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Abstract 
    

 The relationship between climate change at the Pleistocene-Holocene Boundary 

(ca. 12,600-10,200 cal B.P.) and cultural responses to attendant shifts in the environment 

remains a vexing issue for archaeologists.  This study compiles and analyzes glacial, 

palynological, faunal, and stratigraphic/geomorphological proxy datasets for climate 

change in the Pacific Northwest of North America and compares them to the coeval 

archaeological record.  The primary purpose of this exercise is to consider the potential 

ways in which climate change at the Pleistocene-Holocene Boundary affected cultural 

development for Late Paleoindian-Early Archaic peoples in the Pacific Northwest.  

Results indicate that climatic and environmental change at this interval was rapid or 

abrupt, and of a magnitude that likely produced varying adaptational responses by 

peoples of different cultural traditions who appear across the region at this period.  

Transformations in tools and technology, shifts in dietary habits, migration and 

regionalization, and trade intensification are all elements of Late Paleoindian-Early 

Archaic cultural responses to rapid climate change.    
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Chapter 1  
 

 

Introduction 
 
 

 

 

Statement of Problem 
 

 

 Climate change at the Pleistocene-Holocene Boundary (ca. 12,600-10,200 cal 

B.P.) is considered one of the most significant episodes of paleoclimatic change in the 

last 20,000 years.  It is the time interval when humans begin specific adaptations to new 

territories and when glacial conditions associated with the Younger Dryas cold reversal 

transition to a climate regime that, by all indicators, was warmer and drier than today.  

Significant shifts in the morphology, density, diversity, and distribution of plant and 

animal communities are associated with this period.  Terminal Pleistocene megafauna, 

including mammoths, mastodons, and ancient bison, become extinct at this interval.  

High resolution paleoenvironmental proxy records suggest that the shift in climate 

regimes may have occurred abruptly or rapidly, possibly taking place in a matter of years 

to decades (Alley 2000; Alley et al. 2003; Penn State 2006).  Ecological responses to 

climate change varied in time, magnitude, and duration based on a multitude of factors.   

 Human responses to climate change have long concerned archaeologists and 

paleoecologists (Graf and Bigelow 2011).  This is particularly true for the Pleistocene-

Holocene Boundary, when significant changes in the material culture of Late Paleoindian 

peoples occur coevally with a significant shift in climate regimes and associated changes 

in the environment.   Many of the proxy datasets that have been used to interpret the 

different ecologies encountered by human populations during this period have not been 
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compiled in a single publication for the Pacific Northwest region.  In order to understand 

climate change at the Pleistocene-Holocene Boundary in the Pacific Northwest and to 

address questions about the relationship between humans and climate change, a 

comprehensive review of paleoclimatic/paleoenvironmental proxy datasets from primary 

sources is necessary.   

 This study addresses the issues stated above by examining datasets generated 

from four of the most widely reported proxy indicators for climate change at the terminal 

Pleistocene and Early Holocene in the Pacific Northwest: glacial features, pollen, fauna, 

and stratigraphy/geomorphology.  Proxy datasets are analyzed and compared with one 

another for the purpose of better understanding the conditions encountered by early 

human inhabitants of the region.  In the concluding chapter, the results are compared with 

the archaeological record in order to consider the possible responses of Late Paleondian-

Early Archaic peoples to major shifts in the environment and attendant resources as a 

result of climate change.   

 Three questions framed around the data generated in Chapters 3-6 are addressed 

in the conclusion: 1) What are the characteristics of climate change at the terminal 

Pleistocene in the Pacific Northwest?;  2) What is the nature of paleoenvironmental 

change at the Pleistocene-Holocene Boundary?; and  3) What is the relationship between 

regionalization of Late Paleoindian-Early Archaic populations and climate change?  

These questions focus on the potential ways in which climate change and associated 

changes in ecologies influenced cultural development across the region.   

 The emerging pattern suggests that as the cool-moist/cool-dry conditions of the 

Younger Dryas period abruptly or rapidly shifted to the warm-dry Early Holocene, major 
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changes in the landscape occurred in all physiographic regions of the Pacific Northwest.  

Across the area, the base levels of major rivers and lakes dropped, the frequency and 

severity of fires increased, previously habitable environments became desiccated, and the 

availability of certain animals and plant resources was significantly reduced.  These 

changes were of a magnitude that likely produced varying adaptational responses from 

humans inhabiting the region.   

 The archaeological record shows distinct changes in the tools, technology, 

settlement, and subsistence patterns of Late Paleoindian-Early Archaic peoples at the 

Pleistocene-Holocene Boundary.  Characterized by large and rigorously defined fluted 

points and a spear weapons system, the Paleoindian-Late Paleoindian Clovis tradition is 

replaced by smaller projectile points presumably used in atlatl/thrusting weapons 

systems, more expedient and diversified technologies, and generalized subsistence 

strategies (i.e., an Early Archaic lifestyle).   Emphasizing expedient technology and a 

more generalist subsistence approach, the Windust tradition quickly came to dominate the 

archaeological record by the Early Holocene.  Windust peoples appear to have been able 

to quickly and successfully adapt to ecological changes associated with climate change.   

 The contemporary presence of Windust sites, the Haskett site (10PR37), and the 

Haskett-like tradition at the Sentinel Gap site (45KT1362) suggests that groups of people 

with different cultural affiliations began moving into the Pacific Northwest at the 

Pleistocene-Holocene Boundary.  Projectile point/biface characteristics and Olivella and 

obsidian trade goods argue for a south-to-north and east-to-west migration of peoples into 

the Pacific Northwest.  While direct lines of evidence cannot be drawn, there is enough 

paleoclimatic and archaeological data to argue that climate and environmental change at 
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the Pleistocene-Holocene Boundary was significant enough to create pressures on Late 

Paleoindian-Early Archaic peoples to change the way they utilized and conceptualized 

their environment.  Adaptational responses were manifested in the form of migration, 

range expansion, shifts in dietary habits and the tools used to obtain subsistence 

resources, and trade intensification.  Climate change at the Pleistocene-Holocene 

Boundary was of a magnitude that arguably has not since been paralleled, and people 

inhabiting the region at this interval should be understood within the context of rapidly 

changing ecologies and transformations in human lifeways.   

 

Methodology 
 
 

 Paleoclimates of the terminal Pleistocene and Early Holocene are interpreted from 

proxy indicators for climate, which act as indirect measurements of prevailing weather 

patterns in the absence of instrumental records.  Glacial features, pollen, fauna, and 

stratigraphy/geomorphology are the four proxy types that are used in this study because 

they are the most widely reported sources for paleoclimate in the Pacific Northwest at the 

Pleistocene-Holocene Boundary.  Further, researchers have determined that these are 

among the most effective indicators for assessing past climate within defined periods of 

time (see Gorham et al. 2001 for justifications and limitations).  By using multiple 

proxies, it is possible to gain a much more effective resolution of local and regional 

conditions.  Background information on climates and environments at and around the 

Late Pleistocene and Early Holocene is provided in Chapter 2.  Proxy indicators are 

analyzed individually by chapter (Chapters 3-6) and discussed by physiographic regions                                                               

and sub-regions (Figure 1.1).  



5 

 

 Data generated 

from a single proxy type 

and site is referred to as a 

“proxy dataset.”  Proxy 

datasets are presented as 

they were interpreted by 

the original authors and 

come entirely from primary 

sources. Secondary sources 

from qualified authorities 

are used to assist in the                       

interpretation and  

summarization of data.           Figure 1.1. Physiographic regions of the Pacific Northwest (adapted from 

                 Hammond 1970 [1965]). 

In the final chapter  
 
 (Chapter 7), the results of the preceding chapters are used to assess how climatic and 

environmental change may have influenced cultural development during the Late 

Paleoindian to Early Archaic transition.                                

 Dates are presented in calibrated radiocarbon years before present (cal B.P.).  In 

instances where primary and secondary sources provide dates in uncalibrated radiocarbon 

years before present (rcy 14C) or thousands of years ago (kya), dates were calibrated 

using the INTCAL09 calibration curve (Reimer et al. 2009).  Despite statistical 

uncertainties that are introduced when calibrating radiocarbon dates (Dehling and van der 

Plicht 1993), calibrated dates more accurately reflect the actual time of an occurrence or 

period, and there is a need for consistency in the reporting of radiocarbon dates.  
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Chapter 2 
 
 

Climatic and Environmental Background 
 

 

 

 

Introduction 

 

 The climatic history of the Pacific Northwest is inferred from a wide variety of 

biological, geological, physical, and chemical proxy records.  These indirect 

measurements of climate allow researchers to interpret past conditions and document 

discontinuities and changes in long term prevailing weather conditions.  Proxy data taken 

from an individual location offers evidence for localized paleoclimate.  Multiple proxy 

datasets taken from sites across a large geographic area, however, can provide strong 

evidence for broad-scale paleoclimatic trends and shifts in regimes that occur on regional, 

hemispheric, and global scales.  

 The preponderance of evidence from published primary sources suggests that in 

the Pacific Northwest, there were significant biotic, atmospheric, geologic, and 

hydrospheric responses to episodes of Late Quaternary climate change.  These changes 

appear to have occurred rapidly and were of a magnitude that likely produced varying 

responses from humans inhabiting the region.  This chapter provides a general overview 

of climate change and associated changes in the environment at and around the terminal 

Pleistocene and Early Holocene.  It specifically focuses on the boundary between the two 

epochs, which is variously referred to as the Pleistocene-Holocene Boundary (PHB), Late 

Pleistocene-Early Holocene transition, terminal Pleistocene to earliest Holocene 

transition, and other variations of the above.  Accordingly, the information presented in 
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this chapter will provide a context for understanding the individual proxy indicators for 

climate discussed in the ensuing chapters.  It will also provide a framework for the 

questions outlined in Chapter 1 and discussed in Chapter 7 with regard to the human-

climate dynamic. 

 

Paleoclimates and Paleoenvironments of the Pleistocene and Holocene 
 

 

Early-Late Pleistocene: 2.5 Million Years Ago-ca. 11,400 cal B.P. 

 The PHB occurred at the end of a geologic epoch that began 2.5 million years 

ago.  The Pleistocene was dominated by ice age conditions with repeated cycles of glacial 

advance and retreat.  The most recent glacial event in North America, known as the 

Wisconsin Glacial Episode, occurred ca. 80,000-10,000 years ago (USGS 2003).  

Between ca. 22,000-16,000 cal B.P., the Cordilleran Ice Sheet, which occupied the 

northern portions of the Pacific Northwest, advanced into the Idaho Panhandle and 

created an ice dam that formed the massive Glacial Lake Missoula (IAFI 2011).  

Geological records indicate that periodic dam failures caused a series of catastrophic 

floods, known as the Missoula or Bretz Floods.  These episodic floods significantly 

shaped the landscape of Washington, northern Oregon, northern Idaho, and eastern 

Montana (see Pardee 1910, 1942; Bretz 1927; Smyers and Breckenridge 2003).   

 The Pleistocene ice age included multiple glacial and interglacial cycles 

comprised of periods of cold stadials and warm interstadials.  The last of the Late 

Pleistocene interstadials was the Bølling-Allerød warming period (ca. 17,600-13,200 cal 

B.P.).  The Bølling-Allerød was interrupted by the last glacial advance recorded to date, 

the Younger Dryas.  
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Pleistocene-Holocene Boundary: ca. 12,600-10,200 cal B.P.  

 The Pleistocene-Holocene transition began during the Younger Dryas (also 

referred to as the Younger Dryas “chronozone”) which occurred at ca. 13,200-11,400 cal 

B.P.  The sudden climatic shift from Bølling-Allerød warming to Younger Dryas cooling 

is characterized by a rapid return to glacial conditions in latitudes of the Northern 

Hemisphere, dramatic increases in global ice volume, and a shift in the track of the jet 

stream over the northwestern United States (Whitlock and Bartlein 1997:58; Grigg and 

Whitlock 2002:2067; Brunelle et al. 2005; Porter and Swanson 2008).  The shift in 

regimes is evidenced by increases in cold-adapted animal and pollen species, decreases in 

warm-adapted taxa, and geochemical changes in areas across North America and Europe 

(Gorham et al. 2001:102).  

 Coterminous with the last stages of the Younger Dryas are the extinction of many 

large-bodied animals across North America including mammoths and mastodons 

(elephants), ancient bison, camelids, horses, and giant ground sloths (Daugherty 1956).  

A reduction in body sizes of selected Early Holocene fauna including bison and elk 

appears to occur in concert with this extinction (Lyman 2004, 2010).  Terminal 

Pleistocene megafauna have often been found stratigraphically above a black organic-rich 

layer of soil in the form of mollic, paleosols, aquolls, diatomites, or algal mats at sites 

across the United States.  These soils are radiocarbon dated to ca. 12,725-11,220 cal B.P. 

and are interpreted as stratigraphic manifestations of the sudden shift from Bølling-

Allerød warming to Younger Dryas cooling (Haynes 2008:6520).  

 In the Pacific Northwest, Younger Dryas conditions are characterized by cool-

moist climatic conditions, although in some localized areas the climate was cool-dry 
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(Mack et al. 1976, 1978b, 1978d, 1983; Barnosky 1985a, 1985b; Whitlock 1992; 

Whitlock and Bartlein 1997; Grigg and Whitlock 1998; Whitlock et al. 2000; Mehringer 

1996; Heinrichs et al. 2001).  This period lasted until ca. 11,400 cal B.P. (Mehringer 

1985; Chatters 1995), after which time it was replaced by significantly warmer and drier 

conditions.   

 

Early Holocene: ca. 11,400-9000 cal B.P. 

 By ca. 11,400-9,000 cal B.P., paleoenvironmental proxy records from sites across 

the Pacific Northwest indicate that conditions were likely warmer and drier than today in 

most areas. Rapid wasting of glaciers, shrinking of vast lakes, significant lowering of 

river levels, desiccation of land, and final catastrophic floods are characteristics of this 

period.     

 Early Holocene vegetation is marked by an expanse of xeric plant communities 

and increases in sagebrush and grass vegetation in many of the physiographic 

regions/sub-regions of the Pacific Northwest (Hansen 1947; Mack et al. 1976, 1978a, 

1978b, 1978c, 1978d, 1979; Nickmann 1979; Leopold et al. 1982; Mehringer 1985, 1996; 

Barnosky 1985a, 1985b; Sea and Whitlock 1995; Whitlock and Bartlein 1997; Brunelle 

and Whitlock 2003; Brunelle et al. 2005; Doerner and Carrara 1999; Heinrichs et al. 

2001).  Pollen data suggests that xeric, shrub-dominant steppe communities extended as 

far as the mountains surrounding the Columbia Basin during this interval (Mehringer 

1985:174).  According to Chatters (1995:381), this suggests that available moisture may 

have been up to 40 percent less than today.  Warmer winters and hot summers with 

winter dominant precipitation are postulated for the Early Holocene period (Chatters 
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1991; Chatters and Hoover 1992).  Warmer and drier conditions are also recorded in the 

isotopic record at ca. 10,200 cal B.P. (Davis and Muehlenbachs 2001:3000). 

 Aggradation and massive eolian deposition associated with a transition to drier, 

warmer conditions are registered across the Pacific Northwest during the Early Holocene.  

At the same time, flooding may have occurred as a result of decreased vegetation 

combined with winter warmth and an increase in rain-on-snow events (Chatters and 

Hoover 1992:52).   

 Early Holocene warming in the Pacific Northwest terminated at the beginning of a 

severe climatic disruption that occurred from ca. 9000-8000 cal B.P.  Mayewski and 

others (2004) refer to the period as the “Glacial Aftermath” rapid climate change (RCC) 

interval.  The climatic episode is characterized by cooling trends over much of the 

Northern Hemisphere, as indicated by evidence for major ice rafting, greater atmospheric 

circulation over the North Atlantic and Siberia, increases in polar northwesterly outbreaks 

over the Aegean Sea, and glacier advances in northwest North America.  In lower 

latitudes there is evidence for widespread aridity, a change to more seasonal and 

torrential rainfall regimes, decreases in summer monsoons, and widespread drought.  

 Climate during the Glacial Aftermath RCC interval is characterized by a partial 

return to glacial conditions preceding an orbitally driven delay in deglaciation of the 

Northern Hemisphere.  Mayewski and others (2004) postulate that bipolar ice sheet 

dynamics still had the potential for substantial effects on global climate.  Climate at this 

interval is seen as having stronger ties to the glacial world than subsequent periods of 

Holocene RCC (Mayewski 2004:248-252).   
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Mid-Holocene Cold Reversal: ca. 8200 cal B.P. 

 By the beginning of the Mid-Holocene, an abrupt cold reversal at ca. 8200 cal 

B.P. that is believed to be associated with the Glacial Aftermath RCC interval is recorded 

in the Pacific Northwest (Alley et al. 1997; Mayewski et al. 2004).  The 8200 cal B.P. 

event is reported to have lasted for less than 100 years and generated abrupt aridification 

and cooling in North America, the North Atlantic, Africa, and Asia (Alley et al. 1997; 

Street-Perrot and Perrot 1990; Barber et al. 1999; Weiss 2000:75; Kobashi et al. 2007; 

NOAA 2008).  This period is marked by decreases in snow accumulation rates, lower 

levels of atmospheric methane, and increases in atmospheric dust and sea-salt loadings 

which suggest widespread dry conditions (Alley et al. 1997; Blunier et al. 1995).  The 

event is prominently recorded in the Greenland Ice Sheet Project (GISP) and GISP2 data 

(Alley et al. 1997).  Weiss (2000:76) reports that the magnitude of some of the 

measurable variables associated with the 8200 cal B.P. event is second only to the 

Younger Dryas.  Within two decades of the event, temperatures cooled by ca. 3.3 degrees 

Celsius in Greenland (Alley et al. 1997; Kobashi et al. 2007).  At the terminus of the 

climate anomaly, temperatures warmed and returned to their previous levels (NOAA 

2008).   

 It is postulated that the forcing factor for the cold event was a perturbation of 

thermohaline circulation caused by freshwater inputs associated with the decay of the 

Laurentide Ice Sheet (von Grafenstein et al. 1998; Barber et al 1999).  The phenomenon 

is commonly referred to as a “Heinrich Event” (Heinrich 1988).  Although the spatial 

extent is still debated (NOAA 2008), there is evidence to suggest that climate change 

possibly associated with the 8200 cal B.P. event occurred in the Pacific Northwest.  To 
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date, little research has been conducted to document the event in the Pacific Northwest 

region.  For this reason, evidence supporting the occurrence of the cold reversal is 

provided whenever possible (see Chapters 3-6), even though the climatic episode 

occurred at a later interval than the period of interest for this study. 

 
Evidence for Rapid or Abrupt Climate Change at the  

Pleistocene-Holocene Boundary 

 
 There is growing evidence to suggest that climate change can occur much more 

rapidly or abruptly and with greater frequency than traditionally thought (for selected 

references see Crowley and North 1988; Manabe and Stouffer 1995; Alley 2000; Alley et 

al. 1997, 2003; CACC 2002; Mayewski et al. 2004; Broecker 2003).  In addition to 

dramatic shifts in climate associated with glacial and interglacial cycles, it is now 

apparent that significant changes in climate can occur on millennial to less-than-decadal 

bases (Hurrell and van Loom 1997; Alley 2000; Alley et al. 1997, 2003; Mayewski et al. 

2004; Steffensen et al. 2008).   

 Using globally distributed high-resolution proxy records, paleoclimatic studies 

show that there were numerous intervals of hemispheric to global rapid/abrupt climate 

change throughout the Late Quaternary.  One such period occurred during the transition 

from the Late Pleistocene to Early Holocene (PHB) and may have happened in as little as 

50 years or less (Alley 2000; Alley et al. 2003; Penn State 2006).  Several periods of 

RCC have also been documented during the Holocene (ca. 11,400 cal B.P.-present) 

(Mayewski et al. 2004; Weninger et al. 2009).   

 Records of Late Quaternary rapid/abrupt climate change indicate that landscapes 

at the PHB were highly dynamic and unstable.  The resulting ecosystem variability 
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undoubtedly had some impact on human access to resources (Newby et al. 2005:141). 

While debate exists over the degree to which these conditions influenced Late 

Paleoindian-Early Archaic cultural development, the archaeological record shows a high 

degree of synchroneity between changes in material culture and climate at this interval.  

People inhabiting the Pacific Northwest during this dynamic period likely encountered 

rapidly occurring changes in climate and subsequent changes in the distribution of 

significant economic and subsistence resources.   

 
Forcing Mechanisms for Climate Change 

 

 In the past several decades there has been significant attention on the forcing 

mechanisms for climate change.  Forcing mechanisms are often discussed in terms of 

“internal forcing” and “external forcing” factors.  Internal forcing factors are those that 

are intrinsic to the earth and its atmosphere, and external forcing factors are those 

external to earth that are influenced by orbital, galactic, and solar processes.  These 

factors can operate independently or in concert with one another.   

