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Abstract 

Unmanned Aerial Vehicle Video Surveillance Platforms are beginning to play a critical role 
in the military, law enforcement, and search and rescue.  The defense department has been 
the major contributor to this increase in demand.  Modern warfare is increasingly fought in 
urban environments such as towns and cities.  Urban warfare is a difficult and dangerous 
environment to operate in due to the presence of civilians and the complexity of the terrain.  
Miniature UAVs (MUAVs) offer a new approach to conducting urban combat with reduced 
exposure to combatant attack.   
 
In order for a MUAV to be able to operate in an urban environment it must be able to take 
off, land, and navigate in confined spaces.  In must also be able to communicate with an 
operator in order to transmit video, audio and location information in real time in a secure 
manner. The increased likelihood of downed UAVs in the field requires the design to be low 
cost and expendable. This project required the integration of mechanical, electrical, and 
software engineering skills to complete the design.  This thesis attempts to design a MUAV 
that meets the requirements to operate in an urban environment.  A quad rotor helicopter 
(quadrocopter) design was chosen for the design.   
 
The aircraft’s physical components were developed using mechanical computer aided design 
(CAD) software.  All physically components of the design were model and assembled 
virtually in the CAD software prior to actual assembly.  This included commercial 
components off the shelf (COTS) and custom designed components.  The airframe’s custom 
designed components were manufacture using a 3D printer and made out of light weight 
plastic.  This enabled the mechanical parts to be made fast, cheap, and reliably.   
 
The aircraft’s electrical components were developed using electrical CAD software.  All 
physically components of the design were model and assembled virtually in the CAD 
software prior to actual assembly.  This included COTS and custom design components.  The 
custom designed electrical circuit boards were sent to a printed circuit board (PCB) 
manufacturer to be produced.  This enabled the electrical circuitry to be made fast, cheap, and 
reliably. 
 
The aircraft’s software components were modularly design to make it easier to understand 
and modify to make improvements.  The software was written in two languages C++ and C#.  
C++ was used to interface at a low level with the electrical circuits. C# was used to 
implements the high level graphical user interface (GUI).  To reduce development time, 
improve reliably, and aid in identifying requirements, COTS software modules and a spiral 
design model were used.  All software was programmed and debugged in integrated 
development environments. 
  
The project produced a platform with the required sensors and computing power available for 
more advanced software to be added later to enable the aircraft to fly missions completely 
autonomously.  The additional software has access the GPS for waypoint navigation and 
video images for object recognition.  The additional software would require no new hardware 
to be added and should cost little beyond development time to implement.  
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I. Introduction 

The unmanned aerial vehicle (UAV) market has grown dramatically in the past decade 

and will continue to do so for the anticipated future.  Most of the growth has been with 

regards to the defense department. Other areas of growth also include search and rescue, 

police, border patrol, and hobbyist. 

Modern warfare is increasingly fought in urban environments such as towns and cities.  

Urban warfare is a difficult and dangerous environment to operate in due to the presence 

of civilians and the complexity of the terrain.  In urban combat, civilians may be difficult 

to tell apart from combatants.  Due to the presence of buildings, range of sight is limited, 

providing combatants with enhanced concealment, and cover as well as ample placement 

for booby traps and snipers.  All of these situations tend to lead to higher numbers of 

civilian and offensive casualties. 

Miniature UAVs (MUAVs) offer a new approach to conducting urban combat.  MUAVs 

enable offensive soldiers an approach to urban combat with reduced exposure to 

combatant attack.  MUAVs enable solders to safely navigate between tall buildings, 

narrow alleys, inside buildings, sewage tunnels, and subway systems from a safe location.  

Soldiers can perform reconnaissance for booby traps and snipers without placing 

themselves in harm’s way.  

In order for a MUAV to be able to operate in an urban environment it must be able to 

take off, land, and navigate in confined spaces.  In must also be able to communicate with 

an operator in order to transmit video, audio and location information in real time in a 

secure manner.  It is desirable for the user to communicate with the MUAV through an 

already familiar device such as smart phone, tablet, or laptop. MUAV’s designed for 

urban environments will have limited flight time and maximum altitude due to their small 

size.  This increases the likelihood of downed UAVs in the field; therefore the systems 

must be expendable.  



2 

II. Background 

A. Vertical Take Off & Landing (VTOL) Aircraft 

Vertical Take Off & Landing (VTOL) aircraft include helicopters and other rotor 

powered aircraft as well as fixed wing aircraft.   Many approaches have been made to 

develop aircraft with VTOL capabilities.  Some of these aircraft include crafts such as the 

quad rotor de Bothzat helicopter, the ducted rotor Hiller VZ-1 flying platform, the tilt 

rotor V-22 Osprey, and the jet powered Harrier.  

Most of the early helicopter designs used multiple rotors. In the end the design with a 

single main rotor and anti-torque tail rotor became recognized around the world as the 

helicopter.  The helicopter differs from most fixed winged aircraft in that it is able to take 

off and land vertically, hover, and fly forward, backwards, and laterally. 

The de Bothzat helicopter was an experimental aircraft designed and built for the United 

States Army Air Service in the early 1920s.  Its design utilized 4 rotating propellers and 

is one of the first successful VTOL aircraft.  This program was later canceled due to the 

complexity of flight control.  

The Hiller VZ-1 flying platform was an experimental aircraft designed and built for the 

United States Army in the 1950s.  Its design utilized a single ducted fan upon which a 

pilot stood for lift.  To control the flight direction the pilot shifted their weight to tilt the 

platform.  Later models utilized conventional helicopter controls.  Even though the center 

of gravity of the platform was high the aircraft was stable.  This program was later 

canceled due to the aircrafts impracticality as a combat vehicle. 

The V-22 Osprey is the world’s first production tilt rotor aircraft.  The aircraft has been 

flown by the United States military since 2007.  Its design utilizes two propeller that tilt 

up to apply thrust vertically as a helicopter and tilt forward to give thrust horizontally as 

an airplane.  This gives the Osprey the VTOL capabilities of a helicopter and the long 

range capabilities of an aircraft.  The program is currently in operations. 
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The Harrier is a British designed military jet airplane introduced in the 1960s.  It utilizes 

vector thrusting nozzles designed to force the jet engine thrust down to propel the 

airplane vertically, giving it VTOL capabilities and designed to force the jet engine thrust 

back horizontally to give it long range capabilities.   The Harrier is currently being 

phased out for a more modern version, the F-35 Joint Strike Fighter. 

B. Helicopter 

A helicopter is a type of aircraft that utilizes a type of fan to generate lift and thrust.  The 

modern helicopter has a fan (know as a rotor) mounted on a vertical mast over the top of 

the aircrafts’ center of mass.  The rotor is generally made up of two or more air foils 

(know as blades).   

A mechanical apparatus know as a swashplate is connected to the helicopters rotor with 

hydraulic actuators.  The swashplate enables the pilot to control the blades pitch as well 

as the overall pitch and roll of the rotor system.  The ability to control the rotor system in 

this way allow the pilot to take off and land vertically, hover, and fly forward, backwards, 

and laterally.  

 Due to the torque generated by the rotor system spinning above the aircraft, the aircraft 

will spin relative to the force.  To prevent this undesired sight effect a small rotor is 

mounted perpendicular to the main rotor at a distance from the center of mass known as 

the tail.  This tail rotor is used to generate a force to counteract the torque generated by 

the main rotor to prevent the helicopter from spinning and allow the pilot to have control 

over the yaw of the aircraft.  

C. Quad Rotor Helicopter (Quadrocopter) 

A quadrocopter is a type of aircraft that utilizes 4 fans to generate lift and thrust.  The 

fans (also known as rotors) are mounted on a plane normal of earth’s gravity 

symmetrically around the aircrafts center of mass.  
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As with other helicopters the rotors are generally made up of two or more air foils 

(blades).  The velocity of each rotor is controlled independently.  This enables the pilot to 

take off and land vertically, hover, and fly forward, backwards, and laterally. In order to 

counteract the torque generated by the spinning rotors, a quadrocopter spins two of the 

rotors clockwise and the other two rotors counter clockwise, producing a net torque of 

zero.  The pilot controls the aircraft’s yaw by adjusting the angular velocity of the rotors 

spinning clockwise relative to the velocity of the rotors spinning counter clockwise.  

D. Advantages of the Quadrocopter Helicopter 

Quadrocopters’ have several advantages when compared to helicopters.  Quadrocopters’ 

utilize a simpler drive system that does not require mechanical linkage to adjust the pitch 

of blades and rotors.  They only require controlling the rotors angular speed of rotation.  

The drive system thus has less mechanical parts to maintain.  Quadrocopters’ also divide 

the total thrust required for flight over all 4 rotors.  This allows the quadrocopter to utilize 

smaller rotors.  These smaller rotors possess less kinetic energy while flying than a single 

large rotor on a helicopter.  Therefore, in the event of a collision between a rotor and an 

object, the overall damage will be less.  Also, by utilizing multiple rotors, all 

independently controlled, the quadrocopter employs the possibility to maintain flight in 

the event of an engine failure. 

E. Quadrocopter Applications 

Quadrocopters have the ability to perform similar tasks as helicopters with their ability to 

take off and land vertically, hover for extended periods of time, and operate at low air 

speeds.  Applications include aerial reconnaissance and surveillance, search and rescue, 

transportation, aerial photography, and much more. 
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F. Existing Quadrocopter Designs 

 
Figure 1: Microdrone  

Figure 2: AR Drone 

 
Figure 3: Cyber Technology 

 
Figure 4: Dragonfly 

The images shown here are just a few examples of quadrocopters commercially available. 

G. Project Goal 

This thesis outlines a quadrocopter design that leverages components off the shelf 

(COTS) to reduce cost and time to completion.  Due to this being a student funded 

project, cost must be kept to a minimum without sacrificing performance.  An attempt 

will be made to design and build as much of the overall system as time and financing 

permits. 

A quadrocopter aircraft design will be implement that will be capable of operating in an 

urban environment as required for many warfare scenarios.   The device shall use 

concepts developed in commercial and research platforms.  The quadrocopter design 

shall enable VTOL and confined space navigation. 

The minimum goal to be achieved is integration of the subsystems necessary for the 

aircraft to take off, hover, travel to a destination, and land.  This goal involves the design 

of an air frame and integration of several subsystems; a drive system, an inertia 

measurement system, a flight stabilization control system, a wireless communication 

system, a global positioning system, and a video system.  
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III. Design 

The complexity of this project requires several components to be designed and built in 

parallel. The jobs include mechanical engineering, electrical engineering, software 

engineering, test engineering, writing and editing 

Mechanical engineering is required to design and build the frame and analyze the 

aerodynamics. 

Electrical engineering is required to design and build the power supply and control 

circuitry. 

Software engineering is required to control the circuitry. 

Systems engineering is required to integrate the components. 

Test engineering is required to verify that the mechanical, electrical, and software 

engineering meet the specifications set out in thesis.  
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IV. Component Prioritization 

The components of this project must be identified and sorted into the order that they will 

be designed and implemented.  The project components will be prioritized based on the 

need to meet the end goal of this project.   

 Component 

1 Airframe 

2 Drive System 

3 Flight Control Circuitry 

4 Wireless Communication 

5 Video 

6 Global Positioning (GPS) 

7 Flight Stability Control Algorithm 

8 Hovering Flight 

9 Collision Avoidance 

10 Flight to Destination 

Table 1: Project Component Prioritization 

The airframe is the first component designed.  To design the air frame and because of the 

use of COTS, all the components physical dimensions will be identified in advance in 

order to drive the airframe design.  In actuality the airframe design is an iterative process 

requiring adjustments to be made as the subsystems’ designs are refined 

The drive system will be selected based on the maximum weight of the aircraft.  I have 

chosen to set the maximum weight to be 1500 grams in order to keep the aircraft small.  

