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1 Introduction

Blender is a free and open-source 3D modeling and animation program [1]. One of its many features
is a built-in game engine called The Blender Game Engine (BGE). Character animations in the BGE
are considered slow by the BGE community. For comparison, the benchmark scene described in
section 3.3 runs at approximately 187ms per frame on the benchmark machine described in section 3.2.
As a quick test, a scene similar to the benchmark scene was created and ran using and open-source
graphics engine called OGRE [2]. In OGRE, the scene ran at approximately 37ms per frame. Not
only is this approximately five times faster, but the OGRE test could probably be further optimized
by someone more knowledgeable with OGRE. The OGRE example uses just the basics needed to
get the scene to run. For example, different scenegraphs, instancing or hardware skinning could be
explored and used.

This work attempts to improve the performance of these skeletal mesh animations in the BGE.
Several optimizations are used in this work, which can be grouped into three main categories:
parallelizing code, moving code to the GPU, and other minor optimizations.

2 Background
2.1 OpenGL and the GPU

Games (and most any real-time applications) leverage the impressive power of modern graphics
processing units (GPUs). In the past, GPUs were almost entirely used for graphics processing as the
name would suggest, however general purpose GPU computing (GPGPU) has also become popular.
OpenGL is an application programming interface (API) that allows developers to communicate with
graphics hardware.

As graphics hardware has progressed, OpenGL has also needed to expand, and thus has different
versions. As of the time of this writing, OpenGL is up to version 4.4. However, one must keep in
mind that OpenGL versions only specify a minimum specification that graphics hardware must meet.
For example, an OpenGL 2 capable graphics card may still be able to use some OpenGL 3 features.
Therefore, when using OpenGL, it is common to target features instead of OpenGL versions (e.g.,
check for shader support instead of checking for OpenGL 2 support).

In earlier versions of OpenGL, a fixed graphics pipeline was defined. This pipeline could be setup,
used and influenced by commands, but certain parts (e.g., the algorithm to determine pixel color)
were still fixed. Eventually, parts of the pipeline became programmable. The programs written
to control these parts of the pipeline are called shaders. OpenGL 4.4 specifies four shader types:
vertex, geometry, fragment, and compute. Primarily GLSL is used to write these shaders, but other
languages such as Cg (a high-level shading language from NVIDIA) are supported. Of interest
to this work are the vertex and (partially) the fragment shader. A vertex shader controls vertex
transformations (e.g., the model to view space coordinate conversion), and a fragment shader controls
how a fragment (think pixel) is colored or shaded.

2.1.1 GPU/CPU Interaction

When using a GPU, the central processing unite (CPU) is still used. This means that two processors
are being used asynchronously and in parallel. The CPU is used to issue commands to the GPU
(usually in some form of render step) Usually the CPU can continue to work while the GPU processes
the commands it was given. However, the GPU driver can also block the CPU if, for example,
the GPU has too much work to do. This gives two general categories of bottlenecks in a graphics
application:

1. The CPU is not issuing commands to the GPU fast enough. This results in the GPU being
underutilized, and is known as being CPU-bound.

2. The CPU is too far ahead of the GPU and the GPU drivers cause the CPU to wait. In this
case the CPU is being underutilized, and this is known as being GPU-bound.



Improving the performance of code on running on the CPU will not improve performance if the CPU
is just going to wait longer for the GPU to finish (GPU-bound). And similarly, if the application is
CPU-bound, giving the GPU less work will also not improve performance. Therefore, it is important
to identify the bottleneck and keep the load on the CPU and GPU balanced for the best performance.

2.2 Skeletal Mesh Animation

One popular method used to drive character animations is to use a set of bones (also known as joints)
called a skeleton (or armature) to deform a mesh. An example of this can be seen in figure 1.

Figure 1: An example skeletal mesh

Once a pose (a set of transforms for each bone) has been determined, an operation called skinning
is used to deform the mesh to the pose. Transformations are usually represented as a four-by-four
matrix, which encodes rotation, translation and scale. The pose transformations are relative to an
initial “rest” pose. Each vertex in the mesh has a set of weights, which sum to one, to determine the
amount of influence each bone has on that vertex. To determine each vertex’s new skinned position
and normal, equations 1 and 2 can be used.