 Internal forcing factors for Late Quaternary climate change are thought to include 

retreating ice sheets and changes in the insolation and associated positive feedbacks 

related to ice sheets (Mayewski et al. 1997:26, 345), shifts in thermohaline circulation 

possibly associated with deglacial warming and meltwater pulses (i.e., a Heinrich Event) 

(Stuiver et al. 1995; Alley et al. 1997; Bond et al. 1997; Barber et al. 1999:344), El Niño-

Southern Oscillation changes associated with orbital controls (Clement et al. 1999), and 

increases in the concentration of carbon dioxide (Newby et al. 2005:141) possibly 

associated with volcanic activity.  Volcanic activity has been posited for short and long 
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term changes in climate at localized and regional extents (Bryson and Goodman 1980).  It 

has been suggested that Late Quaternary eruptions of Mount Mazama had a major impact 

on flora, fauna, and human settlement in surrounding areas (Hansen 1942, 1947; Grayson 

1979:427; Matz 1987, 1991).   

 External forcing factors for climate change are widely believed to be caused by 

cycles of earth-sun orbital parameters known as the Milankovitch Cycles (Milankovitch 

1998 [1941]; Hays et al. 1976) and changes in insolation related both to the earth’s orbital 

variations and to solar variability (Mayewski et al. 2004).  It is has also been suggested 

that external climate change at the terminal Pleistocene was the result of extraterrestrial 

comet impact at ca. 12,700 cal B.P. (Firestone et al. 2007), although this theory is 

debated (see Haynes 2008; Holliday and Meltzer 2010).   

 
Discussion  

 

 The dramatic changes that are observed in the paleoclimatic and 

paleoenvironmental record of the Pacific Northwest during the Late Pleistocene-Early 

Holocene were of a magnitude that has not since been paralleled.  There is a vast 

accumulation of data documenting this variability, yet much of the published primary 

data used to discuss conditions at the terminal Pleistocene and Early Holocene have not 

been compiled to provide a more detailed understanding of climatic conditions in the 

Pacific Northwest.  The following chapters (Chapters 3-6) address this problem by 

undertaking a comprehensive analysis of glacial, palynological, faunal, and 

stratigraphic/geomorphological proxy records for climate at and proximal to the PHB.   
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Chapter 3 

 

 

Glaciological Proxy Datasets for Climate Change 

 

 

Introduction 

 

 The glacial history of the Pacific Northwest provides evidence for glacial 

readvance during the Younger Dryas chronozone, at various times during the Early 

Holocene, and possibly during the 8200 cal B.P. event.  The Younger Dryas and 8200 cal 

B.P. events are well documented in GISP and GISP2 ice core data (Alley et al. 1997, 

2003; Alley 2000; Dansgaard et al. 1969; Johnsen et al. 1972), as are later periods of 

hemispheric to global abrupt/rapid climate change.  The timing of Late Pleistocene and 

Early Holocene glaciation throughout the region is variable (Menounos et al. 2009; 

Hekkers 2010).  However, glaciological and geological data obtained from sites across 

the region (Figure 3.1) shows that numerous glaciers during the Late Pleistocene and 

Early Holocene expanded due to region-wide changes in climate.  These changes are 

generally marked by a sudden return to cool and/or cool-moist conditions.      

  
Late Pleistocene-Younger Dryas Glaciation 

 

 

 The Younger Dryas occurred during a period of overall deglaciation of the 

Cordilleran Ice Sheet.  The primary causal factors of Pleistocene ice retreat are high 

summer temperatures, strong insolation, clear skies, and limited precipitation in solid 

form.  The rate of glacial recession is primarily an exponent of the summer quotient of  
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Figure 3.1. Locations of glaciological sites/areas discussed in this study. 

 

heat (Antevs 1928:52-53). The Cordilleran Ice Sheet underwent extensive decay 

beginning at ca. 16,000 cal B.P. in the Pacific Northwest.  During the last stages of 

deglaciation, between ca. 14,730-11,400 cal B.P., the ice sheet began to thin rapidly and 

retreat northward (Kovanen and Easterbrook 2002).  The western periphery of the 

Cordilleran Ice Sheet began to retreat rapidly after ca. 16,000 cal B.P. due to warming 

climate and eustatic sea-level rise.  Frontal retreat occurred at the same time or shortly 

thereafter in northernmost Washington, Idaho, and Montana (Menounos et al. 

2009:2050).  By ca. 14,000 cal B.P., many of the alpine glaciers of the Pacific Northwest 

were undergoing wastage and retreat. 

 Although deglaciation is the general trend for the Late Pleistocene, periods of 

stasis and readvances are known to have occurred and are well documented in the glacial 

record.  During the Younger Dryas chronozone, ca. 13,200-11,400 cal B.P., many alpine 

areas in the Northern Hemisphere document glacial advances (Davis et al. 2009) 
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associated with a rapid return to cool temperatures.  The record for alpine and ice sheet 

glaciation is less clear in the Southern Hemisphere.  Lacustrine sediments provide 

evidence for a dry Younger Dryas-age climatic event in northern Australia (De Deckker 

et al. 1991).  Evidence for glacial advance and co-existing retreat is registered in the 

tropical Andes of South America (see Mahaney et al. 2008; Heine and Heine 1996) and 

New Zealand (see Ivy-Ochs et al. 1999; Denton and Hendy 1994; Kaplan et al. 2010).  

This suggests the possibility that the Younger Dryas had global effects on climate, but 

that environmental changes manifested differently across hemispheres and geographic 

regions.   

 Glacial readvances associated with the Younger Dryas cold reversal have been 

reported in western North America (Kovanen and Easterbrook 2002; Reasoner and Jodry 

2000), western and eastern Canada (Menounos et al. 2009; Lakeman et al. 2008; 

Reasoner and Osborn 1994; Stea and Mott 1989), Alaska (Graf and Bigelow 2011); 

Europe (Grove 2004), European Alps and southern Alps of New Zealand (Ivy-Ochs et al. 

1999; Denton and Hendy 1994), Scotland (Sissons, 1979; Ballantyne 2002), the Tibetan 

Plateau (Tschudi et al. 2003), and Japan (Aoki 2003).   

 Debate exists over the nature and extent of Younger Dryas glaciation in the 

Pacific Northwest as well as the timing and length of the cold stadial (see Muscheler et 

al. 2008).  Nevertheless, evidence for Younger Dryas-age glacial advance comes from the 

Cascade Range of western Washington, Fraser Lowland of western Washington and 

lower British Columbia, and Northern Rocky Mountains of northwest Montana and 

central Idaho (Figure 2.1) (MacLeod et al. 2006; Thackray et al. 2004; Easterbrook et al. 

2011; Kovanen and Easterbrook 2002; Kovanen and Slaymaker 2005; Waitt et al. 1982; 
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Waitt 1977; Bilderback 2004; Menounos et al. 2004; Page 1939; Porter 1978; Porter and 

Swanson 2008; Heine 1998; Hekkers 2010; Armstrong 1975).  With the exception of 

Mount Rainier which appears to have undergone glacial retreat associated with a lack of 

available moisture (Heine 1998), evidence lends support to a region-wide response to 

Late Pleistocene, Younger Dryas cooling.   

 

Cascade Range 

 Middle Fork of Nooksack River, northwestern Washington: Moraines and ice-

contact deposits suggest that soon after ca. 13,840 cal B.P., the Nooksack Middle Fork 

alpine glacier in the North Cascades of Washington, retreated upvalley and built a 

moraine dating to ca. 12,600-12,470 cal B.P.  The formation of the moraine is also 

evidenced by glacial outwash in the Nooksack North Fork which was dated to ca. 12,570-

12,650 cal B.P. by charcoal deposits (Easterbrook et al. 2011:75).  This period of moraine 

building reflects the terminus of Younger Dryas glaciation in the region (Kovanen and 

Easterbrook 2002; Kovanen and Slaymaker 2005).   

  
 Enchantment Lakes Basin, western Washington: In the upper Enchantment Lakes 

basin of the North Cascade Range, Waitt and others (1982) initially dated the 

Brisingamen moraine to the Early Holocene based on the position of the geological 

feature.  The moraine underlies Mazama ash (ca. 7700 cal B.P.) and is upvalley from the 

late glacial Wisconsin Rat Creek Moraine, suggesting that it formed between ca. 15,530-

7700 cal B.P.  However, Bilderback (2004) later used dates from lake sediments to 

provided evidence that Brisingamen moraine building ended shortly before ca. 13,190 cal 
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B.P.  This suggests a temporal correspondence with moraine building and the Younger 

Dryas event (Bilderback 2004; Menounos et al. 2004). 

  

 Icicle Creek Range, western Washington: Evidence for multiple Younger Dryas-

age glacial advances in the Cascade Range near Leavenworth, Washington, comes from 

relative and cosmogenic isotope 10Be dates of the Icicle Creek moraine system (Page 

1939; Waitt 1977; Porter and Swanson 2008).  Boulders from the Eight Mile Creek 

tributary of Icicle Creek are 10Be dated to ca. 12,600 cal B.P. and 12,300 cal B.P.  

Moraines from the Rat Creek tributary are dated to ca. 11,300 cal B.P. and 11,900 cal 

B.P. (Porter and Swanson 2008; Easterbrook et al. 2011:76).  Porter and Swanson (2008) 

place the mean age of the late glacial advance along the Icicle Creek glacial system to ca. 

12,500 cal B.P.  The dates show that the moraine age and relative extent of the advance is 

synchronous with the Younger Dryas chronozone.  It is also in accord with the 

Cordilleran Ice Sheet advance in the Fraser Lowland of western Washington and 

southwest British Columbia, at ca. 12,860-12,030 cal B.P. (Porter 1978:40; Porter and 

Swanson 2008; Kovanen and Easterbrook 2002).   

 
 Mount Rainier, western Washington: Conflicting reports for glacial advance and 

recession during the Younger Dryas have been documented for Mount Rainier in western 

Washington.  According to Heine (1998), the Younger Dryas climatic reversal did not 

cause glacial advance on Mount Rainer.  However, the reversal may have affected the 

Mount Rainier area by causing cold, drier conditions.  Heine reports that glaciers 

retreated on Mount Rainier likely as a result of a lack of available moisture.  

Alternatively, studies of the McNeeley II moraine at Mt. Rainier suggest that the moraine 
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was built during the Younger Dryas, and the absence of sedimentation between ca. 

12,885-11,400 cal B.P. is thought to indicate that ice occupied the basin until after ca. 

11,400 cal B.P. (Easterbrook et al. 2011:76).  Regional data indicates that Late 

Pleistocene-Early Holocene glacial retreat/advance at Mount Rainier was more 

synchronous with mountains to the south rather than those to the north (Hekkers 2010:7).  

 

Fraser Lowland 

 In the Fraser Lowland of western Washington and British Columbia, 

morphological features of dated moraines provide evidence for multiple glacial 

readvances synchronous with Younger Dryas cooling (Kovanen and Easterbrook 2002).  

These advances are associated with oscillations of the remnants of the Cordilleran Ice 

Sheet and they indicate there were at least three periods of Younger Dryas glaciation in 

the region.  Kovanen and Easterbrook date the advances to ca. 13,420-13,280 cal B.P., 

ca.12,860-12,030 cal B.P., and ca. 12,030-11,400 cal B.P. (Kovanen and Easterbrook 

2002:208, 216).  The earliest advance is synchronous with the Sumas readvance of the 

Cordilleran Ice Sheet in the Fraser Lowland of British Columbia.  Armstrong (1975) 

reports that the Sumas readvance culminated between ca. 13,685-13,280 cal B.P. 

 
Northern Rocky Mountains 

 Glacier National Park, Northwest Montana: Post glacial moraine deposition and 

tephra stratigraphy in Otokomi Lake of northwestern Montana offer support for a 

Younger Dryas-age glacial advance in the region.  Lake sedimentary changes created by 

the onset of the Crowfoot moraine indicate that the emplacement date for the moraine is  
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ca. 12,570 cal B.P.  This is coeval with the Younger Dryas interval.  The age estimate 

supports the argument that Crowfoot moraines identified from British Columbia to  

Colorado represent a regional response to Younger Dryas cooling in western North 

America (MacLeod et al. 2006:447, 457).  

 

 Sawtooth Range, Central Idaho: Thackray and others (2004) present dates on 

glacial-lacustrine sediments from three valleys in the southeastern Sawtooth Mountains 

of central Idaho, which cluster around 13,950 cal B.P.  The sediments document 

extensive ice volume coterminous with the onset of the Younger Dryas.  The 

synchronous advance of valley glaciers is thought to indicate a response to reinvigorated 

moisture transport occurring after the ice-sheet maximum.  The responses provide 

evidence for strong sensitivity to moisture-delivery fluctuations (Thackray et al. 

2004:225-227).   

Cirque moraines located at multiple elevations in the Sawtooth Range record two 

Younger Dryas events in the region.  10Be ages of three boulders from a moraine at 

Fourth Bench Lake and a boulder 100 m lower at Third Bench Lake indicate multiple 

phases of cirque moraine building between ca. 11,700-11,400 cal B.P.  According to 

Easterbrook and others (2011), multiple successions of moraine building is evidence for 

multiple phases of Younger Dryas climatic events (Easterbrook et al. 2011:75).   

 

Early Holocene-Mid-Holocene Glaciation 

 

 During the Early Holocene, most areas in the Northern Hemisphere experienced 

maximum glacier recession (Davis et al. 2009).  By ca. 11,000 cal B.P. or soon thereafter, 

glacier cover in the Cordillera was no more extensive than at the end of the 20th century.  
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Evidence suggests that glaciers reached their minimum extent between ca. 11,000-7000 

cal B.P. (Menounos et al. 2009:2049).  Even though maximum glacial recession is the 

general trend for this period, episodes of climatically-induced advances of glaciers are 

documented in the Pacific Northwest and in many other areas of the Northern 

Hemisphere.  Early Holocene rapid/abrupt climate change is marked by a partial return to 

glacial conditions after an orbitally driven delay in Northern Hemisphere deglaciation.  

There was at least one large pulse of glacier meltwater into the North Atlantic at this time 

(Barber et al. 1999).  Freshwater input likely enhanced the production of sea ice and 

provided an additional feedback contributing to climate cooling (Mayewski et al. 

2004:251).   

 Early Holocene glacial readvances in the Pacific Northwest have been 

documented in the Cascade Range of western Washington (Beget 1991, 1984; Waitt et al. 

1982; Thomas et al. 2000; Menounos et al. 2004; Heine 1998) and central Oregon 

(Dethier 1980), Wallowa Mountains of northeastern Oregon (Licciardi et al. 2004; Kiver 

1974), and Northern Rocky Mountains of central Idaho (Butler 1984, 1986) (Figure 2.1).  

Glacial advance associated with the early Mid-Holocene 8200 cal B.P. event is postulated 

for Mount Baker (Menounos et al. 2004), although evidence for a region-wide response 

to this period of RCC is presently lacking.   

 

Cascade Range 

 Glacier Peak Vicinity, western Washington: Beget (1981, 1984) reports a period 

of Early Holocene glacial advance at ca. 9450-9300 cal B.P. in the North Cascade Range.  

This is based on the presence of moraines and glacial drift that were deposited in cirques 

near Glacier Peak, Washington.  Charcoal collected from till deposits of the White Chuck 
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advance are radiocarbon dated to the Early Holocene.  Cooling and/or increased 

precipitation was sufficient enough to produce glacial advances comparable or equivalent 

to that of Little Ice Age conditions in the region (Beget 1981:409).   

 
 Mount Baker, western Washington: Radiocarbon dates of charred wood obtained 

below Mazama ash and above moraine till on Mount Baker, Washington, document an 

Early Holocene glacial advance between ca. 9450-8400 cal B.P. (Thomas et al. 

2000:1045).  Thomas and others (2000) argue that the advance ended by the time the 

8200 cal B.P. event occurred, suggesting that the climatic episode could not be associated 

with glacial advance on Mount Baker at this interval (Thomas et al. 2000:1045).  

However, Menounos and others (2004) argue that an advance correlative with the event 

may have occurred on Mount Baker, but that the moraines were likely destroyed by 

subsequent Holocene advances (Menounos et al. 2004:1548).  Menounos and others 

(2004) document glacial readvances in multiple locations throughout western Canada that 

are synchronous with the 8200 cal B.P. event.  

 
 Mount Rainier, western Washington: Radiocarbon dated organic sedimentation 

from cored lakes on Mount Rainier indicate that glaciers in the region expanded during 

the Early Holocene.  Expansion occurred during the McNeeley 2 advance between ca. 

10,900-9950 cal B.P. and at a later time between ca. 9450-8400 cal B.P. (Heine 

1998:1143, 1146).   

  
 Three Sisters Volcanoes, central Oregon: At Three Sisters Wilderness in central 

Oregon, Dethier (1980) identified a pre-Mazama moraine which is suggested to date to 

the Early Holocene.  Marcott (2005) later used Mazama tephra and geological weathering 
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to place glaciation at the Three Sisters Volcanoes between ca. 12,000-10,000 cal B.P.  

This supports the assertion that a post Younger Dryas event occurred in the region 

(Marcott 2005:48).  

 
Wallowa Mountains 

 Using 10BE exposure ages for moraines in the Wallowa Mountains of northeast 

Oregon, Licciardi and others (2004) provide evidence for a minor glacial event at ca. 

10,200 cal B.P. that formed after the Younger Dryas (Licciardi et al. 2004:83).  Kiver 

(1974) identified an advance of the Glacier Lake moraine which began at ca. 10,200 cal 

B.P. and ended before the eruption of Mazama O tephra at ca. 7660 cal B.P.   

 

Northern Rocky Mountains 

  Early Holocene periglacial conditions have been documented by varves and 

morphological features in sediments reported by Butler (1984, 1986:42) for the period of 

ca. 11,765-8370 cal B.P. in the Lemhi Range of central Idaho.  

 
Discussion 

 

 Late Pleistocene glacial data suggests that following the Late Glacial Maximum 

and Bølling-Allerød warming, a period of glacial readvance associated with the Younger 

Dryas cold reversal occurred in the Rocky Mountains, Cascade Range, and Fraser 

Lowland areas of the Pacific Northwest.  The return to glacial conditions began as early 

as ca. 14,000 cal B.P. and centered around 12,600-11,300 cal B.P.  The readvance is 

synchronous with an episode of rapid cooling that is prominently recorded in GISP and 

GISP2 data and attributed to the Younger Dryas chronozone (Alley 2000).  The response 
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of alpine glaciers to the Younger Dryas was not uniform in all areas, however, as glacial 

retreat coeval with the Younger Dryas is documented at Mount Rainier in Washington.  

The retreat is attributed to a period of drier conditions and an associated lack of available 

moisture in the region (Heine 1998).   

 Glaciers again readvanced during the Early Holocene, but the timing of advance 

varied based on the geographic area.  Evidence for Early Holocene glaciation indicates 

there were one or multiple periods of rapid cooling occurring during a general warming 

trend.  In the North Cascade Range of Washington at the vicinity of Glacier Peak and 

Mount Baker, data suggests that an Early Holocene advance occurred between ca. 9450-

8400 cal B.P.  Further south at Mount Rainier, glacial readvance occurred between ca. 

10,900-10,000 cal B.P.  Glaciation occurred even earlier in the Cascade Range of central 

Oregon, where the Three Sisters Volcanoes document an Early Holocene advance 

between ca. 11,000-12,000 cal B.P.  This suggests that Early Holocene glacial advance in 

the Cascade Range occurred earlier at lower latitudes.  In the Northern Rocky Mountains 

at the Sawtooth Mountain range of central Idaho, post-Younger Dryas, Early Holocene 

periglacial conditions did not occur until ca. 8400 cal B.P.  Evidence for a minor glacial 

event beginning by ca. 10,200 cal B.P. is reported at the Wallowa Mountains of northeast 

Oregon.   

 Glacial readvance associated with the early Mid-Holocene 8200 cal B.P. cooling 

event has been suggested at Mount Baker (Menounos et al. 2004).  However, evidence 

for glacial response to the event is at present lacking for the Pacific Northwest of North 

America, and there is stronger data for a synchronous advance in western Canada 

(Menounos et al. 2004). 



26 

 

 Glacial advance and retreat during the Late Pleistocene and Early Holocene 

undoubtedly had effects on plant and animal species inhabiting the Pacific Northwest.  

Palynological and faunal data suggest that glaciers, along with other agents of internal 

climate change, significantly influenced the composition and distribution of plant and 

animal species at the terminal Pleistocene.  
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Chapter 4 
 

 

Palynological Proxy Datasets for Climate Change 
 

 

 

  
Introduction 

 
 
 Pollen and plant macrofossil records have become one of the principal tools for 

reconstructing past climate change (Walker and Pellatt 2008:116).   They document the 

vegetation and climatic history of an area with high centennial-to-millennial and annual-

to-decadal temporal resolution (Gorham et al. 2001:102; Jiménez-Moreno et al. 2008, 

2010).  Pollen profiles from sites in the Pacific Northwest (Figure 4.1) show similarities  

Figure 4.1. Locations of palynological sites discussed in this study. 
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in the direction and timing of vegetation change throughout the Late Quaternary.  These 

similarities provide evidence for region-wide responses to variations in climate during the 

Late Pleistocene and Holocene (Grigg et al. 2001:19).   

