0, 0, 0) =


q 0 0

0 −j 0

0 0 −k

 .
with eigenvalues q, −j and −k. Recalling that q represents the growth

rate of the vegetation where j and k are death rates of the predator species,

this seems to agree nicely with our findings in the coordinate planes where we

discovered that all solutions on the HL-plane approach zero, while solutions

on the V -axis grow exponentially.

Now for point
(
j
r
, q
a
, 0
)

we have

J

(
j

r
,
q

a
, 0

)
=


0 −a j

r
0

r q
a

0 −b q
a

0 0 −k + c q
a

 .

The eigenvalues of this matrix, calculated in Chapter 2, are cq−ka
a

and the

purely imaginary numbers ±i
√
qj. The eigenvalues ±i

√
qj with no real parts
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correspond with our previous analysis that when the lynx population is zero,

the equilibria point
(
j
r
, q
a
, 0
)

is a center on the VH-plane. This means that the

hare and vegetation populations co-exist on an 2-variable oscillating Lokta-

Volterra cycle.

The stability associated with the eigenvalue cq−ka
a

is dependent on the

sign of of eigenvalue λ = cq−ka
a

, which we can reduce to examining the sign of

cq−ka since a represents the effect of predation by the hares on the vegetation

population and thus a > 0.

Recall that c represents the the efficiency and propagation rate of the

lynx in the presence of the hare and q represents the growth rate of the vege-

tation without the hare; both exponential. Also, k and a both represent death

rates; k represents the death rate of lynx in the absence of hare and a repre-

sents the death rate of vegetation in the presence of the hare. So if we consider

the case cq = ka, this means that product of the growth rates is equivalent to

the product of the death rates. In the case cq−ka < 0 we have that the death

rates exceed the growth rates. And if cq − ka > 0 we have that the growth

rates exceed the death rates. To further explore the impact that the sign of

cq − ka has on the stability of the system we will need to consider each case

separately.

In the case cq = ka, we obtain a continuum of fixed points
(
s, q

a
, rs−j

b

)
,

with s ≥ j
r
, which is something different than what he have seen in the two

system model. Thus, we need to consider a new method for determining

stability of the equilibria. If we can show what happens in each case graphically

and justify it algebraically, we can determine stability of the fixed points.
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3.3.7 The case cq − ka = 0.

In this case, solutions are modeled with invariant surfaces or sheets filled with

periodic orbits enclosing the ray of fixed points (s, q
a
, rs−j

b
), with s ≥ j

r
. The

following image you can see the sheets surrounding the enclosed ray in the

center, like the eye of a tornado.

Because there is so much going on the this picture we will simplify it by looking

at only one particular sheet in the next picture so it is a little easier to see

what the orbits look like.
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In this picture we can see a family of closed orbits on a particular sheet cor-

responding to L = CV
−k
q with all parameters equal to 1. We can find the

equations of these surfaces rather easily after noticing that the projection of

any particular solution onto the plane H = 0 is precisely contained in one of

the trajectories L = CV
−k
q in the V L-plane as demonstrated in the corollary

below.

Corollary 3.3.7.1 Let cq = ka. The surfaces defined by L = CV
−k
q which

we will write and re-label as F (V,H, L) = L−CV
−k
q are invariant with respect

to 
dV
dt

= qV − aV H
dH
dt

= −jH + rV H − bHL
dL
dt

= −kL+ cHL

.

Proof: :

The gradient 5F =
〈
C k
q
V
−k
q
−1, 0, 1

〉
is always normal to L − CV

−k
q = 0.

Consider,
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5F · η =
〈
C k
q
V
−k
q
−1, 0, 1

〉
· 〈qV − aV H,−jH + rV H − bHL,−kL+ cHL〉

= (qV − aV H)
(
C k
q
V
−k
q
−1
)
− kL+ cHL

= kCV
−k
q − kaCH

q
V
−k
q − kCV

−k
q + cCHV

−k
q

= kCV
−k
q − cCHV

−k
q − kCV

−k
q + cCHV

−k
q

= 0

since we supposed that cq = ka and L = CV
−k
q . Thus, we have the surface

L = CV
−k
q is invariant with respect to

dV
dt

= qV − aV H
dH
dt

= −jH + rV H − bHL
dL
dt

= −kL+ cHL

.

�

The following image shows the invariant surfaces or sheets in which the so-

lutions lie. They correspond to the surfaces L = CV
−k
q with k = q = 1.
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Now that we have shown invariance for the system and L = CV
−k
q

we can solve the system subject to this condition in order to characterize it’s

behavior. Solving the differential equation for fixed C with L = CV
−k
q , the

system becomes 
dV
dt

= qV − aV H
dH
dt

= −jH + rV H − bHCV
−k
q

Since this differential equation is separable we can integrate to obtain:

dH

dV
=

dH
dt
dV
dt

=
H(−j + rV − bCV

−k
q )

V (q − aH)

Or more simply

dH

dV
=
H(−j + rV − bCV

−k
q )

V (q − aH)
.

Multiplying to clear fractions yields

dH(V (q − aH)) = dV (H(−j + rV − bCV
−k
q )

then dividing both sides by V and by H gives

dH
( q
H
− a
)

= dV

(
−j
V

+ r − bCV
−k
q
−1
)
.

Integrating both sides with respect to their respective variables produces

q ln H − aH = −j ln V + rV +
bqC

k
V
−k
q +K.

Finally solving for K yields

q ln H − aH + j ln V − rV − bqC

k
V
−k
q = K.

Thus, any solution subject to the condition L = CV
−k
q must satisfy this

equation. Note that the parameter K above matches exactly the parameter C

for dH
dV

on the surface L = CV
−k
q when L = 0 in the V H -plane. The image to
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follow shows the trajectories on the sheets determined by L = V and varying

H; closed trajectories with all parameters equal to 1.

This completely characterizes the behavior of the special case cq = ka.

Biologically, all three species persist and have populations that vary periodi-

cally over time. The following image with the highest peaks to the vegetation

population, the middle to the hare and the lowest to the lynx shows this peri-

odic behavior. Notice it makes sense that the vegetation peaks first with the

predators to follow in sequence.
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3.3.8 The case cq < ka

The case cq < ka. Plots of solutions using computer animation suggest that

all solutions spiral down to the V H-plane and limit to a periodic solution.

The solutions move down sheets L = CV
−k
q from higher values of C to lower

values of C as seen in the following corollary and corresponding picture.
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A trajectory with initial conditions (V,H, L) = (.5, 1, 2), c = 0.88 and

all other parameters equal to 1.

Corollary 3.3.8.1 Let cq < ka and F (V,H, L) = LV
k
q be the respective in-

variant surface. Then for any solution (V (t), H(t), L(t)) of 3.2 in R3
+ we have

5F · η < 0.

Proof:

First note that F (V,H, L) = LV
k
q can be found by taking our previous

invariance surface L = CV
−k
q and solving this equation for C.

5F · η =
(
k
q
LV

k
q
−1, 0, V

k
q

)
·
〈
qV − aV H,−jH + rV H − bHL,−kL+ cHL

〉
= kLV

k
q − ak

q
LHV

k
q − kLV

k
q + cHLV

k
q

= −ak
q
LHV

k
q + cHLV

k
q

= LHV
k
q

(
−ak
q

+ c
)

< 0
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since we supposed that cq < ka which implies that −ak
q

+ c < 0.

�

This corollary shows that when cq < ka solutions travel down the level

surfaces of the function F , which are precisely C = LV
k
q .

3.3.9 The case cq > ka

Now to explore that happens when cq > ka.

The following corollary implies that when cq > ka the solutions travel

down the level surfaces of G =
(
aH − q lnH + rV − j lnV + bq

k
L
)

as time

increases. In particular, a solution starting with initial condition (V0, H0, L0)

at time t0 can never travel to a region in R3
+ where G(V,H, L) ≥ G(V0, H0, L0).

Further, since the V H-plane is invariant, the solution will be trapped in the

region bounded above by the V H-plane and below by the surface G(V0, H0, L0)

for all t > t0.

Corollary 3.3.9.1 Let cq > ka and

G(V,H, L) =

(
aH − q lnH + rV − j lnV +

bq

k
L

)
.

Then for any solution (V (t), H(t), L(t)) of 3.2 in R3
+ we have

5G · η < 0.

Proof: :

Consider
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5G · η =
(
j
V
− r, q

H
− a,− bq

k

)
·
〈
qV − aV H,−jH + rV H − bHL,−kL+ cHL

〉
= −rqV + raV H + jq − ajH + ajH − arV H + abHL− qj + qrV − bqL+ bqL− cHLbq

k

= abHL− cHLbq
k

= HLb
(
a− cq

k

)
< 0

since we supposed that cq > ka.

�

The corollaries show that for cq < ka, all trajectories beginning in R3
+

tend to the plane L = 0 and further that all such solutions approach a periodic

solution in the V H - plane. From a biological standpoint this means that if

the top predator, the lynx tends to extinction, the population distribution of

the hare and vegetation will follow the traditional Lotka-Volterra oscillations.
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The case cq > ka implies that all trajectories starting in R3
+ travel up

the sheets L = CV
−k
q , i.e. L(t) → ∞ as t → ∞. This implies that the lynx

population tends to ∞, non-monotonically, while the populations of the hares

and vegetation overtime experience larger and larger fluctuations, having both

0 and +∞ as limit points as seen in the following phase portrait.

For this situation all species exist on oscillating cycles with the lynx

population tending to infinity and all of the species populations having in-

creasingly larger oscillations. The following image represents this situation

with initial conditions (.5, .5, 2) with c = 0.88 and the rest of the parameters

1.
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In conclusion, it seems that the lynx population in the long term hinges

on the parameters q, a, k and c. If cq < ka, then the lynx population dies out,

while if cq > ka, the lynx population survives and grows without bound. This

coincides with our intuition as larger values of q and c are explicitly beneficial

to the lynx population, larger values of a and k are inhibitory. Interestingly, the

parameters most directly related to the hare population, namely j, r and b have

very little if any influence on whether the lynx population will become extinct

in our model. In short, the mid-level predator simply acts as a conduit between

the top and bottom species. Also, it’s interesting to note that all species in

the model are co-dependent. If either of the lower level species become extinct

it causes extinction of any of the predators in the higher trophic levels (i.e.

extinction of vegetation, results in complete extinction, but extinction of the

hare only results in lynx extinction leaving the vegetation population to grow

without bound).