Pl = Z(wabP) (1)

b

N' =" (wTN) (2)

b

For the position equation (equation 1) P is the initial, rest position of the vertex, b is a bone,
wy is the scalar influence (i.e., the weight) of b on the vertex and T is the four-by-four transform
matrix of the bone. The normal equation (equation 2) is similar except we use the normal’s resting
rotation (N) and the three-by-three rotation part of the bone transformation matrix as 7,,. These
calculations must be done every time the pose of the skeleton is updated to create a new set of
positions and normals for a mesh’s vertexes. When rendering the mesh this also requires the vertex
data to be re-sent to the graphics card if the skinning calculations were done on the CPU (software
skinning).

Figure 2 shows an example skeletal mesh animation in Blender, which uses a right-handed, Z-up
coordinate system. This means that the up axis is the positive Z axis, the right is the positive X
axis, and going into the screen is the positive Y axis. The example is a rectangular prism centered
on the origin.



Figure 2: An example skeletal mesh animation

Using equation 1, a skinned position can be determined for the vertex labeled V due to the
animation shown:

0.0 1.0 0.0 0.0 0.0 0.7071 0.0 —0.7071 0.0
ve| L0 |, _| 00 10 00 00 |, _ 0.0 1.0 0.0 0.0
- 1.0 171 00 0.0 1.0 0.0 271 07071 0.0 0.7071 0.0
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
wb1:O.5
w52:0.5
V=Y (V)
b
V' = Wp1Lp1V + wpaTpaV
1.0 0.0 0.0 0.0 0.0 0.7071 0.0 —0.7071 0.0 0.0
;L 0.0 1.0 0.0 0.0 ~1.0 00 10 0.0 0.0 ~1.0
V=051 60 00 1.0 00 10 |9 07011 00 07071 00 1.0
0.0 0.0 0.0 1.0 1.0 00 00 0.0 1.0 1.0
—0.35355 (left)
; -1.0 (forward)
Vi=1 085255 (up) (3)
1.0

A technique referred to as hardware skinning moves the skinning step from the CPU to the
GPU. This also allows the skinning calculation to benefit from the impressive parallelization offered
by modern graphics hardware. Another benefit is that the skeletal mesh can be treated as static
geometry since all of the deformations are done on the GPU. This allows options such as display lists
and vertex buffer objects [3] to be used to increase rendering performance.

The differences in program flow between software and hardware skinning are shown in figure 3.
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Figure 3: UML Activity diagram for skinned animations

As can be seen in figure 3, instead of sending new vertex data every frame, the pose data must
be sent every frame. This means, as far as memory bandwidth, number_of verts x sizeof (vertex) is
being traded for number _of bones x sizeof(bone;ransform). The size of a vertex in the BGE can
range from between six floats (position and normal) to thirty-one floats (position, normal, color, and
various texture coordinates). Using just position, normals and UV texture coordinates results in only
eight floats and is feasible for a simple character. Bone transformations, as mentioned earlier, are a
four-by-four matrix, which is sixteen floats. As for the number of vertexes and bones, documentation
for Unity3D (a game engine) notes that skeletons will usually have between sixteen and sixty bones,
and meshes will usually have between 1,500 to 4,000 vertexes, but possibly upwards of 5,000 to
7,000 vertexes [4]. Using thirty bones as suggested in [4] and an average of 2,750 vertexes, the total
memory, M, needed for vertex data is (assuming four bytes per float):

M = number_of wverts * sizeof (vertex)
M = 2,750 * 8 x sizeof (float)
M = 88,000 bytes

and for pose data is:

M = number_of _bones * sizeof(bone_transform)

M =30 % 16 * sizeof (float)

M = 1,920 bytes
In other words, hardware skinning will typically not use more memory bandwidth than software
skinning.

Hardware skinning is usually implemented as a vertex shader. An example GLSL vertex shader
from version 9.52 of NVIDIA’s graphics SDK [5] is shown in listing 1.