 The palynological history of the PHB in the Pacific Northwest indicates a shift 

from generally cool-moist, but in some cases cool-dry, conditions during the terminal 

Pleistocene to warm-dry conditions beginning by the Early Holocene.  The shift in 

climate regimes is registered in areas of the Puget Lowland, Cascade Range, Okanogan, 

Columbia Plateau, and Northern Rocky Mountains and river valleys (Table 4.1).   

 Pollen data acquired to date suggests that the transition from one climate state to 

another occurred abruptly throughout the region (Gorham et al. 2001; Heusser 2000; 

Jiménez-Moreno 2010).   The relatively high degree of synchroneity between the timing  

and characteristics of pollen events is perhaps the strongest palynological evidence for 

rapid or abrupt climate change in the Pacific Northwest.   

 
Pollen Record during the Late Pleistocene: Last Glacial 

 

 Pollen data suggests that the species and distribution of plant communities during 

the last glacial period were strongly influenced by ice sheet and glacier dynamics and 

large-scale climate controls.  Pollen profiles from across northwestern North America 

indicate changes in forest and steppe communities that are consistent with variations in 

global ice volume, summer insolation, and the strength and position of the glacial 

anticyclone and jet stream (Whitlock and Bartlein 1997:58; Grigg and Whitlock 

2002:2067; Brunelle et al. 2005; Porter and Swanson 2008).
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                    Table 4.1. Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.* 

 

 

                        *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines.  
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                     Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.*  

  

 
                  

                     *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines.   
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  Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.* 

  

 
                     

                     *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines.
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                        Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.*  

 

 
                       
                        *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines.   
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               Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.*  
 

 
           

                        *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines.  
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      Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.* 

 

 
 
 *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines. 
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       Table 4.1. (cont.) Late Pleistocene to Mid-Holocene Pollen Sequences from Sites in the Pacific Northwest.* 
 

 
                         *Younger Dryas interval shaded in blue, transitional boundary from cool to warm conditions marked by double lines



36 
 

 

 The expanse of cold-xeric vegetation and presence of subalpine forest and 

parkland in many lower elevations between ca. 28,000-14,000 cal B.P., suggest colder 

and drier conditions than exist today (Barnosky 1985; Mehringer 1984; Worona and 

Whitlock 1995; Grigg et al. 2001:20).  Most basins were covered by vegetation 

communities most closely resembling periglacial steppe.  On many mountains the forest 

zones were discontinuous (Mehringer 1984).  The environment was apparently too dry 

and cold to support widespread forests except in areas along the Pacific coast (Barnosky 

et al. 1987:312-313). The expanse of cold-xeric vegetation appears to be associated with 

Late-Wisconsin glaciation in the region (Mehringer 1984:168). 

 Temperate taxa associated with deglaciation are registered in pollen profiles by 

ca. 16,000 cal B.P.  Environmental and climatic events occurring during this period 

caused new plant communities to appear in deglaciated areas and changes in the 

vegetation of unglaciated areas (Whitlock 1992:14).  The trend toward warmer climatic 

conditions was abruptly interrupted by the Younger Dryas cold reversal between ca. 

13,200-11,400 cal B.P (Table 4.1).  The Younger Dryas ushered in a brief return to 

glacial conditions across the Northern Hemisphere, as evidenced in pollen profiles from 

the Pacific Northwest.  

 
Pollen Record During the Late Pleistocene: Younger Dryas Chronozone 

 

 Greenland ice core data suggests that at the Younger Dryas chronozone, the 

transition from interglacial to glacial conditions was rapid, occurring in less than 50 years 

(Alley 2000; Alley et al. 2003; Walker and Pellatt 2008:133).  The sudden reversal from 

warmer temperatures to a markedly cooler climate is indicated by an increase in cold-
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adapted taxa and decrease in warm-adapted taxa in pollen profiles across North America 

and Europe (Gorham et al. 2001:102).  Evidence suggests that the cold reversal ended as 

abruptly as it began (Alley 2000).   

 Comparisons of pollen datasets in this study support the presence of 

predominately cool and/or cool-moist conditions during the Younger Dryas in the Pacific 

Northwest.  Notable exceptions include the pollen sequences from Carp Lake in the 

Columbia Plateau (Barnosky 1985b; Whitlock and Bartlein 1997), Gordon Lake in the 

Cascade Range (Grigg and Whitlock 1998), Buckbean Bog in the Okanogan Highlands 

of British Columbia (Heinrichs et al. 2001), and Burnt Knob Lake and Baker Lake in the 

Northern Rocky Mountains (Brunelle and Whitlock 2003; Brunelle 2007; Brunelle et al. 

2005).  With the exception of Burnt Knob Lake, pollen sequences at the aforementioned 

locations argue for cool-dry conditions during the Younger Dryas.  Burnt Knob Lake 

registers a Younger Dryas-related climatic episode characterized by slightly warmer and 

wetter conditions (Brunelle 2007) (Table 4.1).    

 

Puget Lowland  

 Pollen profiles from Mineral Lake, Hall Lake (Tsukada et al. 1981), Lake 

Washington (Leopold et al. 1982), Kirk Lake (Cwynar 1987), and Lake Carpenter 

(Anundsen et al. 1994) (Table 4.1) argue for cool and/or cool-moist conditions during the 

Younger Dryas.  This is suggested by the presence of Pinus contorta (lodgepole pine), 

Picea engelmannii (Engelmann spruce), Tsuga mertensiana (mountain hemlock), Alnus 

sinuata (Sitka alder), and Populus (poplar) in pollen profiles by ca. 13,800 cal B.P.  

Landscapes are characterized as taiga and open woodland.  Cool conditions ended at 



38 
 

 

around 12,900 cal B.P. at Kirk Lake and Lake Carpenter, and at ca. 11,400 cal B.P. at 

Mineral Lake, Hall Lake, and Lake Washington.   

 

Cascade Range  

 The dominance of Abies and Pseudotsuga pollen in profiles from Indian Prairie 

(Sea and Whitlock 1995) and Battle Ground Lake (Barnosky 1985a; Walsh et al. 2008) 

(Table 4.1) suggests cooler-moister Younger Dryas conditions in the Cascade Range of 

Washington by ca. 12,800 cal B.P.  Conversely, the presence of Pinus, Abies, A. sinuata 

and T. mertensiana in the pollen profile of Gordon Lake (Table 4.1) argues for cooler 

winters and drier summers between ca. 12,800-11,000 cal B.P.  The pollen sequence at 

Gordon Lake suggests greater seasonality during the Younger Dryas in the region (Grigg 

and Whitlock 1998:295).  Landscapes in the Cascade Ranger were dominated by closed 

montane forests.  Cool-moist and cool-dry conditions associated with the Younger Dryas 

terminated relatively synchronously between ca. 11,300-10,800 cal B.P.     

 

Okanogan Lowland and Highland 

  Pollen data from Bonaparte Meadows and Mud Lake (Mack et al. 1979) (Table 

4.1) suggest that the climate was cooler and wetter than today in the Okanogan Valley of 

Washington during the Younger Dryas.  Cooler-wetter conditions are evidenced by high 

percentages of haploxylon pine, Cyperaceae (sedges), Artemisia (herbs or shrubs), 

Shepherdia canadensis (Canadian/Russet buffaloberry), and grass pollen.  

  A contrasting situation is indicated by the pollen sequence from Buckbean Bog 

(Heinrichs et al. 2001) (Table 4.1), located in Mount Kobau, British Columbia.  Pollen 

profiles from this site suggest that cool-dry conditions existed in the Okanogan Highlands 
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during the Younger Dryas, as evidenced by the presence of Chenopodiinae (goosefoots) 

and Sarcobatus (Greasewood) pollen.  These interpretations are reportedly consistent 

with regional observations from the same period (Heinrichs et al. 2001:2186).  However, 

cool-moist Younger Dryas conditions also have been reported at sites across British 

Columbia (Hebda 1995).   

 Pollen data suggests that landscapes in the Okanogan Highland and Lowland were 

dominated primarily by steppe vegetation.  Cool-moist conditions terminated at ca. 

11,400 cal B.P. at Bonaparte Meadows and Mud Lake.  This is coeval with the waning 

stages of the Younger Dryas and corresponds with the termination of cool-moist 

conditions at Mineral Lake, Hall Lake, and Lake Washington in the Puget Lowland.  At 

Buckbean Bog, cool-dry conditions abruptly terminated at ca. 10,740 cal B.P. as 

evidenced by the rapid onset of warming. 

  

Columbia Plateau 

 Pollen profiles from Williams Lake Fen (Nickmann 1979; Mehringer 1996), 

Goose Lake (Nickmann and Leopold 1985), Wildcat Lake (Blinman 1978; Mehringer 

1996), and Creston Fen (Hansen 1947; Mack et al. 1976) (Table 4.1) suggest that cooler 

and/or cooler-moister conditions than present prevailed during the Younger Dryas on the 

Columbia Plateau.  Such conditions are represented by greater values and percentages of 

conifer, haploxylon and diploxylon pine, Betula (birch), grasses, Abies (firs), Picea 

(spruce), and Artemisia pollen by ca. 12,800 cal B.P.   

 The exception to the cool-moist trend on the Columbia Plateau comes from Carp 

Lake (Table 4.1).  The pollen sequence at Carp Lake records the coldest and driest period 

in the site’s history during pollen zone CL-3.  The zone persists into the early stage of the 
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Younger Dryas and then transitions to a zone dominated by warm-dry pollen taxa.  Cold-

dry conditions are inferred from the absence of temperate aquatic taxa and presence of 

Polygonum bistortoides (American bistort)-type pollen (Barnosky 1985b; Whitlock and 

Bartlein 1997Whitlock et al. 2000:17). 

 The predominant vegetation on the Columbia Plateau during the Younger Dryas 

was grassland with herbs and/or shrubs, as indicated by high percentages of Gramineae 

and Artemisia pollen.  The landscape in the scablands consisted of cold steppe (Whitlock 

1992:15) or possibly tundra-like vegetation (Nickmann 1979).  Meanwhile, arboreal 

stands occupied loess hills (Mack et al. 1976).  Vegetation was a mix of high and low 

elevation forest taxa which have no modern counterparts (Whitlock 1992:15).  Younger 

Dryas-era landscapes evolved into those favoring warmer-drier taxa between ca. 13,200-

10,200 cal B.P. and particularly around 11,900 cal B.P.       

 

Northern Rocky Mountains 

 Pollen profiles suggest that cool and/or cool-moist conditions existed during the 

Younger Dryas for most locations in the Northern Rocky Mountains of Idaho and 

northwest Montana.  However, cooler-drier and warmer-wetter conditions are also 

recorded in the region.  Cool and/or cool-moist conditions are evidenced by high 

percentages of pine, spruce, alder, and fir pollen in profiles from Sheep Mountain Bog 

(Hemphill 1983; Mehringer et al. 1984; Mehringer 1996), Van Wyck Creek (Doerner and 

Carrara 1999), and Lost Trail Pass Bog (Mehringer et al. 1977) (Table 4.1). 

 At Baker Lake (Table 4.1), cooler-drier than present conditions are recorded for 

the Younger Dryas period, as suggested by Picea-Pinus dominated pollen indicative of 

an open forest with alpine meadow (Brunelle et al. 2005).  Conversely, at Burnt Knob 
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Lake (Table 4.1), a change in vegetation potentially associated with the Younger Dryas 

event occurred between ca. 14,000-12,000 cal B.P. (Brunelle and Whitlock 2003:316; 

Brunelle 2007).  However, the change is characterized by a trend toward slightly warmer 

and wetter conditions.  This is evidenced by a higher percentage of fir and distinct 

increases in the influx of spruce and larch (Brunelle 2007:1-2).  

 Landscapes in the Northern Rocky Mountains were dominated by both open and 

closed pine and spruce forests.  The region shows greater variability in the timing of 

vegetation change at the Late Pleistocene than at any other physiographic area in the 

Pacific Northwest.  Transitions occurred as early as ca. 12,700 cal B.P. at Rock Lake, and 

as late as ca. 8350 cal B.P. at Lost Trail Pass Bog.      

 
River Valleys of the Northern Rocky Mountains  

  High percentages of Pinus, Picea, Abies, and Shepherdia canadensis from Waitts 

Lake, Big Meadow, Hager Pond, Tepee Lake (Mack et al. 1978a, 1978b, 1978c, 1978d, 

1983, 1984), and McCall Fen (Doerner and Carrara 2001) (Table 4.1) argue for cooler-

moister conditions than today around the Younger Dryas for the river valleys of the 

Northern Rocky Mountains.  The change in frequency and prominence of S. Canadensis 

occurred rapidly at Waitts Lake.  The pollen sequence at Hager Pond does not begin until 

ca. 10,740 cal B.P. or slightly earlier, thus it potentially but not necessarily falls within 

the range of the Younger Dryas.  Nevertheless, the initial pollen zone is consistent with 

other profiles during the Younger Dryas and the delay could represent a local lag in 

vegetation response to the cold event.   

 Landscapes in the river valleys are interpreted as tundra-like (Mack et al. 1978a, 

1984) and closed spruce-pine forest (Doerner and Carrara 2001).  Similar to pollen 
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profiles from the mountain and foothill sites in the Northern Rockies, the transition from 

Younger Dryas to Early Holocene climatic conditions is more variable than in 

surrounding regions.  The transition to warmer-drier conditions in the river valleys of 

northeast Washington and west-central Idaho is relatively synchronous, occurring 

between ca. 11,400-11,200 cal B.P. at Waitts Lake, Big Meadow, Simpsons Flats, and 

McCall Fen.  Simpsons Flats does not have a pre-Early Holocene component (Mack et al. 

1978c).  The transitional zone is much more variable for river valleys in northern Idaho 

and northwest Montana.  At Tepee Lake, the transition occurs as early as ca. 12,400 cal 

B.P.; and at Hager Pond, cool-moist conditions persist until ca. 9300 cal B.P.   

 

Pollen Record During the Early Holocene 

 

 By the beginning of the Early Holocene or shortly thereafter, pollen profiles from 

sites in the Pacific Northwest and surrounding regions document increases in warmth and 

aridity (Table 4.1).  The climate regime was likely warmer and drier than today for many 

areas.  Warm-dry conditions are evidenced by a region-wide expanse of warm-xeric plant 

communities and associated landscapes (Mehringer 1984:168, 1985, 1996).  Evidence 

suggests that the primary forcing mechanism for climate change at the PHB was greater-

than-present summer insolation caused by the Milankovitch Cycle.  The phenomenon is 

thought to have triggered increases in summer temperatures, decreases in effective 

precipitation, intensified drought, and a stronger than present subtropical high (Whitlock 

and Bartlein 1997:59; 2004:484).   

 Areas west of the continental divide would have been more susceptible to burning 

during the Early Holocene than today because of an intensified subtropical high that was 
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brought about by greater summer insolation (Brunelle and Whitlock 2003:316).  

Evidence for increased burning comes from observations of accelerated charcoal 

accumulation rates in Early Holocene sediments.  Repeated fires left a mosaic of forests 

in various stages of succession (Cwynar 1987; see also Whitlock 1992:17).   

 Pollen profiles show that forests expanded toward the north and to higher 

elevations during the Early Holocene.  A relative decline in conifer pollen and increase in 

grass and sagebrush pollen signals retreat of montane trees and expanding warm steppe 

(Mehringer 1984:168).  Data suggests that shrub-dominant steppe communities extended 

as far as the mountains surrounding the Columbia Basin (Mehringer 1985:174).  The 

expansion of xeric communities into mountainous areas suggests that available moisture 

may have been up to 40 percent less than today (Chatters 1995:381).   

 Increased summer drought in the Early Holocene seems to conflict with evidence 

for episodes of Early Holocene glaciation.  Barnosky and others (1987) and Waitt and 

others (1982) suggest that the difference resulted from either decreased temperatures or 

increased precipitation at higher elevations.  The paradox may have been caused by a 

steepening of the temperature lapse rate during a period of aridity (Barnosky et al. 

1987:298). 

 Comparisons of pollen datasets in this study support the presence of warm-dry 

and/or warmer-drier than present conditions during the Early Holocene in the Pacific 

Northwest.  Pollen and sediment records indicate that these conditions were accompanied 

by a greater frequency of fires and lake levels that were lower than today.  The timing of 

the transition from cool/cool-moist to warm-dry conditions occurred at various times but 
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appears to have centered around the boundary between the end of the Younger Dryas and 

beginning of the Early Holocene at ca. 11,400 cal B.P. 

 
Puget Lowland  

  Warmer and/or warm-drier than present conditions are registered in pollen 

profiles from the Puget Lowland of northern Washington (Table 4.1) between ca. 12,900-

11,400 cal B.P.   This is suggested by high percentages of Pseudotsuga menziesii 

(Douglas-fir), Alnus/A. rubra (alder/red alder), Pteridium/P. aquilinum (fern/bracken 

fern), and Castanopsis (chinquapin) (Tsukada et al. 1981; Leopold et al. 1982; Cwynar 

1987; Anundsen et al. 1994).    

 Forests throughout the Puget Trough and southern Fraser Lowland contained 

higher percentages of Pseudotsuga, A. rubra, and Pteridium than today (Whitlock 

1992:17).  Early Holocene landscapes have been variously described as closed forest 

(Cwynar 1987), open forest (Heusser 1978), open woodland (Tsukada et al. 1981), and 

open woodland or forest mosaic (Leopold et al. 1982).  

 Cwynar (1987) concludes that the landscapes were likely a mix of both closed and 

open forests.  The mosaic is explained by the occurrence of repeated Early Holocene fires 

which left an irregular distribution of vegetation in various stages of succession (Cwynar 

1987:798-799).  Frequent Early Holocene forest fires in the Puget Lowland have been 

inferred from increases in charcoal accumulation rates at Mineral Lake, Hall Lake 

(Tsukada et al. 1981), and Kirk Lake (Cwynar 1987).   
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Cascade Range  

  Pollen profiles from the Cascade Range in Washington and Oregon (Table 4.1) 

show a transition to warm-dry and/or warmer-drier than present conditions during the 

Early Holocene by ca. 11,300-10,800 cal B.P.  These conditions are inferred from the 

presence and high percentages of Quercus (oak), Pseudotsuga, Dryopteris (wood ferns), 

Pteridium, and grass pollen.   

 The landscape is described as Quercus-dominant savanna at Battle Ground Lake 

in southwest Washington (Barnosky 1985a; Walsh et al. 2008).  In northwest Oregon the 

landscape is described as forest or montane temperate forest (Sea and Whitlock 1995; 

Grigg and Whitlock 1998).  Frequent Early Holocene fire episodes of low-to-moderate 

severity are inferred from pollen cores from Battle Ground Lake.  The increase in fires is 

evidenced by higher charcoal concentrations than previous zones by ca. 10,800 cal B.P.  

Increased fire activities and changes in vegetation communities of this period are 

associated with greater summer drought (Walsh et al. 2008:256, 259).   

 
Okanogan Lowland and Highland 

  Warmer and drier conditions than today are registered in pollen profiles from the 

Okanogan Valley (Table 4.1) at the beginning of the Early Holocene, ca. 11,400 cal B.P.  

These conditions are inferred from an influx in nonarboreal pollen such as Artemisia and 

Gramineae as well as higher percentages of diploxylon pine at Bonaparte Meadows and 

Mud Lake (Mack et al. 1979).  Pollen of this type signifies drought (Whitlock 1992:18) 

and a landscape dominated by steppe vegetation.   

 In the Okanogan Highland, a brief interval of rapid warming beginning at around 

10,700 cal B.P. is suggested by high percentages of Pinus, Picea, Poaceae (grasses), and 
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Artemisia pollen at Buckbean Bog (Heinrichs et al. 2001:2189) (Table 4.1).  Warm and 

dry conditions follow this brief zone of initial warming, as suggested by the dominance 

of Poaceae, Artemisia, Cyperaceae, and other non-arboreal pollen by ca. 10,200 cal B.P.  

Charcoal occurs in small quantities at this zone but does not peak until after ca. 8500 cal 

B.P., which is when increased summer drought is recognized throughout the highland 

region (Whitlock 1992:18).  The landscape was dominated by grassland steppe.    

 

Columbia Plateau 

  Pollen profiles from the Columbia Plateau (Table 4.1) indicate conditions that 

were warmer and drier than today by ca. 13,200-10,200 cal B.P., although the transition 

appears to center around 11,900 cal B.P.  Drought is inferred from an increase in the 

percentages of grass, Artemisia, diploxylon pine (either lodgepole or ponderosa), and 

other xeric taxa at the expense of more mesophytic conifer taxa (Barnosky et al. 