The drive system must be powerful enough and light enough to efficiently lift the aircraft 

while remaining within the weight budget.  Details of the weight budget can be seen in 

section X. Mechanical Design, D. Weight Budget.  

The flight control circuitry will be capable of making measurements from inertia sensors, 

controlling the drive system for flight, wireless communicating with the pilot, capturing 

video, receiving location information from GPS, and detecting proximity to surrounding 

objects.  Once the interface to the inertia measurement sensors, the drive system, the 

wireless communications, the video, and the GPS are chosen, the circuitry can be 

designed accordingly.   
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In order for the aircraft to fly stably, flight control software algorithms will be developed.  

Once the aircraft’s hardware components are assembled, the algorithms will be tuned via 

the wireless communications.  Once the algorithms are tuned the aircraft can begin to 

take flight and stably hover.  The algorithms can then be augmented to include collision 

avoidance by detecting the aircrafts proximity to surrounding objects.  Finally the aircraft 

will fly. 
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V. Risk Management 

The complexity of this project requires a broad range of in depth skills to design and 

build such a device.  All this coupled with limited time and resources means that proper 

risk management must be employed from the start. 

A risk is the probability of damage occurring due to error over a given period of time.  

The amount of risk can be statistically expressed as the product of the probability of 

errors occurring multiplied by the severity of the damage.  A Risk Matrix can be utilized 

to evaluate the quantified levels of danger associated with the likelihood of errors 

occurring relative to the severity of their damage.  The matrix enables the display of a 

graphical correlation of the risk for assist management decision making.   

This project has quantified the severity of the damage into the following levels;  

Critical, Marginal, and Negligible.  Furthermore the probability of the error occurring has 

been quantified into the following levels; Likely, Possible, and Unlikely. 

The levels of damage are defined as follows. 

 “Critical damage” is to key multiple components & can cause entire project to fail. 

“Marginal damage” is to one or more components & may delay project completion. 

“Negligible damage” is to a component that has little impact on success of the project. 

Based on this breakdown the risk matrix can be generated. 

The combination of probability and level of damage result in the quantification of a 

particular risk into three levels; Low, Moderate, High. 

 Negligible Marginal Critical 

Likely Low High High 

Possible Low Moderate High 

Unlikely Low Low Moderate 

Table 2: Risk Management Matrix 
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The risk management process of this project is broken down into three fundamentals 

parts; Identify, Analyze, and Plan. 

A. Identify 

The first part of risk management for this project is to identify the components of the 

project that will have risk that impact the odds of meeting the end goals set out in this 

project.  The items have been identified below in order of importance to the final product. 

 Components with Risk 

1 Time 

2 Funding 

3 Airframe 

4 Drive System 

5 Circuitry 

6 Wireless Communication 

7 Flight Stability Control Software Algorithm 

8 Collision Avoidance 

9 Video 

10 Global Positioning 

11 Changing Requirements 

Table 3: Project Components with Risk 

Time and funding are limited resources available to this project.  Therefore these are 

identified as risks. 

The airframe is identified as a risk due to lack of experience in airframe and mechanical 

engineering.  In order for the aircraft to fly, the frame must be light, rigid and impact 

resistant.   

The drive system is identified as a risk due to lack of experience with propulsion systems 

and mechanical engineering.  The drive system is what gives this product its ability to fly.  

In order for the aircraft to fly the drive system must be capable of producing enough force 

to lift the aircraft off of the ground.  It must also do so in an efficient manner to provide 

sufficient air time to be of use.  
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The circuitry is identified as a risk due to its central role in the overall functionality of the 

system.  The circuitry is the control system that links all the electrical subsystems 

together in a useful way. 

The communication system is identified as a risk due to its central role in enabling the 

designer to program the software for the avionics and upon completion of the project, 

enabling the operator to control the flight of the aircraft.   

The flight stability control software algorithm is identified as a risk due to limited prior 

experience in signal processing and feedback control systems.  

The aircraft’s ability to avoid collision is identified as a risk due to the danger the aircraft 

posses to itself, other objects, and pedestrians.   

The aircraft’s ability to capture and transmit video in real time is identified as a risk due 

to the aircraft’s capability of flying away from the operator and possibly out of sight.   

The aircraft’s ability to track its location is identified as a risk due to the aircraft’s 

capability of flying away from the operator and possibly out of sight.   

Changes in the project requirements are identified as a risk due to the complexity of this 

project.   

B. Analyze 

The second part of risk management for this project is to analyze the components 

identified in the first step to obtain an estimation of the probability the risk will become 

an issue and the severity of the impact that risk will have on the project. With the 

probability of the error occurring and the severity of the impact determined, using the 

Risk Matrix the level of risk can be determined for each component of the project. 



12 

1. Time 

Meeting the minimal goals stated in II. Background, G. Project Goals is sufficient to 

deem the project successful.  If the goals are not met, project success will be dependent 

on a qualitative evaluation by the graduate advisor, and additional time to complete will 

be granted.  Complexity results in a probability of extra time, beyond 2 years, as 

“possible”.  The impact of needing extra time to complete is “Marginal”, and thus the 

level of risk due to time factors is “Moderate”. 

2. Funding 

The likelihood of this impacting the end product of this project is “Possible.”  

Completing the goal is desirable to complete in full.  The initial proposal takes into 

account estimated overall cost of all foreseeable components required for the completion 

of the end product with an extra percentage to buffer any unforeseen purchases.  

Therefore the overall impact shall be classified as “Marginal.”   The calculated level of 

risk for this component of the project is “Moderate.”  

3. Airframe  

Airframe design for quadrocopters is fairly well understood thus the probability of this 

impacting the end product of this project is “Possible”.  If the airframe fails to meet the 

requirements needed to fly this device, the end product of this project is of little use.  The 

airframe is the center most piece of the entire hardware design.  It is what holds all sub 

components in place and gives the product its overall structure.  Therefore the overall 

impact shall be classified as “Critical.”  The calculated level of risk for this component of 

the project is therefore “High”. 

4. Drive System 

The likelihood of this impacting the end product of this project is “Possible” due to lack 

of experience with aircraft propulsion systems.  If the drive system fails to meet the 
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requirements needed to fly this device, the end product of this project is of little use. 

Therefore the overall impact shall be classified as “Critical.”  The calculated level of risk 

for this component of the project is “High”.  

5. Circuitry 

If the circuitry system fails to meet the requirements needed to fly the device, the end 

product of this project is of little use.  Even with having prior electrical engineering 

design experience, the likelihood of this impacting the end product of this project is 

“Likely.” The circuitry must be able to properly interface with all subsystems to enable 

those systems to function.  Therefore the overall impact shall be classified as “Critical.”  

The calculated level of risk for this component of the project is “High”. 

6. Communications  

Having prior electrical engineering, software design experience, and through the use of 

components off the shelf (COTS) the likelihood of this impacting the end product of this 

project is “Unlikely”.  If the communications system fails to meet the requirements 

needed to program and fly the device, the end product of this project is of little use. 

Therefore the overall impact shall be classified as “Critical.”  The calculated level of risk 

for this component of the project is “Moderate”. 

7. Flight Stability Control Software Algorithm 

The likelihood of this impacting the end product of this project is “Possible”.  The flight 

stability control software algorithm enables the aircraft to automatically stabilize during 

flight.  Without the control algorithms, the aircraft is capable of flight, but due to its 

natural instability such flight poses serious danger to the aircraft itself and people within 

its vicinity. Therefore the overall impact shall be classified as “Critical.”  The calculated 

level of risk for this component of the project is “High.”  
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8. Collision Avoidance 

The likelihood of this impacting the end product of this project is “Possible.”  The aircraft 

shall fly in all directions through the air and as long as it flies in wide open skies 

collisions are unlikely. The aircraft is likely to cause damage to itself or obstacles around 

it when flown in confined spaces. Therefore the overall impact shall be classified as 

“Marginal.”  The calculated level of risk for this component of the project is “Moderate.” 

9. Video 

Having prior electrical engineering experience, software design experience, video 

capturing experience, and through the use of COTS the likelihood of this impacting the 

end product of this project is “Unlikely”.  Without on-board video the operator’s control 

over the aircraft, when not in visual range, is unpredictable and dangerous.  The main 

concern with the video component is being able to process and transmit the video at a fast 

enough rate to be useful to the operator.  Therefore the overall impact shall be classified 

as “Negligible”.  The calculated level of risk for this component of the project is “Low”. 

10. Global Positioning 

Having prior electrical engineering experience, software design experience, and through 

the use of COTS the likelihood of this impacting the end product of this project is 

“Unlikely.”  The Global Positioning System (GPS) is useful in identifying a way to return 

to the operator after being flown out of sight into unfamiliar territory.  Therefore the 

overall impact shall be classified as “Marginal.”  The calculated level of risk for this 

component of the project is “Low.” 

11. Requirements Change 

The lack of prior experience designing similar devices, thus leading to unforeseen 

changes impacting the design are “Likely”.  The overall design must be flexible enough 
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to accommodate any unforeseen changes.  Therefore the overall impact shall be classified 

as “Critical.”  The calculated level of risk for this component of the project is “High”.  

The table below is a summarization of the items identified and their associated risks. 
 Item Risk 
1 Time Moderate 

2 Funding Moderate 

3 Airframe High 

4 Drive System High 

5 Circuitry High 

6 Wireless Communication Moderate 

7 Flight Stability Control Software Algorithm High 

8 Collision Avoidance Moderate 

9 Video Low 

10 Global Positioning Low 

11 Changing Requirements High 

Table 4: Project Components and Risks 

C. Plan 

The next step in the Risk management process is to plan.  This involves identifying 

alternatives and mitigating approaches for the “High” risk components of this project. 

1. Time 

As a full time student and employed part time, time to dedicate to this project is limited. 

The “Moderate” risk of this component of the project makes it of utmost concern.  

Possible alternatives for dealing with this constraint include bringing on other students to 

work on the project or making the most of the time I have available.  Since there are a 

very limited number of students at my university interested in working on this project for 

their thesis, I have decided to focus on managing my time as best as possible.  This 

means getting started early on the project.  Therefore I made the decisions necessary to 

start working on the project prior to beginning the degree.  With a plan of attack decided 

upon, I was able to start working on this thesis on day one.       
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2. Funding 

As a full time student and employed part time, funding is another limited resource.  The 

“Moderate” risk of this component of the project makes it of utmost concern.  The goal of 

this project has been to gain as much experience in a diverse range of skills.  To achieve 

this as much of the project as can be managed and funded will be designed rather than 

purchased.  The custom made components will cost more than COTS part available on 

the market.  Therefore to mitigate the finical cost COTS parts will be purchased when 

funding prohibits.       

3. Air Frame 

The airframe is a crucial component of the project with a “High” risk.  With the desire to 

gain further experience designing mechanical aeronautical components, the initial plan is 

to design a custom frame.  To mitigate some of the risk the design will be based upon 

other proven designs on the market.  In the case that this approach appears too difficult to 

implement, the alternative is to purchase a COTS airframe.  Using the alternative 

approach, the likelihood of this impacting the end product of this project is “Unlikely.”  

The overall impact shall remain as classified as “Critical.”  The new calculated level of 

risk for this component of the project based on the alternative is now lowered to 

“Moderate”. 