Listing 1: Example vertex shader for hardware skinning from NVIDIA’s graphics SDK

attribute vec4 position;
attribute vec3 normal;
attribute vec4d weight;
attribute vec4 index;
attribute float numBones;



uniform mat4 boneMatrices [30];
uniform vec4d color;
uniform vec4 lightPos;

void main ()

{
vecd transformedPosition = vec4 (0.0);
vecd transformedNormal = vec3 (0.0);
vecd curlndex = index;
vecd curWeight = weight;
for (int i = 0; i < int(numBones); i++)
{
mat4d m44 = boneMatrices[int (curlndex.x)];
transformedPosition += m44 * position * curWeight.x;
mat3 m33 = mat3(m44[0]. xyz,
md4 [1].xyz,
md4 [2]. xyz);
transformedNormal += m33 * normal % curWeight.x;
curlndex = curlndex.yzwx;
curWeight = curWeight .yzwx;
}
gl_Position = gl_ModelViewProjectionMatrix * transformedPosition;
transformedNormal = normalize (transformedNormal);
gl_FrontColor = dot(transformedNormal, lightPos.xyz) * color;
}

Attributes are per-vertex values while uniforms are global values. Typically uniforms will be
changed per-material or per-mesh. The NVIDIA example has a maximum of four bones influencing
each vertex, which allows weights and indexes (into the boneMatrices array) to be stored as vec4
(four floats) data types. It also imposes a limit of thirty bones for the whole skeleton. In the NVIDIA
shader, the mat44 variable stores a bone’s four-by-four transform matrix, which is multiplied against
the current vertex’s vec4 position value (the part inside the summation of equation 1). The mat33
variable is a three-by-three orientation matrix constructed from the bone’s transform matrix, and
it is multiplied against the current vertex’s vec3 normal value (the part inside the summation of
equation 2). A for loop is used for the summation, and the resulting vectors are added back to the
initial position and normal vectors.

2.3 Blender and the BGE
2.3.1 Class Prefixes

Blender and the BGE are broken down into many modules. Functions and classes from these modules
often have a prefix to help identify them (these prefixes also act as a poor-man’s namespace to avoid
name conflicts). In the BGE the following prefixes can be found:

BL Items closely tied to Blender. Most of these items are part of the code that converts Blender
data to BGE data.



SCA Generic game engine code. This handles a lot of generic logic and most of the BGE’s logic brick
system (a visual programming system). The prefix comes from the BGE’s Sensor, Controller,
Actuator architecture for logic bricks.

KX These items tend to be BGE specific code. The name comes from Ketsji, which was an old
name for the BGE.

KX_SCA These items blur the line between SCA and KX items. They should probably belong in
one prefix or the other.

SG These items belong to the BGE’s scenegraph code.

RAS These items belong to the BGE’s rasterization, or rendering, code. This code is usually referred
to as the “rasterizer.”

PHY These items belong to the BGE’s generic physics interface.
Some prefixes from Blender that one might see used in BGE code include:

BLF Blender font handling code.

BKE Blender kernel, code. This contains most of the code to actually manipulate Blender data.
BLI Contains useful data structures such as linked lists, trees, etc.

BLO Blender file loading code.

GPU Blender GPU rendering code that is primarily used for the viewport. This module is
sometimes referred to as bf_gpu when talking about rendering to differentiate it from general
gpu code/programming (e.g., OpenGL).

DINA Blender struct definition. Refer to section 2.3.2 for more details.

RNA Description layer for DNA. Refer to section 2.3.2 for more details.

2.3.2 Blender and DNA/RNA

Blender contains two systems for storing and manipulating data, these are DNA and RNA. DNA is
responsible for storing (and ultimately saving) Blender data, while RNA describes the DNA data
and how it can be accessed. In other words, DNA values (stored as C structs) are modified via RNA
(functions). Blender’s animation system uses this RNA for writing out new pose data. Unfortunately
looking up RNA values and modifying them were never optimized for speed, and sometimes these
operations can be slow.



2.3.3 BGE Overview

BGE Main Loop

Figure 4: UML activity diagram for the BGE’s main loop

Figure 4 shows a simplified version of the BGE’s main loop. As can be seen, every frame the BGE
has roughly four main tasks: update logic, update physics, update animations, and render. When
updating logic, the engine evaluates and executes any logic bricks or Python scripts that a user
may have setup. The physics engine (the BGE uses Bullet) is then given the chance to evaluate the
physics scene and step its simulations. Animations are updated next, which is further explained
in section 2.3.4. Finally, the scene must be rendered. This involves determining what needs to be
rendered (objects that will not be rendered this frame are “culled”), and issuing the appropriate
commands to have the GPU render the scene. Excluding the actual rasterization of the scene,
everything is performed on the CPU (including culling and mesh deformations), and in a single
thread.