1987:299; Mehringer 1985).   

 Increases in diploxylon pines, like Pinus contorta and/or P. ponderosa (Ponderosa 

pine), suggest climatic conditions that are both warmer and drier (Nickmann and Leopold 

1985:142).  The resemblance of these assemblages with modern pollen spectra from 

steppe vegetation in the Columbia Basin (Mack and Bryant 1974) demonstrates that the 

forest/steppe ecotone had shifted northward at least 100 km in the Early Holocene 

(Barnosky et al. 1987:299).  

  Maximum aridity occurred at different times throughout the Columbia Plateau.  

At Goose Lake (Nickmann and Leopold 1985) aridity was greatest between ca. 11,400-

7800 cal B.P.  At Carp Lake it was over as early as ca. 9500-9000 cal B.P. (Barnosky 

1985b; Whitlock and Bartlein 1997).  Creston Fen (Mack et al. 1976) and Williams Lake 
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Fen (Mehringer 1996; Nickmann 1979) did not undergo maximum aridity until after ca. 

8350 B.P. (see Barnosky et al. 1987:299) (Table 4.1).  

 Similar to the pollen record from Big Meadow in the Pend Oreille River Valley, 

sedimentary and pollen records at Simpsons Flats, Bonaparte Meadows (Mack et al. 

1979), and Carp Lake (Whitlock et al. 2000:17) argue for lake levels that were lower than 

today.  Evidence for increased fire activity comes from Williams Lake Fen, where the 

largest pre-Mazama charcoal values are recorded between ca. 10,200-9600 cal B.P. 

(Mehringer 1996:22).   

  
Northern Rocky Mountains  

  Pollen profiles from sites in the Northern Rocky Mountains of Idaho and 

northwest Montana (Table 4.1) do not show a high degree of synchroneity during the 

transition from cool to warm-dry conditions in comparison to other areas.  The reported 

timing of this transition ranges from ca. 12,700 to 8350 cal B.P.  Nevertheless, the 

palynological data indicates that warm-dry and/or warmer-drier than present conditions 

prevailed throughout the region during the Early Holocene.   

 Warmer-drier conditions are evidenced by increases in Artemisia, Chenopodiceae 

(goosefoot) and/or Amaranthaceae (amaranths), Pinus contorta (lodgepole pine), 

Pseudotsuga and/or Larix (larch), Pseudotsuga menziesii, and Abies pollen.  Pollen 

profiles containing these taxa come from Burnt Knob Lake (Brunelle and Whitlock 

2003), Lost Trail Pass Bog (Mehringer et al. 1977), Rock Lake (Gerloff et al. 1995), 

Sheep Mountain Bog (Mehringer et al. 1984; Mehringer 1996), and Van Wyck Creek 

(Doerner and Carrara 1999) (Table 4.1).   
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 Landscapes are characterized as forest and/or open forest.  The vegetation appears 

to be more open than the previous pollen zone at each site, as evidenced by an increase in 

more mesophytic nonarboreal taxa.  Douglas fir and lodgepole pine are the dominant 

arboreal taxa.  Areas with treeless vegetation are dominated by Artemisia and flowering 

plants.  At Sheep Mountain Bog, abundant charcoal between ca. 11,850-11,075 cal B.P. 

suggests that the number and intensity of fires increased with the change in climate 

regimes.  This period corresponds with decreasing effective moisture and the large 

charcoal values at Williams Lake Fen (Mehringer 1996:22).   

 
River Valleys of the Northern Rocky Mountain 

 Warmer and drier than present conditions are recorded in pollen profiles from 

river valleys in the Northern Rocky Mountains (Table 4.1) between ca. 12,400-9300 cal 

B.P., but centering around 11,400-11,200 cal B.P.  Warm-dry conditions are represented 

by high percentages of Artemisia, Gramineae/Poaceae, pine/diploxylon pine, 

Chenopodiaceae/Amaranthaceae, and Sarcobatus (greasewood).  Pollen assemblages of 

this type suggest steppe, grassland, and open forest landscapes.   

 Sedimentary and pollen records at Big Meadow indicate that lake levels were 

lower than present at around 11,200 cal B.P. (Mack et al. 1979).  Data also suggests that 

the timing of maximum aridity at Big Meadow and Simpsons Flats occurred between ca. 

11,400-7800 cal B.P.  Maximum aridity did not commence until after ca. 8400 cal B.P. at 

Hager Pond (Barnosky et al. 1987:299).    
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Palynological Events Associated with the 8200 cal B.P. Cooling Event 

 

 The majority of pollen profiles analyzed in this study lack noticeable changes in 

the pollen record that would indicate a response to the 8200 cal B.P. event recorded in 

GISP and GISP2 data.   The rapid climate change episode is thought to have been 

initiated by a large pulse of glacial meltwater into the Atlantic Ocean (Alley et al. 1997).  

The result was a return to cool and/or cool-moist conditions in the Northern Hemisphere.  

Even though most sites do not register such conditions at 8200 cal B.P. in the Pacific 

Northwest, there are in fact several sites that document a brief interval of cooler and/or 

cooler-moister conditions at that time.   

 At Mineral Lake and Hall Lake in the Puget Lowland (Table 4.1), pollen zone PIb 

(ca. 9500-7800 cal B.P.) is characterized by an increase in moisture.  Wetter conditions 

are inferred from the behavior of the Thuja plicata (Western redcedar) curb in addition to 

the presence of Pseudotsuga menziesii, Alnus rubra, and Pteridium aquilinum.  Thuja 

begins to rise exponentially from the PIa (ca. 11,400-9500 cal B.P.)/PIb zonal boundary 

at Mineral Lake, and begins to appear continuously at Hall Lake.  Thuja dominated 

forests indicate greater precipitation (Tsukada et al. 1981:735).  

 Goose Lake (Table 4.1) in north-central Washington records a brief period of 

cooler and/or moister conditions between ca. 8600-7600 cal B.P. in pollen zone V 

(Nickmann and Leopold 1985).  The zone is marked by an increase in Pinus and decrease 

in Gramineae.  Picea increases to over one percent in the bottom half of the zone and 

Abies becomes more consistent.  This indicates that the forest surrounding the lake 

descended to a lower elevation as a result of an increase in available effective moisture 

(Nickmann and Leopold 1985:144).      
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 A Mid-Holocene increase in moisture beginning around 8500 cal B.P. has been 

recorded at Buckbean Bog (Table 4.1) in Mount Kobau, British Columbia (Heinrichs et 

al. 2001).  Increased moisture is evidenced by a broad peak of Salix and the occurrence of 

Poaceae, Artemisia, and Cyperaceae in the pollen profile.  A large charcoal peak is 

recorded in the early part of the pollen zone, which suggests that at the same time fires 

burned more frequently (Heinrichs et al. 2001:2190).  Conversely, charcoal-to-pollen 

ratios decline for 5000 years beginning by ca. 8000 cal B.P. at Sheep Mountain Bog in 

northwest Montana (Mehringer 1996:21).  

 

Discussion 

 

 Pollen records from the Pacific Northwest offer evidence for a significant, region-

wide shift in climate at the PHB.  The shift is characterized by a transition from generally 

cool-moist, but in some cases cool-dry, conditions during the Younger Dryas (ca. 13,200-

11,400 cal B.P.) to warm-dry conditions by the start of Early Holocene (ca. 11,400 cal 

B.P.).  In many areas the pollen sequences indicate that conditions were more extreme 

than today.  The shift is registered in areas of the Puget Lowland, Cascade Range, 

Okanogan, Columbia Plateau, and Northern Rocky Mountains. 

 Evidence for another regional shift in climate during the 8200 cal B.P. event 

comes from multiple sites variously located in the Puget Lowland, Okanogan Highland, 

Columbia Plateau, and Northern Rocky Mountains.  Although the cold event is registered 

in several pollen profiles from the Pacific Northwest, the signature is much less evident 

than the transition between climate regimes at the PHB.       
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 There is a relatively high degree of synchroneity in the transition from cool-

moist/cool-dry to warm-dry conditions at the PHB.  The timing of transition varies from 

region to region and ranges between ca. 13,000-9000 cal B.P., but tends to center around 

11,400 cal B.P.  When taking into account the standard deviation of error (at 2-sigma) for 

calibrated radiocarbon dates using the IntCal09 calibration curve (Reimer et al. 2009), the 

timing of transition at each site tends to fall within the same statistical range.     

 Be that as it may, variations in the timing and magnitude of change existed, 

particularly in the Northern Rocky Mountains.  These variations were at least in part 

caused by coeval glacial and climatic factors that existed on a local and regional level.  It 

is also reasonable to assume that vegetation communities in this timeframe were subject 

to the same environmental, geologic, and atmospheric factors known to cause variations 

in plant communities today.  Such factors include, but are not limited to, local 

geomorphology, microclimates, aspect of slope, soil types, and differences in the energy 

and moisture balance of an area.     

 Palynological studies have recently been used to support the occurrence of abrupt 

or rapid climate change in western North America at the PHB (Gorham et al. 2001:102; 

Heusser 2000; Jiménez-Moreno 2010).  The results of this study support the occurrence 

of rapid or abrupt climate change in the Pacific Northwest at the PHB.  This is based on 

the observation that 1) the characteristics of vegetation communities during the transition 

in climate regimes are markedly similar from one physiographic region to another; and 2) 

the timing of the transition from generally cool-moist to warm-dry conditions typically 

falls within the same statistical range at a 2-sigma standard deviation.  
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 In the future, pollen data combined with fire and plant macrofossil records will 

allow researchers to gain an even finer resolution of the chronology and dynamics of 

vegetation and climate change.  Greater resolution and understanding of past vegetation 

events will likely lead to the recognition of new episodes of climate change, and possibly 

multiple episodes of change within a single climatic chronozone or event.    

 Significant shifts in the density, diversity, and distribution of plant communities at 

the Late Pleistocene-Early Holocene documented in this chapter had direct and 

measurable impacts on fauna inhabiting the region.  In the next chapter, faunal proxy 

datasets for climate change suggest that changes in the size and biogeography of animals, 

along with the extinction of megafauna, occur synchronously with significant shifts in 

plant communities.   
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Chapter 5 

 

 
Faunal Proxy Datasets for Climate Change 

 

  

Introduction 

 

 Late Pleistocene and Early Holocene faunal datasets from the Pacific Northwest 

reflect region-wide changes in climate and environments at the PHB.  Variations in the 

size, distribution, and abundance of mammals are linked to large-scale shifts in 

temperature and precipitation along with associated changes in plant communities.  

Faunal assemblages from archaeological and paleozoological sites (Figure 5.1) suggest a  

 
        
       Figure 5.1. Locations of faunal sites discussed in this study.  
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generally cool-moist climate at the Late Pleistocene during the Younger Dryas 

chronozone, followed by warmer-drier climate by the Early Holocene.   

 Late Pleistocene-Early Holocene faunal datasets from the Pacific Northwest come 

from Orcas Island off the coast of Washington (Kenady et al. 2011), the Olympic 

Peninsula of northwest Washington (Rice 1965; Gustafson et al. 1979; Gilbow 1981; 

Waters et al. 2011), Columbia Plateau of Washington (Daugherty 1956; Fryxell and 

Daugherty 1962; Gustafson 1972; Irwin and Moody 1978; Martin et al. 1982; Galm 

1983; Galm et al. 2002; Gough and Galm 2003; Luttrell 2001; Huckleberry et al. 2003; 

Lyman 2004, 2008, 2010, 2011; D.L. Jenkins 2010; S. L. Jenkins 2011) Snake River 

Plain of southern Idaho (Butler 1965b, 1968, 1969; Plew and Pavesic 1982; Miller 1989), 

Willamette Valley of northwest Oregon (Stenger 2002; Dunleavy 2003), and in the 

Harney-Owyhee Broken Lands of southern Oregon (Cressman 1942; Grayson 1977; D.L. 

Jenkins 2010) (Table 5.1).   

 

Late Pleistocene Fauna 

 

 Faunal assemblages dated to the Late Pleistocene demonstrate that now-extinct 

megafauna inhabited the Northwest Coast, Columbia Plateau, Snake River Plain, and 

Harney-Owyhee Broken Lands physiographic regions of the Pacific Northwest.  From the 

few megafaunal remains that have been dated (Stenger 2002; Jenkins 2010; Waters et al. 

2011; Kenady et al. 2011), it is evident that ancient species inhabited the region 

beginning before ca. 15,000 cal B.P. and had essentially disappeared by the Early 

Holocene.  Mammut americanum (American mastodon), Mammuthus columbi 

(Columbian mammoth), undifferentiated mammoth and mastodon, Bison antiquus  
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Table 5.1. Late Pleistocene-Early Holocene Faunal Assemblages from Sites in the 

Pacific Northwest.* 

 

Site Age  Location  Taxa Source(s) 

Ayer Pond site 

 (45SJ454) 

LP 

ca. 13,800 cal 

BP 

Orcas Island  Bison antiquus (ancient 

bison) 

Kenady et al. 2011 

 

Manis site 

(45CA218) 

LP 

ca. 13,800 cal 

BP 

Olympic 

Peninsula  

Mammut 

americanum(American 

mastodon) 

Gustafson et al. 1979; 

Gilbow 1981; Waters et 

al. 2011 

Coplen Spring 

(Latah 

Mammoth) and 

Donahoe Spring 

LP eastern 

Washington 

Mammuthus columbi 

(Columbian mammoth)  

Galm 1983;  

Luttrell 2001 

Bishop Spring site LP-EH central 

Washington 

Bison(undifferentiated 

bison), Bovideae 

(sheep/bison family), 

sheep, elk, deer, dog, 

marmot 

Schalk 2002 (personal 

commun.) in 

Huckleberry et al. 2003 

Lind Coulee site 

(45GR97) 

LP-EH 

ca. 11,600-9645 

cal BP 

central 

Washington 

Bison bison (modern bison), 

Cervus elaphus (big elk), 

Cervus canadensis 

(wapiti/elk), deer, muskrat, 

beaver, badger, marmot, 

skunk, waterfowl, reptiles, 

birds 

Daugherty 1956; 

Gustafson 1972;  Irwin 

and Moody 1978; 

Huckleberry et al. 

2003; Lyman 2004 

Sentinel Gap site 

(45KT1362) 

LP-EH 

ca. 12,610-

11,400 

 cal BP 

south-central 

Washington 

Bison bison (modern bison), 

Cervus elaphus roosevelti 

(Roosevelt elk), Ovis 

canadensis (bighorn 

sheep), mountain sheep, 

Brachylagus 

idahoensis(pygmy rabbit), 

deer, beaver, badger, 

Chinook salmon  

Galm et al. 2002; 

Gough and Galm 

2003; Lyman 2004; 

Litzkow 2011 

Marmes 

Rockshelter 

(45FR50) 

LP-EH 

12,470-10,740  

cal BP 

southeast 

Washington 

Cervus elaphus ("Big elk"), 

Alopex lagopus (Arctic 

fox), Ovis canadensis 

(Bighorn sheep),  

Antilocapra americana 

(pronghorn), Martes 

americana nobilis (noble 

marten), deer, red fox, 

coyote, rabbits, rodents 

Fryxell and Daugherty 

1962; Gustafson 1972; 

Lyman 2008, 2010, 

2011 

Windust Cave C  

(45FR46) 

EH 

ca. 11,400-8985  

cal BP 

southeast 

Washington 

Bos bison (bison or 

American buffalo), Ovis 

canadensis (Bighorn 

Sheep), Cervus canadensis 

(wapiti/elk) domesticated 

goat and sheep, deer, 

bobcat, rabbit, badger, 

raccoon, Canadian 

beaver, dog, weasel, other 

small mammals, rodents, 

fish 

Rice 1965;  

Jenkins 2011 

West Richland 

Mammoth site 

LP 

> 15,530 cal BP 

south-central 

Washington 

Mammuthus (mammoth), 

cloven-hooved mammals, 

medium-sized carnivores, 

rodents, rabbits, toad, 

snake, birds  

Martin et al. 1982 
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*LP=Late Pleistocene, EH=Early Holocene 

Table 5.1. (cont.) Late Pleistocene-Early Holocene Faunal Assemblages from Sites in 

the Pacific Northwest.* 

 

Site Age  Location  Taxa Source(s) 

Woodburn Bog LP 

> 15,150-12,660 

 cal BP 

northwest 

Oregon 

Mammut (mastodon), 

Mammuthus columbi 

(Columbian mammoth), 

Bison antiquus (ancient 

bison), Megatherium (giant 

sloth), poss. American lion, 

horse, bear, dire wolf, 

Teratanis Woodburnensis 

(predator bird) 

 Campbell and 

Stenger 2002; Stenger 

2002; Dunleavy 2003; 

Baker  2005, Keefer 

2010 

Wasden site/Owl 

Cave 

(10BV30) 

LP-EH  

13,840-7840 cal 

BP 

southeast Idaho Mammuthus (mammoth), 

Bison antiquus (ancient 

bison), Camelops(camel), 

bear, coyote, canine/dog, 

badger, other small 

mammals 

Butler 1965a, 1965b, 

1968, 1969; Plew and 

Pavesic 1982; Miller 

1989 

Paisley Caves  

(35LK3400) 

LP 

ca. 14,290-

13,140 cal BP 

south-central 

Oregon 

Bison antiquus (ancient 

bison), Camelops (camel), 

horse, artiodactyls, small 

mammals, waterfowl, fish 

Cressman 1942; 

 Jenkins 2010 

Dirty Shame 

Rockshelter 

(35ML65) 

EH 

10,740-7425 cal 

BP 

southeast 

Oregon 

Bison antiquus (ancient 

bison), Lutra canadensis 

(river otter), Ovis 

canadensis 

(mountain/bighorn sheep), 

pronghorn, deer, bobcat, 

badger, beaver, fox, mink, 

dog, coyote, rabbits,  

rodents 

Grayson 1977;  

Aikens et al. 1977 

 

*LP=Late Pleistocene, EH=Early Holocene 

 

(ancient bison), Camelops (camel), Equus (horse), Megatherium (giant sloth), dire wolf, 

possibly American lion, and a new species of predatory bird named Teratanis 

Woodburnensis (Campbell and Stenger 2002) are represented in the faunal record (Table 

5.1).  A bone projectile point imbedded in the bone of the mastodon at the Manis site (site 

45CA218) was recently dated to ca. 13,800 cal B.P. (Waters et al. 2011).  This is the 

same reported age as an ancient bison identified at the Ayer Pond site (45SJ454) (Kenady 

et al. 2011).  Species of this period were overwhelmingly cold-adapted (Surovell 2008), 

thus indicating cooler temperatures, moister conditions, and more mesic adapted 
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vegetation cover during the terminal Pleistocene (Daugherty 1956; Gustafson 1972, 

Grayson 1977).  

 The last major pulse of Late Quaternary mammal extinction occurred in the Late 

Pleistocene during the Younger Dryas chronozone around 12,900 cal B.P. (Grayson and 

Meltzer 2003:586).  The cause of extinction is still debated (for various perspectives see 

Grayson and Meltzer 2003; Firestone et al. 2007; Barnosky and Kraatz 2007; Haynes 

2008).  Nevertheless, climatic-extinction models suggest that climate played at least some 

role in the extinction, speciation, and distribution of Late Pleistocene fauna (Grayson and 

Meltzer 2003; Barnosky et al. 2004; Barnosky and Kraatz 2007).   

 
Fauana at the Pleistocene-Holocene Boundary 

 

 Ancient, larger-than-modern, and modern mammalian taxa are represented in the 

faunal record of the PHB.  At the Wasden site (Owl Cave) (10BV30) and Dirty Shame 

Rockshelter (35ML65) in southern Oregon, faunal remains indicate that Bison bison 

(modern bison) and other extant species inhabited the region along with now-extinct 

animals including mammoth, horse, and camel (Butler 1968) (Table 5.1).  Larger-than-

modern Bison bison and Cervus elaphus roosevelti (Roosevelt elk) have been identified 

at the Sentinel Gap site (45KT1362) (Galm and Gough 2001, 2008; Gough and Galm 

2003).  The elk bone, which dates to ca. 11,975 cal B.P., is reportedly the same size and 

bone as a larger-than-modern Cervus elaphus (“Big Elk”) from the Marmes Rockshelter 

that dates to ca. 11,220 cal B.P. (Lyman 2010).   

 Terminal Pleistocene bison and elk likely grew to exceptionally large sizes as a 

result of abundant grasses and forage plants available at the time (Lyman 2010, 2004).  



58 
 

 

Vegetation began to decrease in abundance as climate shifted to warmer and drier 

condition towards the Early Holocene.  Faunal data suggests that vegetation changes 

occurring at the PHB were accompanied by a reduction in the size and extent 

(diminution) of elk, bison, and other mammals. It is likely that diminution and fluctuating 

abundances of bison and elk at the Early Holocene were caused by climatically driven 

decreases in the quality and quantity of nutritional forage (Lyman 2004, 2010).   