4. Drive System 

The drive system is also a crucial component of the project with a “High” risk.  With a 

wide range of COTS parts sold, the plan is to purchase the standard parts.  To mitigate 

some of the risk the purchase will be based upon other proven designs on the market.   

Using the alternative approach, the likelihood of this impacting the end product of this 

project is “Unlikely.”  The overall impact shall remain classified as “Critical.”  The new 

calculated level of risk for this component of the project is now lowered to “Moderate”. 
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5. Circuitry 

The avionics system is also a crucial component of the project with a “High” risk.  With 

my major focusing on computer engineering and the desire to gain more experience 

designing avionics equipment, the initial plan is to design custom hardware and software.  

To mitigate some of the risk, the design will be based upon other proven designs on the 

market.  In the case that this approach appears too difficult to implement, the alternative 

is to purchase COTS circuitry.  Using the alternative approach, the likelihood of this 

impacting the end product of this project is “Unlikely.”  The overall impact shall remain 

classified as “Critical.”  The new calculated level of risk for this component of the project 

based on the alternative is now lowered to “Moderate”.   

6. Communication 

The communications system is also a crucial component of the project with a “Moderate” 

risk.  COTS will be the approach taken and therefore there will not be an alternative 

approach, the likelihood of this impacting the end product of this project remains 

“Unlikely”, the overall impact shall remain classified as “Critical”, and the level of risk 

for this component of the project will remain the same.  

7. Flight Stability Control Software Algorithm 

The flight stability control software algorithm is an important component of the project 

with a “High” risk.  To mitigate some of the risk the design will be based upon other 

proven designs on the market.  In the case that this approach appears too difficult to 

implement, the alternative is to purchase COTS electronics with flight stability control 

software algorithm. Using the alternative approach, the likelihood of this impacting the 

end product of this project is “Unlikely.”  The overall impact shall remain classified as 

“Critical.”  The new calculated level of risk for this component of the project based on 

the alternative is now lowered to “Moderate.” 
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8. Collision Avoidance 

The collision avoidance system is an extra feature with a “Moderate” risk.  The aircraft 

can fly with or without this.  This system has few example products to base its design 

upon. The risk was accepted as is, without alternatives to mitigate the likelihood of this 

system failing. 

9. Video 

The video system is not a crucial component of the project, with a “Low” risk.  With a 

wide range of COTS parts sold, the plan is to purchase the standard parts.  To mitigate 

some of the risk the purchase will be based upon other proven designs on the market.  

The risk was accepted as is, without alternatives to mitigate the likelihood of this system 

failing.  

10. Global Positioning 

The GPS is not a crucial component of the project, with a “Low” risk.  With a wide range 

of COTS parts sold, the plan is to purchase the standard parts.   To mitigate some of the 

risk the purchase will be based upon other proven designs on the market.  The risk was 

accepted as is, without alternatives to mitigate the likelihood of this system failing. 

11. Requirements Change 

The requirements are “Certain” to change and planning for this is a crucial component of 

the project with a “High” risk.  To minimize the impact that these changes will have, well 

defined standard hardware and software interfaces shall be utilized to simplify the 

modifications.  With a plan of attack decided upon, the project began immediately to 

allow sufficient time to deal with these changes and the risk was accepted as is. 
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The table below is a summarization of the items identified and their new associated risks. 
 Item Risk 
1 Time Moderate 

2 Funding Moderate 

3 Airframe Moderate 

4 Drive System Moderate 

5 Circuitry Moderate 

6 Wireless Communication Moderate 

7 Flight Stability Control Software Algorithm Moderate 

8 Collision Avoidance Moderate 

9 Video Low 

10 Global Positioning Low 

11 Changing Requirements High 

Table 5: Project Components and their Alternative Risk 
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VI. Aeronautical Design 

This section deals with the dynamics associated flight and the design approach taken in 

this thesis.  Thrust generated by the drive system is first analyzed and then the rigid body 

dynamics acting upon a quadrocopter.  Finally the requirements for stable flight and 

aerodynamics are analyzed.   

A. Thrust 

Thrust is the force developed by the blades of a rotating propeller measured 

perpendicular to the rotor.  The quadrocopter utilizes thrust to counteract the force of 

gravity to fly vertically and accelerate the aircraft forwards.  In order for the quadrocopter 

to fly at a minimum the total thrust generated by the propellers must be greater than the 

total force of gravity acting upon the quadrocopter.  Ideally the thrust must be much 

greater than the force of gravity to overcome possible force created by wind and other 

conditions. The quadrocopter’s ability to maneuver is increased by having greater total 

thrust available.  The efficiency of electric motors is not optimal when operated at full 

power.  Therefore the thrust to weight ratio shall be chosen so that the thrust generated by 

the motors is equal to the weight of the quadrocopter when operated at their most 

efficient power level.  Also the total thrust of the propellers, when operated at full power, 

shall be 3 times the weight of the quadrocopter.  

B. Flight Mechanics (Rigid Body Dynamics) 

Rigid bodies occupy space and have geometrical properties such as center of mass and 

moment of inertia.  This characterizes motion into six degrees of freedom, three 

directions of translation, and three directions of rotation. 

Figure 5 depicts the translational forces acting upon a quadrocopter in flight.  Two forces 

act upon the quadrocopter while hovering.  The force of gravity pulls the quadrocopter to 

towards earth and lift generated by the propellers pushes the quadrocopter up against 

gravity.  When in forward flight two more forces act upon the quadrocopter, the forward 
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thrust generated by the propellers pushing the quadrocopter forward and drag caused by 

air resistance.  

Figure 6 depicts two of the rotational forces acting upon the quadrocopter. The spinning 

motors create torque. Rotors ‘A’ and ‘D’ spin in one direction, while rotors ‘B’ and ‘C’ 

spin in the opposite direction, yielding opposing torques.  The torque generated by each 

motor is proportional to the angular velocity of the rotor.  The net rotation of the 

quadrocopter due to any imbalance in the torque is referred to as ‘yaw’.   

Figure 7, depicts the two other rotational forces ‘roll’ and ‘pitch’. Roll is rotation around 

the forward axis and pitch rotation around the side axis.  These rotations are produced by 

differences in total thrust between pairs of rotors.  Differences between front and rear 

cause a change in pitch and differences between starboard and port cause a change in roll. 

Flight Mechanics (Rigid Body Dynamics) 

 
Figure 5: Translational Forces 

 
Figure 6: Horizontal 

Rotational Forces 

 
Figure 7: Vertical Rotational Forces 

 

C. Stability 

The stability of the quadrocopter is largely dependent on its center of mass location.  

Ideally the center of mass should be located directly between all four propellers.  This 

gives the quadrocopter a mechanical equilibrium at that point that requires no added force 

to stay balanced.  Any deviation from this will require some propellers to generate 

additional thrust to stabilize the aircraft.  
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D. Aerodynamics 

The ability of the quadrocopter to fly efficiently depends on its drag.  Drag generates 

force that acts against the quadrocopter’s vertical lift and forward flight. Drag is 

generated due to the body of the quadrocopter passing through air.  The drag force is 

dependent on the velocity of the airframe relative to the air and the surface area 

perpendicular to the direction of the air flow. In order to reduce the effects of drag, 

surfaces will be slopped in the direction of airflow as much as possible. 
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VII. Motor Thrust Testing 

In order for this aircraft to fly, the drive system must be capable of producing sufficient 

thrust to lift the craft off the ground.  This section describes the tests that were conducted 

to verify the selected drive system capabilities.   

A. Thrust 

To test the thrust an apparatus was built as depicted in figure 8.  This device allowed the 

thrust of different motor and propeller and combinations to be measured.  While 

conducting the thrust measurement, current measurements were also made. Based on 

these results the most efficient combination was chosen. 

The test apparatus shown utilizes a right angle lever with a pivot at the corner.  The angle 

has equal length legs with one leg vertical and the other leg horizontal, perpendicular to 

the ground.  The vertical leg has a motor and propeller attach to it 9 inches from the 

pivot. The horizontal leg has a screw protruding from it 9 inches from the pivot.  

Underneath the screw on the horizontal leg is a digital scale.  When the motor is powered 

the propeller spins generating thrust.  The thrust causes the lever to rotate around the 

pivot.  This rotation causes the screw to apply a force on the scale.  Because the motor 

and screw are equal distances away from the pivot, the force the screw applies to the 

scale is equal to the force the motor and propeller generate.  This enables the thrust of the 

motor and propeller to be measured. 

The speed of the motor was tested originally with a servo tester with a rotating knob to 

adjust the speed.  A digital circuit was later used to more preciously control the speed of 

the motor.  A power analyzer was connected between the speed control and the battery to 

monitor the current while the motor was driven.  Also, while driving the motor a 

tachometer was used to measure the revolutions per minute of the propeller, Figure 10. 

The values in table 2 are the results from the tests of the most efficient motor propeller 

combination.  The combination is a Turnigy L2210 1650KV 250W brushless DC motor 

with an APC 9”x4.7” Slow Fly propeller.  See VIII Electrical Design, E Motors for more 

details on the motors. 
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Figure 8: Thrust Measurement Setup 

 

 
Figure 9: APC 9x4.7 SF Propeller 

 

 
Figure 10: Tachometer 
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Speed% 0 10 20 30 40 50 60 70 80 90 100 

Thrust (g) 0 42 126 220 305 410 550 676 792 898 990 

Current 
(Amps) 

0 0.44 1.61 3.15 4.75 7.15 10.6 14.5 18.6 23.2 26.7 

Power (W) 0 4.9 18.1 35 53 78 115 155 197 240 274 

RPM 0 2190 3720 4800 5640 6600 7530 8450 9150 9720 10230 

Table 6: Motor Propeller Measurements 

 

 

Figure 11: Motor Propeller Thrust Plot Figure 12: Motor Propeller RPM Plot 

Figure 13: Motor Propeller Amps Figure 14: Motor Propeller Watts 
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VIII. Electrical Design 

The electrical system for this aircraft is broken down into 3 main components; the power 

system, the drive system, and the avionic flight control system.  

The power system supplies the power to fuel the aircraft.  The power system is a battery.  

The battery must be capable of supplying a large amount of current for as long as 

possible while remaining light weight.  The type of battery chosen is a lithium battery, 

specifically a Lithium Polymer (LiPo) battery. 

The drive system supplies thrust to give the aircraft lift and the ability to fly.  The drive 

system’s electrical components are the motors and speed control circuitry.  The motors 

must be capable of rotating the propellers fast enough to give enough thrust to lift the 

aircraft off the ground and maneuver in the air.  The motor requires a special circuit 

known as an electronic speed controller (ESC) to operate.  The ESC must be able to 

supply sufficient power to the motor. 

The avionics system is responsible for giving the aircraft the ability to function. The 

avionics system is broken down into two levels; high level functionality and low level 

functionality.  The low level functionality is controlled by a microcontroller (MCU) and 

embedded software running on bare metal without an operating system (OS).  The high 

level functionality is controlled by an X86 32bit CPU running .NET software on a 

Windows 8 OS. 

 The low level functionality is responsible for flight control.  The MCU mainly manages 

sensor readings and motor control while receiving guidance from the high level avionics.  

The MCU must be fast enough to execute these requirements efficiently enough to fly.  

The MCU must also be able to interface with all the sensors, motor controllers and high 

level avionics circuitry.   

The high level functionality is responsible for controllable flight.  The CPU manages 

guidance, user interfacing, video, GPS, and security.  The CPU must be able to run 

Microsoft Windows 8 OS for the .NET software.  The CPU must be fast enough to render 
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the display graphics, capture video, capture GPS position, and compress and encrypt 

video and control signals sent between the user’s control device and the avionics.   