2.3.4 BGE Animation Code

The code for updating animations can be seen in listing 2.

Listing 2: BGE animation code

void KX_Scene:: UpdateAnimations(double curtime)

{

for (int i=0; i<m-animatedlist—>GetCount (); ++i)
((KX_GameObject*) m_animatedlist —>GetValue (i))—>UpdateActionManager (curtime );

To handle animations, the BGE makes use of various classes, which are shown in figure 5. For
discussion purposes, the prefixes will be left off of the class names.



BGE Animation Classes

KX_Scene

ClistvValue* m_objectlist;
ClistvValue* m_animatedlist;

UpdateAnimations(double curtime)

K¥_GameObject

BL_ActionManager* action_manager

UpdateActionManageridouble curtime)

/)

BL DeformableGameUbject

RAS_Deformer *m_pDeformer

Ras_Deformer \ BL_ActionManager

Update() Updateidouble curtime)

LN

BL_MeshDeformer RAS_Meshobject |

Update()

BL_SkinDeformer

Apply() |
Update() |
BlenderDeformVertsi()
BGEDeformvertsi)

A

l
BL_ArmatureCbject

GetPose(bPose ##pose)
GetMRDPose(bPose **pose)
SetPoselbPose *pose)

v |
N
,.(T N |
N
| S
| ~
N
.
| l

bArmature | HEvaction

| Update(double curtime)

|
[

bPose

Figure 5: UML class diagram of classes needed for animations in the BGE

The Scene class contains an aggregate, called m_objectlist, of all of the GameObjects in the scene
(CListValue is a wrapper around C++’s vector class). Some of those objects can also be present
in m_animatedlist, which is iterated in Scene::UpdateAnimations(). ArmatureObjects represent
skeletons that we may or may not want to animate, and DeformableObjects are ones with deform-able



meshes. A handful of Deformers exist in the BGE, but the SkinDeformer is the only one of interest
for skeletal mesh animations. The SkinDeformer will deform the mesh based off of the current pose
of an ArmatureObject (usually the mesh’s parent object). A Deformer is updated during the render
stage while ArmatureObjects are updated during the animation stage.

The ArmatureObject contains Blender data in the form of bArmature and bPose pointers.
Every ArmatureObject that uses the same skeleton will also point to the same bArmature. All
ArmatureObjects make copy of their bArmature’s bPose. In order to actually update the pose, the
bArmature’s bPose pointer is saved and replaced with the ArmatureObject’s bPose, and then some
Blender functions are called to animate the bArmature. The bArmature’s original pointer is then
restored. The code that performs this update (as well as some blending) is shown in listing 3.

Listing 3: Pose update performed as part of BL_Action::Update()

if (m-obj—>GetGameObjectType() = SCA_IObject : : OBJJARMATURE)

BL_ArmatureObject *obj = (BL_-ArmatureObject*)m_obj;
obj—>GetPose(&m_pose ) ;

{
Object xarm = obj—>GetArmatureObject ();
bPose *xtemp = arm—>pose;
arm—>pose = m_pose;
PointerRNA ptrrna;
RNA_id_pointer_create(&arm—>id , &ptrrna);
animsys_evaluate_action(&ptrrna, m_action, NULL, m_localtime );
arm—>pose = temp;
}
if (m_blendin && m_blendframe<m_blendin)
{
IncrementBlending (curtime );
float weight = 1.f — (m_blendframe/m_blendin );
game_blend_poses (m_pose, m_blendinpose, weight, ACTBLEND_BLEND);
}

if (m_layer_weight >= 0)

{
obj—>GetMRDPose(&m_blendpose );
game_blend_poses (m_-pose, m_blendpose, m_layer_weight , m_blendmode);

}

obj—>SetPose (m_pose);

obj—>SetActiveAction (NULL, 0, curtime);

The SkinDeformer contains two functions for handling the mesh deformations that are exposed
to the user as “Vertex Deformers”: BlenderDeformVerts() and BGEDeformVerts(). Originally the
SkinDeformer would make calls into Blender code to handle the deformation. Later a “BGE Vertex
Deformer” (the original code was used to create the BlenderDeformVerts() function) was added to
focus on speed over accuracy, and it decreases the frame time of an animation heavy scene by about



30%. However, it lacks some features such as support for Blender’s B-Bones, and it has less accurate
normal calculations. These vertex deformers are called as part of SkinDeformer::Update(), which, in
turn, is called as part of SkinDeformer::Apply(). This makes SkinDeformer::Apply() the function to
call to kickoff skinning in the BGE.