Thus, after analyzing both the two and the three species Lokta-Volterra

predator-prey models, it it appears more logical that the hare cycle is produced
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by an interaction between both predation and food supplies. After 70 years of

research, time series analyses, and field experiments, scientists finally have a

good understanding of the dynamics behind the 10-year snowshoe hare cycle

and the importance of predation and food supplies in regulating that cycle.

3.4 Summary

• First we explored the two species Lotka-Volterra model.

• We calculated equilibria values and determined their stability in an at-

tempt to understand the relationships between the interacting species.

• We concluded that the Lotka-Volterra models are usable tools for de-

veloping understanding of species interactions but decided to explore

whether a modification to this model would be more reasonable to de-

scribe the data collected by the Hudson Bay Company.

• We explored the three species Lotka-Volterra model and showed the sys-

tem was invariant (thus if once species became extinct it would not

reappear in the model).

80



• Calculating equilibria values and determining stability was a bit more

complicated for this system, but eventually we were able to get a feel for

the stability of the system.

• Finally, we were able to conclude that the 10-year oscillating hare cycle

is more likely the result of a three-tropic level interaction between the

hare, lynx and the hares prey.

3.5 Problems with the Lotka-Volterra Model

• Minimum sustainable population size for each species is not taken into

account.

• Predators have an unlimited consumption rate, the model does not take

into account saturation.

• The rate of prey consumption is proportional to prey density.

• The model does not consider any competition among predators and prey.

The Lotka-Volterra model does not give accurate results if the predator

and prey are competing for some resource (i.e. space). We will revisit

this concept of carrying capacity in later chapters.

Now that we have spent some time getting a feel for simple predator-

prey relationships we can begin to work with mathematical models designed to

study infectious diseases. Parallel’s to the Lotka-Volterra systems are evident

as we will be able to see in the next exploration.
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Chapter 4

Infectious Diseases

4.1 Introduction

Infectious diseases come in many different varieties, thus we must have several

different models to work from to try to understand them. In the models we will

explore we will consider populations of susceptible, infectious and recovered

persons. When studying infectious diseases there are many questions we need

to ask ourselves. We need to think about the size of the population affected;

whether the population is constant, growing or shrinking. Also, whether age

and/or sex are factors to contracting and surviving the disease. Additionally,

we need to think about how the disease is spread. Is it spread though insects?

Contact with an infected individual? Is there an incubation period in which

a person is infectious before symptoms appear? Can some individuals carry

the disease without being impacted personally? If infected individuals recover

is it possible for them to be infected again? Is the disease micro-parasitic or

macro-parasitic? Is it an epidemic or endemic? We will attempt to answer

several of these questions while exploring different infectious disease models.
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We will begin with simple models assuming closed population sizes then move

to more complicated systems, while leaving other questions open for further

research.

In the sections to follow we will examine models for different types of

infectious diseases. We will discuss the models in the context of a few actual

disease situations and work to understand how the systems interact.

4.2 Simple Epidemic

The most basic model we are going to explore is called a simple epidemic model.

In a simple epidemic the population consists only of two non-intersecting

groups, susceptibles and infectives. These groups are often called classes or

compartments. The susceptible class is usually denoted by S and represents

the portion of the population who can contract the disease under appropriate

conditions. The class of infectives, denoted by I, consists of the portion of

the population that have contracted the disease and that can transmit the

disease to a susceptible though contact of some form; I is also referred to as

the prevalence of the disease. A disease is contagious if it is spread by contact

between a susceptible and an infective. Simple epidemic models assume that

a susceptible, once infected, becomes infectious immediately and remains so

indefinitely. In the latter scenarios we will explore, we will look at models that

exist under different assumptions.

Simple models or SI models, as they are called, an acronym standing

for susceptible-infectious models, are reasonable approximations to the initial

stages of many diseases. They work to explain how disease transmission im-

pacts a particular population. However, because they do not account for what

happens after infection, we will need to add some extra variables to explore
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outcomes in the sections to follow. For the SI model we will assume that the

population is closed, which means that there is no population change due to

death and/or birth since we are only talking about a short time period for

this model. Let S(τ) and I(τ), represent the number of susceptible and infec-

tious individuals at time τ , so that S(τ) + I(τ) = N , where N is a constant

population size. The differential equations satisfied by S and I are given by

dS

dτ
= −f(S, I),

dI

dτ
= f(S, I),

where f(S, I) represents incidence of the disease or rather the rate at which

infections occur. Clearly, f is an increasing function of both S and I as defined

since it is early in the spread of the disease, and the simplest model which we

will use is

f(S, I) = λ(I)S = βIS.

The function λ(I) is called the force of infection and is defined as the prob-

ability density or the probability that a given susceptible will contract the

disease in the next small interval of time. Defining λ(I) = βI, the parame-

ter β is called the pairwise infectious contact rate or the rate of infection per

susceptible and per infective. This yields the system


dS
dτ

= −βIS
dI
dτ

= βIS

If we suppose that dI
dτ

= f(S, I) = βIS and S + I = N , then we can re-write

dI
dτ

= βI(N−I), eliminating the S in the second equation, the system becomes


dS
dτ

= −βIS
dI
dτ

= βI(N − I)
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Re-writing the system in this way allows us to solve the system as a single

differential equation

dI

dτ
= βI(N − I)

since it seperates into

dI

I(N − I)
= βdτ.

We will not solve this equation at this point, but it is good to understand this

relationship as it will allow us in later sections to be able to reduce systems of

three equations to two, for ease of analysis. To get a feel for the parameters

of this system we will consider the following brief example.

Example 4.1 Suppose that in a small community a family goes on a trip and

contracts a tropical virus. When they return home to their community, they

begin infecting their community members. The β value associated with the

disease contracted determines how fast the disease spreads. If the particular

disease carries a infection rate with a small β value this means the disease

spreads at a relatively low rate. As β increases the rate of infection increases.

This is the most basic model, which is wonderful for getting a feel

for how different parameters influence the model, but it does not take us to

what happens next, which is key to understanding real life infectious diseases.

The following two models explore what happens after infection, recovery and

immunity or recovery with susceptibility and/or death. Consider the following

exploration of the disease chancroid as it relates to a modification of the SI

model.
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4.3 Disease Example: S-I-S

Chancroid is a highly contagious yet curable sexually transmitted disease

caused by the bacteria Haemophilus Ducreyi. It is very common in Africa,

and has begun to make a presence in the United States as well. Chancroid

causes ulcers, usually in the genitals, and is typically accompanied by swollen

and painful lymph glands. The ulcers begin as tender, elevated bumps or

papules that become pus-filled open sores with eroded or ragged edges. They

are typically soft to the touch and can be very painful, especially in men.

Women on the other hand can be asymptomatic and unaware of that they are

infected with the disease. Chancroid is transmitted sexually though skin-to-

skin contact with open sores and sometimes non-sexually though contact with

the pus-like fluid from ulcers on other parts of the body.

A person is considered infectious when ulcers are present with symp-

toms developing within 4-10 days. Chancroid can be treated with antibiotics,

usually azithromycin, ceftriaxone, ciprofloxacin and erythromycin, all of which

cure the infection, eliminate symptoms and prevent transmission to others. If

the treatment is successful the ulcers typically improve within 3-7 days, though

the time of complete healing is dependent on the size of the ulcers; large ulcers

may require two weeks or more to heal. After the infection has cleared the

individual is again susceptible to infection from the same bacterium, which

means no immunity is developed.

In addition to the immediate symptoms chancroid also has some scary

complications. In 50% of cases, the lymph node glands in the groin become

infected and sometimes enlarged, hard and painful. These lymph nodes can

even fuse together to form bubo’s and require drainage surgery. These buboes

are also susceptible to secondary infections. Additional complications can
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be introduced for uncircumcised males and what is even more frightening,

chancroid has been well established as a cofactor for HIV transmission.

Since individuals that contract chancroid return to the susceptible class

after infection we need to alter our SI model to a SIS model, which means a

person that contracts the disease is categorized as susceptible, then infectious,

then susceptible again. We will explore this new model in the next section

and refer back to this case to get a feel for how it works in a particular disease

example.

4.3.1 S-I-S Models

The S-I-S model consists of a susceptible becoming infective, then becoming

susceptible again. Some well known diseases that may follow this type of model

are bacterial infections such as chancroid, viral infections such as hemorrhagic

conjunctivitis, and the common cold. If we assume that the modeling time

scale is short compared to the lifetime of its hosts, so that we can neglect birth

and death, we again have a closed population.

S(τ) + I(τ) = N

with

dS

dτ
= −f(S, I) + g(I) and

dI

dτ
= f(S, I)− g(I).

Now we introduce a new term, g(I), representing recovery from the disease.

The simplest recovery function is g(I) = γI, where γ is called the rate of

recovery.


dS
dτ

= −βIS + γI

dI
dτ

= βIS − γI
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In this model we again have a closed and invariant system. We also see that

this system is very interdependent. Note that if

dS

dτ
= 0

then

I(−βS + γ) = 0.

Therefore either

I = 0

or

−βS + γ = 0

which gives that

S =
γ

β
.

And since N = I + S

• when I = 0 this implies

S = N

• when S = γ
β

this implies

I = N − γ

β

.

Therefore, we have equilibria points

(N, 0) and

(
γ

β
,N − γ

β

)
.

If I = 0, this means that there are no infectives which implies the entire

population exists in the susceptible class. Biologically this means that there is

no change in the number of susceptibles nor in the number of infectives, which
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makes sense if there are no infectives anyways. And if S = γ
β

this means the

remaining total population N − γ
β

must be contained in the infectious class.

Therefore, as the ratio of γ
β

decreases, corresponding to a larger β value or a

smaller γ value, I = N − S is getting larger, which means the infectious class

is growing.

To get a better feel for these parameters, let’s refer back to the chan-

croid example. Since a person that contracts chancroid has an expected length

of time infected of 3-7 days, we will consider an average infected time of 5 days.