 Links between climate change and species distribution are evidenced by changes 

in the range of species at the PHB climatic shift (Barnosky et al. 2004; Barnosky and 

Kraatz 2007:527).  Most of the species represented in PHB faunal assemblages still 

occupy the same physiographic regions today.  However, bison, elk, Antilocapra 

americana (pronghorn), Ovis canadensis (bighorn sheep), Brachylagus idahoensis 

(pygmy rabbit), and Alopex lagopus (arctic fox) are found at archaeological sites in 

locations that today cannot support the habitats needed for their survival.  Sites dating to 

around the PHB that possess no modern faunal analogs include Lind Coulee, Sentinel 

Gap, Marmes Rockshelter, Bishop Spring, Windust Cave C, Wasden (Owl Cave), 

Woodburn Bog, and Dirty Shame Rockshelter (Table 5.1).  Changes in the spatial 

distribution of select species at the PHB are linked to a shift from cool-moist conditions 

at the Younger Dryas chronozone to increasingly warmer and drier conditions by the 

Early Holocene (Gustafson 1972; Lyman 2004, 2010; Huckleberry and Fadem 2007).   

 
Early Holocene Fauna 

 
Faunal assemblages suggest that by the Early Holocene, the proportion of large bodied 

mammals decreased, while smaller, xeric taxa grew in abundance.  Lyman (2010) 
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suggests that changes in the proportion of animal species were a consequence of 

decreasing effective moisture and an associated shift to more drought-tolerant plant 

communities.  The relative amount of bison on the landscape decreased as the climate 

became warmer-drier and grass productivity declined.  Bison populations were small if 

nonexistent by ca. 9000 cal B.P. (Lyman 2004:83). Conversely, xeric-adapted mammals 

grew in abundance.  Antilocapra americana, Ovis canadensis, and Brachylagus 

idahoensis are among the species that appear with greater frequency in the faunal record 

(Lyman 1991, 2004, 2008) (Table 5.1).  These species have historically occupied the 

same kinds of xeric habitats that flourished during warmer-drier Early Holocene 

conditions.   

 

Discussion  

 

 Faunal assemblages from Orcas Island, the Olympic Peninsula, Columbia Plateau, 

Snake River Plain, Willamette Valley, and Harney-Owyhee Broken Lands regions 

suggest there was a major shift in climate in the Pacific Northwest at the PHB.   Climate 

change at this period was of a magnitude large enough to produce genetic, behavioral and 

morphological responses in animal species.  Significant changes in the composition, size, 

distribution, and abundance of mammalian taxa suggest that cool-moist conditions at the 

Late Pleistocene transitioned to warmer-drier conditions by the Early Holocene.   

 Cold-adapted megafauna inhabited the Pacific Northwest at a time when 

increased moisture stimulated the expansion of a variety of subsistence resources.  The 

extinction of megafauna at the Late Pleistocene is still debated, but climate-extinction 
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models suggest that climate change played at least some role in the sharp decrease and/or 

elimination of many megafaunal species.       

 Climate change played a significant role in changes to the size and distribution of 

some mammals at the PHB.  A reduction in the size and extent of large-bodied mammals, 

particularly bison and elk, suggests that diminution likely occurred as a result of 

climatically driven decreases in nutritional forage.  Species of this period are found in 

areas that today cannot support their survival.  Shifts in the range of certain mammals are 

linked to climate-induced changes in plant communities and available habitat.   

 Faunal assemblages from the Early Holocene argue for a reduction in the number 

of large-bodied mammals and increases in xeric-adapted taxa across the Pacific 

Northwest.  These changes are associated with a region-wide reduction in available 

precipitation, increased temperatures, and decreased vegetation in many areas.  The 

disappearance of bison from the faunal record by ca. 9000 cal B.P. is associated with a 

reduction in precipitation and grass productivity.  Xeric taxa, including pronghorn, 

Bighorn sheep, and pygmy rabbit, became more abundant as shrub-steppe and other 

drought-tolerant habitats expanded. 

 Interpretations of Late Pleistocene-Early Holocene climate variability inferred 

from faunal datasets are generally consistent with interpretations of climate made from 

other forms of proxy data.  Faunal evidence not only reflects shifts in the availability of 

plant resources, but also evolving landscapes and the distribution/abundance of available 

moisture.    
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Chapter 6 
 

 
 

Stratigraphic and Geomorphic Proxy Datasets for  

Climate Change 

 
 

  

Introduction 

 

 Stratigraphic and geomorphic proxy data from sites in the Pacific Northwest 

(Figure 6.1) indicate that the Late Pleistocene to Early Holocene was marked by  

 

    Figure 6.1. Locations of stratigraphic/geomorphological sites discussed in this study. 
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significant changes in landscape processes.  Episodes of aggradation and pedogenesis are  

documented in the Olympic Peninsula (Morgan 1985), Columbia Plateau (Daugherty 

1956; Fryxell and Daugherty 1962; Leonhardy 1970; Cochran 1978; Ames et al. 1981; 

Mierendorf 1983; Chatters and Hoover 1992; Luttrell 1997, 2001; Galm et al. 2000, 

2002; Galm and Gough 2003; Gough 1995; Huckleberry et al. 2003; Huckleberry and 

Fadem 2007; Lenz et al. 2001, 2007; Lenz 2006, 2008); Salmon River Canyon (Davis 

2001; Davis and Schweger 2004); Northern Rocky Mountains (Mierendorf and Cochran 

1981; Pierce et al. 2011), Snake River Plain (Marler 2004); Grande Ronde Valley 

(Cochran and Leonhardy 1981), and in the central coast of Oregon (Personius et al. 1993) 

(Table 6.1).   

 Major changes in the erosion-sedimentation regime during the Late Pleistocene 

and Early Holocene occurred in response to changes in climate and related changes in the 

regional agents of sediment transport (Hay 1994:15).  Geological research discussed in 

this chapter suggests that after the last episode of catastrophic flooding (Missoula 

Floods), the Late Pleistocene was characterized by landscape stability under the cool-

moist climatic conditions of the Younger Dryas.  These conditions are evidenced by the 

presence of paleosols in Late Pleistocene sediments.  Paleosols often represent periods of 

increased moisture availability and landscape stabilization from vegetation (Wolfe et al. 

2000:61). 

 The transition from the Late Pleistocene to the Early Holocene (PHB) is marked 

by fluctuating water tables and landscape instability.  The transitional boundary appears 

to vary based on the physiographic region and local conditions, but it is generally 

synchronous across the Pacific Northwest, occurring between ca. 12,700-10,200 cal B.P.   
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Table 6.1. Late Pleistocene-Early Holocene Geological History of Sites in the Pacific 

Northwest.* 
 

Site/Area Age  Location  Geological History Source(s) 

Manis site  

(45CA218) 

LP 

ca. 13,840-10,740 cal 

BP 

Olympic 

Peninsula  

aggradation, soil 

development, marsh-like 

landscape 

Morgan 1985 

  LP-EH 

ca. 10,740-10,200 cal 

BP 

  fluctuating water table, 

changes in mode of 

deposition 

  

  EH  

<10,200 cal BP 

  highly vegetated marshy 

or peaty landscape  

  

Wells Reservoir 

region 

EH 

 ca. 10,200-9000 cal 

BP 

north-central 

Washington 

rapid floodplain 

aggradation 

Chatters and 

Hoover 1992 

  EH-MH  

ca. 8600-7425 cal BP 

  channel downcutting, slow 

floodplain accretion 

  

Rocky Reach 

of Columbia 

River Valley 

LP-EH  

> 12,880-  

> 7840 cal BP 

central 

Washington 

alluvial fan aggradation Gough 1995 

  EH  

> 9130 cal BP 

  episode of aggradation 

and entrenchment 

Mierendorf  1983 

Richey Roberts 

site 

(45DO482) 

LP   

ca. 15,525-12,880 cal 

PB 

central 

Washington 

soil development  Lenz 2006 

  LP-EH  

ca. 12,880-10,200 cal 

BP 

  rapid loess accumulation, 

fluctuating water table 

  

  EH  

ca. 10,200 cal BP 

  soil development     

Johnson 

Canyon 

region 

LP  

ca. 15,525-13,140 cal 

BP 

central 

Washington 

fluvial sand deposition Cochran 1978 

  LP  

ca. 13,140-12,430 cal 

BP 

  fluvial sand deposition   

  LP-EH  

ca. 12,430-7840 cal  

BP 

  soil development, 

alluviation, erosion, 

downcutting 

  

Bishop Spring 

site  

LP-EH central 

Washington 

soil development, changes 

in mode of deposition 

Huckleberry et al. 

2003 

 
*LP=Late Pleistocene, EH=Early Holocene 
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Table 6.1. (cont.) Late Pleistocene-Early Holocene Geological History of Sites in the 

Pacific Northwest.* 

 

Site/Area Age  Location  Geological History Source(s) 

Lind Coulee 

site (45GR97) 

LP  

ca. 12,880 cal BP 

central 

Washington 

Touchet Bed deposition  Daugherty 1956 

  LP  

< 12,880 cal BP 

  alluviation in stream or lake   

  EH   rapid loess accumulation    

BPA Springs 

site 

LP-EH central 

Washington 

fluctuating water table, 

landscape instability 

Huckleberry et al. 

2003 

Yakima 

Training 

Center  

LP-EH 

12,620-11,320 cal BP 

south-central 

Washington 

soil development formed 

on alluvium  

Galm et al. 2000  

  EH 

< 11,245- 

> 9000 cal BP 

  soil formation aggraded 

above older buried soil  

  

  EH 

< 9000 cal BP 

  significant erosion Galm  et al. 2002 

Sentinel Gap 

site (45KT1362) 

LP  

>  ca. 11,860 cal BP 

south-central 

Washington 

soil development, 

landscape stability, marsh-

like  

Galm et al. 2000, 

2002; Galm and 

Gough 2003; 

Huckleberry et al. 

2003 

  PHB   fluctuating water table, 

landscape instability 

  

  EH 

 ≤ ca. 11,860 cal BP 

  rapid eolian deposition     

Marmes 

Rockshelter 

(45FR50) 

LP-EH 

 ca. 12,570-11,175 cal 

BP 

southeast 

Washington 

eboulis production, δ13C 

and δ18O signatures in soil 

organic matter 

Huckleberry and 

Fadem 2007; Fryxell 

and Daugherty 

1962 

  EH  

≤ 10,200 cal BP 

  salt accumulation in 

hillslope soils, increased 

eolian deposition in 

rockshelter  

  

 
*LP=Late Pleistocene, EH=Early Holocene 
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Table 6.1. (cont.) Late Pleistocene-Early Holocene Geological History of Sites in the 

Pacific Northwest.* 

 

Site/Area Age  Location  Geological History Source(s) 

Granite Point 

site (45WT41) 

EH  

< 11,400- 

ca. 9000 cal  BP 

southeast 

Washington 

floodplain development, 

eolian deposition 

Leonhardy 1970 

  EH  

ca. 9000-  

> 7575 cal BP 

  moderate soil 

development overlain by 

eolian deposition 

  

Hatwai site 

 (10NP143) 

LP  

ca. 11,740 cal BP 

northeast 

Idaho 

dune bar aggradation Ames et al. 1981 

  PHB-EH  

ca. 11,075-9545 cal BP 

  reduced alluviation, sandy 

braided system  

  

  EH  

ca. 9545-8610 cal  BP 

  aggradation      

  MH  

ca. 8160-7425 cal BP 

  deltaic-fan and modified 

alluvial fan deposition 

  

Benton 

Meadows site 

(10NP315) 

EH northeast 

Idaho 

eolian deposition Luttrell 1997 

lower Salmon 

River Canyon 

LP  

> 13,215 cal BP 

western Idaho eolian loess deposition  Davis 2001; Davis 

and Schweger 2004  

  LP  

ca. 13,215-12,630 cal 

BP 

  soil development    

  EH   increased erosion, 

transport of slope 

sediments, significant 

landscape and 

geomorphic changes 

  

McArthur Lake 

vicinity 

LP northern Idaho fluvial deposition, terrace 

formation 

Mierendorf and 

Cochran 1981 

  LP-EH   dune and sheet sand 

deposition 

  

  EH   eolian aggradation and 

dune formation 

  

 
*LP=Late Pleistocene, EH=Early Holocene 



66 
 

 

Table 6.1. (cont.) Late Pleistocene-Early Holocene Geological History of Sites in the 

Pacific Northwest.* 

 

Site/Area Age  Location  Geological History Source(s) 

South Fork 

Payette River  

PHB central Idaho  aggradation and incision Pierce et al. 2011 

  MH  

ca. 7840-6845 cal BP 

  substantial aggradation    

Saylor Creek 

Range 

LP 

ca.  ≤ 15,150-  

≥ 13,110 cal BP 

southern Idaho Bishop Geosol (Lenz et al. 

2001, 2007; Lenz 2008) 

indicating 

soil development 

Marler 2004  

  EH  

< 13,110- 

> 7575 cal BP 

  Badger Mountain Geosol 

(Lenz et al. 2001, 2007; Lenz 

2008) indicating soil 

development  

  

La Grande 

sites  

(35UN52, 

35UN95, 

35UN74) 

LP-EH 

ca. 12,610- 

≤ 8425 cal BP 

northeast 

Oregon 

aggradation, soil 

development, landscape 

stability 

Cochran and 

Leonhardy 1981 

  EH    erosion, downcutting 

and/or wind deflation 

  

Central 

Oregon Coast  

LP-EH 

ca. 12,880-10,200 cal 

BP 

west-central 

Oregon 

region-wide aggradation, 

continuous terrace 

formation 

Personius et al. 1993 

          

 
*LP=Late Pleistocene, EH=Early Holocene 

 
Fluctuating water tables are represented by redoximorphic features in stratigraphic 

profiles (Table 6.1).  Redox mottling is associated with oxidation and reduction of 

minerals caused by water saturation and desaturation (O’Leary 2012).  Fluctuating water 

tables may represent a response to unstable climatic conditions at the PHB (Davis et al. 

2002).  
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 Accelerated eolian deposition and aggradation in major river systems mark an 

abrupt transition to warmer-drier conditions at the Early Holocene.  Eolian activity 

indicates a periods of regional drought (Wolfe et al. 2000:61).  Stratigraphic records 

suggest that sometime after this warm-dry episode, another period of increased moisture 

occurred across the region, as evidenced by the presence of paleosols that formed in 

Early Holocene sediments.  At several locations an episode of Mid-Holocene aggradation 

is recorded which may be associated with the 8200 cal B.P. cooling event (Table 6.1).   

 

Olympic Peninsula 

  

Manis Site 

  Stratigraphic studies from the Manis site (45CA218) (Table 6.1) in the northern 

foothills of the Olympic Mountains suggest a marsh-like environment, aggradation, and 

soil development during the Late Pleistocene-Early Holocene between ca. 13,840-10,740 

cal B.P.   Sometime between ca. 10,740-10,200 cal B.P., fluctuations in the water table 

and variations in deposition occurred whereby silt accumulated in an open water pond.  

After ca. 10,200 cal B.P., stratigraphic records show a complete change in the 

environment marked by a transition from an open pond to a highly vegetated marshy or 

peaty landscape.  Morgan suggests that the cause in environmental change is attributed to 

the Early Holocene warming trend which allowed trees to expand into lower elevations, 

thus adding organic debris to the site (Morgan 1985:18, 28-31).   
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Columbia Plateau 

 

Wells Reservoir Region 

  Stratigraphic records from the Wells Reservoir region (Table 6.1) reveal a dated 

sequence of floodplain development characterized by cycles of alluvial deposition and 

landform stability during the Holocene.  Aggradation episodes began shortly after Late 

Pleistocene catastrophic floods dated to ca. 15,150 cal B.P.  Four episodes of rapid 

floodplain aggradation were identified, the oldest occurring between ca. 10,200-9000 cal 

B.P.  Chatters and Hoover posit that decreases in vegetation exposed soil for transport 

during this period, while winter warmth enhanced flooding as a result of more frequent 

rain-on-snow events.    

 Paleoenvironmental records register a cool-moist interval in the region between 

ca. 7840-7425 cal B.P. that is represented in the stratigraphic record by channel 

downcutting and slow floodplain accretion (Chatters and Hoover 1992:42, 45, 52).  The 

aggradational event is synchronous with episodes of rapid aggradation in river systems 

recorded throughout Europe.  The aggradation events in Europe are linked to the 8200 cal 

B.P. cooling event (see Nesje & Dahl 2001; Bonsall et al. 2002), thus it is possible that 

the second episode of aggradation recorded by Chatters and Hoover is similarly 

associated with the 8200 cal B.P. cooling event.   

  

Rocky Reach of Columbia River Valley 

  Sedimentological studies by Gough (1995) suggest that alluvial fan aggradation 

occurred in the Rocky Reach of the Columbia River Valley (Table 6.1) during the Late 

Pleistocene and Early Holocene.  Deposition at the Chelan Falls and Orondo localities 
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began before ca. 12,880 cal B.P. and ceased shortly before the fall of Mazama tephra at 

ca. 7840 cal B.P.  Sediments were deposited in a manner consistent with arid and semi-

arid climate alluvial fan processes (Gough 1995:65, 90).  Mierendorf (1983:640) reports 

four possible episodes of aggradation and entrenchment during the Holocene at Rocky 

Reach, the first occurring before ca. 9130 cal B.P. 

 
Richey-Roberts Site 

 Recent geoarchaeological research conducted at the Richey-Roberts site (Table 

6.1) by Lenz (2006) identified terminal Pleistocene buried soil dating to ca. 15,525-

12,880 cal B.P.  The paleosol was buried by rapid loess accumulation and the formation 

of Early Holocene soils at ca. 10,200 cal B.P.  This phenomenon is described as 

sequenced pedogenic/geologic coupling.  Also noted are redoximorphic features that 

terminate in Early Holocene loess.  According to Lenz, known Paleoindian sites exhibit 

features similar to the Richey-Roberts site, including alluvial terrace formation which 

occurred as a result of post-flood dewatering followed by upper Pleistocene alluviation 

(Lenz 2006:104).   

 
Johnson Canyon 

  Stratigraphic investigations in Johnson Canyon (Table 6.1) show cyclic episodes 

of erosion, deposition, and soil formation during the Late Pleistocene and Early 

Holocene.  A major period of erosion and eolian deposition is documented between ca. 

15,525-13,140 cal B.P.  Fluvial sand deposition occurred between ca. 13,140-12,430 cal 

B.P. after Glacier Peak ash fall.  A period of soil formation, alluviation, and erosion and 

downcutting is recorded from ca. 12,430-7840 cal B.P. (Cochran 1978:v-vi, 50).   
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Bishop Spring Site 

  Preliminary stratigraphic investigations at the Bishop Spring site (Table 6.1) in 

the western Columbia Plateau suggest that soil formation during the Late Pleistocene and 

Early Holocene was interrupted by a change in the mode of deposition.  The change in 

deposition is evidenced by the presence of paleosols that were formed and buried in 

eolian, fluvial, and colluvially redeposited silt beds.  Paleosols are marked by buried A 

horizons with abundant plant macrofossils.  St. Helens Set S (ca. 15,150 cal B.P.) Glacier 

Peak (ca. 13,110 cal B.P.), and Mazama (ca. 7575 cal B.P.) tephra bracket the silt beds 

(Huckleberry et al. 2003:242-243).  

 

Lind Coulee Site 

  Stratigraphic and paleoenvironmental investigations at the Lind Coulee site 

(45GR97) (Table 6.1) in Central Washington provide evidence for a cool-moist Late 

Pleistocene environment that is followed by warm-dry Early Holocene conditions 

(Daugherty 1956).  The site occupation surface is found above Missoula Flood sediments 

known as Touchet Beds (“Bed E”) that were formed during a proglacial period at ca. 

12,880 cal B.P.  Proglacial conditions were replaced by cool-moist Anathermal 

conditions after ca. 12,880 cal B.P., as evidenced by stratigraphic “Bed D” characteristics 

which indicate deposition in a sluggish stream or lake.  Culture-bearing sands are capped 

by a thick layer of loessial material thought to have formed under a warm-dry Altithermal 

climate (Daugherty 1956:233-234, 256). 

 

BPA Springs Site 

 The stratigraphic record at the BPA Springs site (Table 6.1) in central Washington 
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suggests that water table fluctuations and possible landscape instability occurred at the 

PHB in the area.  Prominent fine-grained flood sediments possessing redoximorphic 

features provide evidence of this.  Redox mottling indicates fluctuating water tables 

which may represent a response to unstable climatic conditions at the PHB (see Davis et 

al. 2002).  Pleistocene-Holocene Boundary redoximorphic features at BPA Springs are 

similar to those found at the Sentinel Gap site (Huckleberry et al. 2003:244).  

 
Yakima Training Center 

 Stratigraphic and geomorphic investigations of drainage basins in the Yakima 

Training Center (Table 6.1) of south central Washington provide evidence for four major 

cycles of alluviation spanning the Late Pleistocene and Holocene (Galm et al. 2000).   