When setting up a skeletal mesh in Blender, a mesh and skeleton are first both created. Then,
the mesh is “parented” to the skeleton. Thus, a mesh has at most one skeleton deforming it, but a
skeleton can deform many meshes. However, in most cases this is simply a one-to-one relationship.

Other types of animations other than skeletal mesh animations can be performed. These include
changing an object’s color, changing an object’s transform (position, rotation and/or scale), and
other minor animations. Since these animations are simple (usually updating a single vector or
matrix), they are usually much faster than animating a skeletal mesh. As such, this work will only
focus on improving the performance of skeletal mesh animations, and ignore the performance of other
types of animations.

3 Methods

3.1 Version Control

Blender recently switched from Subversion (SVN) [6] to Git [7] as its version control system [8]. The
main Git branch for Blender is its “master” branch. This project makes use of a repository cloned to
GitHub [9], where a “thesis” branch was also created.

3.2 Benchmark Platform

The following table lists various details of the computer used to run the benchmark scene.

Software
Operating System  Arch Linux 64bit 3.13.4 kernel
Compiler GCC 4.8.2
Graphics Driver NVIDIA Proprietary 331.38
Hardware
CPU Intel Core i7 Q 740 @ 1.73GHz
RAM 8GB of DDR3
GPU NVIDIA GeForce GT 425M

3.3 Benchmark Scene

The scene used to benchmark performance changes is comprised of 160 skeletal meshes. Each of these
skeletal meshes contains a sixty-nine bone armature and a mesh with 4,951 vertexes. All 160 skeletal
meshes perform the same animation, which is a silly dance animation. However they each have their
own skeleton, and each skeleton’s pose update is done independent of other skeletons. Therefore, this
benchmark can still be representative of multiple different characters performing different actions.
The scene also has no physics being calculated, which allows the characters to freely clip into one
another. A screenshot of the scene being run is shown in figure 6.
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Figure 6: Screenshot of the benchmark scene

The benchmark scene will be run through the stand-alone Blenderplayer instead of the embedded
player using the following settings:

blenderplayer -w 1600 900 -g show_framerate = 1 -g show_profile = 1
anim_stress.blend

Another version of this scene, which is accessed by adding - random to the end of the above
command line string, assigns a random action to each character. While this version is not as
consistent as the original scene (making it poorer for benchmarking), it does help to visually verify
that duplicates of the same character can play different actions. In other words, to show that the
threaded code is not breaking when used with different actions.
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3.4 Measuring Performance

3.4.1 BGE Profiler

Figure 7: Screenshot of the BGE’s in-game profiler

Figure 7 shows a screenshot of the BGE’s in-game profiler. The frametime is split into the following
categories: physics, logic, animations, network, scenegraph, rasterizer, services, overhead, outside,
and GPU latency. Of importance to this work are: animations, rasterizer, and GPU latency. In
general, the animation category logs time spent on pose and — after the work in section 4.3.2 —
software skinning updates. The rasterizer category logs time spent on getting data ready to send to
the GPU. This includes actions such as culling, sorting meshes for alpha, and sending buffer data to
the GPU. GPU latency is the time spent on a SwapBuffers calls. This gives an idea of how long the
CPU has to spend waiting for the GPU to finish rendering. [10] gives a more detailed overview of the
various categories.
For this work, the profiler is mostly used to get frametime and fps numbers.

3.4.2 gperftools
gperftools [11] is used for more detailed profiling that is offered by the BGE’s profiler. The data
from gperftools can also be used to generate a visual callgraph.

3.4.3 nvidia-settings

The nvidia-settings utility that ships with the NVIDIA drivers can be used to configure the driver
and query the driver for information. Starting with version 331.20 of the driver, nvidia-settings can
query for GPU utilization [12]. The following command is used to monitor GPU utilization:

watch -tnl nvidia-settings —-q gpuutilization

3.5 Verification

Helgrind (part of the Valgrind suite [13]) can be used to check for threading errors. According to the
Helgrind manual [14], Helgrind can detect the following three classes of errors:

1. Misuses of the POSIX pthreads API
2. Potential deadlocks arising from lock ordering problems
3. Data races — accessing memory without adequate locking or synchronization

Since OpenMP is being used for parts of this work, as noted in section 7.5 “Hints and Tips
for Effective Use of Helgrind” of the Helgrind manual [14], GCC needs to be built with the
--disable-linux-futex option for accurate output when using OpenMP.

