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Abstract 

 

 Fertilizer grade biosolid is sold to the general public by the Cheney Wastewater 

Treatment Plant for use as garden fertilizer and as a soil conditioner. Moist biosolid 

samples were obtained from the Cheney Wastewater Treatment Plant and antibiotic 

resistant gram negative bacteria were isolated from it. Bacteria isolated from these 

samples were resistant to tetracycline, ampicillin, streptomycin, kanamycin and 

chloramphenicol.  Tetracycline resistant bacteria were isolated on MacConkey’s agar 

supplemented with tetracycline and their resistance to ampicillin, streptomycin, 

chloramphenicol and kanamycin were also determined. A total of 48 isolates cultivated to 

determine the presence of plasmids which often contain antibiotic resistance genes. These 

isolates were identified using the Vitek2 Identification System (BioMerieux, Durham 

N.C., U.S.A.). Sixty-seven percent of isolates were discovered to have plasmids and 

54% had two or more plasmids. Plasmid size ranged from 2 to 10Kb.   
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1.0 Introduction 

 

1.1 Microbes and their Role in Human Health  

 It is difficult to estimate or even comprehend the impact the smallest of earth’s 

creatures have on almost every aspect of life on this planet. Microbes, from all taxonomic 

Kingdoms, are often overlooked as factors in larger systems, or have been in the past. 

Hungarian physician Ignaz Semmelweis proposed that childbirth fever could be 

prevented with hand washing by attending medics. Prior to this time, microbes were 

either ignored or regarded as curiosities having no impact on humans (Prescott, 2005). 

Modern scientists now know that microbes have a profound impact on every ecosystem 

studied. The study of bacteria is especially important to human health. Although 

microscopic, bacteria are responsible for essential processes such as fermentation, 

nitrogen fixation, elemental cycling and the breakdown of many substances that would 

otherwise remain unusable by other taxa, in addition to causing disease and illness all 

over the globe (Lipscomb, 1996).  

It is well known that bacteria are a major cause of human suffering and disease 

worldwide; disease causing bacteria are still the leading cause of death, even with the 

advent of antibiotics. The global mortality rate associated with gram negative bacteria is 

estimated to be between 20% and 40%; that is mortality not caused by old age, which is 

the same as in the pre-antibiotic era (Bengmark, 1998).  In addition, bacteria are 

becoming resistant to many of the known antibiotics while the development of new 
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antibiotics has slowed considerably over the past sixty years,  leading to public health 

concerns (Coates and Yu, 2007; www.cdc.gov/tb/publications\factsheet, last accessed on 

02-13-12).  

Most bacteria, however, are non-pathogenic and humans have evolved to rely on 

these bacteria to metabolize dietary polysaccharides and dairy products, and some even 

provide vitamins and prevent invasion by pathogens. Without such association with 

them, humans would be unable to survive. (Sonnenburg, et al., 2006; Aminov et al., 

2006).   These bacteria are considered to be normal flora. This commensal association is 

not unique to humans or even primates. All herbivorous vertebrates must rely on the 

fermentative characteristics of bacteria in order to digest cellulose rich diets (Flint et al., 

2008).  Indeed, eukaryotic organisms rely on prokaryotes for survival, even down to the 

cellular level in the form of mitochondria and chloroplasts, which many scientists now 

believe to be the descendants of symbiotic prokaryotes (Slomovic et al., 2005).  

 

1.2 The Spread of Antibiotic Resistance Among Pathogens 

Antibiotic resistance has been on the rise almost from the moment antibiotics 

were put into use (Amyes, 2000). While this trend would occur naturally as a function of 

the mutation in bacteria, several human practices have compounded the problem.  While 

resistance can be a function of mutation in single bacterial genes, horizontal gene transfer 

(transfer of antibiotic resistance through plasmid sharing), have become additional means 
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by which resistance is acquired. This is further complicated by the presence of high 

levels of antibiotics in the environment creating selective pressure for maintenance of 

these genes (Alonso et al., 2002; McAdams et al., 2004). Two examples are prescribing 

antibiotics where an infection would clear up without treatment and prescribing 

antibiotics for viral infections (Levy, 2000). In many cases, the patients themselves 

request that the physician prescribe antibiotics and exaggerate symptoms in order to get a 

prescription in the false belief that the illness will clear up more quickly (Pechere, 2001). 

Diligence on the part of physicians and public education has helped to alleviate this 

problem in recent years and the overuse of antibiotics by health organizations has 

declined in the United States (Finkelstein et al., 2001). For example, the Spokane 

Regional Health District distributes fliers to physicians for display in waiting areas 

requesting that patients do not ask for unnecessary antibiotic prescriptions 

(www.srhd.org). 