This means that γ = 5 days or γ = 5
7

weeks, if γ is measured in weeks. Also,

since chancroid is an SIS disease we have the following system with γ = 5
7
,


dS
dτ

= −βIS + 5
7
I

dI
dτ

= βIS − 5
7
I

As we discussed earlier the larger the β value the faster the disease

spreads. Since γ represents the rate of recovery, the larger the γ value, the

quicker the individuals will recover from the disease. Thus if β is large and γ

is small the infectious class will be large whereas if β is small and γ is large,

the majority of the total population will be contained in the susceptible class.

The phase portraits depicting these parameter changes are rather un-

interesting to look at since both β and γ represent speed. Graphing them on

computer software you can see the rate in which the phase portrait is created,

thus making it interesting, but without live animation it is relatively useless

to show the phase portraits with differing β and γ values.
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4.3.2 Further Analysis

To further understand the dynamics of this model we can non-dimensionalize

the variables which is equivalent to considering the change in the overall pop-

ulation by defining,

s =
S

N
, i =

I

N
, t = γτ.

Now we will work to define ds
dt

and di
dt

. First we will start with what we know

from before

dS

dτ
= −βIS + γI.

Substituting sN for S and iN for I as in the previous definition we obtain

dS

dτ
= −βsiN2 + γiN.

Since s = S
N

and ds = dS
N

, this implies dS = Nds. Replacing dS and dividing

by N gives,

ds

dτ
= −βsiN + γi.

Our goal is to find ds
dt

, noting that

ds

dt
=
ds

dτ
· dτ
dt
.

As defined we know that t = γτ , thus τ = t
γ
. Therefore, if we take the

derivative

dτ

dt
=

1

γ
.

Together we can write

ds
dt

= (−βsiN + γi) ·
(

1
γ

)
= −βsiN

γ
+ i

= −
(
βNs
γ
− 1
)
i

90



Defining R0 as follows

R0 =
βN

γ

we finally obtain

ds

dt
= −(R0s− 1)i.

Now to explore find di
dt

. Starting with what we know

dI

dτ
= βIS − γI.

Substituting sN for S and iN for I as in the definition above we obtain

dI

dτ
= βsiN2 − γiN.

Since i = I
N

and di = dI
N

, this implies dI = Ndi. Replacing dI and dividing

by N gives,

di

dτ
= βsiN − γi.

Then to find di
dt

, rewrite

di

dt
=
di

dτ
· dτ
dt

and we know

dτ

dt
=

1

γ

Thus, together we can write

di
dt

= (βsiN − γi) ·
(

1
γ

)
= βsiN

γ
− i

=
(
βNs
γ
− 1
)
i

Again letting

R0 =
βN

γ
,

we have

di

dt
= (R0s− 1)i
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Thus,

ds

dt
= −(R0s− 1)i,

di

dt
= (R0s− 1)i

and we note that

ds

dt
+
di

dt
= 0.

The equations are to be solved on the one-dimensional simplex, or line

segment, S1 = {(s, i)|0 ≤ s ≤ 1, 0 ≤ i ≤ 1, s + i = 1}. We can see that since

S + I = N , that we have S
N

+ I
N

= N
N

, which is the same as saying s + i = 1.

From this we also get that ds
dt

+ di
dt

= 0, so ds
dt

= −di
dt
, which is exactly what we

found above.

R0 is called the basic reproductive ratio and in the equations found

is defined to be R0 = βN
γ

, where βN is the rate at which a single infective

introduced into a susceptible population of size N makes infectious contacts

and 1
γ

is the expected length of time such an infective remains infectious. Thus,

R0 is the expected number of infectious contacts made by such an infective.

This is a key component in each of the models to follow since we consider

R0 < 1 to be indicative of a disease die out and R0 > 1 implies that a

particular disease remains endemic in the population. It is interesting to note

the R0 values of some well know diseases:
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Disease R0

AIDS 2-5

Chickenpox 9-10

Diphtheria 4-6

German Measles 6

Influenza, H1N1 1.1-2

Measles 12-13

Mumps 4-7

Poliomyelitis 6

Scarlet Fever 5-7

Smallpox 3-5

Whooping Cough (Pertussis) 13 - 17

4.3.3 Equilibria and Stability

For the system

ds

dt
= −(R0s− 1)i,

di

dt
= (R0s− 1)i

since s+i = 1, we have i = 1−s, so solving to find equilibria in either equation

we have

0 = (R0s− 1)(1− s)

thus

s = 1 or s =
1

R0

.

When s = 1 we must have the value i = 0, which results in a disease

free steady-state. We can explore the stability properties of the disease-free

steady state (s, i) = (1, 0) by examining the Jacobian matrix at this point
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J =

 −R0i −R0s+ 1

R0i R0s− 1

∣∣∣∣∣∣(1,0) =

 0 −R0 + 1

0 R0 − 1


which has eigenvalues 0 and R0 − 1.

The equilibrium corresponding to these eigenvalues is dependent on the

value of R0 − 1. If R0 < 1 this expression is negative which corresponds to

a stable equilibrium since neither eigenvalue is positive, but if R0 > 1 this

results in a positive eigenvalue which corresponds to an unstable equilibrium

point since one of the real parts of the eigenvalues is positive.

The value s = 1
R0

, corresponds to i = 1− 1
R0

, since we are considering

a rate change with introduction to some number of infectious individuals that

must relate to N = S+ I. This implies 1 = s+ i when we non-dimensionalize,

so i = 1− s and since s = 1
R0

we have i = 1− 1
R0

. Therefore the Jacobian

J =

 −R0i −R0s+ 1

R0i R0s− 1

∣∣∣∣∣∣( 1
R0
,1− 1

R0

) =

 −R0 + 1 0

R0 − 1 0


Thus the eigenvalues are −R0 + 1 and 0. Similarly to the previous equilibrium

analysis if −R0 + 1 > 1, implying R0 < 0 we have an unstable equilibrium,

but if R0 > 0 we have a stable equilibrium point.

Notice that when we non-dimensionalized our system we came up with steady

states

(s, i) = (1, 0) and (s, i) =

(
1

R0

, 1− 1

R0

)
and before we non-dimensionalized we found equilibria at

(S, I) = (N, 0) and (S, I) =

(
γ

β
,N − γ

β

)
Simple division by N changes (S, I) to (s, i) thus,

(s, i) =

(
N

N
, 0

)
= (1, 0)
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and

(s, i) =

(
γ
β

N
,
N − γ

β

N

)
=

(
γ

βN
, 1− γ

βN

)
=

(
1

R0

, 1− 1

R0

)
.

This concludes our study of SIS models. We find two equilbira points

with stability dependent on the parameters γ and β or R0.

4.4 S-I-R Models

The next epidemic model to explore is the SIR model, which consists of suscep-

tibles, infectives and now a new class which we called removed. The removed

class consists of those individuals which play no further role in the disease.

They may be dead, recovered and immune, removed by an isolation policy

or otherwise. The majority of infectious diseases, such as measles, mumps,

smallpox, different plagues and more have such a removed class R.

S → I → R

The first model introduced to understand SIR diseases was developed by Ker-

mack and McKendrick [4] and looked similar to what follows. To begin let’s

assume that the duration of the epidemic is short compared to the lifetime of

its host so that we can neglect birth and non-disease related death rates and

work within the closed population of constant size N = S(τ) + I(τ) + R(τ).

The following system models the movement between population classes.


dS
dτ

= −βIS
dI
dτ

= βIS − γI
dR
dτ

= γI

Where βIS represents the number of susceptibles who become infective
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and γ represents the rate at which individuals leave the infectious class, called

the recovery rate. Notice that the difference between this model and the SIS

model is that the γI term moves into the removed class rather than back

into the susceptible class because we are assuming that the individuals are no

longer susceptible after infection.

The SIR model, like it’s friends the SI and SIS models, is called a

compartmental model because each individual in the total population can

only reside in one compartment at a time. The total population is given by

the sum of each compartment

N(τ) = S(τ) + I(τ) +R(τ).

Since we assume the population does not change, it is constant and we

have

N ′(τ) = S ′(τ) + I ′(τ) +R′(τ) = −βIS + βIS − γI + γI = 0.

In this section our goal is to be able to use these equations and pa-

rameters to explore how well these models relate to the real world. First, let’s

examine what happens when there is no influx into the infective class. This

would imply no movement from the susceptible class to the infectious class,

which limits movement strictly between infectious and recovery classes. Thus,

dI
dτ

becomes

dI

dτ
= −γI,

with initial condition I(0) = I0. This is exponential decay and gives the

number of people in the infectious class at time τ given by

I(τ) = I0e
−γτ .

Hence for τ 6= 0,

I(τ)

I0
= e−γτ
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represents the proportion of people who are still infectious at time τ . Letting

F (τ) = 1− e−γτ , τ 6= 0

then this equation represents the probability of recovering and/or leaving the

infectious class in the interval [0, τ). Thus, if we define f(τ) = dF
dτ

we have

f(τ) = γe−γτ .

Since τ represents a measure of time, we will define f(τ) = 0 for τ < 0.

The average time spent in the infective class varies based on the particular

disease, thus we need to find some way to account for this in our model. Let

X denote the time for exiting the infectious class and represent the mean time

spent in the infectious class then the “Expected Value” defined to be

E[X] =

∫ ∞
−∞

τf(τ)dτ

can be used to determine how long the average person is infective. [11], [27].

Evaluating this integral for f(τ) defined above and integrating gives

∫ ∞
−∞

τf(τ)dτ =

∫ ∞
0

τγe−γτdτ =
1

γ
,

by way of integration by parts. This implies that the mean time spent in the

infectious class is 1
γ

which matches the previous model.

Briefly this means that for a common disease such as influenza which

typically lasts from 3 to 7 days, the mean time spent infectious is approxi-

mately 5 days. Therefore, the recovery rate γ measured in days is 1
5
, which

implies that each person is recovering at a rate of 1
5th

recovery per day.

Now that we have some understanding on the role of the parameters,

let’s focus on solving the system. To begin, first notice that the variable R
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does not participate in the first two equations, thus we can consider only the

equations for S and I, which are coupled, and leave out the equation of R.

Notice that since we know

N = S + I +R

we can find R by solving

R = N − S − I.