Another Valgrind tool, Memcheck [15], was used to check for memory errors.
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4 Work

4.1 Animation Culling

The original animation code shown in listing 2 does not take into account whether the animated
object will actually be visible. This means that animation updates can be performed that have no
visual impact, but still consume resources. Regular object animations are much quicker in comparison
to skeletal mesh animations, which means culling them is not as important. This simplifies the
culling calculation since we can make some assumptions about skeletal meshes. A skeletal mesh
should have an armature and zero or more children meshes. If the armature has any children meshes
and all of these child meshes were culled, then we do not need to bother with updating the pose or
the mesh since they will not be visible. An example of what this code (without any of the parallel
improvements) looks like is provided in listing 4.

Listing 4: BGE animation code with culling

void KX_Scene:: UpdateAnimations(double curtime)

{
for (int i=0; i<m-animatedlist—>GetCount (); ++i) {
KX_GameObject *gameobj, xchild;
bool needs_update;
gameobj = (KX_GameObject*)m_animatedlist—>GetValue(i);
needs_update = gameobj—>GetGameObjectType() != SCA_IObject : : OB ARMATURE;
if (!needs_update) {
CListValue xchildren = gameobj—>GetChildren ();
bool has_mesh = false , has_non_mesh = false;
for (int j=0; j<children—>GetCount (); ++j) {
child = (KX_GameObject#)children—>GetValue(j);
if (!child—>GetCulled ()) {
needs_update = true;
break ;
¥
if (child —>GetMeshCount () = 0)
has_non_mesh = true;
elllsle
has_mesh = true;
}
if (!needs_update && !'has_mesh && has_non_mesh)
needs_update = true;
children —>Release ();
}
if (needs_update)
gameobj—>UpdateActionManager (curtime );
}
}
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This extra culling check adds very little to the overall cost of the animation code since mesh
culling is already being done. However, if some pose and mesh updates can be avoided a fair amount
of time can be saved. The exact savings is difficult to calculate since it is view dependent.

This optimization has already been committed to Blender’s master branch and was included as
part of the 2.69 release.

4.2 Bundled RNA Lookups

As discussed in section 2.3.2, updating poses requires using RNA to modify values, which can be slow.
Looking up the RNA property is one of the more expensive parts of the RNA writing step. Every
channel (e.g., X Position, Y Position, Z Position, etc) was being looked up as a separate property.
However, RNA supports looking up and modifying an array (e.g., Position). Therefore, time can be
saved by modifying arrays (one lookup per three to four writes) at a time instead of each channel
individually (one lookup per one write). The performance improvement is shown in figure 8.
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Figure 8: Results of RNA improvements

4.3 Multithreading
4.3.1 Parallel Pose Updates

The juggling of the bPose reference of bArmature described in section 2.3.4 saves memory, but it
can cause race conditions when attempting to perform the pose updates in parallel. If multiple
ArmatureObjects share a single reference to a bArmature, and then those ArmatureObjects attempt
to modify their bArmature simultaneously, problems will occur. Therefore, in order to avoid the race
conditions, it is better that each ArmatureObject not only has a unique copy of the bPose, but a
unique copy of the bArmature as well. The copy does consume a little more memory, but it makes
threading the animation code possible. Another potential race condition involved the bAction data
stored by the Action class. This bAction data does get modified during animation updates, so it was
best that each Action object held its own copy of the bAction data to avoid potential race conditions.

Initially, OpenMP [16] was used to parallelize this loop using an OpenMP parallel for pragma.
While OpenMP was simple to use, OpenMP support is compiler dependent since it relies on pragmas.
Since OpenMP is implemented at the compiler level, support can vary (e.g., different OpenMP
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versions), and performance is not equivalent across compilers. For example, MSVC 2010 introduced
a performance regression with OpenMP code that could cause code to run two times slower than
MSVC 2008 [17].

