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I. INTRODUCTION 

This research project aims to develop a Brain-Computer Interface (BCI) system 

which utilizes Steady-State Visual Evoked Potentials (SSVEP) to allow a user to control 

objects on-screen simply by looking at flickering controls. “Brain activity produces 

electrical signals detectable on the scalp, on the cortical surface, or within the brain. 

[BCIs] translate these signals into outputs that allow users to communicate without 

participation of peripheral nerves and muscles” [1]. Electroencephalography (EEG) is the 

measurement and recording of those electrical signals on the surface of the scalp. Event 

Related Potentials (ERP) “are those EEGs that directly measure the electrical response of 

the cortex to sensory, affective, or cognitive events” [2]. As cited by Beverina, SSVEP 

are a form of ERP and 

are natural responses for visual stimulations at specific frequencies. When the 

retina is excited by a visual stimulus ranging from 3.5 Hz to 75 Hz, the brain 

generates an electrical activity at the same (or multiples of the) frequency of the 

visual stimulus. They are used for understanding which stimulus the subject is 

looking at in case of stimuli with different flashing frequency [3]. 

 

Primarily these responses occur in the occipital region of the brain. The occipital lobe is 

located in the posterior region of the brain and contains the visual cortex. When a person 

focuses his/her attention on a visual stimulus presented at a particular frequency, the 

electrical potentials on the scalp near the occipital lobe are modulated by the given 

frequency. SSVEP-based BCI uses EEG to analyze the activity in the brain and identify 

those potentials. 

 

With SSVEP-based BCIs, the user is presented with multiple visual stimuli to act 

as controls for the BCI system. This has been done in two significantly different ways. 
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First, flashing lights, such as LEDs, have been used [4]. This method is fairly simple, 

because the lights can be pulsed at any given frequency. This gives a great amount of 

control over which frequencies are chosen for the system and can be picked based on the 

strongest elicited response through experimentation. One limitation is that SSVEP is 

known to produce a somewhat less powerful response at harmonics (i.e. integer 

multiples) of the stimulus frequency. This means that the frequencies chosen for two 

separate controls should not be harmonics of each other because this will significantly 

complicate detection. If the user directs attention at one control, a response may be seen 

at one of its harmonic frequencies. This may appear as if the response is from one of the 

other controls which does not have the user’s attention. 

 

The second method for displaying the stimuli is to present the flickering controls 

on the computer screen itself [4]. This provides the advantage of the user being able to 

focus on-screen for both the stimulus/control as well as the feedback. This also allows for 

the controls to be something other than a simple light. For example, in the demonstration 

presented in this thesis, arrows are used as controls to indicate each control’s specific 

functionality. There are at least two primary types of on-screen controls: single graphics 

stimuli and pattern reversal stimuli [4]. The demonstration presented in this thesis uses 

pattern reversal stimuli. The challenge with on-screen controls is that the frequency of the 

presented stimulus is restricted by the refresh rate of the monitor on which the controls 

are displayed. Available frequencies are limited to “subharmonics of the screen refresh 

rate” [4]. Because of this limitation and the aforementioned limitation of using stimulus 

frequencies that are not harmonics of each other, the choice of frequency for on-screen 
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controls is very small. This presents a challenge for introducing more than a small 

number of controls. Because there are so few available frequencies, the frequencies 

cannot necessarily be chosen exclusively based upon the ones which generate the greatest 

response. 

 

1.1 Related Work 

SSVEP-based BCI research is rapidly growing. The IEEE database was searched 

for “Steady State Visual Evoked Potential”. Of all the SSVEP papers published through 

the IEEE since 1990, half of them have been published within the last 4 years. The results 

available from the 14 year span from 1990 to 2004 include 36 papers. From 2005 to 

2012, 146 papers were published, with almost half published in the last 3 years. Almost 

80% of the papers were published from 2005 onwards. Likewise, a search for the same 

terms in the ACM Digital Library revealed a similar pattern. In fact, over 92% of the 51 

papers were published from 2005 onwards. It is clear that research related to SSVEP is 

expanding quickly (see Figure 1). While much research has been done in the field of 

SSVEP, very few of these papers are directly relevant to the research presented in this 

thesis. The following two papers are directly relevant to this research. 
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Figure 1: SSVEP Publications from 1990 to 2011 

successfully implemented a SSVEP-based BCI demonstration utilizing the 

Emotiv EPOC EEG headset (EPOC). Their publication gives an overview of several 

, including various studies involving invasive BCI and non

invasive BCI such as the P300, SSVEP, and some research into Error-R

P300 is another form of ERP and is described as “a positive ERP component, which 

occurs with a latency of about 300 ms after novel stimuli, or task-relevant stimuli, which 

requires an effortful response on the part of the individual under test” [2]. 

at least two studies with SSVEP, the second of which was using 

Because the paper consists primarily of an overview of several techniques, the 

authors do not discuss details of their implementation. The only detail mentioned about 

the system was that they “did not use [their] conventional EEG system, but utilized a 

commercial EEG gaming headset EPOC from Emotiv” and reversed the headset in order 
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based BCI demonstration utilizing the 

. Their publication gives an overview of several 

various studies involving invasive BCI and non-

Related Potentials. 