From the system 
dS
dτ

= −βIS
dI
dτ

= βIS − γI
dR
dτ

= γI

we can divide the first two equations to yield,

dI
dτ
dS
dτ

=
βIS − γI
−βIS

= −1 +
γ

βS

Now by separating variables,

dI =

(
−1 +

γ

βS

)
dS.

Then integrating gives

I = −S +
γ

β
lnS + C,

where C is an arbitrary constant. Thus we can say that,

I + S − γ

β
lnS = C

with initial conditions S(0) = S0 and I(0) = I0 given. Assume the that

limτ→∞ I(τ) = 0 so that the number of infectious individuals goes to zero

eventually, while S∞ = limτ→∞ S(τ) gives the final number of susceptible

individuals after the epidemic is over.
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• For the initial value (S0, I0), this equation becomes

I0 + S0 −
γ

β
lnS0 = C.

• And when τ →∞ we have (S∞, 0), so the equation becomes

S∞ −
γ

β
lnS∞ = C.

Next we will work to find the maximum number of infectious individuals

possible. This maximum is closely related to the concept of carrying capacity

which we will discuss in the next chapter. First we will solve for β
γ

by setting

the equations for τ = 0 and τ →∞ equal to one another.

Notice first that γ
β

is the S value for the one of the equilibria of the

system, found when we set dI
dτ

= 0. When dI
dτ

= 0 this imples

−1 +
γ

βS
= 0

which gives

S =
γ

β
.

This is interesting to note as it gives us some context for what γ
β

is. Using the

equation discussed we get

I0 + S0 −
γ

β
lnS0 = S∞ −

γ

β
lnS∞.

so

β

γ
=

ln S0

S∞

S0 + I0 − S∞
.

Note that since the population is constant, S∞ < S0 + I0. Therefore this solu-

tion allows us to compute the maximum number infected individuals possible.

This number occurs when dI
dτ

= 0, that is when S = γ
β

since dI
dτ

= βIS − γI at

S = γ
β

the differential equation becomes
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dI

dt
= βI

(
γ

β

)
− γI = γI − γI = 0.

To find the maximum infectious population we have

I + S − γ

β
lnS = I0 + S0 −

γ

β
lnS0.

Substituting the expression for S and moving all terms except I to the right-

hand side leads to

Imax = −γ
β

+
γ

β
ln
γ

β
+ S0 + I0 −

γ

β
lnS0.

This means that the maximum number of people infected is related to

the parameters β and γ as well as to the initial amount of people suscepti-

ble and infectious. This makes sense, because we are dealing with a closed

population. Thus, the maximum number of people infected must not exceed

the total population size. This gets at the idea of carrying capacity which we

will revisit in a later chapter. Before we move on to some further analysis of

the system we will explore an example studying the Great Plague of Eyam to

estimate how the parameter values relate.

4.4.1 Great Plague of Eyam

Eyam, a small village in England, suffered an outbreak of bubonic plague in

1666. The source was believed to be the Great Plague of London. In order

to contain the spread the village was quarantined. The initial population of

Eyam was 350. In mid-may 1666 there were 254 susceptibles and 7 infectives.

Detailed records were recorded and preserved and are as follows:
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Date 1666 Susceptibles Infectives

Mid-May 254 7

July 3/4 235 14.5

July 19 201 22

August 3/4 153.5 29

August 19 121 21

September 3/4 108 8

September 19 97 8

October 3/4 Unknown Unknown

October 20 83 0

From the data we have initial population sizes S0 = 254 and I0 = 7 and

final susceptible population S∞ = 83 and I∞ = 0. Also, from the earlier

computations we have

β

γ
=

ln S0

S∞

S0 + I0 − S∞
=

ln 254
83

254 + 7− 83
= 0.00628.

so

γ

β
=

1

0.00628
= 159.322

.

Note that if we let τ0 = 0 represent time zero. The die-out of the disease

appears to occur in mid-October of 1666 according to this data so τend = 5 is

the ending time measured in months.

Graphing the number of susceptibles with respect to time, it is easy to

see a curve forming starting high and ending low.
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The infective period of the bubonic plaque is roughly 11 days, thus

converting to months supposing a 31 day month, 11 days = 11
31

= 0.35483871

months. Now we can estimate γ as the reciprocal of the average time spent as

an infectious individual,

γ =
1

0.35483871
≈ 2.82.

From above we have β
γ
≈ 0.00628 so we can calculate β as follows

β = 0.00628× γ = 0.00628× 2.82 ≈ 0.0177.

Finally, from the equation for Imax we can estimate the maximum number of

infectives during the epidemic. Thus,

Imax = −159 + 159 ln 159 + 254 + 7− 159 ln 254 ≈ 27.51962

Notice that the data given shows the maximum number of infective

individuals as 29 which is relatively close to the maximum approximation

from the model when we look at a scatter plot of the infectives (y-axis) with

respect to time (x-axis).
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4.4.2 Further Analysis

Now that we have a feel for how these models work in common diseases, we can

further analyze the inter-workings of the mathematical system. As in the SIS

model we can non-dimensionalize the equations in the SIR model by defining

s =
S

N
, i =

I

N
, r =

R

N
, t = γτ.

Notice that dI
dτ

is defined identically as in the SIS case, thus non-dimensionalizing

yields di
dt

= (R0s− 1)i. Now we need to find the other two equations.

ds
dt

= ds
dτ
· dτ
dt

= −βsiN 1
γ

= −βN
γ
si

= −R0si
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And
dr
dt

= dr
dτ
· dτ
dt

= γi · 1
γ

= i

where R0 is defined in the same was as it was in the SIS model; the basic

reproductive ratio R0 = βN
γ

. Therefore the equations become

ds

dt
= −R0si,

di

dt
= (R0s− 1)i,

dr

dt
= i.

This system is to be solved on the two-dimensional simplex or triangle

T = {(s, i, r)| 0 ≤ s ≤ 1, 0 ≤ i ≤ 1, 0 ≤ r ≤ 1, s + i + r = 1}. Since the

first two equations do not involve r we can look at them with the projection

onto the (s, i)-plane bounded by the line s + i = 1, the s-axis and the i-axis.

Any point on the s-axis is a steady state. The phase portraits to follow show

what happens for R0 > 1 and R0 < 1.

The first image shows when R0 = 5, so R0 > 1. In this image the system is

approaching the origin. The second image shows when R0 = 0.001, so R0 < 1

that all the curve collapse straight down to the s-axis, where every point is a

stable point.

Stability properties of the disease-free state (s, i)=(1,0) are suggested

by the phase diagram we explored earlier, but as in the previous chapter we

can also explore stability by finding the eigenvalues of the Jacobian matrix
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associated with the system.

The Jacobian at (1,0) is given by

J =

 −R0i −R0s

R0i R0s− 1

∣∣∣∣∣∣(1,0) =

 0 −R0

0 R0 − 1

 ,

which has eigenvalues 0 and R0 − 1. From this we have

• The disease-free steady state is stable, but not asymptotically stable, if

R0 < 1 so that the diseases dies out since this would result in eigenvalues

with non-positive real parts.

• The disease-free steady state is unstable if R0 > 1, so that an epidemic

may potentially occur since this would result in a one positive eigenvalue.

• Interestingly, basic reproductive ratio R0 = βN
γ

, is the same as our pre-

vious model and represents the average number of new cases produced

by a single infective introduced into a purely susceptible population of

size N.

• Additionally, the initial per capita growth rate of the infectives is given

by γ(R0 − 1) in dimensional terms.

It is important to find the size of the epidemic, the total number who will

suffer from the disease. This is given by the number who are eventually in the

removed class. We can find this by noting that the system


ds
dt

= −R0si

di
dt

= (R0s− 1)i

dr
dt

= i
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is separable in (s, i, r)-space. Examining interrelationships we have

dr

ds
=

i

−R0si
=

1

−R0s

and

di

ds
=

(R0s− 1)i

−R0si
= −1 +

1

R0s
.

Trajectories for the simplex T in (s, i, r)-space are found by integrating

these equations. First consider the trajectory T which starts at the disease-free

steady state (1,0,0); the goal is to see where T ends up.

Integrating,

dr

ds
=

1

−R0s

we get ∫
dr =

∫
1

−R0s
ds

thus

r =
− ln |s|
R0

.

Solving for s yields

s = e−R0r.

This equation is satisfied everywhere on T, since s and r are defined as mono-

tonic bounded functions of t. We can therefore say that the functions tend to

limits

s(t)→ s1 and r(t)→ r1 as t→∞

and

dr

dt
(t)→ 0.

Therefore as defined,

i(t)→ 0 as t→∞.
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Hence, (s(t), i(t), r(t))→ (s1, 0, r1) = (1− r1, 0, r1) as t→∞. Finally, taking

the limit of s = e−R0r, we have

1− r1 = e−R0r1 .

In the following we can see pictorially the relationships between the

functions 1 − r which is graphed in blue and e−R0r for R0 < 1 which is the

purple line and R0 > 1, the red line.

When R0 > 1 it is clear that there is a distinct intersection point

between the two functions; this intersection determines the final size of the

epidemic, whereas when R0 < 1 this intersection point does not exist. Before

we draw this chapter to an end we will consider one more example; that of the

Iowa Mumps outbreak of 2006.
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4.4.3 Iowa Mumps Outbreak

Mumps is an infectious disease caused by the Infectious Parotitis Virus. Com-

mon symptoms include fever, headache, and swollen glands under the jaw, but

it can also lead to hearing loss and aseptic meningitis. In 2006, Iowa experi-

enced a mumps outbreak that is believed to have begun with two single cases

that showed up in the beginning of January 2006 after the couple traveled

to England where an outbreak was present. Even though the population of

Iowa in 2006 was roughly 2.97 million, there were only an estimated 200,000

people in Iowa susceptible at this time, because 15 years prior all school-aged

students were required to be vaccinated against this and other infectious dis-

eases. However, the vaccine is only about 95% effective and it is believed only

about 98% of school age students actually received the vaccine. The following

image shows the number of new cases of mumps reported per week in Iowa

from January to April.

A person infected with mumps is typically able to transmit the disease

from two days before the onset of symptoms to 5 days after. Therefore, the
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average time spent infective is 7 days, or 1 week keeping with our scale of

weeks from the data. Using weeks as our unit of time we can say γ = 1.