Another source of selective environmental pressure is the addition of antibiotics 

to household cleaners and sanitizers. This practice has become quite widespread and a 

study at the University of Michigan discovered that two common chemical 

antimicrobials, triclosan and triclocarbon, used in cleaning products could be detected in 

60% of waterways in the United States (Kreisberg, 2009).  

 Similarly, prophylactic treatment of crops and livestock with antibiotics to 

prevent infection and promote growth introduces significant amounts of antibiotics into 
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water and surrounding soils. It is estimated that at least 90% of antibiotics used in 

agriculture are to promote growth and as a preventative measure (Khachatourians, 1998).  

 Bacteria become resistant to antibiotics through several mechanisms. One 

mechanism is mutation of the bacterial genome. In the presence of antibiotics, bacteria 

that contain intrinsic resistance will proliferate or out compete those bacteria that do not 

have resistance. Mutational acquisition of antibiotic resistance is described as the 

frequency of detectable mutations which arise in a bacterial population in a given 

concentration of antibiotic. This rate can be difficult to accurately predict due to the 

variability in mutation rate, which is affected by physiology of the cell, genetics and the 

properties of the selective medium, but is a motivating force behind antibiotic resistance 

(Martinez and Baquero, 2000).  Another mechanism is acquired resistance via horizontal 

gene transfer of plasmid derived resistance genes. This mechanism is one on which this 

work is focused.    

Bacteria need a certain level of antibiotic resistance as protection from other 

microbes, either bacteria or fungi, but studies have shown that in areas where antibiotics 

are used frequently, such as hospitals or in countries where they are not regulated, 

antibiotic resistance amongst bacteria is much higher (Saunders, 1984). While bacterial 

antibiotic resistance has been widely publicized and studied (eg. MERSA) and has 

seeped into the public consciousness, the cause or mechanisms behind the rapid spread of 

antibiotic resistance in a bacterial population is less well understood by that same public  

(Siegel R.E., 2008; Kim et al., 2006). 
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1.3 Horizontal Gene Transfer in vivo  

Antibiotic resistance can be passed on through horizontal gene transfer between 

unrelated species of bacteria by transformation, transduction or conjugation. Plasmids are 

extrachromosomal, circular double-stranded DNA molecules that can be passed to other 

bacteria via one of the processes previously mentioned (Chen and Dubnau, 2004; Lindsey 

et al., 2009).  It is thought that bacteria do not retain plasmid borne resistance for long 

without some type of environmental pressure to do so, such as the presence of antibiotics. 

Some studies have indicated that long term exposure to antibiotics in the environment 

may slow the recession of resistance genes after antibiotic concentrations in the 

environment lessens (Diaz-Mejia et al., 2008).  

Transfer of genetic information between different species of bacteria has been 

observed since Frederick Griffith’s famous experiment in 1928 in which he demonstrated 

(and coined the term) transformation of a non-virulent strain of Streptococcus 

pneumoniae to a virulent strain (Griffiths et al., 2000). Since then, many other 

experiments have been performed that demonstrate the transfer of genes between 

unrelated species of bacteria (Trieu-Cuot et al., 1985; Salyers et al., 2004).   

Antibiotics ingested by humans to treat infection can select for resistant strains of 

the target organisms in the gut by killing the bacteria without resistance, which allows the 

proliferation of resistant strains; this resistance can then be transferred, via plasmid, to the 

natural enteric microbial community of the host (Nijsten et al., 1996; Klimuszko et al., 

1989; Akortha and Filgona, 2009; Kurokawa et al., 2007).   This exchange of genetic 
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material in the gut is considered to be a driving force behind the bacterial evolution of 

resistance, also resulting in "pathogenicity islands" and, therefore, a force behind 

acquisition and sharing of antibiotic resistance genes (Hacker and Carniel, 2001). Sharing 

of genetic information does not only occur in the human gut, but also in many other 

environments as well, such as between Prokaryotes and Eukaryotes. For example, gene 

transfer between prokaryotic and eukaryotic microbiota in cattle (Ricard et al., 2006) and 

in marine environments (Stewart and Siniggalliano, 1990) has been demonstrated. The 

resistant bacteria in the human gut subsequently enter the sewage treatment system after 

being flushed down the toilet and can act as a reservoir of resistance genes for other 

microorganisms present in the environment.  

During sewage treatment, human bacteria have ample opportunity to mingle with 

other bacteria.  The purpose of sewage treatment facilities is to remove solids, some 

organics and pathogens. This is accomplished in several stages: primary, secondary and 

tertiary. During the primary stage, large particulates such as rocks and sticks are 

removed, as well as oils and fats that are skimmed off the surface in a clarification step.  