P300 is another form of ERP and is described as “a positive ERP component, which 

relevant stimuli, which 

requires an effortful response on the part of the individual under test” [2]. The research 

with SSVEP, the second of which was using 

onsists primarily of an overview of several techniques, the 

The only detail mentioned about 

the system was that they “did not use [their] conventional EEG system, but utilized a 

headset EPOC from Emotiv” and reversed the headset in order 
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to get a specific location of the electrodes “needed to access brain regions other than the 

ones the EPOC was designed for” [5]. 

 

Hoffmann’s study on the practicality of using the Emotiv EPOC for BCI research 

in [6] was one of the driving inspirations for this thesis. His research focused on assessing 

the EPOC for the P300 signal. After doing much work with filtering the signals and 

removing artifacts, he was unable to reliably use the EPOC for P300-based BCI. 

However, these studies were limited due to time constraints and some further research 

was mentioned as a possibility. In his conclusion, Hoffmann states, “the results therefore 

should be considered as a first step, but does not justify a final verdict about the possible 

uses of the Epoc in the study of ERPs” and “the fact that the experiments were not 

successful therefore only means that additional options need to be evaluated and more 

time has to be invested to make them work than what was possible in this thesis” [6]. 

This work suggested that the EPOC may be unusable for P300-based BCI, but that left 

the question of investigating its use for SSVEP-based BCI. This thesis attempts to show 

its feasibility for such an application. 

 

1.2 Goals 

The primary goal of this thesis is to show that it is possible to use SSVEP on a 

relatively inexpensive, consumer-grade EEG device, the Emotiv EPOC (see Figure 2). 

Although much research has been done in the field of SSVEP-based BCIs, it is still a 

young and developing area and practical devices have yet to appear on the market. There 

has been some exploration of the use of the Emotiv EPOC headset for BCI applications, 
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but few have examined its applicability to SSVEP. Generally, research-grade EEG 

equipment has been used in previous studies (see Figure 3). Not only is research-grade 

equipment expensive, it also involves significant effort for setting up experiments. In 

contrast, the Emotiv EPOC is a simple, single-unit headset designed for consumer use. It 

is a computer peripheral and uses a wireless universal serial bus (USB) dongle for 

communication with standard home computers. This thesis attempts to show its viability 

for SSVEP and relative simplicity in comparison to other research-grade EEG equipment. 

Another goal is to have the controls appear on-screen, as opposed to using a separate 

control display as in other SSVEP studies. 

 

 

Figure 2: Emotiv EPOC   Figure 3: Research-Grade EEG Device 

(borrowed from emotiv.com)  (borrowed from [7])     
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II. METHODS & DESIGN 

2.1 Overview 

In order to achieve the goals of this thesis, a simple BCI demonstration using the 

EPOC headset was implemented. The demonstration presented a screen to the user with a 

ball in the center of the screen. The user was then able to move the ball around the screen 

by directing his/her attention at four directional arrows. These arrows were the controls 

for the BCI. Each arrow flickered at a different frequency. 

 

2.2 Tools 

The MATLAB programming language and environment was chosen to implement 

the demonstration because of its power and ease of use. It is very easy to quickly test 

various implementation details. MATLAB also has toolboxes which allow additional 

functionality. Two toolboxes in particular were used for this demonstration. The signal 

processing toolbox was used extensively for analyzing the EEG data from the headset. 

Additionally, Psychtoolbox (PTB), a third-party toolbox, was used to generate the display 

elements and visual stimuli. Also, the Emotiv Software Development Kit (EDK) was 

used for interfacing with the EPOC. It is accessible from a variety of programming 

languages. It is primarily written in C, but the company also provides wrappers and/or 

example code for accessing the Application Programming Interface (API) in C++, C#, 

Java, and MATLAB. MATLAB provides methods for calling functions in C code which 

allows for straightforward access to the EDK’s API. 
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2.2.1 Headset 

Emotiv provides several different versions of their product. Generally the EPOC 

is designed to be used by programmers to access the headset’s pre-processed data. The 

API allows the programmer to utilize state information about the user’s brain based upon 

the information Emotiv puts together. The EPOC identifies the user’s emotional state, 

cognitive state, and facial expressions. The headset is designed as a video game accessory 

where the programmers are usually interested in using the device as a controller. In such 

cases, the programmer is not interested in the raw EEG data, but rather, the user’s intent 

in order to perform the associated actions. The Consumer Edition of the headset allows 

for this basic use, but the Research Edition is necessary for anything more advanced. The 

product chosen for this project was the Research Edition. This provided both the EDK for 

programming with the headset and access to raw EEG data from the headset. There are 

two different physical models of the headset and two different versions of the EDK. The 

headset model and EDK provided with the Research Edition allow access to the EEG 

data, whereas the Consumer Edition does not. Because this project involves analyzing the 

EEG signals, the Research Edition was necessary. 