Looking at the data by curve fitting we can estimate β = 0.0188 [28].

Also taking our initial conditions as percentages we have

S(0) = 0.99999, I(0) = 0.00001 and R(0) = 0.

Choosing γ = 1 for the system


dS
dτ

= −βIS
dI
dτ

= βIS − γI
dR
dτ

= γI

the graph of I(τ) from January 2006 to August 2006 from the SIR model

follows:

Now to compare this with what really happened in Iowa in 2006 with

the final case reported September 30,2006.
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The peak in from the model shows a maximum infection of 0.125%

of the population. The data on the other hand has a maximum infective

percentage, assuming 200,000 people susceptible, of 0.146% which is relatively

close. More importantly though we see a similar rise and fall pattern in the

overall shape of the graphs. Thus we can conclude the SIR model is a decent

model for predicting the rise and fall patterns associated with the Iowa Mumps

outbreak of 2006.

This model, and those we have explored thus far are examples of epi-

demics without explicit demography, which means models that do not consider

non-disease related birth and death rates. These types of model are useful for

epidemic modeling on a short time scale, such as the plague of Eyam and

influenza, mumps, measles and those others we have discussed, but do not

include those diseases which transition from compartment to compartment

more slowly. Slow diseases require models with explicit demography, adding

in the parameters for birth and death rates. Diseases of this nature include

HIV, tuberculosis and hepatitis, which develop very slowly and spread slowly
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as well. When studying diseases such as these we no longer have the luxury

of supposing a constant total population size.

4.5 Summary

• First we explored simple epidemic models to get a feel for how the pa-

rameter β impacts a system of ODE’s.

• After exploring SI models we explored SIS and SIR models and the

additional parameter γ.

• We also examined stability of the models and made sense of them in the

context of some known diseases.

There are many more areas to explore which we were not able to ex-

plore at this time, such as latency and vaccination in addition to different

methods of contracting diseases. It would be interesting to further explore

these areas at another time. One more topic we will examine before this thesis

is finished regards long-term epidemic models. So far all of the examples we

have considered have neglected birth and death rates, in the next chapter we

will consider when birth and death play a role.
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Chapter 5

Long Term

Before getting too much into long-term models we need to develop the idea of

carrying capacity which we have neglected a bit up to this point.

5.1 Logistic Models and Carrying Capacity

As mentioned in the previous chapter, carrying capacity is considered a lim-

iting agent in many mathematical models. Carrying capacity in a system of

differential equations represents the value of the population density at which

the per capita growth rate is zero. For example, in the Lokta-Volterra system

competition for space between the lynx and hare could have been a limiting

agent leading to a maximum amount of population, but was not accounted

for in the model. In the infectious disease modeling chapter we saw some lim-

iting factors as well when we explored Imax which represented the maximum

number of infectives at any given time. We also had N as a limiting factor

since we were dealing with a closed population. In the sections to follow we

will be studying the framework of models that show how carrying capacity

impacts systems such as cell-to-cell spread of particular diseases, such as HIV.

112



We will examine logistic models in general, then look at some modifications

and specific cases. Since we are going to eventually discuss cell-to-cell spread,

we will examine these models with interacting cell populations rather than

interacting human populations.

5.2 Logistic Model Example A

Suppose a particular total population of infectious, susceptible and removed

cells changes over time according to the simplest demographic model which

describes logistic growth

dN

dτ
= α− µN.

We know that the total cell population change equals the sum of the changes

in each compartment since we are dealing with a closed system, thus

S ′ + I ′ +R′ = N ′.

A general model for long term infectious disease spread in the body follows:
dS
dτ

= α− βIS − µS
dI
dτ

= βIS − γI − µI
dR
dτ

= γI − µR

Note that since N is no longer constant, N ′ 6= 0. In fact

N ′ = (α−βIS−µS)+(βIS−γI−µI)+(γI−µR) = α−µ(S+I+R) = α−µN,

which is exactly the logistic growth equation seen earlier where:

• α is the total birth rate of new cells measured in births per unit of time.

• µ is the per capita natural death rate of cells, thus µN is the total amount

of dead cells and µS represents the number of cells in the susceptible class

dieing per unit of time.
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• β is the transmission coefficient, thus βI is the per capita rate of infec-

tion.

Taking the equation

dN

dτ
+ µN = α

and multiplying by eµτ gives

dN

dτ
eµτ + eµτµN = eµτα.

So

d(Neµτ )

dτ
= eµτα.

Integrating yields

Neµτ = α

∫
eµτdτ

so

N = αe−µτ
∫
eµττ.

Integrating gives

N = αe−µτ
(

1

µ
eµτ + C

)
so

α

µ
+ Cαe−µτ .

Now when t = 0, we have

N0 =
α

µ
+ C

so

C = N0 −
α

µ
.

Thus substituting C,

N =
α

µ
+

(
N0 −

α

µ

)
e−µτ .

This logistic growth equation represents the change in the total population.
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We can estimate the value of µ by considering the natural death rate of

the cells. The average life span of a cell depends on the type of cell it is. For

example most blood cells live only a few hours, whereas taste receptor cells

live closer to 10 days, skin cells live roughly a month, muscle cells live roughly

15 years and nerve cells may last a lifetime [34].

Since the examples we are going to look at will be blood related diseases,

we are going to focus on blood cells for now (though HIV deals primarily with

T-cells). If we suppose that the average cell lives 3 hours, the natural mortality

rate is 1
3

so µ = 1
3

hours. In general, we say that if T is the time spent in

a class or compartment in our model, then the per capita rate at which the

individuals leave that compartment is given by 1
T

. So if γ is the per capita

rate spent infective then γ = 1
T

or equivalently, T = 1
γ

is the time spent in

that compartment.

5.2.1 Equilibria Analysis

To truly understand what a particular disease will do long term, whether it

will die out completely or become endemic, present in the body long term, we

need to study equilibrium points which are independent of time. Proceeding

in a familiar way to calculate the equilibria points we can set

dS

dτ
= 0

dI

dτ
= 0 and

dR

dτ
= 0,

so our system becomes 
0 = α− βIS − µS

0 = βIS − γI − µI

0 = γI − µR
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Solving for R in the last equation we obtain

R =
γ

µ
I

Then solving for I in equation two, 0 = I(βS − γ − µ), we see that either

I = 0

or

βS − γ − µ = 0.

• If I = 0 then by how R is defined, R = 0 as well, and the first equation

becomes 0 = α− µS so S = α
µ
. This means that if there are no infective

or removed cells, S is equal to a ratio of the birth and death rates for

the total cell population. Notice we see this term S = α
µ

show up in

our definition of N(τ) = N0e
−µτ + α

µ
(1 − e−µτ ) and can also show that

dN
dτ

= 0 implies N = α
µ
, which makes sense, considering this would mean

the entire population is contained in the susceptible class (N = S).

Therefore, we get the equilibrium value(
α

µ
, 0, 0

)
.

This equilibrium exists for all values of the parameters supposing positive

birth and death rates. Notice that the number of infective cells is zero

in this equilibrium state, thus it is called the disease-free equilibrium.

Therefore if a system approaches this equilibrium, the number of infective

cells I(τ) will approach 0, so the disease will disappear from the body.

• If we look at the second case, where I 6= 0 and βS − γ − µ = 0 we can

solve to get

S =
γ + µ

β
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and using this in the first equation gives

0 = α− βIS − µS.

Thus

α = βIS + µS

and if we divide by S

α

S
= βI + µ.

Now, substitution for S

α(
γ+µ
β

) = βI + µ

so

αβ

γ + µ
= βI + µ.

Rewriting

βI =
αβ

γ + µ
− µ

Or,

βI =
αβ − µ(γ + µ)

γ + µ
.

Finally solving for I,

I =
αβ − µ(γ + µ)

β(γ + µ)
.

Clearly if I > 0 then αβ > µ(γ+µ) as defined, thus only if this condition

is satisfied does the equilibrium solution below exist

(
γ + µ

β
,

αβ − µ(γ + µ)

β(γ + µ)
,

γ

µ

(αβ − µ(γ + µ))

β(γ + µ)

)
.

In this equilibrium solution we are supposing that I is strictly positive,

thus if I(τ) in a given system approaches this equilibrium as time ap-

proaches infinity then the number of infective cells will remain strictly
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positive and approach this I value. Therefore the disease remains in

the body and becomes an endemic. This equilibrium point is called the

endemic equilibrium.

Note that for I 6= 0 6= R we must have

αβ − µ(γ + µ) 6= 0.

This should be clear since we are dealing with a positive population (> 0).

Thus,

αβ

µ(γ + µ)
6= 1

because when we solve the inequality above we get the equation is strictly

greater than 1. We call this parameter the reproduction number R0,

R0 =
αβ

µ(γ + µ)

where γ + µ represents the rate at which individual cells leave the infective

class. Thus the average time spent in the infective class is 1
γ+µ

time units.

The number of transmissions per unit rate of time is given by the

incidence rate βSI. If there is only one infective cell, I = 1 and all other cells

reside in the susceptible class then S = α
µ
; thus the number of transmissions

by one infective cells is αβ
µ

.

Together we can conclude that the number of infectious transmissions

that one cell can make during the entire time infected assuming all other cells

are susceptible is

αβ

µ(γ + µ)
= R0.

The condition for existence of an endemic equilibrium can be deter-

mined when R0 = αβ
µ(γ+µ)

> 1. From an epidemiological standpoint, the repro-

ductive number tells us how many secondary cases a particular infective cell
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will produce in an entirely susceptible population. Thus we are left to make

the following conclusions:

• If R0 = 1 then we get the point
(
α
µ
, 0, 0

)
. Recall that from the previous

study that a cell population that consists of only susceptible cells, in the

long run has a susceptible population of α
µ
.

• If R0 > 1 again we get the equilibria
(
α
µ
, 0, 0

)
as well as the endemic

equilibrium
(
γ+µ
β
, αβ−µ(γ+µ)

β(γ+µ)
, γ

µ
αβ−µ(γ+µ)
β(γ+µ)

)
. The disease-free equilib-

rium in this case is not attractive, which can be seen by noticing that

the solutions of the system that start very close to this tend to go away

from it in the S direction. The endemic equilibrium is attractive so that

solutions to the system approach it as time approaches infinity. Thus,

the disease remains present in the body.