The secondary stage of sewage treatment includes aeration, and microorganisms 

are used to degrade organic molecules too small to be removed during the primary stage. 

Many small wastewater facilities, including Cheney Wastewater Treatment Plant, use 

Surface Aerated Basins (lagoons) for the secondary step. The microorganisms involved 

in this secondary stage are indigenous water borne bacteria and protozoans. These 

microorganisms break down the organic solids in the wastewater through normal 
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metabolic processes and are provided with plenty of oxygen by use of mechanical 

aerators. The microbial communities of these lagoons have been analyzed by researchers 

around the world, are complex and varied, and include, but are not limited to,  

Proteobacteria, Bacteroides, Acinetobacter and Firmicutes, as well as nitrogen fixing 

bacteria such as Azotobacter and  Acidobacterium (Wagner and Loy, 2002; Sanapareddy 

et al., 2009). 

Further processing is accomplished during the tertiary stage. The purpose of the 

tertiary stage is to remove excess phosphorous and nitrogen and to control odor. This is 

also when disinfection, to remove excess microbial load, is performed. Cheney 

Wastewater Treatment Plant performs chlorination and dechlorination during the tertiary 

step for microorganism removal to produce Class A Biosolid, which is mixed with yard 

waste and wood chips and sold under the brand name EcoGreen. Biosolid, or sludge, is 

treated after the secondary step by anaerobic microbial activity and dewatering (Okoh et 

al., 2007; CityofCheny.org).  The purpose of wastewater treatment is not to sterilize the 

resulting biosolid, but to remove sediment, heavy metals, oil and grease as well as to 

ensure that numbers of potentially pathogenic bacteria are under acceptable levels. 

Sterilized biosolid would not be useful as a garden fertilizer as the process would also 

degrade the desired organic matter and kill bacteria that will enrich the soil.  Bacteria are 

desired for a healthy garden in that they can further break down soil to enhance mineral 

extraction and also play a crucial role in nitrogen fixation (Kuske et al., 2002; Chu et al., 

2007). In addition to the DNA contained in viable cells, cell-free DNA can also be 
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present in the environment, which can also be picked up by other bacteria (Nielsen et al., 

2000).  

Class A Biosolid is sold for use as fertilizer for gardens and farms growing crops 

for human consumption. The samples taken for this study were of Class A biosolid 

before combination with mulch. The resistance genes of bacteria can be ingested by 

humans via produce grown in these gardens, either through ingestion of soil or by uptake 

of resistance genes by the plants themselves (Conte et al., 2009). Once in the 

gastrointestinal tract these genes may potentially be transferred to other pathogenic or 

non-pathogenic bacteria in the gut of the host. This would give potential pathogens 

resistance against antibiotic treatment (Arthurson, 2008). 

 

1.4 Sewage Treatment Facility as a Reservoir for Antibiotic Resistance Genes 

Cheney Wastewater Treatment Facility is located south of Cheney and treats 

between 1.5 and 2.7 million gallons of wastewater per day. Wastewater is reclaimed 

through the collection system where debris and large objects are removed via passage 

through a screen to prevent damage to the plant. Wastewater is then processed by aerobic 

and anaerobic digestion (www.cityofcheney.org).  The bacterial genera involved with 

wastewater treatment is not known, however several studies have been carried out to 

determine a few of the major metabolic groups of bacteria. The most common genera in 

sewer sludge from wastewater treatment facilities reported from various locations are 
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Acidovorax, Delftia, Leptothrix, Methylibium, Polaromonas, Verminephrobacter, 

Rhodoforax, Azoarcus, Rhodocyclaceae, and Pseudomonas (Sanapareddy et al 2009, 

Gunther et al. 2009). 

 One byproduct of water treatment is biosolid (or sludge).  After the wastewater is 

treated by microbial remediation, it is processed further to reclaim much of the water. 

Once much of the water has been reclaimed, the biosolid product is composted, mixed 

with mulch, which is mostly wood, and is rated for use as a soil supplement and can be 

used as fertilizer (EPA, 1993). The Biosolid rating depends upon the manner in which the 

fertilized crops will be consumed. For example, crops that will be eaten raw require a 

Class A Biosolid rating. A Class A rating ensures that bacteria considered to be human or 

zoonotic pathogens (ex. Salmonella) are below detectable levels of less than 3 to 4 g of 

dry weight/solid. Class B biosolids, those approved for use on crops that will be cooked 

before consumption, have higher limits, but must still demonstrate a reduction in 

microbial load (Arthurson, 2008). Sewage sludge, and subsequently biosolid treatment, is 

regulated and rated by the U.S. Environmental Protection Agency, which sets out 

guidelines for toxin levels and testing for known microbial pathogens (EPA, 1993).   