A. Block Diagram 

 
Figure 15: Circuitry Block Diagram 
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B. Battery 

 

Figure 16: Lithium Polymer Battery 

The battery was chosen based on the most demanding power consuming component on 

the aircraft, the motors, along with the weight limit requirement budgeted for the design.  

The battery is a Turnigy Nano-Tech Lithium Polymer (LiPo) battery.  Relative to their 

weight LiPo batteries have high discharge capability, and high storage capacity.  The 

cells are sealed in a flexible polymer laminated case causing them to be lighter than their 

equivalent hard cell with equivalent storage.  The voltage of each LiPo cell is 3.7V 

nominal, 3.0V at its minimum charge, and 4.2V at it maximum charge.   

The battery pack selected has 3 cells connected in series, giving it a total nominal voltage 

of 11.1V.  This voltage was chosen to accommodate the motors. The battery pack used 

for testing this aircraft has a total capacity of 6.0Ah, although the aircraft can 

accommodate a battery up to 8.4Ah in capacity.  The battery has a continuous discharge 

capability of 25C and a peak discharge capability of 50C.  This means that the battery can 

supply 25 times the capacity continuously and 50 times the capacity peak, 6A * 25 

=150A continuously current or 150A * 11.1V = 1665W continuously power and 6A * 

50C = 300A peak current or 300A * 11.1V = 3330W peak power.  The battery also has a 

high charge rate of 5C enabling the battery to be recharged fast, 1/5 hour = 12 minutes 

charged at 6A * 5 = 30A.  The battery will be run well below this level during flight. 
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C. Voltage Regulation 

 

Figure 17: Voltage Regulator 

 

Figure 18: Voltage Regulator Output Efficiency 

The circuitry is not able to operate at the voltage supplied by the battery.  Therefore a 

voltage regulator is used to step the voltage down to 5.0V for the circuits.  A Pololu 

switching regulator was chosen to save power due to the large voltage drop required and 

high current consumed by the circuitry.  The regulator is capable of accepting an input 

voltage between 4.5V and 24V and outputting up to 7A of current. 

D. Electronic Speed Controller (ESC) 

 

Figure 19: Electronic Speed Controller 

 

Figure 20: Electronic Speed Controller Programmer 

The Turnigy Plush ESC was chosen to be capable of accepting input at a high speed and 

supplying the power required to operate the motor at its full speed with power to spare.  It 

is capable of sourcing up to 25A of constant current, with a 30A burst, and receiving 

control input at a rate of up to 400 times per second. Power is supplied directly from the 
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battery.  The input control signal is a Pulse Position Modulate (PPM) signal sent using 

Pulse Width Modulation (PWM). A PPM signal is a PWM signal with a specific 

frequency.  In the project the frequency is 400Hz, the maximum input rate at which the 

controller can operate.  The PPM signal has a limited range of duty cycle that is valid.  In 

this project the pulse width high time must be between 1ms and 2ms.  The speed of the 

motor is controlled by this timing.  The speed is at 0% when the pulse width equals 1ms 

and the speed increases as the pulse width increases up to 100% at 2ms. 

A Turnigy programmer shown in figure 20 was used to setup the ESC.  The ESC is 

configured to run on a 3 cell LiPo battery with a power cutoff voltage of 9.0V.  The 

power cutoff is set to help prevent over discharging the battery.  The cutoff is set to ramp 

down the power slowly so that the aircraft will not fall out of flight. 

E. Motors 

 

Figure 21: Brushless DC Motor 

The motor is a brushless direct current (BLDC) out runner bell style motor with a 

maximum power rating of 250W.  It is designed to be powered by a LiPo battery with 3 

cells in series.  It is a 3 phase motor that is controlled by the ESC. They are Turnigy 

L2210 1650KV 250W motors.  
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F. Single Board Computer (SBC) 

 

Figure 22: PITX-SP (SBC) 

The SBC was chosen to be capable of providing sufficient on board processing power to 

run Windows 8 OS, the application software GUI, and have plenty of USB interfaces for 

the required peripheral devices.  The SBC is a Kontron PITX-SP. 

G. Central Processing Unit (CPU), Chipset & RAM 

The SBC contains a CPU, Chipset, and RAM. 

 
Figure 23: Central Processing Unit 

 
Figure 24: Chipset 

 

 
Figure 25: RAM 

The processor was chosen based on the operating system requirements.  It is an Intel 

Atom Z530 1.6GHz processor. The chip set is based on the CPU requirements.  It is an 

Intel US15W.  It has onboard Graphics, provides interface for RAM, IDE, PCIe, USB, 

and more. The RAM was chosen based on the chipset.  The chipset supports up to 2Gb of 

DDR2 533MHz RAM. 
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H. IDE Flash Drive & MicroSD Flash Drive 

The SBC is connected to an IDE Flash Drive to store the software, and MicroSD Flash 

Drive to data. 

 
Figure 26: Flash P-ATA 16G 

 

 

Figure 27: Flash 

The IDE Flash Drive was chosen based on the SBC hardware interface and the OS and 

software requirements.  The drive is an Active Media Products (AMP) Disk on Module 

(DOM) Type 4 with 16GB, enough to hold Windows 8 and the executable.  

The micro SD flash chip is used to store captured video and can store up to 32GB worth 

of video. This is where the platform can store its entire mission’s data, navigation 

coordinates, video captured, etc...  The device can then be swapped in and out for 

different missions. The mission data can be edited and analyzed on a personal computer 

with a micro SD card reader. 

I. Wireless Communications 

 
Figure 28: Wireless Transceiver 

 

The wireless communications are used to allow remote control of the aircraft.  A USB 

Plug and Play (PNP) wireless device was chosen to enable the wireless protocol to be 

swapped out with minimal system impact.  The wireless device used is a Buffalo 

802.11N Wi-Fi module.  
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J. Video Camera 

 

Figure 29: Video Camera 

The video camera is used to allow the remote control user to see live video from the 

quadrocopter.  A USB PNP video camera was chosen to enable the camera to be swapped 

out with minimal system impact.  The camera is a Microsoft LifeCam capable of 1080p 

high definition video.  

K. Global Positioning System (GPS) 

 
Figure 30: GPS 

The GPS is used to allow the remote control user and the quadrocopter to identify the 

quadrocopter’s location.  A USB PNP GPS was chosen to enable the GPS to be swapped 

out with minimal system impact. Currently the aircraft is using an ND-100s GPS module.  
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L. Microcontroller Unit (MCU) 

 

 

 

 
 
 
 

Figure 31: Microcontroller 
 

Figure 32: MBED 

The MCU is used to control all low level hardware devices used for flight.  The MCU is 

an ARM Cortex M3 32bit core running at 96MHz with 32kB of RAM, and 512kB of 

Flash.  A MBED development board was used to control the motors, accelerometers, 

gyroscopes, pressure sensor, compass, and sonar. The MBED interfaces with the Intel 

Atom CPU through the chip set over USB 2.0.  

M. Inertia Measurement Unit (IMU) 

The IMU is composed of 2 modules responsible for sensing the 6 degrees of freedom 

(6DOF) the aircraft is capable of moving. The IMU functionality utilizes a 3 axis 

accelerometer IC for sensing the angle of the aircraft relative to earth’s gravity and a 3 

axis gyroscope IC for sensing the aircrafts rate of rotation. The IMU is also augmented 

with 2 more circuits, a 3axis magneto-resistive element IC for sensing the aircrafts angle 

relative to magnetic north and a pressure sensor IC for sensing the aircrafts altitude 

relative to sea level. 
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Figure 33: Accelerometer 

 

Figure 34: Gyroscope 

 

Figure 35: Altimeter 

 

Figure 36: Compass 

The Analog Devices ADXL345 accelerometer has sensors on 3 axes.  It is capable of 

sampling at 800 samples per second with 13bit resolution.  It has a selectable 

measurement range up to ±16g while maintaining a 4mg/LSB scale factor.  It 

communicates with the MCU over the I2C bus at 400 kHz.  This sensor is used to sense 

the angle of the aircraft to give feedback to the control algorithm for stable flight.  The 

accelerometer measurements are in Gs, see the XII Software Design, F Embedded 

Software Modules, 6 Accelerometer for details on how Gs are converted to angle. 

The Invensense ITG-3200 gyroscope has sensors on 3 axes.  It is capable of sampling at 

8,000 samples per second internally filtered down to 400 samples per second externally 

with a sensitivity of 14.375 LSBs per °/sec and a full scale range of ±2000°/sec.  It 

communicates with the MCU over the I2C bus at 400 kHz.  This sensor is used to sense 

the angular speed of the aircraft to give feedback to the control algorithm for stable flight. 

The Bosch BMP085 pressure sensor is capable of operating in the pressure range of 300 

— 1100hPa (+9000m — -500m above sea level).  It has selectable measurement 

resolution of 16-19 bits.  Typically it has a resolution of 0.01hPa (~8.5cm), accuracy 

≤±1.5hPa, and a sample time of 17ms.  It communicates with the MCU over the I2C bus 

at 400kHz.  This sensor is used to sense the altitude of the aircraft to give feedback to the 

control algorithm for stable flight. 

The Honeywell HMC6343 compass is capable of sampling at 10 samples per second with 

0.1° resolution.  It communicates with the MCU over the I2C bus at 400kHz.  This sensor 

is used to determine the direction of magnetic north to give feedback to the control 

algorithm for stable flight. 
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N. Sonar 

 

Figure 37: Sonar Module 

 

Figure 38: Sonar Manufacturers Beam Pattern 

The aircraft has 6 Devantech SRF02 sonar modules, one for sensing proximity of objects 

is each direction; forward, backward, port, starboard, downward, and upward.  The sonar 

is capable of detecting the distance to objects from 15cm to 249cm away with centimeter 

resolution.  The sonar transducer has a wide beam as depicted in figure 38.  It 

communicates with the MCU over the I2C bus at 400 kHz. Range readings require 66ms 

to complete.   This sensor is used to detect objects near the aircraft to give feedback to the 

control algorithm for collision free flight.  

O. Servo 

 

Figure 39: Servo 

The servo was chosen to be strong enough to tilt the camera while remaining as light 

weight as possible. The servo is a HobbyKing 929MG Metal Gear Servo with 2.2kg of 

stall torque. The aircraft will turn to pan the camera. 
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P. Computer Aided Design & Manufacturing 

Dip Trace PCB design software was utilized to generate Gerber files to send to the PCB 

manufacture.  A 4 layer PCB for the inertia measurement sensors, power regulation, 

motor control and micro processing was designed.  Figure 40 is a screen shot of the top 

layer of this board.  The Gerber files were sent to Advanced Circuits to be manufactured.  

Figure 40: Flight Controller Printed Circuit Board 

 

Q. Power Budget 

During the initial design phase a power budget was produced to verify that the battery 

and power regulator would be capable of powering the circuitry. 
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Circuitry Power Break Down 

Part Voltage Current (Typical) Watts (Typical) Notes 

VREG Battery 45mA 540mW  

SBC 5.0V 1000mA 1000mW  

Wi-Fi 5.0V 100mA 500mW  

Camera 5.0V 100mA 500mW  

GPS 5.0V 55mA 275mW  

MBED 5.0V 100mA 500mW  

Accelerometer 3.3V 140uA 0.462mW  

Gyroscope 3.3V 6.5mA 21.45mW  

Altimeter 3.3V 12uA 0.0396mW  

Compass 3.3V 4.5mA 14.85mW  

Sonar 5.0V 4mA x 6 = 24mA 120mW  

Servo 5.0V 240mA 1200mW  

Total 5.0V 1.619A 4.095W  

Total 3.3V 11.152mA 36.8016mW  

Total Battery <2A 4.1318016W  

Table 7: Circuitry Power Break Down 

The Flight Time is in minutes, the Hover Power is in Watts, and the Battery Power is in 

Watt Hours.  Based on the data collected in the thrust test, circuitry power break down, 

and designing the aircraft not to exceed 1500g— The Hover Power is approximately 

200W.   