• If R0 < 1 then there exists only the disease-free equilibrium and we

can show that it is attractive so that every solution of the system ap-

proaches this equilibrium and the disease will eventually disappear from

the population.

5.3 Logistic Model Example B

The following model is another logistic model but now one that takes carrying

capacity into consideration. It looks very similar to one in which we will work

in the next section when we begin studying cell-to-cell spread of diseases and

will be used to make sense of the inner-workings in a more simple setting.

The logistic model begins with a function f(N), that is positive for

all N ∈ (0, K) where K represents the carrying capacity and satisfies the
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condition that f(0) = f(K) = 0. The simplest equation for this is

dN

dt
= f(N) = rN

(
1− N

K

)
.

This equation is called the logistic equation and it’s solution is known

as a logistic curve with parameters r and K. The solution to this model can

be found explicitly so that we can determine the density N as a function of

time. Let’s begin by separating variables,

dN

dt
= rN

(
1− N

K

)
.

Moving all terms with N to one side of the equation and with all others on

the other side of the equation gives

dN

N
(
1− N

K

) = rdt.

Integrating from time t = 0 to t = T ,∫ N(T )

N(0)

dN

N
(
1− N

K

) =

∫ T

0

rdt

gives ∫ T

0

rdt = rt|T0 = rT

when we integrate the right side. Integrating the left side however requires the

use of partial fractions. We can re-write

1

N
(
1− N

K

) =
1

N
+

1
K

1− N
K

So ∫ N(T )

N(0)

1

N
+

1
K

1− N
K

=

[
ln(N)− ln

(
1− N

K

)]N(T )

N(0)

Therefore we have,

ln(N(T ))− ln

(
1− N(T )

K

)
− ln(N(0)) + ln

(
1− N(0)

K

)
= rT.
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Exponentiating both sides gives

N(T )
(

1− N(0)
K

)
(

1− N(T )
K

)
N(0)

= erT .

Solving for N(T ) yields

N(T ) =
KN(0)erT

K −N(0) +N(0)erT
.

Therefore in general we get the result that the population grows rapidly at

first then approaches an equilibrium which we can see in the following picture

when we graph the logistic function choosing with arbitrary choices for N(0)

and K.

In the next section we will use a similar technique to solve a system

designed to model cell-to-cell spread of HIV. This model could be modified

to model other long term diseases as well as long term population dynamics,

though it was specifically designed to study cell-to-cell HIV spread.
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5.4 Understanding Cell-to-Cell Spread

Now that we have some understanding about how the introduction of different

parameters and compartments can alter our simple model we can begin to try

to understand some of the components involved virus transmission through the

body. Recall that in this chapter we are exploring cell-to-cell transmission,

thus we are dealing with a population of cells rather than people as in the

previous chapter. The first model we will explore, we assume that infection

spreads directly from infected cells to healthy cells in a bilinear fashion. That

is, virus transmission is dependent only on the product of the concentrations

of the two cell populations.

Given the system 
dS
dτ

= rSS(1− S+γR
SR

)

dR
dτ

= µSS

where

• S(τ) represents the concentration of healthy cells, which we can think of

in a way similarly to susceptible cells.

• R(τ) represents the concentration of dead cells which are a specific case

of the removed class explored earlier.

• rS is the effective reproductive rate of healthy cells which is similar to a

birth rate except it also takes into account the non-disease related death

rate.

• µS is the death rate of healthy cells.

• 1 − S+γR
SR

is a control term that prevents the system from exceeding its

carrying capacity.
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• SR represents the carrying capacity of the system.

• γ is the relative reduction in carrying capacity due to dead cells and

cellular debris.

• Notice

dS

dτ
= rSS

(
1− S + γR

SR

)
is a logistic growth function for population. So that if S + R = N then

for R = 0, dS
dτ

reduces to

rSN

(
1− N

SR

)
.

which just like the logistic function in Example B capturing the carrying ca-

pacity. To get a better feel for carrying capacity we will explore this idea in

the next subsection.

5.4.1 Carrying Capacity

Note that we are no longer dealing with a closed population N = S + I + R,

but in the long-term model, N is no longer constant thus N ′ 6= 0. Rather N ′

is a logistic equation. Let’s define a system introducing infected cells, where

• I(τ) is the concentration of infected cells

• kI represents the rate constant for infection of healthy cells.

Just as in the last chapter, this the infectious rate is given as a gain

term, for the infectious class and a loss term for the susceptible class

or healthy cells in this case, since as healthy cells become infected they

leave the susceptible class and become part of the infectious class.
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• Additionally we have the parameter µI which represents the death rate

of infectious cells.

Together this yields the system


dS
dτ

= −kIIS + rSS
(

1− S+I+γR
SR

)
dI
dτ

= kIIS − µII
dR
dτ

= µSS + µII

Notice this population is no longer closed as we are introducing non-

disease related birth and death rates.

5.4.2 Equilibria

Just as in the last two chapters we can ignore the last equation when first

considering the dynamics of the system, since the dead cells and cellular debris

play a negligible role in the spread of infection from cell-to-cell. Also, assume

that γ = 0 since γ represents the relative reduction in carrying capacity due

to dead cells and cellular debris which is all related to this R variable, thus

because all equations are written in terms of only S and I (not R) with γR = 0

we can write


dS
dτ

= −kIIS + rSS
(

1− S+I
SR

)
dI
dτ

= kIIS − µII

Before we find the equilibria notice that when we add

dS

dτ
+
dI

dτ
= rSS

(
1− S + I

SR

)
− µII

and if all cells are either infectious or susceptible we get S + I = N so

N ′ = rSS

(
1− S + I

SR

)
− µII = rSS

(
1− N

SR

)
− µII
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which is the logistic growth equation with the removal of dead infectious cells

which can be seen in the last term −µII. Note that if I = 0 we just get the

logistic growth equation

N ′ = rSN

(
1− N

SR

)
Now we can find the equilibrium points in the usual way by setting the equa-

tions equal to zero.

• dS
dτ

= 0 implies 0 = S
(
−kII + rS

(
1− S+I

SR

))
Thus,

S = 0

or −kII + rS

(
1− S+I

SR

)
= 0 yielding

I =
rS(SR − S)

rS + SRkI

which forces dI
dτ

= 0 as well.

• dI
dτ

= 0 implies 0 = I(kIS − µI),

Thus,

I = 0

or kIS = µI yielding

S =
µI
kI

which forces dS
dτ

= 0 as well.

Now

• when S = 0 solving for I yields I = 0 as well. Thus we get the equilib-

rium

(0, 0)
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• when I = 0 then for

dS

dτ
= −kIIS + rSS

(
1− S + I

SR

)
= 0

we get

kIIS = rSS

(
1− S + I

SR

)
but I = 0 implies this becomes

0 = rsS −
rSS

2

SR

moving the last term over

rsS =
rSS

2

SR

divide both sides by rSS to get

1 =
S

SR

So finally

S = SR.

Thus we get the equilibrium

(SR, 0)

so that the maximum population (carrying capacity) is all contained in

the susceptible class.

• when S = µI
kI

, plugging this into the equation we found for I, when

dS
dτ

= 0,

I =
rS(SR − S)

rS + SRkI

becomes

I =
rS(SR − µ)

kI(rS + SRkI)
.
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Finally giving the equilibrium point(
µI
kI
,
rS(SR − µI)
kI(kISR + rS)

)
.

Therefore the equilibrium points for this system are

(0, 0), (SR, 0) and

(
µI
kI
,
rS(SR − µI)
kI(kISR + rS)

)
.

5.4.3 Stability Analysis

Possible scenarios for stability:

• S < µI
kI

. In this case healthy cells predominate and infected cells die off

exponentially. We have (0, 0) is an unstable equilibrium point whereas

(SR, 0) is asymptotically stable.

• S > µI
kI

. In this case healthy cells and infected cells co-exist. This

means that the infection is present, but does not grow out of control and

healthy cells do not crash to zero. We have that (0, 0) remains unstable,

but (SR, 0) is unstable now as well.

• S = µI
kI

. In this case
(
µI
kI
, rS(SR−µI)
kI(kISR+rS)

)
is asymptotically stable. The

following phase portrait shows this asymptotically stable point in the

middle of the spiral.
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5.5 Model Modified for a more realistic re-

sponse function

Now that we have a chance to get a feel for a model incorporating carrying

capacity, as well as changes in total population size, we can try to explore a

more reasonable cell-to-cell spread model. In the previous model we assumed

that infection spread in a bilinear fashion, assuming a system of cells that

were well mixed, which showed up in the system in the term kIIS. Spouge

et al. questioned the accuracy of the use of the term kIIS as it is “appro-

priate in a system if the cells are well-mixed, an assumption deserving some

scrutiny...tissue culture systems are generally not well-mixed, and a cell usu-

ally maintains contact with its neighbors” [20]; thus an interesting contrast

would be to explore a modification for this term. One modification to consider

is to replace the kIIS with potentially a more realistic one, one proposed by

the Michaelis-Menten response function
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kI =
k

a+ S

where a is the half-saturation constant for the proliferation process.

The proliferation process in cells is the process that brings the production of

reproductive cells, fertilization and cell growth. It is responsible for healing

injured tissues and even for increasing functions of certain organs to compen-

sate for the absence of another organ. In the case of unhealthy cells however,

which is the case when studying infectious diseases such as HIV, this process

can result in organism death. Since cells divide to reproduce, if unhealthy

cells are diving they are producing more unhealthy cells. The a term takes

into account the contact rate between infected and healthy cells, the fraction

of healthy cells which are activated (going through the proliferation process)

thus making them susceptible to infection and the virus which result in pro-

ductive infected cells. From my understanding a represents half of the max-

imum speed of virus transmission between cells; for HIV models a is defined

specifically based on a saturation function of T-Cells which have a well-defined

maximal rate of proliferation [13].