Studies have demonstrated the incidence of horizontal gene transfer in wastewater 

treatment facilities (Marcinek et al., 1998; Auerbach et al. 2006; Tennstedt et al., 2006). 

In addition, the use of antibiotics in the Cheney area was characterized in a study done by 

M. Marshall (2007) as a graduate research project at Eastern Washington University.  

The study demonstrated that antibiotics used in a community are reflected in the type of 
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antibiotic resistance expressed in the bacterial population. The selection of antibiotics for 

use in this study was partly based on the survey of antibiotics used in Cheney, 

Washington, as reported in Ms. Marshall’s study.  

 

1.5 Biosolid as a Valuable Resource 

 The benefits of using biosolid as fertilizer are well documented and include 

increased phosphorus sorption and increased nitrogen concentrations (Garling and 

Boehm, 2000; Lu and O’Connor, 2000). In addition, biosolid is readily available, 

relatively inexpensive and can be used to revitalize areas that have lost topsoil due to 

erosion or construction (Meyer et al., 2000).  

 

1.6 Project Goals 

 The purpose of this project was to detect organisms that harbor antibiotic 

resistance genes in biosolid which is routinely used as fertilizer for crops and home 

gardens. To do this, samples of biosolid were collected and plated on selective media to 

isolate bacteria. Gram negative organisms were selected for this study as they are more 

likely to be enteric and, therefore, of human or animal origin. Organisms resistant to 

Tetracycline were selected first. To test for multiple antibiotic resistance, the resulting 

isolates was be screened for resistance to four more antibiotics: Ampicillin, 

Streptomycin, Chloramphenicol and Kanamycin. The isolates were identified using the 
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Vitek 2 Identification System. In addition, the presence or absence of plasmids in these 

isolates was confirmed by plasmid isolation and gel electrophoresis. Such plasmids, if 

they contain antibiotic resistance genes, could confer antibiotic resistance to other 

microbes present in the biosolid. 

 Materials and Methods 

 

2.1 Sample Site and Collection 

Approximately 1000g of biosolid was collected from the Cheney Wastewater 

Treatment Plant in sterilized jars. Samples were collected at the output site after water 

removal, but before the addition of mulch.  The samples were stored at 2-8C and used 

with 48 hours of collection. 

 

2.2 Isolation of Bacteria 

 One gram samples of biosolid were added to 100mL sterile phosphate buffer 

(1.7mM KH2PO4, 5.4mM Na2HPO4, 0.15mM NaCl, 2.7mM KCl, pH 7.2). Samples 

were vortexed for one minute to break up clumps and then filtered using sterile gauze to 

remove most of the solid particles. The filtrate was diluted by serial dilution up to 1:1000 

and aliquots of 1:10, 1:100 and 1:1000 were inoculated on MacConkey agar containing 

20µg/mL Tetracycline to select for resistant gram negative bacteria. The plates were 

incubated at 37˚C for 18-24 hours. 
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2.3 Processing of the Isolates  

 Forty-eight morphologically distinct colonies from the MacConkey agar 

containing Tetracycline were selected to determine their resistance to other antibiotics. 

The isolates were arbitrarily assigned numbers 1-48. Each isolate was screened for 

resistance to five additional antibiotics on MacConkey agar for a total of twelve plates 

per antiobiotic type. Plates were prepared with MacConkey agar infused with each 

antibiotic type separately. Each plate type was inoculated with isolates one through forty-

eight. Growth on these plates was indicative of their resistance to the antibiotics present 

in the growth media. The antibiotics, and their concentrations, used were Ampicillin 

50µg/mL, Streptomycin 50µg/mL, Chloramphenicol 30µg/mL and Kanamycin 50µg/mL. 

The plates were incubated at 37ºC for 24 hours.  

 

2.4 Identification of Isolates 

 Isolates from each resistance group were identified using the Vitek2 Automated 

Identification system. The Vitek2 Automated Identification System performs bacterial 

and yeast identification by analysis of their metabolic properties (Figure 1). Isolates were 

subcultured onto Columbia Blood agar (BioMerieux) and incubated overnight at 30-35C.  