Alluvial Cycle 1 is dated to the Late Pleistocene-Early Holocene and includes younger 

Dryas- and Early Holocene-age soil formation.  Younger Dryas-age soil formation 

includes A horizons of buried soils that formed on Late Pleistocene-Early Holocene 

alluvium between ca. 12,620-11,320 cal B.P.  The second period of soil development 

occurred during the Early Holocene sometime after ca. 11,245 and before 9000 cal B.P.  

Early Holocene soil development may represent a regional pattern of landscape stability 

(Galm et al. 2000:7.3).  The younger paleosol predates a strong erosion episode that is 

observable in many channel cross sections and alluvial fans in the region.  Early 

Holocene erosion occurred sometime after ca. 9000 cal B.P. (Galm et al. 2000:6.3-6.4).   

 

Sentinel Gap Site 

  Paleoenvironmental investigations at the Sentinel Gap site (45KT1362) (Table 

6.1) in the Yakima Training Center provide a record of abrupt climate change marked by 
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a shift from cool-moist to warm-dry conditions at the PHB (Galm et al. 2002; Galm and 

Gough 2003; Huckleberry et al. 2003).  The Younger Dryas interval is characterized by a 

buried, organic matter-rich soil A horizon and long redox structures which suggest the 

growth of phreatophytic plants (Figure 6.2).  The stratigraphy suggests a moist riparian 

environment and landscape stability sometime before ca. 11,860 cal B.P.  Soil 

 
 

Figure 6.2.  Stratigraphic profile from the Sentinel Gap site (45KT1362) (image courtesy of  

                    Archaeological and Historical Services, Eastern Washington University).    

 

formation is further indication of moister environmental conditions during the Younger 

Dryas.  

  Accelerated eolian deposition and fluctuating water tables mark the transition 

into the Early Holocene (Galm and Gough 2003).  Rapid capping of the occupation 

surface by eolian sand aggradation at or after ca. 11,860 cal B.P. contributes to the 

interpretation of an abrupt change toward warmer-drier conditions (Galm et al. 2002; 

Galm and Gough 2003).  The degree of bone preservation and nearly vertical flake 

orientations further suggests rapid eolian sedimentation (Galm et al. 2002).  Similar 
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eolian aggradation events have been reported at Marmes Rockshelter, Granite Point, and 

elsewhere on the lower Snake River region (Huckleberry et al. 2003:40). 

 

Marmes Rockshelter 

  Physical, chemical, and isotopic analyses of archived sediments from the Marmes 

Rockshelter (45FR50) (Table 6.1) in southeastern Washington document a transition 

from cool-moist conditions at the Late Pleistocene to warm-dry conditions by the Early 

Holocene (Fryxell and Daugherty 1962; Huckleberry and Fadem 2007).  Initial 

stratigraphic excavations were conducted by Fryxell and others in the 1960s and recently 

analyzed in detail by Huckleberry and Fadem (2007).  Cool-moist climatic conditions 

from ca. 12,570-11,175 cal B.P. are suggested by eboulis production and δ13C and δ18O 

signatures in soil organic matter.  A shift to a warmer-drier climate occurring as early as 

ca. 10,200 cal B.P. is suggested by salt accumulation in hillslope soils and increased 

eolian deposition in the rockshelter (Huckleberry and Fadem 2007:21, 30-31).  

  
Granite Point Site 

  The stratigraphic record at the Granite Point site (45WT41) (Table 6.1) in 

southeastern Washington provides evidence for floodplain development followed by 

eolian sand deposition at the Early Holocene.  Floodplain development is dated to 

sometime after ca. 11,400 cal B.P. and before ca. 9000 cal B.P.  Moderately developed 

soil is deposited sometime around 9000 cal B.P. and is overlain by pre-Mazama (ca. 7575 

cal B.P.) eolian sands (Leonhardy 1970:72-73).   
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Hatwai Site 

  Multiple phases of aggradation during the Late Pleistocene and Holocene are 

documented at the Hatwai site (10NP143) (Table 6.1) in northeast Idaho (Ames et al. 

1981).  The earliest episode of aggradation is documented in the mid-gravel-sand dune 

bar at the Hatwai narrows.  It is attributed to the Late Pleistocene and dates to ca. 11,740 

cal B.P.  A period of reduced flow characteristic of a sandy braided system is recorded 

between ca. 11,075-9545 cal B.P. and attributed to the PHB.  Stream competence 

increased after ca. 9545 cal B.P. and was followed by a period of erosion and reduction in 

deposition beginning by ca. 8610 cal B.P.  A Mid-Holocene episode of deltaic-fan and 

modified alluvial fan deposition is documented between ca. 8160-7425 cal B.P. (Ames et 

al. 1981:44-48).  This is contemporaneous with the 8200 cal B.P. cooling event.   

 
Benton Meadows 

  Cultural resource testing at site 10NP315 in Benton Meadows (Table 6.1) of 

western Idaho identified a projectile point/knife attributed to the Windust Phase (ca. 

11,400-9000 cal B.P.). The projectile point/knife was buried above a dry, oxidized fine 

silt surface (Luttrell 1997:11, 14). 

  

Lower Salmon River Canyon 

 

  Pedostratigraphic, geomorphic, and lithostratigraphic data from the Cooper’s 

Ferry site (10IH73) and elsewhere in the lower Salmon River Canyon (Table 6.1) 

contribute to the interpretation of an evolving riparian ecosystem at the Late Pleistocene-

Early Holocene in the region (Davis 2001; Davis and Schweger 2004).  Records present 

evidence for cycles of Late Pleistocene eolian loess deposition followed by Younger 



75 
 

 

Dryas-age pedogenesis.  Soil development at the terminal Pleistocene is replaced by a 

period of Early Holocene erosion and aggradation.   

 The Late Pleistocene is marked by the accumulation of eolian loess across the 

landscape (Davis 2001).  Loess accumulations are commonly linked to arid and windy 

glacial conditions with sparse vegetation in source areas (Sweeney et al. 2005:261).  

Paleosol horizons within loess deposits show that soil development was occurring under 

moist conditions during the Late Pleistocene.  Paleosol horizons in the Rock Creek Soil 

pedofacie (ca.15,530-12,630 cal B.P.) are dated to ca. 13,215 B.P. and 12,630 cal B.P. 

(Davis and Schweger 2004:691, 699, 701).   

 A shift from eolian deposition to alluvial fan and floodplain aggradation at 

alluvial lithofacie Qa14 (>13,200-ca. 1915 cal B.P.) indicates a shift in geomorphic and 

landscape evolution at the Early Holocene.  The depositional sequence suggests changes 

in the geomorphic systems and landscape evolution associated with increased erosion and 

transport of slope sediments.  Occasional dewatering structures are seen at the boundaries 

of the unit (Davis 2001; Davis and Schweger 2004:700, 689).  

 
Northern Rocky Mountains 

  

McArthur Lake Vicinity 

  Geomorphic and stratigraphic investigations of archaeological sites in the 

McArthur Lake vicinity (Table 6.1) of northern Idaho (Mierendorf and Cochran 1981) 

present a record of fluvial deposition at the Late Pleistocene followed by a period eolian 

aggradation at the Early Holocene.  The geomorphic context suggests the occurrence of 

Late Pleistocene proglacial terrace formation followed by Late Pleistocene to Holocene 
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dune and sheet sand deposition.  The immediate postglacial stratigraphic sequence is 

represented by eolian activity that resulted in the formation of the dunes.  Within these 

dunes is a buried, weakly developed soil horizon which is interpreted to represent a brief 

warming episode, a period of non-deposition, or both.   

 

South Fork Payette River 

 Geomorphologic data from the South Fork Payette River (Table 6.1) in central 

Idaho (Pierce et al. 2011) indicates that a period of aggradation and incision occurred at 

the PHB in the area.  This is based on extrapolations of soil development, Early Holocene 

incision rates, and deposit characteristics.  Terraces with treads ca. 10, 13, and 21 m 

above bank fill (T0-T2) are dated between the last glacial age and Early Holocene.  The 

T0 terrace is interpreted to be a glacial fill terrace based on lithology and depositional 

features.  A substantial interval of aggradation is also recorded for the middle Holocene 

between ca. 7840-6845 cal B.P. (T3 terrace) (Pierce et al. 2011:4, 16).  The middle 

Holocene aggradation event is contemporaneous with the 8200 cal B.P. cooling event.   

 
Snake River Plain 

 

 Stratigraphic records from the Saylor Creek Range (Table 6.1) in southern Idaho 

(Marler 2004) document two periods of Late Pleistocene-Early Holocene soil 

development.  This is evidenced by the presence of two paleosol horizons in terminal 

Pleistocene and Early Holocene sediments.  The paleosol sequence at the Saylor Creek 

Range is consistent with the model of geosol development proposed by Lenz and others 

(2001, 2007) (Marler 2004:64).  According to the model, Late Pleistocene and Early 

Holocene soil development is represented in the stratigraphic record by distinct geosol or 
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paleosol strata that are referred to as Bishop and Badger Mountain geosols.   These 

pedostratigraphic units are found in a wide variety of depositional environments in the 

Pacific Northwest.  

 Bishop Geosol, dating to the Late Pleistocene, is characterized by a well-

developed A horizon and thin Cambic (Bw) or Argillic (Bt) horizons.  The horizons are 

positioned between Mount St. Helens Set S (ca. 15,150 cal B.P.) and Glacier Peak (ca. 

13,110 cal B.P.) tephras.  Badger Mountain Geosol is Early Holocene in age, post-dating 

Glacier Peak tephra and pre-dating Mazama (ca. 8500 cal B.P.) tephra.  It is similar to the 

Bishop Geosol and characterized by multiple buried A (Ab) horizons, Cambic horizons, 

and well-developed argillic horizons (Lenz et al. 2001, 2007; Lenz 2008; see also Marler 

2004:65).   

 

Grande Ronde Valley 

 

  Geologic investigations from the Stockhoff (35UN52), Marshmeadow (35UN95), 

and Ladd Canyon (35UN74) archaeological sites (“La Grande” sites) (Table 6.1) indicate 

region-wide episodes of floodplain aggradation, landscape stability, and erosion at the 

Late Pleistocene-Early Holocene.  Aggradation began at ca. 12,610 cal B.P. and persisted 

until at least ca. 8425 cal B.P.  Aggradation deposits are capped by paleosols that contain 

argillic and cambic horizons, indicating a period of landscape stability.  The deposits are 

truncated, suggesting that landscape stability transitioned to a period of erosion in which 

sediments were degraded by downcutting and/or wind deflation.  Comparisons with other 

contemporaneous sites in the Pacific Northwest suggest alluvial deposition was 

synchronous throughout the Pacific Northwest (Cochran and Leonhardy 1981:26, 35). 
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Central Oregon Coast 

 
 A regional aggradation episode is documented in the drainage basins of the 

central Oregon Coast Range (Table 6.1) at the Late Pleistocene-Early Holocene.  Region-

wide aggradation is evidenced by radiocarbon ages of nearly continuous terraces that are 

present along streams in drainage basins throughout the region.  According to Peresonius 

and others (1993), the aggradation may be related to climate-induced changes in the 

frequency of colluvium evacuation from hollows common in all drainage basins in the 

region.   Terraces are clustered at ca. 12,880-10,200 cal B.P. (Personius et al. 1993:297). 

 

Discussion 
 

 

 Stratigraphic and geomorphic studies of major river systems in the Pacific 

Northwest suggest that there was an abrupt transition in climate regimes at the PHB.  

Climate change is represented by episodes of aggradation and pedogenesis in 

physiographic areas across the region.  Characteristics of region-wide geological events 

argue for a moist and/or cool-moist climate during the Late Pleistocene, followed by a 

warmer-drier climate by the beginning of the Early Holocene.   

 Soil development at the terminal Pleistocene occurred during a period of 

landscape stability associated with the cool-moist conditions of the Younger Dryas.  An 

abrupt change in the mode of deposition and sedimentation rates is recorded in the 

pedogenic sequences at the PHB (Lenz et al. 2007:82).  The presence of redoximorphic 

features in Late Pleistocene-Early Holocene sediments suggests fluctuating water tables 

and landscape instability at this time (Galm et al. 2000; Davis et al. 2002; Huckleberry et 

al. 2003).  By ca. 12,700-10,200 cal B.P., the onset of warmer-drier conditions is 
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evidenced by eolian deposition and aggradation in the drainage basins of the Pacific 

Northwest (Galm et al. 2000:7.12; Lenz 2008:354).  Wind took the place of water as the 

primary agent of aggradation after ca. 10,200 cal B.P., and soil transport was accelerated 

by decreases in vegetation (Chatters and Hoover 1992;vChatters 1998:44).  A second 

period of soil development dating to the Early Holocene is documented in most areas. 

 The geological events observed in this and other studies are consistent with the 

model of aggradation and pedogenesis proposed by Lenz and others (2001, 2007) and 

Lenz (2008).  According to the model, region-wide, climate-controlled aggradation began 

by around 13,840 cal B.P.  Episodes of aggradation are recorded by Late Pleistocene-

Early Holocene alluvial chronologies along the major drainage ways in the Pacific 

Northwest.  Aggradation formed terraces in major river systems and their tributaries.   

 Regional soil formation during the Late Pleistocene is suggested by the presence 

of Bishop Geosol in the stratigraphic record.  A second episode of soil formation is 

indicated by the presence of Badger Mountain Geosol in Early Holocene sediments.  The 

Bishop and Badger Mountain geosols/paleosols are observed in a wide variety of 

depositional environments (Lenz et al. 2007:82; Lenz 2008:354).   

 A Mid-Holocene-age episode of aggradation is observed in the Wells Reservoir 

region in north-central Washington (Chatters and Hoover 1992), at the Hatwai site 

(10NP143) in northeast Idaho (Ames et al. 1981), and the South Fork Payette River in 

central Idaho (Pierce et al. 2002).  The 8200 cal B.P. cooling event is associated with sea 

level rises, increases in the frequency and magnitude of floods, and substantial 

aggradation in river systems throughout Europe and in areas of North America.  

Environmental events associated with the cooling period lasted for a duration of around 
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330 years, from ca. 8290–7960 cal B.P. (see Nesje & Dahl 2001; Bonsall et al. 2002).  

Significant episodes of Mid-Holocene aggradation documented in the Pacific Northwest 

are dated to around the same time, thus it possible that these episodes of aggradation are 

similarly associated with the 8200 cal B.P. cooling event.   

 Climatic conditions inferred from stratigraphic and geomorphological data are 

consistent with conditions interpreted from glacial, palynological, and faunal data.  The 

similarity and synchroneity of geological events from one physiographic area to another 

adds to growing evidence for large-scale climate change in the Pacific Northwest.  The 

apparent rapidity and abruptness of change from moist and/or cool-moist to warm-dry 

conditions supports the occurrence of rapid or abrupt climate change at the PHB.   

 Information accumulated in this and the preceding chapters has provided the 

framework necessary for understanding the micro- and macro-scale effects of climate 

change.  In the following and final chapter, this knowledge is applied to the 

archaeological record in order to consider the ways in which climate change influenced 

cultural adaptations and development for Late Paleoindian-Early Archaic peoples of the 

Pacific Northwest. 
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Chapter 7 

 

Conclusion 

 
  

 

Introduction 

 

 This chapter examines the questions outlined in Chapter 1 as part of the Statement 

of Problem: 1) What are the characteristics of climate change at the terminal Pleistocene 

in the Pacific Northwest?;  2) What is the nature of paleoenvironmental change at the 

Pleistocene-Holocene Boundary?; and  3) What is the relationship between 

regionalization of Late Paleoindian-Early Archaic populations and climate change?    

 These questions address the potential ways in which climate change and 

associated changes in the environment influenced human adaptive strategies and altered 

the way that people conceptualized their surrounding landscapes.  The data accumulated 

in Chapters 3-6 provide the foundation for considering these relationships.  The 

discussions that follow each question are not intended to solve the vexing problem of 

how climate change influenced human behavior during the Late Quaternary.  Rather, they 

provide insights which may help archaeologists and paleoecologists to better understand 

the connection between the earliest human inhabitants, the archaeological signature left 

by these people, rapid/abrupt climate change, and evolving ecologies at the terminal 

Pleistocene and Early Holocene in the Pacific Northwest.   
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1. What are the Characteristics of Climate Change at the Terminal 

Pleistocene in the Pacific Northwest? 

 

  

Climatic and Environmental Conditions at the Younger Dryas Chronozone  

 Proxy records examined in this study suggest that the Younger Dryas chronozone 

in the Pacific Northwest was marked by a shift from the warming conditions of the 

Bølling-Allerød chronozone to cool-moist, but in some cases cool-dry, climatic 

conditions.   Although this is the general trend, it is becoming more apparent that the 

cool-moist/cool-dry models that are typically used to describe conditions of this interval 

are an oversimplification of a more dynamic and variable climatic system.  For example, 

research (Denton et al. 2005; Meltzer and Holliday 2010) suggests that seasonality may 

have been amplified at the Younger Dryas interval.  This is inferred from increased CO2, 

insolation and seasonality highs, and other proxy records which indicate that a majority 

of temperature lowering occurred during the winter rather than summer seasons.   

 There is a higher degree of variability between environmental responses to 

climate change of this period than was once recognized.  Responses were different 

depending on a large number of factors, including elevation and proximity to the Pacific 

Ocean.  In some areas it is believed that conditions were not extreme enough to produce a 

significant shift in vegetation (Grigg and Whitlock 1998; Meltzer and Holliday 2010).  

Nevertheless, a review of the most widely reported proxy indicators for climate in the 

Pacific Northwest—glacial features, pollen, fauna, and stratigraphy/geomorphology—

consistently point to a shift to an overall cool-moist climate.    

 
 Northwest Coast and Puget-Willamette Trough: Cool Younger Dryas conditions 

are inferred from faunal assemblages at the Woodburn Bog site in northwest Oregon 
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(Dunleavy 2003; Stenger 2002), Ayer Pond site (45SJ454) in Orcas Island (Kenady et al. 

2011), and Manis site (45CA218) in the Olympic Peninsula (Gustafson et al. 1979; 

Gilbow 1981; Waters et al. 2011).  Taxa identified at these sites demonstrate that a 

diversity of cold-adapted, now-extinct megafauna occupied the coastal and lowland areas 

of western Washington and Oregon beginning sometime before ca. 15,000 cal B.P. and 

ending at the transition to the Early Holocene (ca. 11,400 cal B.P.).  Mammals inhabiting 

the region at this period include Mammut americanum (American mastodon), 

Mammuthus columbi (Columbian mammoth), Bison antiquus (ancient bison), 

Megatherium (giant sloth), horse, dire wolf, and possibly American lion.  More recently, 

a new species of predator bird, Teratanis Woodburnensis, was identified at the Woodburn 

Bog site in northwest Oregon (Baker 2005, Keefer 2010), adding to the list of extinct 

Pleistocene fauna from this region. 

 Episodes of Younger Dryas-age aggradation and pedogenesis associated with 

increases in available moisture are recognized at numerous sites along coastal 

Washington and Oregon.  In the central Oregon coast (Personius et al. 1993), an episode 

of region-wide, climatically induced aggradation is evidenced by nearly continuous 

terrace formations along streams.  The terraces cluster at around 12,900-10,200 cal B.P.  

Similarly, an aggradational event beginning by ca. 13,800 cal B.P. is recorded at the 

Manis site in the Olympic Peninsula (Morgan 1985).   

 Palynological data from the Puget Lowland demonstrates that cooler and moister 

than present climatic conditions began by ca. 13,800 cal B.P. and terminated at around 

11,400 cal B.P. (Tsukada et al. 1981; Leopold et al. 1982; Cwynar 1987; Anundsen et al. 

1994).  Landscapes in the region were dominated by taiga and/or open woodland 
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vegetation.  Pollen profiles from the Puget Lowland are noticeably similar to those in the 

Okanogan Valley, where pollen data suggests that cooler-moister than present conditions 

also terminate at ca. 11,400 cal B.P.  Although pollen data from the Northwest Coast was 

not examined in detail for this study, evidence for cool-dry Younger Dryas conditions 

comes from Little Lake in west-central Oregon (Grigg and Whitlock 1998) (Table 4.1). 

 
 Cascade Range: Relative and cosmogenic isotope 10Be dates of moraine and ice-

contact deposits suggest that glaciers in the Cascade Range of Washington began to 

advance at ca. 13,800 cal B.P.  Evidence for multiple Younger Dryas-age climatic events 

comes from the Icicle Creek glacier near Leavenworth, Washington, where a dated 

moraine system suggests multiple episodes of glacial advance (Page 1939; Waitt 1977; 

Porter and Swanson 2008).  Pollen data from the Battle Ground Lake site in southwest 

Washington (Barnosky 1985a; Walsh et al. 2008) and Indian Prairie site in northwest 

Oregon (Sea and Whitlock 1995) argue for cool-moist conditions by ca. 12,800 cal B.P.  