Running on a battery with 4.0Ah and nominally 11.1V giving a total 44.4Wh. 

� ��������	
 � ���
�����
����
����
� � 60	����
� �  44.4��200� � 60	����
�   13	��� 

Equation 1: Flight Time w/ 4.0Ah Battery 

Running on a battery with 6.0Ah and nominally 11.1V giving a total 66.6Wh. 

� ��������	
 � ���
�����
����
����
� � 60	����
� �  66.6��200� � 60	����
�   20	��� 

Equation 2: Flight Time w/ 6.0Ah Battery 
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IX. Electrical Testing 

After assembling the aircraft’s circuitry, electrical testing was performed to verify that all 

over all the electrical circuitry functioned within the specifications set. 

A. Power Supply 

The first electrical test was to verify the power supply’s functionality.  The main 

components involved in this part of the design are the battery and the voltage regulator. 

1. Battery 

The battery was tested to verify that it will fully power the four motors with propellers 

attached.  A watt meter specially designed to measure power from LiPo batteries 

powering motors was utilized.  The device in figure 41 allowed the measurement to be 

made, to show that the battery had no issue sourcing up to 800W. 

 

Figure 41: Power Analyzer 

2. Voltage Regulation 

The voltage regulator was tested to verify that it was able to supply the required voltage 

and current over the possible voltage input range.  The minimum current required by the 

circuitry shall not go below 250mA and the maximum current required shall not exceed 

4A.  The regulator was loaded to source 250mA while the output voltage was monitored 

with a digital multi-meter (DMM).  Then the input voltage was test at its minimum value 
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the battery will supply 9V. Next the input voltage was tested at the maximum value the 

battery will supply 12.6V.  This same test was then repeated with the regulator loaded to 

source 4A.  The test showed that output would remain within 5% of the required output 

voltage, 5.0V. 

B. Drive System 

The second electrical test was to verify the drive system’s functionality.  The main 

components involved in this part of the design are the motors and the electronic speed 

controllers. 

1. Motors 

The motors were tested to verify that they could operate up to their maximum power 

rating level, 200W, using the same watt meter as used for the battery test. 

2. Electronic Speed Controllers 

The ESCs where tested to make sure that they could supply the power required by the 

motors with the same watt meter. 

C. Avionics 

The third electrical test was to verify the avionics functionality.  The components 

involved in this part of the design are the SBC, wireless transceiver, video, GPS receiver, 

MCU, accelerometers, gyroscopes, altimeter, compass, and sonar. 

1. SBC (CPU, Chipset, RAM, Flash, and Graphics) 

The CPU, Chipset, RAM, Flash, and Graphics were tested by loading an Operating 

System (OS) “Windows 8”onto the Flash and booting the OS.  The OS booting and video 

was displayed verifying that they were functioning correctly. 
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2. Wireless 

With the OS loaded the wireless module was plugged into the USB and its functionality 

was verified.  Windows automatically detected the device. The internet was then accessed 

and data transfer rates were viewed in Windows Task Manager. 

3. Video 

With the OS loaded the video camera was plugged into the USB. Its functionality was 

verified using the software provided by the manufacture. 

4. GPS  

With the OS loaded the GPS was plugged into the USB. Its functionality was verified 

using the software provided by the manufacture. 

5. MCU  

With the OS loaded the MCU was connected to the USB.  Its connectivity was verified 

using Windows Device Manager.  The device shows up as a virtual COM port. 

6. Accelerometer 

The accelerometer was tested over the I2C bus. A request for its ID was sent from the 

MCU and a reply was received with the expected ID number. 

7. Gyroscope 

The gyroscope was tested over the I2C bus. A request for its ID was sent from the MCU 

and a reply was received with the expected ID number. 
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8. Pressure Sensor (altimeter)  

The pressure sensor was tested over the I2C bus. A request for its ID was sent from the 

MCU and a reply was received with the expected ID number. 

9. Compass  

The compass was tested over the I2C bus. A request for its ID was sent from the MCU 

and a reply was received with the expected ID number. 

10. Sonar  

The sonars were tested over the I2C bus. Request for their IDs were sent from the MCU 

and replies were received with the expected ID numbers.   
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X. Mechanical Design 

Utilizing the aeronautical and electrical design, requirements mechanical designs were 

developed using computer aided design (CAD) software.  The CAD enabled the weight 

of all parts to be tracked and the overall weight of the entire system to be totaled.  It also 

allowed all parts to be fitted together virtually to assure that there would be no parts 

interfering with each other during actual assembly. 

A. Computer Aided Design Drawings 

The follow are just a few of the CAD Drawings generated during the design of this 

project. 

 
Figure 42: CAD Isometric View of Aircraft 

 
Figure 43: CAD Side View of Aircraft 

 

 
Figure 44: CAD Camera Mount 

 
Figure 45: CAD Motor Mount 

B. Materials 

The airframe is built out of custom made nylon parts and standard carbon fiber tubes.  

The nylon parts are a durable plastic printed from a polyamide (nylon) powder. The color 

is white and somewhat flexible depending on the size of the geometry. It is porous and 

has a slightly textured finish.  
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C. Manufacturing 

The nylon parts were designed in Alibre and made on a Selective Laser Sintering (SLS) 

3D printing machine. This machine uses a laser beam to fuse small particles of plastic 

together, layer by layer. A thin layer of fine plastic powder is spread over the bed of the 

machine. A laser passes over the powder selectively fusing it together based on a cross 

section of the 3D model. Once the first layer is complete, the bed lowers and a new layer 

of powder is spread over the work. The process is repeated until the parts have been 

printed. The un-sintered powder acts as the support material and once the part is complete 

it is removed using air.  All stereo lithography files were sent to Ponoko to be made into 

nylon parts. 

D. Weight Budget 

Component Weight Break Down 

Part Weight (grams) Notes 

Air Frame 280  All Plastic and Carbon Fiber Parts 

Motors 200 4 motors w/ wire 

ESCs 88 4 ESCs w/ wire 

Battery 481 1 LiPo 6.0Ah w/ wire 

SBC 260 Computer w/ RAM & Flash Drive 

Flight Controller Circuit Board 50 PCB w/ all components attached 

Wi-Fi 8 USB Dongle 

Camera 40 Camera w/ cable 

GPS 20 USB Dongle w/ cable 

Propellers 40 4 propellers 

Servo 9 1 Servo 

Wire 20 9 ft 14AWG 

Total 1496  

Table 8: Component Weight Break Down 

A weight budget was created to keep track of the overall weight of the aircraft to make 

sure that it remained under the limit of 1500g for flight analysis.  The weight budget is 

shown in table 4.   
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XI. Mechanical Testing 

The purpose of the mechanical testing was to verify that the aircraft components met the 

strength and weight requirements for flight.  

A. Deflection 

The carbon fiber tubes were tested by the manufacturer.  A 3-point bend test was 

conducted on the tubes.  The test consisted of a 26” span with a 2.0lb mass suspended 

from the center.  The deflection was then measured.  The 0.375” outside diameter tube 

deflected 0.065”.  The 0.22” outside diameter tube deflected 0.419”.  The larger tubes are 

used as the arms to attach the motors.  While in hover the larger tubes will experience a 

static load equal to ½ the weight of the aircraft.  Therefore the larger tube will experience 

a static load of ~1.65lbs and bend less than 0.065”.  The aircraft is not design for 

aerobatics and the dynamic loads will be kept to a minimum.  The smaller tubes are used 

as the legs (landing gear).  The legs are used to dampen the impact of the landing and 

therefore are more flexible. 

B. Weight 

The final weight of the aircraft fully assembled came to a total of 1498 grams.  

XII. Software Design 

This section outlines the architecture of the software designed to control the aircraft. First 

the requirements will be examined followed by an in depth analysis of the software 

architectural components of the design. 
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A. Requirements 

The software architecture consists of code that runs on two processors, the ARM and the 

Atom.  Therefore the architecture has been divided into two sections, one for each 

processor.   

Section one is the embedded code developed to run on the ARM MCU and written in 

C++ code.  The section must be capable of communicating and controlling the sensors 

(accelerometers, gyroscopes, compass, altimeter, and sonar) and motors while also 

communicating to the second section. 

Section two is .Net code developed to run in Windows on the Atom CPU written in C# 

code.  The section must be capable of displaying the GUI, interfacing with the video 

camera, the GPS receiver, the wireless transceiver, and section one, the embedded code. 

The GUI uses the on board graphics hardware and sends the display to the host over 

RDP.  By setting up the graphics in this way the pilot’s control device, regardless of its 

OS, can view the GUI, without having to have specifically developed custom code for 

each platform. 

The following data flow diagram shows the sources and destinations of the data in the 

system.  It also shows the relationship between the embedded software, the .Net code and 

the pilot’s control device. 
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Figure 46: Software Design Data Flow Diagram 
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B. Embedded Software Source File Relationship 

This diagram illustrates the relationship between the C++ software files utilized to 

implement the embedded functionality.  The arrows indicate the direction of function 

calls between the files. Methods and attributes with the “+” sign are accessible in all files 

and those with “-” are only accessible within the file they are declared. 

 
Figure 47: Embedded Software Source File Relationship Diagram 
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1. Main 

The embedded software begins executing in the main module when power is supplied to 

the MCU.  The Main module is responsible for properly setting up the board support 

package (BSP) and starting the scheduler.  

2. Board Support Package (BSP) 

The BSP initializes the circuitry and abstracts the printed circuit board configuration 

details away from the software design.  The BSP sets up abstract interfaces for managing 

the signals, busses, and devices on the circuit board.  The processor’s pins are configured 

for their required functionality (input/output, PWM, ADC, I2C, Frequency, etc…) and 

peripheral circuitry is initialized.  

First the data Logger is configured.  Then a UART bus is set up to connect as a virtual 

COM port over the USB hardware to the Application software.  An I2C bus is set up to 

connect to the sensors.  The PWM hardware is configured to interface with the motor’s 

speed controllers and servo.  Then two ADC channels are configured to interface to the 

power monitoring circuitry. Finally two GPIOs are configured to control the heartbeat 

LED and the FET power switch used for safety and power reduction to supply power to 

the motors only when armed.   

The UART bus baud rate is configured to operate at 921600.  The I2C bus frequency is 

configured to run at 400 kHz.  The PWM interfaces that control the brushless motor 

driver circuitry are configured to produce PPM signals with the required period of 2.5ms 

and pulse width between 1ms and 2ms.   

Once complete the system is ready to begin executing the scheduler. 

3. Scheduler 

The scheduler is in charge of managing the timing of the entire system.   
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Figure 48: Embedded Software Flow Diagram 
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The scheduler executes specific sections of code at predetermined hard coded times in the 

order required and operates as a cyclic executive.  It manages the execution as illustrated 

in figure 48. The scheduler consists of a loop that is designed to repeat every 2.5ms. 

All iterations of the loop execute code to feed the watch dog timer, sample the 

accelerometers, gyroscopes, calculate new feedback control values, updated the motors’ 

speeds, and idle the processor so that the loop cycles once every 2.5ms.  By doing so the 

motor’s speeds are updated at a rate of 1S/2.5ms=400Hz.   