A 0.5 to 0.63 McFarland standard solution was prepared by picking a colony off of a 

culture plate with a sterile loop and placing it in 0.45% sterile saline. The resulting 



 16

suspensions were placed onto a cassette that held the tubes and test cards in preparation 

for the inoculation step. Vitek2 Gram Negative cards (Figure 2) were matched with the 

samples and inoculum tubes that protrude from the cards were placed into the 

suspensions. The isolate numbers were entered into the computer for data tracking and 

matched with barcodes printed on the cards. The cassettes containing the suspension 

tubes and gram negative Vitek cards with inoculum tubes in the solution were placed into 

a vacuum chamber. The application of vacuum and then pressure was used to force the 

solution through the inoculum tube and into the wells of each card. The cards were 

incubated and read by the Vitek2 at 15 minute intervals until identification was achieved. 

The Vitek2 monitored the color changes in the reaction chambers from each card and 

used the color changes to create a distinct biopattern. The biopattern was compared to 

biopatterns kept in the Vitek2 database and identification was achieved when a match 

occurred. Upon identification, a confidence level was assigned (Acceptable, Good, Very 

Good or Excellent) if the probability percentage was over 85% (BioMerieux.com, 2011). 

Test substrates are listed in Table 1.   
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Figure 1. Vitek2 Compact 

 
 
 
 

 
 
 

Figure 2. Vitek2 Gram Negative Card 
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Test Abbreviation (Abbv) Test Abbv 

Ala-Phe-Pro-ARYLAMIDASE APPA D-SORBITOL dSOR 

ADONITOL ADO SACCHAROSE/SUCROSE SAC 

L-Pyrrolydonly-ARYLAMDASE PyrA D-TAGATOSE dTAG 

L-ARABITOL lARL D-TREHALOSE dTRE 

D-CELLOBIOSE dCEL CITRATE (SODIUM) CIT 

BETA-GALACTOSIDASE BGAL MALONATE MNT 

H2S PRODUCTION H2S 5-KETO-D-GLUCONATE 5KG 

BETA-N-ACETYL-GLUCOSAMINIDASE BNAG L-LACTATE alkalinisation lLATk 

Glutamyl Arylamidase pNA AGLTp ALPHA-GLUCOSIDASE AGLU 

D-GLUCOSE dGLU SUCCINATE alkalinisation SUCT 

GAMMA-GLUTAMYL-TRANSFERASE GGT Beta-N-ACETYL-

GALACTOSAMINIDASE 

NAGA 

FERMENTATION/GLUCOSE OFF ALPHA-

GALACTOSIDASE 

AGAL 

BETA-GLUCOSIDASE BGLU POSPHATASE PHOS 

D-MALTOSE dMAL Glycine ARYLAMIDASE GlyA 

D-MANNOSE dMAN ORNITHINE 

DECARBOXYLASE 

ODC 

BETA-XYLOSIDASE BXYL LYSINE 

DECARBOXYLASE 

LDC 

BETA-alanine arylamidase pNA BAlap DECARBOXYLASE 

BASE 

0DEC 

L-Proline ARYLAMIDASE ProA L-HISTIDINE assimilation lHlSa 

LIPASE LIP COUMARATE CMT 

PALATINOSE PLE BETA-

GLUCORONIDASE 

BGUR 

Tyrosine ARYLAMIDASE TyrA O/129 RESISTANCE 

(Comp. vibrio.) 

O129R 

UREASE URE Glu-Gly-Arg-

ARYLAMIDASE 

GGAA 

Table 1. Test Substrates on the Vitek2 GN Card 
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2.5 Plasmid Isolation 

 All isolates were screened for the presence or absence of plasmids. This was 

carried out using the Fermentas GeneJet Plasmid Miniprep Kit (#K0502).    

Samples from each plate were inoculated into 5mL LB broth (Lysogeny broth), 

placed on a shaker and incubated overnight at 37ºC. The resulting cell cultures were 

harvested by centrifugation. The cells in the pellet were then lysed, and the Lysate 

cleared by centrifugation (12000 rpm for 10 minutes). The rinsed Lysate was applied to a 

silica spin column to selectively bind DNA molecules at a high salt concentration. The 

adsorbed DNA was washed to remove contaminants, and the pure plasmid DNA was 

eluted in elution buffer.  

 

2.6 Gel Electrophoresis 

 The resulting DNA samples were separated on a 0.85% (w/v) agarose gel 

electrophoresis. The agarose gels were prepared with 1X TAE (Tris-acetate-EDTA) 

Buffer (0.04mM Tris-acetate, pH 8.0 and 0.001M EDTA) and low EEO Agarose. The 

gels were prepared by dissolving 0.85 g Agarose powder in 100mL of TAE at 95ºC. A 

100 mL volume was poured into the gel apparatus and allowed to solidify at room 

temperature. The wells were formed by placement of a comb while the gel was still in 

liquid form. Upon solidification, the comb was removed carefully. The wells were loaded 
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with 10µL of the plasmid preparations and 4µL of 5x SYBR Gold (Invitrogen, Carlsbad, 

CA) mixed with loading dye. The electrophoresis chamber was then filled with enough 

1X TAE Buffer to cover the gel. The electrodes were connected to an electric power unit. 