The pollen sequence at Gordon Lake (Grigg and Whitlock 1998), located ca. 26 miles 

southeast of Indian Prairie, suggests greater seasonality with cooler winters and drier 

summers between ca. 12,800-11,000 cal B.P. (Grigg and Whitlock 1998).  Although it is 

located in the Okanogan Highlands area just east of the Cascades, similar cool-dry 

conditions are reported at Buckbean Bog in Mount Kobau, British Columbia (Heinrichs 

et al. 2001).  Vegetation at sites interpreted to be cool-moist consisted of fir-dominant 

forests.  A forest mosaic of pine, fir, mountain hemlock, alder, shrubs and/or herbs, and 

flowering plants are inferred at both Gordon Lake and Buckbean Bog.   
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 Columbia Plateau: The vast majority of proxy datasets from the Columbia 

Plateau physiographic region suggest a transition to cool-moist climatic conditions by ca. 

12,800 cal B.P.  The exception is at Carp Lake in south-central Washington (Barnosky 

1985b; Whitlock and Bartlein 1997), where cold-dry conditions are inferred from the 

absence of temperate aquatic taxa and presence of Polygonum bistortoides (American 

bistort)-type pollen (Whitlock et al. 2000:17).  Interpretations of pollen spectra indicate 

that the scablands region was occupied by cold steppe (Whitlock 1992:15) or possibly 

tundra-like vegetation (Nickmann 1979), while trees occupied Palouse hills (Mack et al. 

1976).   

 Stratigraphic and geomorphic studies in the major river systems of the Columbia 

Plateau indicate that soil development and aggradation occurred during a period of 

landscape stability at the terminal Pleistocene.  The Younger Dryas event is associated 

with terrace formation, episodic alluviation, paleosol development, and other forms of 

aggradation beginning at around 13,200 cal B.P.  In the lower Salmon River Canyon, 

multiple paleosol horizons identified in Rock Creek Soil indicate at least two episodes of 

soil development occurred under moist conditions at ca. 13,200 and 12,600 cal B.P. 

(Davis and Schweger 2004).  These geological observations are consistent with the model 

of aggradation and pedogenesis proposed by Lenz and others (2001, 2007; see also Lenz 

2008).  This model suggests that a region-wide episode of climate-controlled aggradation 

and pedogenesis began around 13,800 cal B.P. in the Pacific Northwest.  Soil 

development is represented by a distinct geosol horizon in the stratigraphic record in 

certain geographic locations of the Plateau around this time.  The geosol horizon may 

immediately post-date the last cataclysmic Missoula Flood event.   
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 Faunal assemblages from multiple archaeological and paleozoological sites 

support the interpretation of a cool-moist climate.  Columbian and undifferentiated 

mammoth remains identified in southeast and east-central Washington (Martin et al. 

1982; Galm 1983; Luttrell 2001) indicate that mesic vegetation dominated the region, and 

that the regional community of now-extinct megafauna can be characterized as cold-

adapted species (see Daugherty 1956; Gustafson 1972; Grayson 1977).   

 
 Northern Rocky Mountains: In the Northern Rocky Mountains physiographic 

area, glacial advance associated with an abrupt return to cool temperatures is documented 

by moraine and glacial-lacustrine sediments deposited between ca. 14,000-11,400 cal 

B.P. (MacLeod et al. 2006; Thackray et al. 2004; Easterbrook et al. 2011).  Multiple 

successions of moraine building in the Sawtooth Mountain range of northwest Montana 

are interpreted as an indicator of multiple climatic events during the Younger Dryas 

(Easterbrook et al. 2011:75).  Evidence for increased moisture comes from Younger 

Dryas-age proglacial terrace formations in the McArthur Lake and South Fork Payette 

River vicinities (Mierendorf and Cochran 1981; Pierce et al. 2011).   

 Palynological data support glacial and geomorphologic evidence for generally 

cooler and moister conditions, but also suggests greater climatic and environmental 

variability and less extreme conditions than in surrounding regions (see Meltzer and 

Holliday 2010; Chapter 4 of this study).  Taxa that are adapted to cool and/or cool-moist 

conditions dominate the pollen profiles of most sites.  However, the pollen profile from 

Baker Lake in the Bitterroot Mountains argues for conditions that were cooler and drier 

than today (Brunelle et al. 2005); and pollen data from Burnt Knob Lake in the far 

western Bitterroot suggests that conditions were slightly warmer and wetter than during 
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the Bølling-Allerød.  In the mountains and foothills, vegetation cover is interpreted as 

open and closed pine-spruce forest.  In the river valleys, tundra-like vegetation and closed 

pine-spruce forest are suggested.    

 
 Blue Mountains: Paleoenvironmental proxy data is largely lacking in the Blue 

Mountains physiographic region, but there is evidence to suggest that glacial advance 

occurred in the Wallowa Mountains of northeast Oregon shortly after the Younger Dryas 

at ca. 10,200 cal B.P. (Licciardi et al. 2004; Kiver 1974).  Stratigraphic investigations at 

three sites (35UN52, 35UN95, 35UN74) in the Grande Ronde Valley of northeast Oregon 

suggest that aggradation, soil development, and landscape stability began at ca. 12,600 

cal B.P. and ended during the Early Holocene (Cochran and Leonhardy 1981).   

 
 Snake River Plain and Harney-Owyhee Broken Lands: Faunal assemblages from 

the Wasden Site (10BV30) (Butler 1965a, 1965b, 1968, 1969; Plew and Pavesic 1982; 

Miller 1989) and Paisley Caves (35LK3400) (Cressman 1942; Jenkins 2010) suggest the 

presence of mammoth, ancient bison, camel, horse, and other extinct genera in the Snake 

River Plain and Harney-Owyhee Broken Lands physiographic regions during the terminal 

Pleistocene.  Similar to the stratigraphic record of sites in the Columbia Plateau, Olympic 

Peninsula, and Grande Ronde Valley, stratigraphic investigations at the Saylor Creek 

Range in southern Idaho (Marler 2004) reflect a period of landscape stability and soil 

development during the terminal Pleistocene.  Soil development is represented the 

presence of Bishop Geosol first identified by Lenz and others (2001, 2007).  Soil 

development is dated from ≤ 15,150 to ≥ 13,110 cal B.P., thus it terminated by the 

beginning of the Younger Dryas chronozone.    
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Human Record at the Terminal Pleistocene 
 
 The evidence for Paleoindian habitation in the Pacific Northwest at the terminal 

Pleistocene remains extremely thin (Galm 1994; Meatte 2012).  The earliest 

archaeological materials typically occur as surface finds.  In rare instances when 

archaeological materials of this age are found in a depositional context, they are observed 

above Late Pleistocene flood sediments.  If there was an archaeological record prior to 

the last episode of catastrophic Missoula Floods (ca. 15,500-14,000 cal B.P.; Atwater 

1984), it was more than likely destroyed or possibly deeply buried.  Until recently, what 

little was known about Paleoindian populations suggested that the first inhabitants of the 

region were people of the Clovis tradition.  Research published in the last several years 

(Waters et al. 2011; Kenady et al. 2011; Jenkins et al. 2012), however, is challenging this 

notion by presenting evidence to suggest that humans may have occupied the region 

before or at the same time as Clovis.   

 At the Manis site (45CA218) in the Olympic Peninsula, AMS radiocarbon dates 

from a bone projectile point imbedded in the rib of a mastodon, and the rib and ivory tusk 

of the mastodon, have produced the oldest ages to date for a human presence in the 

Pacific Northwest with an average age of ca. 13,800 cal B.P. (Waters et al. 2011; see also 

Gustafson et al. 1979).  Waters and others (2011) argue that the Manis site provides 

evidence that people were hunting probiscideans some two-to-eight millennia before 

Clovis (Waters et al. 2011).  Across the Strait of Juan de Fuca at the Ayer Pond site 

(45SJ454) in Orcas Island, an ancient bison (Bison antiquus) showing signs of human 

butchering was similarly radiocarbon dated to ca. 13,800 cal B.P. (Kenady et al. 2011).   
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 Research recently published on radiocarbon dates from Paisley Caves 

(35LK3400) in southern Idaho argues for pre-Clovis, or at least coeval, human 

occupation in the southern Pacific Northwest/Northern Great Basin region.  This is based 

on the upper limiting radiocarbon dates of deposits containing human coprolites and 

artifacts, which suggest that humans occupied the area as early as ca. 14,500 cal B.P. 

(Jenkins et al. 2012).   

 Deposits containing possible Western Stemmed Tradition points from Paisley 

Caves are dated to ca. 13,240-12,950 cal B.P. (Jenkins et al. 2012).  Similar dates of ca. 

13,285 and 13,265 cal B.P. have been reported at the Cooper’s Ferry site in the Lower 

Salmon River Canyon of west-central Idaho (Davis and Sisson 1998; Davis 2004).  The 

cultural tradition associated with Cooper’s Ferry and the vast majority of early Archaic 

(ca. 11,400-9000 cal B.P.) sites in the Pacific Northwest is a variant of Western Stemmed 

known as Windust.  The Windust tradition is represented by Windust Phase/Complex 

material culture (Leonhardy and Rice 1970; Rice 1972) (Figure 7.1).  If the dates from  

 
Figure 7.1. Windust points showing the range of variation in style (photo courtesy of Idaho State  

                   University).  

 
Paisley Caves and/or Cooper’s Ferry are correct, then the argument could be made that 

the Windust/Western Stemmed Tradition represents an earlier migration into the New 
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World, or at least one that is coeval with Clovis.  Jenkins and others (2012) argue that 

Windust and Clovis are two distinct technologies with parallel developments and are not 

part of a unilinear technological evolution.   

 Despite these new early contenders, Clovis is still considered the first well-

established culture in the Pacific Northwest.  Surface finds of fluted points and one 

stratified Clovis site suggest that Clovis people occupied a number of physiographic 

regions in the Pacific Northwest at the terminal Pleistocene.  The Clovis signature is 

ephemeral and the disproportionately large number of surface finds in comparison to 

buried sites suggests very short-term occupancy.   

 Currently the only well-defined site in the region is Richey-Roberts (Mehringer 

1988; Gramly 1993) and it is clearly another “cache” or specialized site as opposed to a 

long- or short-term camp.  Similar caches have been identified at the Simon site in south-

central Idaho, Anzick site in south-central Montana, Colby site in north-central 

Wyoming, and Fenn cache in the general area of northeast Utah (Kilby 2008).  Kilby 

(2008) argues that the Richey-Roberts, Simon, and Anzick caches are ceremonial or 

“afterlife” caches which represent a geographically restricted behavior that is not 

characteristic of Clovis culture as a whole.  Kilby suggests that the majority of Clovis 

caches were created as a solution to resource incongruity, whereby their function was to 

ensure that lithic raw material was available along the way to an important subsistence 

resource area (Kilby 2008:222).   

 Very little is known about how Clovis utilized their environment.  What is clear is 

that plant and animal subsistence resources were available to them and their diet more 

than likely included large-bodied mammals.  A lack of archaeological data, however, has 



91 
 

 

made it difficult to meaningfully discuss their settlement and overwintering patterns, 

details about their hunting and land use strategies, and if and how they fit into the 

generalist/specialist models of foraging (for various perspectives on the “Clovis as 

Generalist” and “Clovis as Specialist” debate see Meltzer and Smith 1986; Meltzer 1993; 

Haynes 2002; Waguespack and Surovell 2003).   

 Clovis surface finds and sites in the Pacific Northwest suggest an orientation to 

coastal regions and the Puget Lowland, and to a lesser extent the Columbia Plateau and 

Snake River Plain.  Whether the orientation of Clovis finds to the costal west is a product 

of differential site preservation, environmental preferences and/or restrictions, human 

migration and/or entry into the New World, cultural preferences, or some other factor(s) 

is largely unknown.  

 Based on our limited knowledge of Clovis site locations and Younger Dryas 

environments, the most desirable places for human habitation at the terminal Pleistocene 

were probably in environments suitable for hunting large mammals and accessing other 

resources needed to fulfill their dietary, fuel, and construction requirements.  Proximity to 

large bodies of water would have been equally as important.  Palynological and faunal 

data presented in Chapters 4 and 5 of this study suggests that the plant and animal 

communities available to people at this period were very different from those before the 

Younger Dryas or after the transition to the Early Holocene.  At many sites the pollen 

spectra suggest that there are no modern analogs for vegetation compositions before the 

Holocene Epoch.   

 The Northern Rocky Mountains and Northern Cascades were probably the least 

suitable areas for Paleoindian habitation in the Pacific Northwest.  Even though there is 
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evidence to suggest that conditions were less extreme in the Northern Rocky Mountains 

at the Younger Dryas (Meltzer and Holliday 2010; this study), glacial, palynological, and 

faunal data suggest that environments in these regions were highly unstable and variable, 

and there were fewer available subsistence resources.  Cool-moist, cool-dry, and warmer-

wetter climatic conditions have all been registered in higher elevations, and evidence for 

multiple glacial advances in both mountain ranges may indicate multiple episodes of 

Younger Dryas climate change (Easterbrook et al. 2011; Porter and Swanson 2008).  

Glaciers at the Younger Dryas occupied the northern tiers of the Columbia Plateau, which 

would also have made habitation very difficult.   

  By the terminus of the Pleistocene, material culture associated with the Clovis 

tradition rapidly fades from the archaeological record.  In the Pacific Northwest, 

Windust/Western Stemmed, and to lesser extent Haskett traditions, begin to appear with 

greater frequency.  These traditions represent the first clear evidence of regionalization in 

the Pacific Northwest.  Just as with the Clovis tradition, their appearance coincides with 

an episode of major climatic change.     

 
2. What is the Nature of Paleoenvironmental Change at the Pleistocene-

Holocene Boundary? 

 
Climatic and Environmental Conditions at the Pleistocene-Holocene Boundary 

 The vast majority of paleoenvironmental proxy records suggest that there was a 

significant shift in climate regimes at the Pleistocene-Holocene Boundary in the Pacific 

Northwest.  Climate change at this interval is characterized by a transition from Younger 

Dryas glacial conditions to a markedly warmer and drier climate by the beginning of the 

Holocene (ca. 11,400 cal B.P.).  This change is most prominently evidenced in the 
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Greenland ice cores, where Greenland Ice Sheet Project (GISP and GISP2) data (Alley 

2000; Alley et al. 2003) suggest that the change occurred rapidly, possibly within a 

matter of years to decades (Alley 2000, Alley et al. 2003; Penn State 2006).   

 Climate change is associated with maximum glacial recession (Davis et al. 2009), 

rising temperatures, significant reduction in effective precipitation, drops in the base 

levels of rivers and lakes, wide-spread drought, megafaunal extinction, changes in the 

composition and distribution of plant and animal species, and aggradation and erosion in 

major river systems.  

 Palynological data suggests that the transition from Younger Dryas cooling to 

Early Holocene warmth and aridity occurred anywhere between ca. 13,000-9000 cal B.P. 

depending on the location, but tended to center around ca. 11,400 cal B.P (Table 4.1).  

With the exception of mountainous regions where forests expanded north as land became 

available following glacial recession, pollen data indicates that xeric shrub-steppe 

communities dominated many of the lower elevation landscapes.  There is evidence to 

suggest that these communities expanded as far as the mountains surrounding the 

Columbia Basin (Mehringer 1985), leading Chatters (1995) to conclude that available 

moisture may have been much as 40 percent less than it is today.   

 An abundance of charcoal in Early Holocene sediments reflects greater frequency 

and severity of fires.  Frequent fires may have left an irregular distribution of vegetation 

on the landscape (Cwynar 1987).  Pollen proxies arguably offer the best evidence for 

rapid climate change at Pleistocene-Holocene Boundary in the Pacific Northwest.  Proxy 

datasets provide a chronology for climate change, and the chronologies show a high 
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degree of synchroneity in the transition from Younger Dryas to Early Holocene 

conditions.  This is particularly true when considering the timing of transition at a  

2-sigma calibrated age range.  

  Stratigraphic and geomorphological data point to a highly dynamic and unstable 

landscape at the Pleistocene-Holocene Boundary, which may represent a response to 

unstable climatic conditions (Davis et al. 2002).  The presence of redoximorphic features 

in the stratigraphic record at numerous sites suggests fluctuating water tables and rapid 

dewatering.  Geomorphological features and pollen profiles indicate that the base levels 

of many lakes, rivers, and streams dropped dramatically at this interval.   

 Episodes of rapid aggradation and erosion, channel incision and downcutting, 

terrace formation, and dune and sandsheet aggradation have all been recorded in 

watersheds and major river systems (Cochran 1978; Morgan 1985; Mierendorf 1983; 

Gough 1995; Chatters and Hoover 1992; Huckleberry et al. 2003; Galm et al. 2000, 2002; 

Galm and Gough 2003; Huckleberry and Fadem 2007; Davis 2001; Davis and Schweger 

2004; Pierce et al. 2011).  Sediments reflect a change in the mode of deposition at the 

PHB interval, where wind began to act as the primary agent of transport as opposed to 

water (Chatters and Hoover 1992; Morgan 1985; Huckleberry et al. 2003).  Most Early 

Holocene sites are marked by rapid eolian/loess deposition and significant erosion after 

ca. 11,000 cal B.P.  Eolian activity is further evidence of regional drought (Wolfe et al. 

2000).   

  Faunal assemblages indicate that the last major pulse of Late Quaternary 

megafaunal extinction began around 12,900 cal B.P. during the Younger Dryas 

chronozone (Grayson and Meltzer 2003:586) and ended by the beginning of the Early 
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Holocene.  At some sites evidence suggests that both extinct and extant species occupied 

the region at the same time, which is the case at the Wasden site (10BV30) in southeast 

Idaho (Butler 1965a, 1965b, 1968, 1969; Plew and Pavesic 1982; Miller 1989) and 

Woodburn Bog in northwest Oregon (Stenger 2002; Dunleavy 2003; Campbell and 

Stenger 2002; Baker 2005, Keefer 2010).  Faunal assemblages from these sites show that 

now-extinct megafauna such as mammoth, mastodon, ancient bison, giant sloth, camel, 

and possibly American lion inhabited the Willamette Valley and Snake River Plain along 

with modern genera known to occupy the regions today.    

 At some sites faunal data suggests that modern species were present in areas that 

today cannot support the habitat required for their survival.  For example, at the Marmes 

Rockshelter (45FR50) in southeast Washington, the remains of Arctic fox and pronghorn 

antelope are represented in the faunal assemblages (Fryxell and Daugherty 1962; 

Gustafson 1972; Lyman 2008, 2010, 2011).  At the Sentinel Gap site (45KT1362) (Galm 

et al. 2002; Gough and Galm 2003; Lyman 2004; Litzkow 2011), Lind Coulee site 

(45GR97) (Daugherty 1956; Gustafson 1972; Irwin and Moody 1978; Huckleberry et al. 

2003; Lyman 2004), and Windust Cave C (45FR46) (Rice 1965; Jenkins 2011), modern 

bison are among the represented species.  

 The Sentinel Gap site and Marmes Rockshelter also provide evidence to suggest 

that larger-than-modern mammals were present at the PHB.  Larger-than-modern bison 

and Roosevelt elk are included in the Sentinel Gap faunal assemblage (Galm and Gough 

2001, 2008; Gough and Galm 2003).  The elk bone is radiocarbon dated to ca. 12,000 cal 

B.P., and is reportedly the same size and bone as a “Big Elk” species identified at the 

Marmes Rockshelter that is dated to ca. 11,200 cal B.P. (Lyman 2010).  It is possible that 
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these larger-than-modern species grew to their exceptional size as a result of an 

abundance of available grass during the waning stages of the Younger Dryas (Lyman 

2004, 2010).  Grasses diminished along with these large modern taxa when conditions 

began to become significantly warmer and drier.   

 Paradoxically, the warm-dry Early Holocene climate model that is seemingly 

ubiquitous in pollen, fauna, and stratigraphic/geomorphic records is not supported by 

glaciological data which argues for the contrary.  Glacial records indicate that there were 

one or multiple episodes of climate cooling during the Early Holocene.  Glacial 

readvances have been reported in the Northern Rocky Mountains of Idaho (Butler 1984, 

1986), Cascade Range of Washington and Oregon (Beget 1981, 1984; Waitt et al. 1982; 

Thomas et al. 2000; Menounos et al. 2004; Heine 1998; Dethier 1980), and Wallowa 

Mountains of Oregon (Licciardi et al. 2004, Kiver 1974).  Barnosky and others (1987) 

and Waitt and others (1982) posit that advances of this period were either the result of 

decreased temperatures or increased precipitation at higher elevations.  The paradox may 

have been caused by a steepening of the temperature lapse rate during a period of aridity 

(Barnosky et al. 1987:298) 

 

Changes in Human Adaptation at the Pleistocene-Holocene Boundary  
 
 Climate change at the PHB coincides with a significant transition in Late 

Paleoindian-Early Archaic weapons systems, technologies (Figure 7.2), and adaptive 

strategies.  This interval is marked by an overall reduction in the size of points and 

bifaces, shifts in inferred point functionality (Beck and Jones 1993; Beck 1995), changes 

in the lithic reduction trajectory, and a movement toward more expedient flake 

technology (Galm et al. 2011).  The large and highly specialized fluted points that 
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Figure 7.2. Late Pleistocene-Early Holocene projectile point/knife sequences from the Great Basin,  

                   Columbia Plateau, and Great Plains (Galm and Gough 2008:219). 

 
are characteristic of Clovis tradition are replaced by smaller point complexes presumably 

used in thrusting and atlatl weapons systems.  Researchers (Davis 2001; Huckleberry et 

al. 2003) have suggested a probable relationship between the changes observed in the 

archaeological record and shifts in climate and the environment.   