Recently, a threaded task scheduler was added to Blender named BLI task [18]. This opened up
an alternative to OpenMP that was not as compiler dependent. Furthermore, BLI_task could be
used for other parts of the BGE. Therefore, the code was switched from OpenMP to BLI_task, which
can be seen in listing 5. There was no discernible difference in performance between BLI_task and
OpenMP on the test platform (section 3.2).

Listing 5: Multithreaded animation update code

static void update_anim_thread_func(TaskPool xpool,

void xtaskdata ,
int UNUSED(threadid))

KX_GameObject xgameobj, xchild ;

CListValue *children;

bool needs_update;

double curtime = *(double*)BLI_task_pool_userdata (pool);

gameobj = (KX_GameObject*)taskdata ;

needs_update = gameobj—>GetGameObjectType() != SCA_IObject : : OBJARMATURE;

if (!needs_update) {

children = gameobj—>GetChildren ();

bool has_mesh = false , has_non_mesh = false;

for (int j=0; j<children—>GetCount (); ++j) {
child (KX_GameObject*) children —>GetValue (] );

if (!child—>GetCulled ()) {
needs_-update = true;
break;

}

if (child —>GetMeshCount () = 0)
has_non_mesh = true;

else
has_-mesh = true;

if (!needs_update && !'has_mesh && has_non_mesh)
needs_update = true;

children—>Release ();

}

if (needs_update)
gameobj—>UpdateActionManager (curtime );

}

void KX_Scene:: UpdateAnimations (double curtime)

TaskPool *pool = BLI_task_pool_create (KX_GetActiveEngine()—>GetTaskScheduler (),
&curtime ) ;
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for (int i=0; i<m-animatedlist—>GetCount (); ++i) {
BLI_task_pool_push (pool,
update_anim_thread_func ,
m_animatedlist —>GetValue (i),
false ,
TASK _PRIORITY LOW ) ;
}

BLI_task_pool_work_and_wait (pool);
BLI_task_pool_free(pool);

4.3.2 Parallel Software Skinning

The skinning step was not already in an easy-to-parallelize loop like the pose update. Another
problem with the software skinning is that it is counted under the “Rasterizer” category in the
profiler discussed in section 3.4.1. It would be ideal to perform the skinning step in the same loop as
the pose updates (Scene::UpdateAnimations()), as this solves both problems (the loop is already
running in parallel, and is already being recorded as “Animation” time). As discussed in section 2.3.4,
SkinDeformer::Apply() is essentially the entry point for the software skinning.

Unfortunately, SkinDeformer::Apply() requires a TPolyMaterial pointer, which is part of the
rasterizer code and not something that Scene::UpdateAnimations() has access to. However, SkinDe-
former::Update() has no arguments, and none of the skinning code requires the IPolyMaterial pointer.
Thus, skinning code could be moved from SkiinDeformer::Apply() to SkinDeformer::Update() and
SkinDeformer::Update() could be called in the Scene::UpdateAnimation() loop. It does not matter if
this update is called multiple times (e.g., once in Scene::UpdateAnimations() and again in the raster-
izer) since it contains a guard to only do skinning if there has been a pose update since the last call
to SkinDeformer::Update(). Since a pose can only be updated at most once per frame, the skinning
step should happen at most once per frame regardless of how many times SkinDeformer::Update() is
called.

It could be argued that the skinning code could have just be moved from SkinDeformer::Apply()
to Scene::UpdateAnimations(), but this breaks the encapsulation of SkinDeformer, which is best
avoided. The Scene does not need to know of the details of the mesh deformation caused by skinning,
just that it needs to be performed.

The performance improvement from both the parallel pose updates and the parallel software
skinning are shown in figure 9.
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Figure 9: Results of RNA and multi-threading improvements

4.4 Hardware Skinning

To implement hardware skinning, a new vertex deformer type was added to the SkinDeformer, and
each vertex deformer was made responsible for its own data. Previously, the Blender and BGE
vertex deformers handled vertex data in similar ways, but hardware skinning does not need to copy
data on the CPU before sending that data to the GPU. Currently the bone data is sent to the
GPU as a uniform array of four-by-four transform matrices. New member functions were added to
SkinDeformer to send the necessary uniform and attribute data to the graphics card. This allows the
SkinDeformer to handle preparing the data, but allows the rasterizer to control when that data is

sent to the GPU (i.e., when the OpenGL state is properly setup).

The modifications to Blender’s vertex shader were based on NVIDIA code shown in listing 1. The

modified vertex shader fragment can be found in listing 6.