If the dog is not fed for an extended period of time, meaning that the Idle task has not 

been executed in an extended period of time, then the dog will die.  This is managed with 

the hardware watch dog timer.  The timer is counting down to zero and feeding the dog 

adds to the amount of time before the counter reaches zero.  If the counter reaches zero, a 

task has failed to execute properly, and the MCU will be automatically restarted.  This 

feature is utilized to allow the system to recover from unexpected software execution 

failure and possibly prevent the aircraft from crashing. 

All hardware sensors are not capable of or required to respond at the rate of 400 times per 

second.  A loop counter is used to divide the frequency by 40, to give a frequency of 

400Hz/40=10Hz.  

A LED is toggled every half a second.  This is referred to as a heartbeat and gives the 

developer a visual indication that the systems is properly running.  A variable counter is 

used to further divide the frequency down so the heartbeat will toggle at the required rate. 

The compass is only capable of supplying new samples every 200ms.  A variable counter 

is used so the sample compass code only executes every 200ms.   

The pressure sensor requires several commands to be sent to the circuit.  After each 

command a delay must be implemented before the data is ready to be sampled.  The 

pressure sensor uses a counter variable to implement these timing requirements.   

The sonar modules function in a similar way.  A command is sent to the modules to make 

distances measurements.  The modules transmit ultrasonic bursts of sound, count the time 
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until they receive echoes back, and then calculate the distances to the objects the sounds 

reflected off of by dividing the time of flight by two times the speed of sound in air.  A 

counter variable is used to wait a sufficient amount of time for the process to complete 

and then code is executed to retrieve the measurements that were made. 

4. Logger 

The Logger module is utilized for debugging the hardware and software.  First a FAT32 

files system is set up in Flash memory.  A hardware timer is configured to allow the 

logger to time stamp any data it records.  The Logger creates a file named “Log.txt” in 

the file systems. All modules in the embedded software can use the Logger to log events.  

The file can be viewed in a text editor. 

5. Accelerometer 

The Accelerometer module is responsible for interfacing with the accelerometer circuit.  

It sends commands to the hardware and receives measurements for each of the 3 axis.  It 

repeats this process at a rate of 400 samples per second.  The sensor measurements are 

relative to gravity, measured in grams, and must be converted to angles for pitch and roll.   

A simplified example of how to calculate the tilt angle with 1 axis measurement for the X 

axis is shown below in figure 49 and equation 3.   

 

Figure 49: Single Axis Accelerometer Measurement to Angle 

Using basic trigonometry, the projection of the gravity vector on the x-axis produces 

acceleration equal to the Sine of the angle between the accelerometer’s x-axis and the 
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plane orthogonal to the gravity vector.  Based on this ideal situation, the X-axis 

acceleration is 

#$%�& �  1� � sin * 

Equation 3: Acceleration on Axis of Tilted Accelerometer 

Conversion from acceleration to angle in radians then only requires using the inverse sine 

function.  Conversion to degrees is done by multiplying the resulting angle in radians by 

(180/π). 

* � sin+, -#$%�&1� . 

Equation 4: Angle of Axis of Tilted Accelerometer 

By combining this type of transformation across the 3 axis of acceleration measured, the 

angles for pitch and roll can be calculated.  The following equations were utilized to 

calculate the angles for pitch and roll using the 3 measurements from the accelerometer.   

/ �  ��+, 0 #123#45 6 #75 89 

Equation 5: Pitch Acceleration to Angle 

: � ��+, 0 #423#15 6 #75 89 

Equation 6: Roll Acceleration to Angle 

ρ defines the angle of the X-axis relative to ground.  Φ defines the angle of the Y-axis 

relative to ground.   AX, AY, and AZ are the axis measurements from the accelerometer 

multiplied by the acceleration of gravity 9.81m/s2.  The accelerometer is mounted in the 

aircraft with the positive Y axis pointing towards the front.  Therefore ρ equals the 

aircraft’s roll and Φ equals the aircraft’s pitch. For more detail on the mathematics of 

sensing accelerometer inclination, refer to the appendix on “Using an Accelerometer for 

Inclination Sensing.” 

These calculations are based on the assumption that the accelerometer is at rest and not 

experiencing any other acceleration besides that of gravity.  While the aircraft is in flight 
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other acceleration forces will be experienced.  Researches of other projects that have 

implemented similar functionality have not indicated that these forces adversely affect 

the performance of these calculations’s ability to calculate the angle of the accelerometer.     

6. Gyroscope  

The Gyroscope module is responsible for interfacing with the gyroscope circuit.  It passes 

commands to the hardware and receives measurements from it.  It repeats this process at 

a rate of 400 samples per second.  The measurements are received in units of degree per 

second for the rate of rotation. These values are used as is, without any further 

conversions. The measurements are used to sense the aircrafts Yaw, the rate of rotation 

around the aircrafts vertical axis.  Internally the gyroscope IC samples at 8000 samples 

per second and filters out noise in the measurements using an Infinite Impulse Response 

(IIR) filter.   

7. Compass  

The Compass module is responsible for interfacing with the compass circuit.  It sends 

commands to the hardware and receives heading measurements in degrees.  These 

measurements identify the aircraft’s heading relative to magnetic north.  It repeats this 

process 5 times per second. Internally the compass IC filters out noise using and IIR 

filter. 

8. Altimeter 

The Altimeter module is responsible for interfacing with the pressure sensor circuit.  It 

sends commands to the hardware and receives measurements from it. The measurements 

are in units of Pascal. It repeats this process once every second and filters out noise in the 

measurements using a moving average Finite Impulse Response (FIR) filter.  See section 

12 below for more on the Moving Average Filter. 

With the measured pressure p and the pressure at sea level p0 the altitude can be 

calculated with the international barometric formula. 
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Equation 7: International Barometric Formula 

 

Figure 50: Plot of Pressure to Altitude 

As shown in figure 50, the pressure p0 at sea level is 1013.25hPa. 

9. Sonar  

The Sonar software module is responsible for interfacing with the sonar hardware 

modules.  The software module sends commands to the hardware modules and receives 

measurements in centimeters, of the distance to objects in front of the sonar hardware 

modules.  The calculations to convert the echo delays to distances are performed by the 

sonar hardware modules.  This process is repeated 2 times per second.  During flight the 

Flight Controller module calls into the Sonar software module to get proximity 

measurements.   
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10. Flight Controller 

The Flight Controller module is responsible for interfacing with the motors’ speed 

controllers, accelerometer module, gyroscope module, compass module, altimeter 

module, sonar module, and the user input output processor module to enable stable 

controlled flight.  Figure 51 illustrates the flow of data as it applies to the Flight 

Controller. 

 

Figure 51: Flight Control Data Flow Diagram 

As depicted in the diagram, the data from the accelerometer module, gyroscope module, 

compass module, altimeter module, sonar module, and the user input output processor 

module are utilized by the Flight Control module’s 4 separate internal feedback control 

loop algorithms.  Refer to section 16 below on Proportional Integral Derivative (PID) 

Controllers for details on the control loop algorithms. 

The pitch and roll feedback control algorithms use the data from the accelerometer 

module to determine the aircraft’s angle.  The user input is used to enable the pilot to 

control the angle the aircraft will orientate too, so that the pilot can steer the aircraft. Data 

from the sonar module is also used in a similar way as the user input.   It controls the 
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angle the aircraft will orientate too, so that when objects are in close proximity to the 

aircraft, the algorithm can steer the aircraft away in the opposite direction.  The throttle 

data controls the pitch and the aileron data controls the roll.  

The stable angle is 0°, no pitch, no roll.  The pilot’s desired angle is then added.  After 

that the angle caused by the sonars detecting objects in close proximity is added. The 

algorithm then calculates the required motor speeds to change the aircrafts’ pitch and roll 

to this angle. 

The yaw feedback control algorithm uses data from the gyroscope module to determine 

the aircraft’s rate of rotation.  It also uses data from the compass module to fix on a 

specific orientation relative to magnetic north.  The user input is used to enable the pilot 

to control the orientation of the aircraft relative to magnetic north, so that the pilot can 

steer the aircraft.  The rudder data controls the aircraft’s yaw. 

The algorithm uses the gyroscope data to control the rate of the aircraft’s rotation and the 

compass data to give a fixed point of reference to eliminate the error that can accumulate 

in the gyroscope measurements.  The stable rotation rate is 0°/second.  The pilot’s desired 

yaw rotation is then added.  After that the rotation required to align the compass with the 

set orientation is added. The algorithm then calculates the required motor speeds to 

change the aircrafts’ yaw to this rotation.  When the pilot stops sending the rudder 

command to the aircraft the algorithm uses the current heading of the compass module as 

its new set point. 

The altitude feedback control algorithm uses data from the altimeter module and data 

from the upward and downward facing sonar modules for altitude control.  The user input 

is used to enable the pilot to orientate the aircraft at a specific altitude, so that the pilot 

can steer the aircraft.  The elevator data controls the aircraft’s altitude.  Data from the 

upward and downward facing sonar module is also used in a similar way to the user 

input.   It controls the elevator so that when the aircraft is near the ground or an object 

above is in close proximity, the algorithm can steer the aircraft away in the opposite 

direction.  The algorithm then calculates the required motor speeds to change the 
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aircrafts’ altitude.  When the pilot stops sending the elevator command to the aircraft the 

algorithm uses the current altitude of altimeter module as its new set point. 

11. User Input Output Processor 

The User Input Output Processor module reads input and writes output on the virtual 

serial port over the USB.  This input is used to control the embedded software and flight 

of the aircraft. The pilot interfaces with the GUI elevator, throttle, aileron, rudder, and 

camera tilt controls to fly the aircraft. The application software sends messages over USB 

to the embedded software based on the changes the pilot makes to the GUI.  The 

embedded system sends messages over USB to the application software to display the 

state of the flight controller module and power system.  The messages are used to update 

the GUI with the current measurements from the accelerometer, gyroscope, altimeter, 

compass, sonar, motor power, and battery power.   

12. Moving Average Filter 

A Moving Average Finite Impulse Response (FIR) filter is used to filter out noise in the 

pressure sensor data.  A FIR filter is a type of filter that contains no feedback so that its 

response to any finite length input is of finite length.  It uses the mathematical process of 

convolution to remove unwanted parts of a signal. Below is a block diagram of a discrete 

time FIR filter of order N.  The top portion is an N stage delay line with n+1 taps.  Each 

delay is represented by Z-1 in Z-transform notation.  The input is the measurement from 

the sensor and the output is a weighted sum of the current measurement and n previous 

values of the measurement.  The operation can be described with the following equation 

relating the output signal y in terms of the input signal x. 

�%�& � B?C%�& 6 B,C%� = 1& 6 D 6 BEC%� = F& � G BHC%� = �&E

HI?
 

Equation 8: FIR Input Output Relation 
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Where bi are the filter coefficients, known as the tap weights, and n is the order of the 

filter.  

The FIR filter is implemented as a moving average.  The coefficients are bK � ,
LM,. 

 

Figure 52: Finite Impulse Response (FIR) Filter 

13. Proportional Integral Derivative (PID) Controllers 

The 4 feedback control loop algorithms used in the flight controller for pitch, roll, yaw, 

and altitude are PID controllers.  PID controllers utilize a feedback loop based on an error 

that is the difference between a measured process variable and a desired set point.  The 

error is used to control the process in a way that reduces the error.  The algorithm uses 

three parameters, the proportional, the integral, and the derivative values, referred to as P, 

I, and D.  P is the value of the present error, I is the accumulation of past errors, and D is 

the current rate of change in error.  These three parameters are multiplied by weights and 

summed to generate the process control signal.  The following 4 diagrams illustrate how 

the 4 PID controllers used function.   