 Clovis culture virtually disappears at the PHB and is immediately followed by the 

appearance of regional cultures (Rice 1972; Davis 2001, 2004; Galm et al. 2011).  The 

most prevalent and widely recognized post-Clovis tradition in the Pacific Northwest is 

the Windust tradition.  The Windust point complex (Phase) was first defined at sites in 

the Lower Snake River region (Leonhardy and Rice 1972; D. Rice 1972; Daugherty 

1956), but is now recognized over much of the inland and intermontane regions of the 

Pacific Northwest.  Four forms dominate Windust complex point assemblages: a 

stemmed variant, small lanceolate variant, concave/notched base variety, and a 

shouldered lanceolate form (D. Rice 1972) (Figure 7.1).  Points in this complex share 

stylistic similarities with Western Stemmed forms from the Northern Great Basin (Beck 

and Jones 1997; Ames et al. 1998; Davis 2001).  Windust tradition is typically 
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characterized by a more generalist subsistence model and expedient technological system 

(Ames et al. 1998).     

 Although Windust is the most prevalent tradition in Pacific Northwest, there is 

growing evidence for forays into the region by people with different adaptive strategies.  

Dated to ca. 11,975 cal B.P. (Galm and Gough 2001), the Sentinel Gap site in south-central 

Washington suggests the presence of a tradition that is arguably quite different from its 

Windust neighbors.  Points and bifaces from the Sentinel Gap site (Figure 7.3)  

      Figure 7.4. Three Haskett  

          points from the Haskett     

          site (10PR37) in      

         southern Idaho (photo  

         courtesy of Idaho State  

         Museum).  
 

 Figure 7.3. Late stage biface and projectile points from the Sentinel Gap site  

                  (45KT1362) (photo courtesy of Archaeological and Historical Services,  

                  Eastern Washington University). 

  

Strongly resemble Haskett (Figure 7.4) and related (i.e., Hell Gap and Agate Basin) 

forms typical of the Great Plains to the east (Figure 7.2); and Cougar Mountain Cave and 

Lake Mohave styles associated with the Great Basin to the south (Galm et al. 2011).  

These points are typically large and lanceolate in style.  There is an emphasis on the 

production of large bifaces.  Final forms are produced through broad collateral flake 

removal.  A prominent feature common to Sentinel Gap, Haskett, and related forms is a 
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distinct broad shoulder on points and bifaces, where the greatest width dimension is 

characteristically above (distal) the point/biface midline (Galm and Gough 2002, 2008; 

Galm et al. 2011; Butler 1965b) (Figure 7.3).   

 Other factors separating the Sentinel Gap site from Windust complexes include 

the apparent single occupancy of the site, well radiocarbon dated occupation surface, 

highly regularized technological approach, and poor representation of expedient 

technology.  The magnitude of the distinctions between Sentinel Gap and Windust 

complexes makes a strong argument for different cultural affiliations (Galm et al. 2011).   

 There are no ways to directly measure how climatic and environmental change 

influenced human behavior and technology, but several lines of reasoning can be 

explored.  Proxy records reviewed in this study suggest a high degree of environmental 

variability at the PHB, marked by dramatic decreases in precipitation and water levels, 

increases in temperatures, redistribution of plant and animal species, desiccation of land, 

and the extinction or reduction in size of large-bodied mammals.  If conditions changed 

rapidly and there was enough variability or disruption in the established 

subsistence/settlement system to affect productivity, it may have created enough pressure 

on humans to change the way they utilized and conceptualized their landscape. 

 For instance, it has been suggested (Beck and Jones 2009; Galm et al. 2011) that 

diminution in the overall size of projectile points at the PHB, and the corresponding shift 

from spear to atlatl/thrusting weapons systems, represent shifts in adaptation strategies 

associated with changes in animal communities.  If there are fewer large-bodied 

mammals on the landscape, then it would seem less effective in terms of energy 

expenditure to maintain a subsistence strategy that focuses on the hunting of large-bodied 
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mammals (i.e., the “Specialist” foraging model).  Instead, strategies may change to focus 

on a wider diversity of animals and plants in order to fulfill the necessary dietary 

requirements of the group (i.e., the “Generalist” foraging model).   

 A diversified toolkit with projectile points that are more appropriate for hunting 

medium and small bodied mammals would probably be more effective with a generalist 

foraging model, which is exactly what is seen in Windust and other Early Holocene 

assemblages.  The apparent explosion of convenience tools and expedient tool 

manufacturing techniques in Windust and other Early Archaic complexes is a possible 

indication of a  movement away from the more rigorously defined and stylized lithic 

industries of the Paleoindian-Late Paleoindian periods.  It may also coincide with a 

movement away from specialization in adaptive strategies to more generalized 

approaches (e.g., “catch as catch can”). 

 There is also a basis for arguing that changes in the distribution of Late 

Paleoindian-Early Archaic sites might reflect shifts in settlement strategies associated 

with the redistribution of plant and animal species and available water.  Stratigraphic, 

geomorphic, and palynological data point to a period of rapid dewatering and unstable 

landscapes at the PHB.  The presence of Windust sites in the major riverine valleys of the 

Snake, Columbia, and Clearwater rivers indicate that water levels in these areas had 

reached approximations of modern base levels at this time.  While Clovis may be present 

in lower elevations of at least portions of the Snake and Clearwater river systems, this is 

not the case for the mainstem of the Columbia due to the proximity and effect of the 

retreating continental ice sheet.  This is reflected at the Richey-Roberts site which is 

located on a flood chute high above the modern base level of the Columbia.  The fact that 
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Windust sites are found in the new riparian zones of the Columbia River at a relatively 

early date (i.e., ca. 12,600 cal B.P.; Sheppard et al. 1987) indicates they were capable of 

adapting quickly to changes in environmental conditions. 

 There are many unanswered questions when it comes to Late Paleoindian-Early 

Archaic traditions and their relationship with the environment.  What does seem to be 

clear is that Windust peoples rapidly and successfully adapted to Early Holocene 

conditions.  Shifts in the form, style, and function of point complexes; transition to a 

more generalist foraging approach; and a movement away from rigorously defined 

manufacturing techniques to more expedient technologies are all characteristics of 

Windust and other Early Archaic traditions.  The prevalence of these technological 

approaches by the beginning of the Early Holocene suggests that populations inhabiting 

the Pacific Northwest were quickly changing their adaptive strategies at the PHB in 

response to climate change and associated changes in attendant resources.  This model 

proved very successful for people of the Windust tradition, who in a short amount of time 

spread across the Pacific Northwest and dominated the Early Holocene archaeological 

record.   

  

3. What Is the Relationship Between Regionalization of Paleoindian/Late 

Paleoindian-Early Archaic Populations and Climate Change? 

  
Regionalization at the Terminal Pleistocene 

 The earliest evidence for human occupation in the Pacific Northwest suggests that 

small groups of highly mobile Paleoindian-Late Paleondian people moved into the region 

at the terminal Pleistocene during the Younger Dryas chronozone, and possibly earlier 

during the waning stages of the Bølling-Allerød warming period.  The prevailing model 
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for human entry into North America argues that the earliest Paleoindian populations 

crossed from Asia to Alaska through the Bering Strait land bridge that was exposed 

during the Wisconsin glaciation period (Figure 7.4).  This model was first proposed in the 

16th Century (de Acosta 1590) and was later supported by the discovery of geological 

evidence for an ice free corridor in Beringia during the Late Pleistocene (Johnston 1933). 

 The Bering Strait model of human entry is also supported by genetic data indicating 

that modern Native 

American populations 

descended from Asia.  A 

recently published (2012) 

study on human genomes by 

Reich and others (2012) 

argues that there were three 

streams of Asian gene flow  

into North America during 

the Late Pleistocene.  This 

three-wave model suggests  

 that the earliest humans             Figure 7.5. Diagram of proposed migratory routes into North America   

                                                                              (Crow Canyon Archaeological Center 2011).                   
migrated into the Americas through  

Beringia, rapidly traveling southward on the West Coast of North America.  The first 

population eventually diverged into three genetic groups that followed independent migratory 

trajectories.   

 Reconstructing human history from genetic data is problematic, however, because 

there is a lack of archaeological evidence to support the Bering Strait model of migration 
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(Stanford and Bradley, eds. 2012).  Since archaeologists generally agree that Clovis was 

the first tradition to regionalize North America, early Clovis sites are often used as a 

proxy for gauging the potential migratory patterns of the earliest people.  If we accept the 

Bering Strait model of human entry, then one would expect the earliest Clovis sites to be 

found along the inferred migratory route.  This includes areas in Alaska where the Bering 

Strait land bridge connected Siberia to North America, in the Alberta Plains of Canada 

where it is believed that an ice free corridor existed, and in the Northern Great Plains 

where the corridor provided entry into North America.  It is also expected that a north-to-

south trajectory would be reflected somewhere in the archaeological record.  Currently 

there is no strong archaeological evidence in support of either a Bering Strait migration 

out of Siberia to Alaska much before ca. 12,000 cal B.P., or of a north-to-south trajectory 

(see Stanford and Bradley, eds. 2012).   

 Over the past several decades, alternative models for human entry into the New 

World have been gaining support.  In the American West, there is growing evidence to 

suggest a coastal entry into the Americas (Figure 7.4).  Radiocarbon dates from the Manis 

site (Waters et al. 2011), Ayer Pond site (Kenady et al. 2010; Lepper 2011), and in the 

Channel Islands of California (Erlandson et al. 2011) argue for the presence of 

Paleoindian peoples before Clovis in the coastal lowlands and islands off the Pacific 

Ocean.  The density of early Paleoindian sites on the east coast similarly suggests a 

coastal entry, but by people of the Clovis tradition.  Stanford and Bradley (eds. 2012:91) 

argue that Clovis technology originated along and expanded out from the eastern 

seaboard, and that Clovis tradition then spread westward through exploration and 

adaptation.   
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 Clovis sites are most abundant in mid-Atlantic and southeastern states, and they 

represent a wide diversity of activities as opposed to sites to the west and north.  Sites in 

the west are less diverse and tend to represent kill sites (Stanford and Bradley, eds. 

2012:33) and/or cache sites (Kilby 2008; Meltzer and Holliday 2010).  Stanford and 

Bradley (eds. 2012) argue that the density and diversity of fluted points in the 

southeastern states imply that Clovis originated somewhere in the southeast rather than in 

the north and/or west.  This is argued using the Age-Area Hypothesis, which states that 

the greatest number and variants of a tradition will be found at the point of origin and 

diffuse outward (Mason 1962; Stanford and Bradley, eds. 2012:34).  In light of evidence 

for other migration routes into the Pacific Northwest and eastern seaboard, it is possible 

that there were multiple migratory strategies and routes occurring at different periods 

during the Late Pleistocene.   

 In addition to the problem of how people regionalized North America, there is 

also the issue of who the first humans to regionalize North America were.  In the Pacific 

Northwest, new data is arguing for the presence of pre-Clovis and/or contemporary 

Clovis cultures in the region.  The Manis and Ayer Pond sites are argued to be pre-Clovis 

because of their early dates (ca. 13,800 cal B.P.) and the absence of diagnostic material 

associated with the Clovis tradition.  If the earliest dates of Windust/Western Stemmed 

complexes at Cooper’s Ferry (Davis and Sisson 1998, Davis 2004) and Paisley Caves 

(Jensen et al. 2012) are correct, then the people of the Windust/Western Stemmed 

tradition may have been in the Pacific Northwest at the same time or even before Clovis 

(see Davis and Sisson 1998; Davis 2004; Jenkins et al. 2012).  These sites argue for 

different traditions in the region by the terminal Pleistocene.   
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Pleistocene-Holocene Boundary and Early Holocene Regionalization 

 The archaeological record at the Pleistocene-Holocene Boundary and Early 

Holocene is largely dominated by the Windust tradition in the Pacific Northwest.  Similar 

to the record of Paleoindian migration at the Late Pleistocene, regionalization of Windust 

peoples is poorly understood.  While a directional trend from north-to-south (Columbia 

Plateau to northern Great Basin) and west-to-east (Great Basin to Great Plain) cannot be 

ruled out, there are multiple lines of evidence arguing for a southern and eastern 

migration into the Pacific Northwest.   

 Obsidian and Olivella shell, two of the only indicators of social networks, and 

potentially, movements of groups at the PHB, arrive in the Columbia Plateau from 

locations in the Northern Great Basin to the south (Galm 1994; Beck and Jones 2010; D. 

Rice 1972; Galm and Gough 2001; Connolly 1999).  This connection to the Northern 

Great Basin, presumably through an existing trade and exchange network, not only points 

to the early development of this economic link but also, corresponds to apparent cultural 

connections between Windust components and the adjoining Western Stemmed Complex 

to the south.   

 Evidence for an east-to-west migration into the Pacific Northwest comes from the 

Sentinel Gap site (45KT1362) (Galm et al. 2011) and Haskett site (10PR37) (Butler 

1965a, 1965b; Frison and Stanford, eds. 1982; Marler 2004).  As was previously 

discussed in Question 2, these sites show clear affinities with complexes in the Great 

Plains.  Late Paleoindian point complexes distributed from the northern Great Plains to 

the western reaches of the Northern Great Basin and Columbia Plateau reflect a 

progression of stylistic forms.  This progression and movement of point forms 
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presumably marks the movement of peoples into essentially unoccupied geographic 

regions/subregions.  The argument can be made that climate change played a significant 

role in regionalization, creating pressures to explore and map out new settlement and 

subsistence strategies along with new lithic technological strategies (Galm et al. 2011).    

 The Haskett tradition fades from the archaeological record of the Pacific 

Northwest after the abandonment of the Sentinel Gap site at ca. 11,975 cal B.P. (Galm 

and Gough 2001).  According to Galm and others (2011), The Sentinel Gap site supports 

the interpretation of Windust as the first appearance of human regionalization in areas 

throughout the Pacific Northwest, and the first clear sign of adaptive strategies linked to 

changes in climate, regional ecologies, and attendant resource options. 

 

Role of Climate Change and Regionalization 
 
 Historic and prehistoric data shows that human migratory patterns can be 

influenced by changes in climatic conditions.  Whether these migration events are 

responses to short-term variability of weather/climate or to manifestations of longer 

periods of climatic change is a matter of conjecture (Stanford and Bradley, eds. 2012:33).  

Weninger and others (2009) argue that environmental deterioration associated with rapid 

climate change (i.e., change occurring in a matter of years to decades) is a major factor 

underlying social change.  There is growing evidence in support of rapid or abrupt 

climate change at the PHB in the Pacific Northwest.  Thus, it is possible that changes 

observed in the archaeological record at this interval may reflect social changes, such as 

the decision to map out new and more productive territories, in association with a rapid or 

abrupt shift in climate regimes.  As Weninger and others (2009) point out, however, these 
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changes are typically at work within a wide spectrum of other factors including society, 

culture, economics, and religion.     

 The archaeological record of the Pacific Northwest points to large-scale changes 

in the adaptation and migration strategies of Late Paleoindian and Early Archaic peoples 

during the Late Pleistocene and Early Holocene.  Coeval with these changes are shifts in 

the biogeographic density and distribution of plant and animal species, the extinction of 

megafauna and reduction in the size of select large-bodied mammals, a dramatic drop in 

the base levels of rivers and lakes, and the desiccation of many environments.  It is 

possible that the apparent changes in adaptive and migratory strategies of people at the 

PHB are a reflection of range expansion associated with ecological shifts at this interval.  

Range expansion is a well-known adaptive response to risks associated with climate 

change (McLeman and Smit 2006).  The decision to map out new territories stems, in 

large part, from a need to reorganize human populations in order to manage scarce 

resources in restricted areas (Brown 2008:21).   

 There is also a correlation between climate change and intensification of trade 

(Jenkins et al. 2004).  In the Northern Great Basin, trade is believed to have played an 

important part in the redistribution of “patchy” resources between intra- and inter-basin 

populations (Jenkins et al. 2004).  Lack of available resources or access restrictions in the 

Pacific Northwest at the PHB interval may have created an increase in the need for trade 

for specific commodities.  Evidence of this demand may be represented in the 

archaeological record by the appearance of Olivella shell and obsidian trade goods, both 

derived from sources to the south, at the PHB.  Whether trade/trade intensification 
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occurred through human migration or developed through the establishment of social 

networks is a matter of debate.   

 The archaeological record of the Pacific Northwest indicates that migration, range 

expansion, and the development and/or intensification of trade networks may well have 

occurred in response to significant changes in climate at the PHB.  This is evidence in the 

paleoenvironmental record by shifts in the density, diversity, and distribution of 

economic and subsistence resources in virtually every physiographic region of the Pacific 

Northwest.   

 

Discussion  

 
 Comparisons of glacial features, pollen, fauna, and stratigraphic/geomorphic 

proxy datasets for climate change suggest that significant shifts in climate and associated 

changes in the environment occurred at the Younger Dryas chronozone and during the 

PHB in the Pacific Northwest.  These changes are represented by a rapid or abrupt return 

to glacial conditions at the Younger Dryas, followed by an equally if not more 

rapid/abrupt shift to warm-dry conditions by the Early Holocene.   

 Although researchers are uncertain about the relationship between climate change 

and contemporary changes in the archaeological record, it is clear that significant 

transformations in the tools, technologies, settlement patterns, and subsistence strategies 

of people occupying the Pacific Northwest at the terminal Pleistocene-Early Holocene 

occurred coevally with climate change.  Rapid dewatering, increases in the frequency and 

intensity of fires, extinction of megafauna and a reduction in the size of select large-
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bodied mammals, restrictions in access to attendant resources, and desiccation of 

previously habitable environments are all consequences of climate change at this interval.    

 It is not possible to directly measure the effects of climate change on cultural 

development, but the available data suggests that abrupt/rapid climate change at the PHB 

may have significantly influenced the way that humans strategized and coped with 

unstable and rapidly evolving conditions around them.  Technological transformations, 

including a reduction in the size of projectile points/bifaces, a more expedient and 

diversified toolkit, greater economizing of lithic materials, a movement away from 

rigorously defined manufacturing techniques, and a movement from spear to 

atlatl/thrusting weapons systems may all reflect subsistence and economic adaptations to 

climate change.  Transformations in technology and weapons systems may have allowed 

people to focus on a wider diversity of animals and plants (i.e., a “generalist” subsistence 

strategy) as climate change restricted the access, availability, and abundance of natural 

resources.       

 Along with subsistence and economic adaptations, there is also evidence to argue 

that climate change influenced the migratory and settlement patterns of peoples at the 

PHB.  The contemporary presence of the Haskett site and Haskett-like tradition at the 

Sentinel Gap site along with the more widely represented Windust sites suggests that 

multiple cultural manifestations were present in the region by this interval.  The 

progression of projectile point/biface styles and forms, along with the presence of 

Olivella shell and obsidian trade goods that originating from the south, indicate that 

Windust and Haskett traditions in the Pacific Northwest shared cultural affinities with 

groups in the Northern Great Basin and Great Plains.  They also argue for a south-to-
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north and east-to-west migration into the Pacific Northwest.  Human migration and trade 

can be understood within the context of a need to manage scarce resources in restricted 

environments.   

 With its expedient and diversified technologies and more generalized subsistence 

strategy, the Windust tradition appears to have been the first to adapt successfully to 

warm-dry Early Holocene conditions across the Pacific Northwest.  It could be argued 

that Windust peoples were well suited for a wide array of ecological settings and the 

unstable environmental conditions forced by climate.  By the beginning of the Early 

Holocene, Windust sites dominate the archaeological record while the Haskett tradition 

disappears from the region with the abandonment of the Sentinel Gap site at ca. 11,975 

cal B.P.   

 Climate change at the PHB is considered one of the most significant shifts in 

climate regimes in the last 20,000 years.  Throughout the historic and prehistoric record, 

human responses to large-scale changes in their environment caused by climate change 

bears some resemblance to one another.  They tend to include technological and strategic 

adjustments to changes in subsistence and economic resources, migration and range 

expansion, and trade intensification.  Therefore, the narrative of rapid/abrupt climate 

change and corresponding coping mechanisms of Late Paleoindian-Early Archaic peoples 

addressed in this study likewise have direct applications for discussions of past, present, 

and future climate change.   
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