With this modification the system becomes


dS
dτ

= −k IS
a+S

+ rSS(1− S+I
SR

)

dI
dτ

= k IS
a+S
− µII

Since we are still working with a long-term model, including non-disease

related birth and death rates, we are still assuming that the total population

N varies thus N ′ 6= 0.
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5.5.1 Equilibra

First by solving

dI

dτ
= k

IS

a+ S
− µII = 0,

Factoring out I gives

I(k
S

a+ S
− µI) = 0

and by the zero product property this means that either

I = 0

or

k
S

a+ S
− µI = 0.

Solving the later equation for S by first moving µI gives

ks

a+ S
= µI .

Then multiplying by (a+ S) yields

kS = µIa+ µIS.

Now getting the S terms to one side

kS − µIS = µIa.

Factoring the S on the left yields

S(k − µI) = µIa

and finally dividing to isolate S gives

S =
µIa

k − µI
.
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Now letting the first equation equal zero

dS

dτ
= −k IS

a+ S
+ rSS

(
1− S + I

SR

)
= 0

Factoring out S gives

S

(
−k I

a+ S
+ rS

(
1− S + I

SR

))
= 0

and by the zero product property this means that either S = 0 or we have

−k I
a+S

+rS

(
1− S+I

SR

)
= 0. Solving the later equation for I by first distributing

gives

−kI
a+ S

+ rS −
rSS

SR
− rSI

SR
= 0

and clearing fractions yields

−kISR + rSSRa+ rSSRS − rSSa− rSS2 − rSIa− rSIS = 0.

Then since the goal is to solve for I, moving all I terms to one side of the

equation gives

kISR + rSIa+ rSIS = rSSRa+ rSSRS − rSSa− rSS2.

Factoring out the I yields

I(kSR + rSa+ rSS) = rSSRa+ rSSRS − rSSa− rSS2

and finally dividing to isolate I gives

I =
rSSRa+ rSSRS − rSSa− rSS2

kSR + rSa+ rSS
=
rS(a+ S)(SR − S)

kSR + rS(a+ S)
.

Now that we have solved both equations for each respective variable we can

find the equilibria.
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• If S = 0 from the equation dS
dt

= 0 then substituting this value into

dI
dt

= 0 gives

−µII = 0.

Solving for I by diving by −µI then results in

I = 0

so we get the equilibria point

(0, 0).

• If I = 0 from the equation dI
dt

= 0 then substituting this value into dS
dt

= 0

gives

rSS −
rSS

2

SR
= 0.

Adding the second term to the right side of the equation yields

rSS =
rSS

2

SR
.

Multiplying by SR

rSSSR = rSS
2

and finally diving by rSS gives

S = SR

so we get the equilibria point

(SR, 0).

• Finally, when

S =
µIa

k − µI
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substituting S into the equation we found for I earlier, namely

I =
rSSRa+ rSSRS − rSSa− rSS2

kSR + rSa+ rSS

we have

I =
rSSRa+ rSSR

(
µIa
k−µI

)
− rS

(
µIa
k−µI

)
a− rS

(
µIa
k−µI

)2
kSR + rSa+ rS

(
µIa
k−µI

) .

Factoring out an rS in the numerator

I =

rS

(
SRa+ SR

(
µIa
k−µI

)
−
(

µIa
k−µI

)
a−

(
µIa
k−µI

)2)
kSR + rSa+ rS

(
µIa
k−µI

) .

Multiplying both the numerator and denominator by k − µI yields

I =
rS

(
SRak − SRaµI + SRµIa− µIa2 −

µ2Ia
2

k−µI

)
k2SR − kSRµI + rSak − rSaµI + rsµIa

.

Simplifying like terms gives

I =
rS

(
SRak − µIa2 −

µ2Ia
2

k−µI

)
k2SR − kSRµI + rSak

.

Now getting a common denominator for the numerator

I =
rS

(
SRak(k−µI)−µIa2(k−µI)−µ2Ia

2

k−µI

)
k2SR − kSRµI + rSak

.

Distributing

I =
rS

(
SRak

2−SRakµI−µIa2k+µ2Ia
2−µ2Ia

2

k−µI

)
k2SR − kSRµI + rSak

.

Simplifying like terms

I =
rS

(
SRak

2−SRakµI−µIa2k
k−µI

)
k2SR − kSRµI + rSak
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then multiplying by the reciprocal of the denominator to eliminate the

compound fraction gives

I = rS

(
SRak

2 − SRakµI − µIa2k
k − µI

)
· 1

k2SR − kSRµI + rSak
.

Factoring the numerator and denominator and multiplying yields

I =
rSak(SRk − SRµI − µIa)

(k − µI)k(kSR − SRµI + rSa)
.

simplifying results it

I =
rSa(SRk − SRµI − µIa)

(k − µI)(kSR − SRµI + rSa)

so

I =
rSa(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)
.

Thus, the final equilibra point is(
µIa

k − µI
,

rSa(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)

)
.

Therefore we have equilibria points

(0, 0), (SR, 0) and

(
µIa

k − µI
,

rSa(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)

)

5.5.2 Stability

We can find the Jacobian matrix of this system by writing:

 F = dS
dτ

= −k IS
a+S

+ rSS(1− S+I
SR

)

G = dI
dτ

= k IS
a+S
− µII

Then

∂F

∂S
=
−kI(a+ S) + kIS

(a+ S)2
+ rS −

2rSS

SR
− rSI

SR
.
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Simplifying like terms

=
−kIa

(a+ S)2
+ rS −

2rSS

SR
− rSI

SR

and re-writing

= rS − ak
I

(a+ S)2
− 2rS

S

SR
− rS

I

SR
.

We can equivalently find the remaining partial derivatives therefore yielding

∂F
∂S

= I
(a+S)2

− 2rS
S
SR
− rS I

SR

∂F
∂I

= −kS
a+S
− rSS

SR

∂G
∂S

= kI(a+S)−kIS
(a+S)2

∂G
∂I

= KI
a+S
− µI

and together this gives the Jacobian matrix

J =

 rS − ak I
(a+S)2

− 2rS
S
SR
− rS I

SR
−k S

a+S
− rS S

SR

ak I
(a+S)2

k S
a+S
− µI

 .
• At (0, 0):

J =

 rS 0

0 −µI


Then since our eigenvalues are rS and −µI , we see that both eigenvalues

are real and one of the real parts of the eigenvalues is positive, thus it is

clear that (0, 0) will always be an unstable saddle.

• At (SR, 0):

J =

 −rS −k SR

a+SR
− rS

0 k SR

a+SR
− µI


The eigenvalues are −rS and k SR

a+SR
− µI
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– If SR < aµI
k−µI

then both eigenvalues are negative and we have an

aysomptotically stable point.

– If SR >
aµI
k−µI

the one of the eigenvalues is negative and one positive,

thus we have an unstable saddle point.

– If SR = aµI
k−µI

then one of the eigenvalues is negative and the other

is zero, thus we have an asymptotically stable point.

• At (
µIa

k − µI
,

rSa(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)

)

J =

 a1 a2

a3 0


where each ai is defined in a particular way

◦ First

a1 = rS−
rsa(SR(k − µI)− µIa)

SR(k − µI) + rSa
−2rS
SR

(
µIa

k − µI

)
− rS
SR

(
rsa(SR(k − µI)− µIa

(k − µI)(SR(k − µI) + rSa)

)
◦ Now

a2 =
−k
(

µIa
k−µI

)
a+

(
µIa
k−µI

) − rS
SR

(
µIa

k − µI

)

=

−kµIa
k−µI

a(k−µI)+µIa
k−µI

− rSµIa

SR(k − µI)

=

−kµIa
k−µI
ak

k−µI

− rSµIa

SR(k − µI)

=
−kµIa
ak

− rSµIa

SR(k − µI)
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= −µI −
rSµIa

SR(k − µI)

◦ Finally

a3 = ak
rSa(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)
· 1

a+ µIa
k−µI

=
krSa

2(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)
· k − µI
a(k − µI) + µIa

=
krSa

2(SR(k − µI)− µIa)

(k − µI)(SR(k − µI) + rSa)
· k − µI

ak

=
rSa(SR(k − µI)− µIa)

SR(k − µI) + rSa

◦ Note that the forth entry in the matrix is 0 since we would have

k
(

µIa
k−µI

)
a+

(
µIa
k−µI

) − µI
=

kµIa
k−µI

a(k−µI)+µIa
k−µI

− µI

=

kµIa
k−µI
ak

k−µI

− µI

=
kµIa

ak
− µI

= µI − µI

= 0
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.

The characteristic equation, we can find by looking at the matrix

|J − λI| = 0,

λ2 − a1λ− a2a3 = 0

with roots

λ1,2 =
a1 ±

√
a21 + 4a2a3
2

.

– This system has real roots if 4a2a3 ≥ −a21

∗ Both roots are negative when
√
a21 + 4a2a3 < −a1 for a1 < 0

∗ Both roots are positive when
√
a21 + 4a2a3 < a1 for a1 > 0

∗ One root is negative and one root is positive if one of the fol-

lowing occur:

◦ If a1 < 0 implies
√
a21 + 4a2a3 > −a1

◦ If a1 > 0 implies a2a3 > 0

– The system has complex roots if 4a2a3 < −a21 where a1 represents

the real part.

Therefore, we have a means to characterize the equilibria values to de-

termine stability for all three equilibria points in this much more complicated

system. With these tools we are able to begin to understand more compli-

cated diseases such as HIV and herpes as well as more complicated population

dynamic scenarios.
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Chapter 6

Conclusions

Throughout this thesis we have explored the inter-workings of several different

models involving differential equations. The first model we explored was the

two-variable Lotka-Volterra model which we aimed to relate to the Hudson

Bay Company data. Then we decided to expand to a 3-variable Lotka-Volterra

model since we it seemed logical that the hare population was dependent on

their food source as well and found this model to be more indicative of the

data found by the Hudson Bay Company. It seemed that the model worked

well with the data however the model does have some limitations. The Lotka-

Volterra model does not account for a minimum sustainable population size

for each species. Carrying capacity is not accounted for and with interacting

species this is likely something that should be. For example, in the models we

studied we never took into account what impact competition for space may

have on the populations taken into consideration. It would be interesting to

try study species interactions with space limitations to see how well the model

would fit with these parameters.

The next set of models we studied were infectious disease models. We
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examined SI, SIS and SIR models to get a feel for how these relate to differ-

ent infectious diseases that impact persons currently and throughout history.