The electrophoresis was carried out at 71 milliamps. A supercoiled DNA ladder was 

added to the first well of each row to determine the plasmid size (New England Biolabs, 

#N0472S). The gel was photographed using a closed chamber and UV light with a digital 

camera. 
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3.0 Results 

 

3.1 Processing of Isolates 

  
Five of the recovered isolates were resistant to all of the antibiotics tested (isolates 

4,19,29,36 and 46) (Table 2). All of the remaining isolates were resistant to at least two 

of the challenge antibiotics as indicated in Table 2. Some of the isolates were identified 

as having the same genus and species. This can be expected due to relatively small 

variations in colony morphology during the visual macroscopic selection process. All 

isolates were gram negative organisms, but only some are considered enteric and thus 

could be of human origin. Aeromonas was the most prevalent genus followed by 

Raoultella. 
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Table 2. Multidrug resistance patterns for recovered isolates. 

Recovered Isolates 

       

Resistance 
Pattern  

Tetracyclin
e 20µg/mL 

Ampicillin 
50µg/mL 

Streptomyc
in 50µg/mL 

Chlorampheni
col 30µg/mL 

Kanamyci
n 
50µg/mL 

       
Group 1       
Isolates resistant 
to five antibiotics 

4 + + + + + 

 19 + + + + + 
 29 + + + + + 
 36 + + + + + 
 46 + + + + + 
       
Group 2       
Isolates resistant 
to four antibiotics 3 + + - + + 
 8 + + - + + 
 13 + + - + + 
 38 + + + - + 
 44 + + + + - 
       
Group 3       
Isolates resistant 
to three antibiotics 1 + + - - + 
 12 + + - - + 
 20 + + + - - 
 32 + + + - - 
 48 + + + - - 
       
Group 4       
Isolates resistant 
to two antibiotics 2 + + - - - 
 18 + + - - - 

 23 + + - - - 
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3.2 Identification of Isolates 

  
 Preliminary screening of the isolates employed several standard biochemical tests 

(Table 3). These were performed to confirm the information inferred from observation of 

colony growth on MacConkey agar plates. These rapid tests were used to determine if the 

organisms were truly members of the Enterobacteriaceae family before the automatic 

identification by use of the Vitek2.  
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1 - + + - + 25 - - + Gas - - 

2 - - + - + 26 - - + Gas + + 

3 - + + Gas - + 27 - - - - + 

4 - + + Gas - + 28 - + + Gas - - 

5 - - + - - 29 - - + Gas - - 

6 - + + - - 30 - - + Gas + - 

7 - - + - - 31 - - - - + 

8 - + + Gas - - 32 - + + Gas - - 

9 - + + Gas + - 33 - - + Gas - - 

10 - - - + - 34 - - + Gas + - 

11 - - + - - 35 - - - - - 

12 - - + - - 36 - + + Gas - - 

13 - - + Gas - - 37 - - + Gas - - 

14 - + + Gas - - 38 - - + Gas + - 

15 - - + + + 39 - - - - - 

16 - + + Gas - - 40 - + + Gas - - 

17 - - + Gas + - 41 - - + Gas - - 

18 - + + - + 42 - - + Gas + - 

19 - - + + + 43 - - - - - 

20 - + + - + 44 - + + Gas - - 

21 - + + - - 45 - - + Gas - - 

22 - - + - - 46 - - + Gas + + 

23 - + + - - 47 - - - - - 

24 - + + - + 48 - + + Gas - + 

 

Table 3. Preliminary Biochemical Tests 

 

Identification of the isolates was performed using the BioMerieuxVitek2 Automated 

Identification System to determine the bacterial Genera that survive through the biosolid 

processing stream. Identification results are shown in Table 4. 
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Isolate Identification 

Isolate 

Number 
Identity Isolate Number Identity 

1 
Raoultella planticola 

25 Aeromonas 

salmonicida 

2 Aeromonas 

hyrophila/caviae 
26 Unidentified 

Organism 
3 Raoultella ornitholytica 27 Not Identified 
4 

Raoultella ornitholytica 
28 Pseudomonas 

fluorescens 
5 Serratia liquefaciens 

group 
29 Aeromonas sobria 

 
6 Not Identified 30 Acinetobacter lwoffii 
7 Unidentified Organism 31 Not Identified 
8 

Raoultella planticola 
32 Aeromonas 

hydrophila/caviae 
9 Ochrobactrum anthropi 33 Not Identified 
10 Cupriavidus pauculus 34 Not Identified 
11 