The diagram in figure 53 illustrates how the pitch PID controller is setup.  The controller 

uses the accelerometer’s Y axis measurement as the process variable to calculate the error 

of the pitch angle relative to the desired set point of 0°.  The user input from the throttle 

control plus the front and rear sonar inputs are added to the set point to control the 

forward and reverse directions of flight.   
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The diagram in figure 54 illustrates how the roll PID controller is set up.  The controller 

uses the accelerometers X axis measurement as the process variable to calculate the error 

of the roll angle relative to the desired set point of 0°.  The user input from the aileron 

control plus the port and starboard sonar inputs are added to a set point to control the side 

to side directions of flight. 

The diagram in figure 55 illustrates how the yaw PID controller is set up. The controller 

uses the gyroscope’s Z axis measurement as the process variable to calculate the error of 

the Yaw rotation rate relative to the desired set point of 0°/second.  The user input from 

the rudder control plus the compass heading minus the desired heading are added to the 

set point to control the heading of flight. 

The diagram in figure 56 illustrates the how the altitude PID controller is setup.  The 

controller uses the altimeter’s altitude measurement as the process variable to calculate 

the error of the altitude relative to the desired altitude.  The user input from the elevator 

control plus the downward and upward facing sonar inputs are added to the set point to 

control the vertical direction of flight.  

 

 

Figure 53: PID Pitch Controller 
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Figure 54: PID Roll Controller 

 

 
Figure 55: PID Yaw Controller 

 
Figure 56: PID Altitude Controller 

 



C. MCU Utilization

This table and chart are 

much of the overall processing power is required to execute 

Code Functionality  CPU % Utilized

Accelerometer 

Gyroscope 

Compass 

Altimeter 

Flight Controller 

Collision Avoidance 

User IO Processor 

Power Monitor 
 

% MCU Time Idle 

% MCU Time Utilized 

Table 
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MCU Utilization 

 based on measurements made on an oscilloscope show

much of the overall processing power is required to execute specific code functionality

CPU % Utilized CPU Time / Execution Frequency / Execution

11.2 0.00028 

27.2 0.00068 

0.371 0.000742 

0.04 0.0004 

2.4 0.00006 

0.912 0.00152 

0.42 0.00042 

0.01 0.00005 

   

57.447     

42.553     

Table 9: Task MCU Processing Time Utilization 

 

 

Figure 57: MCU Processing Time Utilization 

% of MCU Time Utilized

Accelerometer

Gyroscope

Compass

Altimeter

Flight Controller

Collision Avoidance

User IO Processor

based on measurements made on an oscilloscope showing how 

specific code functionality. 

Frequency / Execution 

400 

400 

5 

1 

400 

6 
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2 

 

Accelerometer

Gyroscope

Flight Controller

Collision Avoidance

User IO Processor
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D. Application Software Component Diagram 

 
Figure 58: Application Software Component Diagram 
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E. Operating System (OS) 

The OS chosen for the aircraft is windows 8. The windows 8 operating system enables 

the C# .Net code to be executed on the atom processor. C# .net was chosen because of 

prior experience utilizing it for GUI development, the wide range of commercially 

available software components, and its support of a wide range of plug and play devices.  

The OS also supports Remote Desktop Protocol (RDP). 

F. Remote Desktop Protocol (RDP) 

RDP is a Microsoft proprietary protocol for providing a remote networked computer with 

a graphical interface to another computer.  RDP client software exists for most modern 

operating systems including, Windows, Linux, UNIX, Mac OS X, and Android.  RDP 

can use 128-bit encryption to encrypt most data transmissions in both the client-to-sever 

and server-to-client directions.  Windows 8 supports RemoteFX, a technology that is 

designed to improve the visual experience of RDP.  RemoteFX is capable of preserving a 

high-fidelity video, audio, and text experience. 

This aircraft utilizes RDP to allow it to be remotely controlled from a wirelessly 

networked computer running a modern OS with RDP client software installed. By 

utilizing RDP transmitted data, video, and control signals can be encrypted.   

G. Application Software Objects 

The C# .Net application software architecture is composed of several objects.  Each 

object is designed to control specific functionality of the system. 

1. Graphic User Interface (GUI) 

The GUI is designed as a Form Object that gives a structure to the graphics and also 

manages the interaction of the other objects. 
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Figure 59: Screen Shot of User Interface 

 

 

 
Figure 60: PID Setting 
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2. Video 

The Video Object encapsulates the functionality of interfacing with the camera and 

displaying the captured images in the GUI.  This object encapsulates Windows’ API calls 

to the Media Control Interface (MCI) to control the camera. 

3. Map and GPS 

The Map Object encapsulates the functionality of interfacing with the GPS receiver and 

displaying the world map and aircraft’s current position.  This object encapsulates calls 

made to the MapPoint API.   

4. Attitude Gauge 

The Attitude Gauge Object encapsulates the functionality of displaying the aircraft’s yaw, 

pitch, roll, altitude, and sonar measurements graphically on a single gauge.  This object 

encapsulates image loading and rendering code to display the gauge. 

5. Avionics Driver 

The Avionics Driver Object encapsulates the functionality to interfaces with the ARM 

processors and embedded software.  This object encapsulates calls made to the USB 

virtual serial port and the commands sent to interface with the avionics. 

6. Resource Monitor 

The Resource Monitor Object encapsulates the functionality of tracking the current usage 

of resources (Network, CPU, RAM).  This object encapsulates Win32 API calls. 
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XIII. Software Testing 

Software testing was conducted at every stage of the project.  Testing started with the 

design of the subsystem units, followed by the integration of subsystem units, and the 

fully assembled system.   

A. Unit Testing 

The unit testing was conducted on each subcomponent unit of software to verify that the 

unit performed as expected.  

1. GUI Testing  

The GUI was the initial software unit designed and the first section to begin testing.  C# 

code was written and tested to verify that a GUI could be displayed to the user. Initial 

testing utilized a video display monitor connected to the SBC’s DVI interface.  A blank 

Windows .Net Form was displayed on the monitor.   

2. Wireless Remote Control Testing 

Wireless remote control of the GUI was the next unit to begin testing.  Microsoft’s RDP 

was utilized to implement this functionality.  The initial testing of this unit involved 

connecting a laptop computer to the SBC wirelessly over 802.11 and verifying that the 

GUI running on the SBC could be viewed and controlled from the laptop.   

3. Video Testing 

Video capture testing then followed.  A C# application was developed to interface with a 

camera and display video.  This unit of code was tested to verify that video images could 

be captured and displayed in real time with a high resolution and frame rate.  The unit 

was also tested to work with several different cameras.  The initial test was executed on a 

laptop computer before testing on the SBC. 
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4. GPS Testing 

GPS testing was conducted on C# code that was developed utilizing Microsoft’s 

MapPoint API.  The testing was conducted to verify that the GPS receiver could be 

communicated with and that the data received could be plotted on a map of the world.  

The unit was tested to verify that the plotted position would be updated while moving on 

a vehicle.  The initial test was executed on a laptop computer before testing on the SBC. 

5. Resource Monitoring Testing 

A resource monitoring unit was designed and tested.  The unit was tested to verify that it 

could plot the utilization percentage of the CPU, RAM, and wireless network as well as 

the signal strength of the wireless connection.  The initial test was executed on a laptop 

computer before testing on the SBC. 

6. Microcontroller Testing 

The MCU was the first part of the embedded system to be tested.  This unit was tested to 

verify that the MCU could be programmed and that the program could be executed.  This 

involved C++ code written to flash an LED on the embedded system board.   

7. MCU and SBC USB Testing 

The USB communications between the SBC and the MCU were tested next.  C++ code 

was written to enable the MCU to send and receive data over a USB connection.  At the 

same time C# code was written to enable the SBC to send and receive data over a USB 

connection.  The 2 units were tested in parallel to verify that they could both send and 

receive data. 
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8. Embedded Flash File I/O Testing  

The embedded Flash file I/O unit was then tested.  C++ code was written to create a text 

file, then read and write data to it.  The file was then opened on a laptop computer using 

Microsoft’s Notepad text editor to verify that the file was written to properly. 

9. Accelerometer Testing  

The accelerometer was the first sensor of the embedded system to be tested.  C++ code 

was written to communicate with the sensor over I2C.  The test code first requested the 

ID of the component to verify that the MCU was able to communicate with the 

accelerometer.  Then the code requested measurements from the sensor.  A simple GUI 

application was developed to display the measurements.  The accelerometer was then 

tilted to various known angles and the measurements were compared to verify that the 

circuit was functioning properly.   

10. Gyroscope Testing  

The gyroscope was the next sensor of the embedded system to be tested.  C++ code was 

written to communicate with the sensor over I2C.  The test code first requested the ID of 

the component to verify that the MCU was able to communicate with the gyroscope.  

Then the code requested measurements from the sensor.  A simple GUI application was 

developed to display the measurements.  The gyroscope was then rotated at various 

known angles and the measurements were compared to verify that the circuit was 

functioning properly. 

11. Compass Testing  

Then the compass sensor of the embedded system was tested.  C++ code was written to 

communicate with the sensor over I2C.  The test code first requested the ID of the 

component to verify that the MCU was able to communicate with the compass.  Then the 

code requested measurements from the sensor.  A simple GUI application was developed 
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to display the measurements.  The compass was directed to known headings and the 

measurements were compared to verify that the circuit was functioning properly. 

12. Pressure Sensor Testing  

Then the pressure sensor of the embedded system was tested.  C++ code was written to 

communicate with the sensor over I2C.  The test code first requested the ID of the 

component to verify that the MCU was able to communicate with the pressure sensor.  

Then the code requested measurements from the sensor.  A simple GUI application was 

developed to display the measurements.  The pressure sensor was placed at a known 

altitude and the measurements were compared to verify that the circuit was functioning 

properly. 

13. Sonar Testing  

Then the sonar sensors of the embedded system were tested.  C++ code was written to 

communicate with the sensor over I2C.  Code was written to update the EEPROM I2C 

address of each sonar module.  The test code first requested the ID of the component to 

verify that the MCU was able to communicate with the sonar sensors.  Then the code 

requested measurements from the sensors.  A simple GUI application was developed to 

display the measurements.  Objects were placed at known distances in front of the sonar 

modules and the measurements were compared to verify that the circuits were 

functioning properly. 

B. System Testing 

After all the software was developed for the subcomponents, the integration and system 

testing began.  Subcomponent by subcomponent was integrated together and tested to 

verify that all functionality remained as expected. Once all components had been 

integrated together the system testing began.  With all software, electrical and mechanical 

systems integrated and functioning properly, flight control tuning and testing could begin. 
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XIV. Flight Control Tuning & Testing 

The fully assembled aircraft is shown below.  At this point further testing and tuning 

must be done to verify that the entire system is able to function.  Specifically the PID 

controller must be tested and tuned.   

 

 
Figure 61: Fully Assembled Aircraft 
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A. Testing Rig 

In order to tune the control loop variables the system was placed in a controlled 

environment.  A testing rig was designed and built to fix the aircrafts rotation to a single 

axis.  By only allowing the aircraft to rotate around a single axis at a time the PID 

controller can be tuned one axis at a time.  Shown below is an image of the test rig. 

The rig utilizes a metal rod on to which the aircraft mounts and rotates around, thus 

fixing it to a single axis of rotation for tuning pitch and roll. The rig utilizes a cable which 

the aircraft mounts and rotates around, thus fixing it to a single axis of rotation for tuning 

yaw. The rig was designed in Alibre and Manufacture by Ponoko using Computer 

Numerical Control (CNC). 