Listing 6: Blender’s vertex shader modified for hardware skinning

attribute vecd4d weight;
attribute vec4 index;
attribute float numbones;

uniform bool useshwskin;
uniform mat4 bonematrices [128];

varying vec3 varposition;
varying vec3 varnormal;

void hardware_skinning (in vec4 position, in vec3 normal,
out vec4d transpos, out vec3 transnorm)

transpos = vec4 (0.0
transnorm = vec3 (0.

)

IE
)

vecd curidx = index;
vecd curweight = weight;
for (int i = 0; i < int(numbones); ++i) {

matd m4 bonematrices [int (curidx.x)];
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transpos += m44 % position * curweight.x;
mat3 m33 = mat3(m44[0]. xyz,

m44 [1]. xyz,

m44 [2].xyz);

transnorm += m33 % normal * curweight.x;

curidx = curidx.yzwx;
curweight = curweight .yzwx;
}
}
void main ()
{

vecd invertex;
vec3 innormal;

if (useshwskin) {
hardware_skinning (gl_-Vertex , gl _Normal, invertex, innormal);

else {

invertex = gl_Vertex;

innormal = gl_Normal;
}
vecd co = gl_-ModelViewMatrix * invertex;
varposition = co.xyz;
varnormal = normalize (gl-NormalMatrix * innormal);
gl_Position = gl_ProjectionMatrix * co;

The usehwskin uniform is always sent as zero. Any code wanting to make use of hardware
skinning can later set it to one, which happens in SkinDeformer. Along with the usehwskin uniform,
the SkinDeformer must handle the bonematrices uniform and the weight, index and numbones
vertex attributes. The performance improvement for hardware skinning can be seen in figure 10
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Figure 10: Results of RNA and hardware skinning improvements

4.4.1 Uniform Components and Bone Limitations

In OpenGL/GLSL, there is a hardware limit on the number of uniform components that a shader
can use. A “component” is essentially a float, so every float sent as a uniform to a shader uses
up a component. In order to leave components for the rest of Blender’s vertex shader, the bone
matrix data of the hardware skinning needs ensure that it does not use too many of the available
components. To leave enough components for other parts of the vertex shader, an arbitrary limit is
placed on the bone matrix data to only use half of the available components. Modern (shader model
4+) GPUs typically have 4096 components, which would give 2048 components for bone matrices,
which allows for 128 matrices (a four-by-four matrix is sixteen components). Older GPUs tend to
have 1024 components or less, giving a maximum of only 64 bone matrices on these graphics cards,
but still leaves 512 components for other uniforms. 512 components is enough for Blender’s current
vertex shader and leaves ample room for future additions to the vertex shader. Further work could
be done to find a smarter limit on components to squeeze more bones onto older GPUs.

Texture buffer objects (TBOs) could be used to work around component limits [3], but they are
not supported on the older GPUs that would benefit from them, and 128 matrices is a reasonable
limit on bones for the newer GPUs that support TBOs. TBOs could potentially be used to support
unlimited (bounded by texture memory) bones, but then separate code would need to be maintained
for hardware skinning on different GPUs.

4.4.2 Other Limitations

When using hardware skinning, each vertex can only have four bones influencing it. This limitation
should work well enough in most cases. If a vertex has more than four bones influencing it, the four
most influential bones are selected and their corresponding weights re-normalized (this is done in the
SkinDeformer). Hardware skinning also requires a specific vertex shader, and as such only works
with the BGE’s GLSL material mode, and currently does not support custom shaders. If hardware
skinning cannot be used (e.g., if the skeleton has too many bones), the skinning falls back to software
skinning using the BGE vertex deformer.
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5 Conclusion

With the benchmark scene described in section 3.3 running on the machine described in section 3.2, the
optimizations presented give approximately a seven to eight times speedup. Overall, the optimizations
presented show a greater performance improvement as more characters are added. A comparison
of frame times between Blender’s master Git branch and the branch used for this thesis work is
presented in figure 11.
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Figure 11: Comparison of frametimes between Blender’s master branch and this work

On the test machine, the scene is CPU bound when the improvements are taken individually.
However, with all of the improvements, the test scene becomes GPU bound. In order to further
increase performance, the BGE’s rendering system as a whole needs to be further optimized, which
is outside the scope of this project.
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