Not Identified 
35 Acinetobacter 

ursingii 
12 Serratia marcescens 36 Pantoea spp. 
13 Citrobacter freundii 37 Not Identified 
14 

Not Identified 
38 Aeromonas 

hydrophila/caviae 
15 

Aeromonas sobria 
39 Acinetobacter 

ursingii 
16 

Not Identified 
40 Acinetobacter 

ursingii 
17 

Not Identified 
41 Serratia liquefaciens 

group 
18 

Raoultella ornitholytica 
42 Comomonas 

testosteroni 

19 Aeromonas sobria 43 Not Identified 
20 

Raoultella ornitholytica 
44 Aeromonas 

hydrophila/caviae 
21 Not Identified 45 Not Identified 
22 Serratia liquefaciens 

group 
46 

Aeromonas sobria 

23 Raoultella planticola 47 Acinetobacter lwoffii 

24 Unidentified Organism 48 Citrobacter freundii 

Table 4. Isolate Identification 
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3.3 Plasmid Isolation and Gel Electrophoresis 

 The numbers of plasmids from each isolate and their sizes were determined by gel 

electrophoresis. Supercoiled DNA was used in lanes 1 and 17 for size determination 

(New England Biolabs, #N0472S).  Thirty-four out of 48 isolates showed DNA bands 

varying in size from 2 to 10kb. Gel electrophoresis results are shown in Figures 3 and 4 

and approximate plasmid numbers and sizes are in Tables 5 and 6.  

 

Figure 3. Isolates 1-30 with supercoiled DNA ladder in lanes 1 and 17.  
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Isolate 

Number 

Lane Number 

of 

Plasmids 

Plasmid 

Size 

(Kb) 

Isolate 

Number 

Lane Number 

of 

Plasmids 

Plasmid 

Size 

(Kb) 

1 2 2 5,6 16 18 0  

2 3 4 6,8,9 10 17 19 2 6,9 

3 4 3 5,7,10 18 20 3 5,6,7 

4 5 3 6,8.10 19 21 3 5-6 

5 6 0  20 22 1 5 

6 7 0  21 23 0  

7 8 0  22 24 1 9 

8 9 0  23 25 3 5-6 

9 10 0  24 26 2 5,9 

10 11 0  25 27 0  

11 12 0  26 28 4 5-8 

12 13 0  27 29 1 8 

13 14 3 8,9,10 28 30 5 6-9 

14 15 3 5,8,10 29 31 1 6 

15 16 4 6,7,10 30 32 1 10 

 

Table 5.  Approximate plasmid number and size for isolates 1-30. 
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Figure 4. Isolates 31-48 with supercoiled DNA ladder in lanes 1 and 17.  
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Isolate 

Number 

Lane Number 

of 

Plasmids 

Plasmid 

Size 

(Kb) 

Isolate 

Number 

Lane Number 

of 

Plasmids 

Plasmid 

Size 

(Kb) 

31 2 3 6,8,9 40 11 1 9 

32 3 3 6,8,9 10 41 12 1 9 

33 4 4 4,8,9,10 42 13 3 5,6,8 

34 5 5 5-8 43 14 1 9 

35 6 4 4-9 44 15 0  

36 7 0  45 16 0  

37 8 1 4 46 18 0  

38 9 1 8 47 19 0  

39 10 1 9 48 20 0  

 
Table 6.  Approximate plasmid number and size for isolates 31-48. 

 

4.0 Discussion 

 The development of microbial antibiotic resistance from a human source is fairly 

straightforward and begins with the fecal shedding of enteric gram negative antibiotic 

resistant bacteria into the sewage system. Once in the sewage treatment facility, the 

bacteria freely mix with other genera of bacteria present. Genetic exchanges are possible 

under such conditions and are well documented (Bale et al., 1987). The cycle continues 

back to human hosts via garden products, which can have far reaching consequences for 

all members of a community. In addition to direct uptake of antibiotic resistance genes by 

ingestion of viable cells containing antibiotic resistance genes or by these genes spilled 

into the sewage effluent by dead cells, studies have demonstrated that these genes can 

also seep into surface water in areas surrounding the crops (Auerbach et al., 2006). 