 
Figure 62: Tethered Rig 
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B. Tethered Testing 

The tethered test involved applying a rotational force to the aircraft around the free axis 

of rotation and allowing it to self-stabilize.  The force was applied by pushing down on 

one side of the aircraft and then releasing.  The PID gain control variables were tuned to 

attain the desires response.  Both pitch and roll axes were tuned one at a time in this 

manner.   

Then the aircraft was suspended with a cable above and below it to only allow it to rotate 

in the yaw direction.  Due to the torque generated by the different rates of spinning 

propellers the aircraft will spin around in the yaw direction.  The PID gain control 

variables for the yaw axis were tuned to equalize the clockwise and counter clockwise 

torques and eliminate the aircrafts rotational spin. 

 
Figure 63: Pitch & Roll PID Tuning 
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Figure 64: Yaw PID Tuning 

C. Flight Test 

Once the tethered testing had been completed and the PID controls were properly tuned 

for stability, it was time for the first flight test to be conducted.  The testing was 

conducted indoors to ensure that weather conditions would not impact the testing.  

The hover stability flight test was run under human control.  The user moved the elevator 

control to increase the thrust of the propellers and the aircraft was allowed to rise into the 

air a foot, then hover for several seconds, and finally land.   
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Figure 65: Hover Test 
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XV. Budget & Build of Materials 

(BOM) 

Funding for this project was entirely financed by the student out of pocket.  The 

maximum funding allocated to purchase new components for the project was $1000.00.  

Most of the components used to build this project had to be purchased new.  Many of the 

components used in the project were already owned and therefore did not need to be 

purchased.  Most of the components were ordered from overseas vendors.  Tax and 

shipping cost were not included in the components prices.  The Tax and shipping cost 

added an additional amount of approximately $100.00. 

The following table documents the build of materials (BOM).  The BOM includes a 

description of the part, whether or not it was purchased new or previously owned, the 

quantity of the part, and the total cost of the parts.  
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ID Part Description Notes Qty Total $ 

1 PITX-SP Single Board Computer Already Owned  1 373.00 

2 MBED Microcontroller Development Board Already Owned  1 59.95 

3 HMC6343 Compass Purchased New 1 143.95 

4 ADXL345 Accelerometer Purchased New 1 14.95 

5 ITG-3200 Gyroscope Purchased New 1 24.95 

6 BMP-085 Pressure Sensor Purchased New 1 8.95 

7 SRF02 Sonar Range Finder Purchased New 6 145.32 

8 Plush Electronic Speed Controller Purchased New 4 49.92 

9 BLDC Motors Purchased New 4 35.44 

10 Lithium Polymer Battery 3S 6.0Ah Purchased New 1 38.59 

11 5.0V Regulator Purchased New 1 24.95 

12 Variable High Voltage Regulator Purchased New 1 20.00 

13 BTS555 FET Power Switch Purchased New 1 9.97 

14 Battery Charger Already Owned  1 39.99 

15 Carbon Fiber Tubes Purchased New 1 16.00 

16 Plastic  Parts Purchased New 1 250.00 

17 Web Camera Already Owned  1 49.99 

18 Servo Purchased New 1 2.67 

19 GPS Module Purchased New 1 30.00 

20 Wi-Fi Dongle Already Owned 1 20.00 

21 Flash Drive Already Owned  1 60.00 

22 RAM Module Already Owned  1 32.52 

23 Microsoft Windows Operating System Already Owned  1 120.00 

24 Microsoft Map Point Already Owned  1 290.00 

25 Printed Circuit Board Purchased New 1 66.00 

26 Training Stand Purchased New 1 70.00 

27 Steel Rod Purchased New 1 5.00 

28 Tachometer Purchased New 1 9.99 

29 Power Analyzer Purchased New 1 23.95 

  Total Spent     $990.60 

  Total Cost to Purchase all Materials New     $2036.05 

Table 10: Build of Materials 
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XVI. Conclusion 

The goal of this project was to produce a micro unmanned aerial vehicle video 

surveillance platform.  Aeronautical, mechanical, electrical, and software engineering 

skills were required to bring the project to completion.  The total cost of the hardware 

required to build a new aircraft is approximately $1450.00.  Currently the platform is not 

fully autonomous.  It has the sensors and computing power required to run software 

algorithms to enable fully autonomous flight missions to be executed.   

Beyond the aircraft’s hardware and propulsion system design its ability to fly is mainly 

governed by means of software.  The majority of the development time was devoted to 

the software engineering.  The spiral model was utilized for software development.  This 

methodology allowed unforeseen requirements to be integrated into the system.  The 

strength of the spiral method was the continual testing performed at each iteration of the 

development process.  After software prototypes for each of the subsystems’ components 

were complete, combining them into a single software architecture went smoothly 

without any unexpected behaviors.  The modularity of the software design enabled the 

code to be more manageable and easier to understand.  

Improvements could be made to all aspects of this project, the mechanics, the electronics, 

and the software.  Now that they have been tested, the electronics can be reduced in size 

by removing many of the debugging interfaces.  With fewer and or smaller electronic 

circuits the airframe can also be reduced in size and weight.  This would increase the 

overall flight time of the aircraft.  More software could also be added to enable the 

aircraft to fly missions completely autonomously.  The additional software could access 

the GPS for waypoint navigation and video images for object recognition.  The additional 

software would require no new hardware to be added and should cost little beyond 

development time to implement. 

I will continue to work on this project after completing my degree.  Now that the airframe 

and electronics assembled are tested. I will focus on designing more advanced 

algorithms.     
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XVII. Project History 

Once the topic of an unmanned aerial vehicle was chosen and approved by my advisor, 

work began immediately.  Time was a major limiting factor, single-handedly working on 

such a complex project, while completing my degree full time and working part time.   

The project design involved engineering the tightly coupled mechanical, electrical, and 

software components in parallel.  Concept designs were made and from those designs one 

was selected to build. At that point the required components were identified and ordered.  

While waiting, mechanical parts were designed to accommodate the first set of parts 

ordered.  Then the mechanical parts were ordered from the manufacture. As the parts 

started to arrive, they were assembled and test fixtures and code were developed to verify 

that the components would perform as required.  Eventually the whole aircraft was 

assembled and operational.   

The Gantt chart in figure 65 outlines the history of the project.  The top of the chart 

breaks the projects history up into school quarters, beginning with winter quarter of 2011 

and finishing with spring quarter of 2012.  Below that are outlines of the project history 

for the mechanical, electrical, and software components.   

The last quarter of my degree was dedicated entirely to software testing, control loop 

tuning, and flight testing.  The last couple of weeks of the final quarter were dedicated to 

the creation of the final presentation. The documentation was finalized and the 

presentation was rehearsed.   
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Figure 66: Project Gantt Chart 

XVIII. Web Site 

Along with this project I also created a website to include in my resume as a way to give 

prospective employers a closer look at my work.  I used Google to create and host the site.  The 

site includes pictures of the aircraft, the aircraft’s GUI, diagrams illustrating how the design is 

implemented, and videos of the aircraft.  This site has enabled my resume to include much more 

information than in a plain text document.  The home page of the website can be seen in figure 66 

below.  The website’s address is https://sites.google.com/site/atomuav/ . 

Along with the tools that Google provided to create and host this website.  Google also provides 

tools to track and monitor statistical information about visitors to the site.  The image in figure 67 

shows a screenshot of some of this information.  In this screenshot the location of the people 

visiting my website can be seen on a map.  This has enabled me to identify what companies are 

closely reviewing my resume.  It also allows me to see what they are specifically looking at in 

regards to my project’s website.     
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Figure 67: Web Site Home Page 
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Figure 68: Google Analytics Location 
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XIX. Appendix 

Advanced Circuits  
http://www.4pcb.com/ 
 
Alibre CAM/CAD software 
http://www.alibre.com/ 
 
Active Media Products Disk on Module 
http://activemp.com/DOM/IDE-PATA-DOM-Disk-on-Module.htm 
 
Analog Devices 3 Axis Accelerometer ADXL345 Datasheet 
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf 
 
Advanced Precision Composites Propellers  
http://www.apcprop.com/v/index.html 
 
Bosch Pressure Sensor BMP085 Datasheet  
http://www.bosch-sensortec.com/content/language1/downloads/BST-BMP085-DS000-
05.pdf 
 
Buffalo USB Wi-Fi Transceiver  
http://www.buffalotech.com/products/wireless/client-adapters/airstation-n150-ultra-
compact-usb-20-wireless-adapter-wli-uc-gnm/ 
 
Cyber Technology Quadrocopter UAV 
http://www.cybertechuav.com.au/-Overview,85-.html 
 
Devantech  SRF02 Sonar Module  
http://www.robot-electronics.co.uk/htm/srf02tech.htm 
 
DIPTrace Printer Circuit Board Design Software  
http://www.diptrace.com/ 
 
Dragonfly Innovation Inc Quadrocopter UAV 
http://www.draganfly.com/ 
 
GlobalSat ND-100s GPS Receiver  
http://www.usglobalsat.com/p-590-nd-100s.aspx#/images/product/large/590.jpg 
 
HobbyKing Servo 
http://www.hobbyking.com/hobbyking/store/__11856__HobbyKing_929MG_Metal_Gea
r_Servo_2_2kg_12_5g_0_10sec.html 
 
Honeywell Tilt Compensated Compass HMC6343 Datasheet 
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http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
documents/Missiles-Munitions/HMC6343.pdf 
 
Invensense 3 Axis Gyroscope ITG-3200 Datasheet 
http://invensense.com/mems/gyro/documents/PS-ITG-3200-00-01.4.pdf 
 
Kontron PITX-SP Single Board Computer 
http://us.kontron.com/products/boards+and+mezzanines/embedded+sbc/pitx+25+sbc/pitx
sp.html 
 
MBED ARM Development Board  
http://mbed.org/ 
 
Microdrones GmbH Quadrocopter UAV 
http://www.microdrones.com/index.php 
 
Microsoft LifeCam Web Camera  
http://www.microsoft.com/hardware/en-us/webcams 
 
Microsoft MapPoint  
http://www.microsoft.com/mappoint/en-us/home.aspx 
 
Microsoft Remote Desktop Protocol Encryption  
http://support.microsoft.com/kb/275727 
 
Microsoft Visual Studios  
http://www.microsoft.com/visualstudio/en-us 
 
Parrot AR Drone Quadrocopter UAV 
http://ardrone.parrot.com/parrot-ar-drone/usa/ 
 
Pololu Voltage Regulator 
http://www.pololu.com/catalog/product/2111 
 
Ponoko (Selective Laser Sintering & Computer Numerical Control Manufacturer)  
http://www.ponoko.com/ 
 
Turnigy L2210 Motor 
http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=18545 
 
 
Turnigy Nano-Tech Lipo 6.0Ah 25-50C 
http://www.hobbyking.com/hobbyking/store/__20681__Turnigy_nano_tech_6000mah_3
S_25_50C_Lipo_Pack_USA_Warehouse_.html 
 
Turnigy Plush 25A Electronic Speed Controller 
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http://www.hobbyking.com/hobbyking/store/__2163__TURNIGY_Plush_25amp_Speed_
Controller.html 
 
Turnigy Tachometer 
http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=10783 
 
Turnigy Watt Meter and Precision Power Analyzer 
http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=10080 
 
Using an Accelerometer for Inclination Sensing Analog Devices, 
Application Note, AN-1057  
http://www.analog.com/static/imported-files/application_notes/AN-1057.pdf 
 
Windows 8  
http://windows.microsoft.com/en-US/windows-8/release-preview 
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