McKendrick and Kermack developed several models in addition to those that

we discussed; others that would be interesting to explore are those that take

into account latent stages or incubation periods, i.e. time in which a person

is infected but not showing symptoms. Also, models that include time delay,

immunity and vaccination would be interesting to study. Additionally models

that take into account different methods of disease spread, such as through

insects and organisms both macro and micro parasitic are intriguing; Ronald

Ross’s exploration into the spread of Malaria through mosquitoes for instance.

Other interesting yet complicated systems to study would include systems in

which particular populations are more affected than others; such as diseases

that impact the elderly or young children more than adults. STD’s are also

an interesting area of study because the spread is much more prominent in

adolescents and young adults, likely caused by common lifestyles and lack of

monogamy. The epidemic models we explored can be altered in a variety of

ways and studied to make sense of changing and more complicated infectious

diseases; thus creating several interesting areas for further research.

Finally, we began the study of long-term diseases such as HIV. There

is much more to study in this section as we barely scratched the surface of

cell-to-cell modeling and haven’t even looked at how the disease spreads in

different communities. Other areas we could develop are inclusion of time

delay, immunity, etc...

Overall wehave seen that several of the relationships that exist in the

world around us can be better understood though the study of mathematics.

The more accurate our model, the more complicated it gets, but hopefully
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this thesis gives a good background and look into how the study of differential

equations applies in the biological setting.

141



Bibliography

[1] ABRAMSON, GUILLERMO Mathematical Modeling of the

Spread of Infectious Diseases 2001. Lecture notes accessed from

http://fisica.cab.cnea.gov.ar/estadistica/abramson/

notes/Epidemics-Lectures-PANDA.pdf 24 May 2013.

[2] ALLEN, LINDA J.S. Mathematical Modeling of Infectious Dis-

eases: Deterministic and Stochastic Models. 2011. PowerPoint ac-

cessed from: http://mbi.osu.edu/eduprograms/2011materials/

MBI_Summer_2011a.pdf 24 May 2013.

[3] BOKIL, VRUSHALI A. Introduction to the Mathematics of Infec-

tious Diseases. 2008. PowerPoint accessed from: http://www.math.

oregonstate.edu/~bokilv/Talks/REU_Math08.pdf 24 May 2013.

[4] BRITTON, NICHOLAS F. Essential Mathematical Biology.

Springer-Verlag, New York, 2003.

[5] BURGOS, JOSE LUIS The Introduction to: Mathemati-

cal Models for Infectious Diseases. 2010. PowerPoint ac-

cessed from: http://www.docstoc.com/docs/44323144/

Mathematical-Models-for-Infectious-Diseases.

142



[6] CHASNOV, JEFFREY R. Mathematical Biology. 2009, 2010. Lec-

ture notes accessed from: http://www.scribd.com/doc/50071779/

mathematical-biology 24 May 2013.

[7] CHAUVET, ERICA; PAULLET, JOSEPH E.; PREVITE, JOSEPH

P; WALLS, ZAC. A Lotka-Volterra Three-Species Food Chain. Math-

ematics Magizine, Vol. 75, No.4, October 2002, 243-255.Article

accessed from: http://math.bd.psu.edu/~jpp4/mathmag243-255.

pdf 24 May 2013.

[8] CULSHAW, REBECCA; RAUN, SHIGUI; WEBB, GLENN. A

Mathematical Model of Cell-to-Cell Spread of HIV-1 that Includes

Time Delay. Mathematical Biology, Vol. 46, 2003, 425-444. Jour-

nal accessed from: http://www.math.miami.edu/~ruan/MyPapers/

CulshawRuanWebb-jmb03.pdf 24 May 2013.

[9] GILPIN, MICHAEL E. Letter to the Editors: Do Hares

Eat Lynx? The American Naturalist Vol. 107, No. 957,

September-October 1973, 270-230.Journal accessed from:

http://www.jstor.org/discover/10.2307/2459670?uid=

3739960&uid=2&uid=4&uid=3739256&sid=21102034362883 24

May 2013.

[10] HASTINGS, ALAN Population Biology: Concepts and Models.

Springer-Verlag, New York, 1998.

[11] IANNELLI et al. The Mathematical Modeling of Epidemics. Inter-

reg III 2005. Lecture notes accessed from: http://itech.fgcu.edu/

faculty/pfeng/teaching/Epidemics.pdf 24 May 2013.

143



[12] KEELING, MATTHEW The Mathematics of Diseases. +Plus Mag-

azine, 2001. Magazine accessed from: http://plus.maths.org/

content/mathematics-diseases 24 May 2013.

[13] KOUCHE, MAHIEDDINE; AINSEBA, BEDR’EDDINE A Mathe-

matical Model of HIV-1 Infection including the Saturation effect of

Healthy Cells Proliferation Int. J. Appl. Math. Comput. Sci., 2010

Vol.20, No. 3, 601-612.

[14] KREBS, CHARLES J.; BOONSTRA, RUDY; BOUTIN, STAN;

SINCLAIR, A.R.E. What Drives the 10-year Cycle of Snowshoe

Hares? BioScience, Vol 51 No.1, January 2001, 25-35. Article

accessed from: http://bio.fsu.edu/~james/krebs.pdf 24 May

2013.

[15] LEWIS, MARK Mathematical Models and Infectious Disease Dy-

namics. Math Against Diseases 2004. Accessed from: http://www.

math.ualberta.ca/pi/current/page04-04.pdf 24 May 2013.

[16] MALEK MASSOUD Differential Equations:Equilibrium Points.

Lecture notes accessed from: http://www.mcs.csueastbay.edu/

~malek/Class/equilibrium.pdf 24 May 2013.

[17] PERKO, LAWRENCE Differential Equations and Dynamical Sys-

tems, Second Edition. Springer-Verlag, New York,1996.

[18] PLITT, SABRINA Infectious Disease Epidemiology: Basic Prin-

ciples for Mathematical Modeling. PowerPoint accessed from:

http://www.math.ualberta.ca/~irl/butler_2011/lecture_

notes/epi_2.pdf 24 May 2013.

144



[19] SAE-JIE, WICHUTA; Bunwong, Kornkanok; Moore, Elvin J.

Qualitative Behavior of SIS Epidemic Model on Time Scales

Latest Trends on Applied Mathematics, Simulation Modelling.

Accessed from: http://www.wseas.us/e-library/conferences/

2010/Corfu/ASM/ASM-25.pdf 24 May 2013.

[20] SPOUGE, JOHN L.; SHRAGER, RICHARD I.; BIMITROV,

DIMITER S. HIV-1 Infection Kinetics in Tissue Cultures Mathe-

matical Biosciences, Vol 138, March 1996, 1-22.

[21] VARGAS-DE-LEON, CRUZ Constructions of Lyapunov

Functions for Classic SIS, SIR and SIRS Epidemic Models

with Variale Populuation Size. 2009. Accessed from: http:

//www.academia.edu/1786510/Constructions_of_Lyapunov_

Functions_for_Classic_SIS_SIR_and_SIRS_Epidemic_models_

with_Variable_Population_Size 24 May 2013.

[22] ZILL, DENNIS G. A First Course in Differential Equations, Fifth

Edition. PWS-KENT Publishing Company, Boston, 1993.

[23] BIOMIAMI Predation and Parasitism: Lotka-Volterra Equations.

Lecture notes accessed from: http://www.bio.miami.edu/tom/

courses/bil358/preddiscuss.html 24 May 2013.

[24] FACSTAFFGPC Equilibrium Solutions and Stability.Lecture notes

accessed from: http://facstaff.gpc.edu/~jcraig/de_notes2/

2s2_plus_bifurcations.htm 24 May 2013.

145



[25] ILLINOIS DEPARTMENT OF PUBLIC HEALTH HealthBeat:

Chancroid.Accessed from: http://www.idph.state.il.us/

public/hb/hbchancroid.htm24 May 2013.

[26] MATHDUKE Predator-Prey Models. Lecture notes accessed from:

https://www.math.duke.edu//education/webfeats/Word2HTML/

Predator.html 24 May 2013.

[27] MATHUFL Introduction to Mathematical Epidemiology. Lec-

ture notes accessed from: http://www.math.ufl.edu/~maia/

BIOMATHSEM/Lecture1.pdf24 May 2013.

[28] RESNETWM Mathematical Models of Infectious dis-

eases.PowerPoint accessed from: http://www.resnet.wm.edu/

~jxshix/math345/lect18.pdf24 May 2013.

[29] SOSMATH Equilibria and the Phase Line. Lecture notes ac-

cessed from: http://www.sosmath.com/diffeq/first/phaseline/

phaseline.html 24 May 2013.

[30] STOLAF Lotka-Volterra Two Species Model Lecture notes accessed

from: http://www.stolaf.edu/people/mckelvey/envision.dir/

lotka-volt.html 27 May 2013.

[31] WIKIPEDIA Jacobian Matrix and Determinant.

http://en.wikipedia.org/wiki/Jacobian 24 May 2013.

[32] WIKIPEDIA Kermack-McKendrick Theory

http://en.wikipedia.org/wiki/Kermack-McKendrick_theory 27

May 2013.

146



[33] WIKIPEDIA Lotka-Volterra Equation.

http://en.wikipedia.org/wiki/Lotka-Volterra 24 May 2013.

[34] WISEGEEK What is the Average Cell Life Span?

urlhttp://www.wisegeek.org/what-is-the-average-cell-life-span.htm 6

June 2013.

147



Vita

Author: Jessica L. Hauer

Place of Birth: Oscoda, Michigan

Undergraduate Schools Attended:

Alpena Community College

Saginaw Valley State University

Graduate Schools Attended:

Gonzaga University

Eastern Washington University

Degrees Awarded:

Bachelor of Science, 2009, Saginaw Valley State University

Master of Initial Teaching, 2010, Gonzaga Univeristy

Honors and Awards:

Graduate Instructorship, Mathematics Department,

2011-2013, Eastern Washington University

Professional Experience:

Full Time Teacher, Colville School District,

Colville, Washington 2010-2011

148


	Population models
	Recommended Citation

	tmp.1411496825.pdf.Yz8lJ