Enterobacteriaceae are a normal part of the normal human gastrointestinal system and 

normally cause no disease. For an individual suffering from bacterial gastrointestinal 
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disease, the usual treatment is a course of antibiotics. This allows for selection of 

antibiotic resistant bacteria in the gut. When the antibiotic resistance is transferred in the 

gut from non-pathogenic bacteria to infection causing strains, then there is no treatment 

other than hydration to prevent dehydration in the patient (Rath et al., 2001; Thoren et 

al., 1980). Already, many deaths occur every year due to non-treatable bacterial 

infections and this rate is increasing (Blot et al., 2002).  

 The transfer of antibiotic resistance can occur in the gut or outside the gut when 

two bacteria are in close proximity to one another. Alternately, the antibiotic resistant 

bacteria, upon death, may spill their cell contents into the environment, whether water, 

soil or intestinal tract, releasing plasmids (Maruyama et al., 2006). 

 All of the isolates recovered from the Cheney Wastewater Treatment Plant 

biosolids were determined to be resistant to at least two commonly used antibiotics. 

Antibiotic resistance genes are known to pass between even unrelated strains of bacteria. 

Enteric bacteria which have a high level of antibiotic resistance are washed into the water 

treatment system where they mingle with many other bacteria. Sewage treatment plants 

are ideal environments for genetic transfer due to high nutrient levels and a high bacterial 

population (Silva et al., 2006). The presence of bacteria with antibiotic resistance genes 

in a treatment product intended for use on food crops can be problematic as these bacteria 

or their genes may end up in humans. 
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 There is a cost to the bacterial cell in retaining large numbers of plasmids, and 

research has shown that antibiotic resistant strains of some bacteria grow more slowly 

than wild type strains (Saunders, 1984). In addition, studies have shown that antibiotics 

are persistent in treated and drinking water and can be correlated to human use 

(Karthikeyan and Bleam, 2003). 

 Studies to measure the scope of the antibiotic resistance problem have shown that 

unrestrained use of antibiotics has a definite, measurable effect on the environment and 

the organisms living in those environments. The human overuse of the very weapons 

manufactured by microbes to fight other microbes is the cause of the rise in antibiotic 

resistance and the key to stemming the problem is to simply reduce their use 

(www.nih.gov).  

5.0 Conclusion 

 Samples of biosolid from Cheney Wastewater Facility showed ample bacterial 

growth. The high number of organisms recovered, and their diversity, is not surprising 

because wastewater treatment is not a sterilization process. What is surprising, however, 

is the incidence of antibiotic resistance. The biosolid samples were taken before the 

composting step, which may further reduce the bacterial load before the addition of 

mulch.   

Ten genera of gram negative bacteria were isolated from the biosolid sample 

obtained from Cheney Wastewater facility. They were Acinetobacter, Aeromonas, 
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Citrobacter, Comomonas, Cupriavidus, Ochrobactrum, Pantoea, Pseudomonas, 

Raoultella and Serratia.  

The genera Acinetobacter, Pseudomonas and Aeromonas belong to the Class 

Gammaproteobacteria, which is a diverse Class divided into 14 Orders and 25 Families 

(Prescott et al., 2005). Acinetobacter are aerobic inhabitants of water and soil. 

Aeromonas are facultative anaerobes whose natural niche is brackish water. Four out of 

the five isolates resistant to all five antibiotics were from the genus Aeromonas. A 

proposed reason for this is that Aeromonas is not of human origin. Aeromonas may be a 

continual part of the sewage treatment process and constantly exposed to antiobiotics in 

the system. Aeromonas, being adapted to and aquatic environment, may not survive in a 

terrestrial setting, such as a garden. Further studies could be done to assess the actual 

bacterial load after composting and the addition of mulch.  

Comomonas and Cupriavidus are included in the Class Betaproteobacteria, Order 

Burkholderiales. Ochrobactrum are included in the Order Alphaproteobacteria and are 

organisms normally found in soil. These organisms are not considered to be part of 

normal human flora although they can be opportunistic human pathogens.  

Of the ten genera isolated, only Raoultella, Serratia, Citrobacter and Pantoea, are 

members of the family Enterobacteriaceae and are therefore considered to be a normal 

part of the human intestinal microbial community. Horizontal gene transfer between 

these species of Enterobacteriaceae and other unrelated bacterial genera has been well 

documented (Doi et al., 2004; Lawley et al., 2003).   
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The perceived safety of biosolid application for crop fertilization only reflects the 

monitoring of viable pathogenic bacteria such as Escherichia coli and Salmonella 

(Arthurson, 2008). The potential pathogenicity of these organisms, however, does not 

address the effect of antibiotic resistance genes in the various bacteria that are not 

monitored. These organisms are themselves harmless, but carry a very real potential 

threat in the form of transferrable antibiotic resistance which directly correlates to 

antibiotic consumption in a community. 
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