 

All editions of the Emotiv EPOC contain 14 electrodes plus two reference 

electrodes. The headset has an internal sampling rate of 2048 Hz, but the hardware does 

some bandpass filtering to remove the 50 and 60 Hz power components and other forms 

of preprocessing to reduce noise. The data is then downsampled to 128 Hz before 

becoming available to the system for capturing the EEG signals. The captured data 

contains values for each of the 14 electrodes on the EPOC headset. 



 

 

9 

 

2.3 User Interface 

The user interface of the demonstration program created to support this thesis was 

simple (see Figure 4). The user was presented with a full screen window with a solid 

black background. The display size was set to 1280 by 1024 pixels. Along each of the 

screen’s edges were four black and white checkerboard patterned isosceles triangles 

(referred to simply as the arrows or the controls). The arrows were 300 pixels wide (from 

point to point) and 100 pixels tall (from base to point). Each of the black and white 

squares which comprised the checkerboard pattern was 32 pixels wide and tall. In the 

center of the screen was a dark blue, filled circle representing a ball. This circle had a 50 

pixel diameter. For testing purposes, each of the arrows also included an adjacent text 

notation of the current threshold value for that control. The thresholds are discussed in 

more detail later. The interface also allowed for keyboard input. The demonstration 

program allowed the detection thresholds to be individually adjusted on the fly. 

Additionally, there were keyboard inputs that allowed the user to indicate which control 

had his/her focus for post-run analysis (also discussed later). The demonstration 

continued until the user pressed the escape key to quit. 
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Figure 4: BCI Demonstration User Interface (gray background shown for contrast) 

 

The monitor refresh interval is how much time occurs between two subsequent 

refreshes or redraws of the screen. This value was the basis for the frequencies of the 

control stimuli. It also determined how much time is available for the data collection and 

analysis which is explained in more detail in section 2.5. The monitor refresh rate used 

was 85 Hz, meaning the refresh interval was 11.76 milliseconds. There were four controls 

in the BCI demonstration, which meant that there were also four control frequencies. The 

frequencies chosen were 8.5 Hz, 9.444 Hz, 10.625 Hz, and 14.167 Hz. These frequencies 

corresponded to alternating the checkerboard pattern every 6, 8, 9, and 10 frames. How 

these pattern changes were scheduled is also discussed section 2.5. 



 

 

2.4 Data Processing 

Figure 5 shows the data flow diagram for the demonstration application. The 

following subsections describe the elements presented in the diagram.

Figure 

2.4.1 Data Acquisition 

A key component in the development process was to capture data from the EPOC 

EEG headset. Initial development

the EDK for this purpose. Utilizing and modifying some example code provided in the 

API and user manual, an EEG logging application was written. This application 

connected to the headset, read

specified number of seconds (passed as an argument to the program), and then w

captured data to a comma separated value (CSV) file. This allowed for later static 

analysis of the recorded EEG signals. 

of connecting to and retrieving data from the EPOC.

Figure 5 shows the data flow diagram for the demonstration application. The 

ions describe the elements presented in the diagram. 

Figure 5: Data Processing Data Flow Diagram 

A key component in the development process was to capture data from the EPOC 

EEG headset. Initial development was done using the C# .NET wrapper API provided by 

the EDK for this purpose. Utilizing and modifying some example code provided in the 

API and user manual, an EEG logging application was written. This application 

headset, read the data from the device every 100 milliseconds, 

specified number of seconds (passed as an argument to the program), and then w

captured data to a comma separated value (CSV) file. This allowed for later static 

analysis of the recorded EEG signals. This program demonstrated the relative simplicity 

of connecting to and retrieving data from the EPOC. 
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Figure 5 shows the data flow diagram for the demonstration application. The 

 

A key component in the development process was to capture data from the EPOC 

was done using the C# .NET wrapper API provided by 

the EDK for this purpose. Utilizing and modifying some example code provided in the 

API and user manual, an EEG logging application was written. This application 

om the device every 100 milliseconds, ran for a 

specified number of seconds (passed as an argument to the program), and then wrote the 

captured data to a comma separated value (CSV) file. This allowed for later static 

This program demonstrated the relative simplicity 
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The concepts from the above program were used in the demonstration to collect 

the available data from the headset and put it into a circular buffer. According to the EDK 

user manual, the software will collect the EEG data, storing it in the internal sample 

buffer; so the programmer’s application is required to pull that data often enough not to 

overrun the internal sample buffer [8]. In the initialization code, the internal sample 

buffer of the headset was set to a size of one second. The EPOC headset has a sampling 

rate of 128 Hz, or, 128 samples of data for each second of data captured, so the internal 

buffer will store a maximum 128 samples. However, the main loop of the program 

extracts the data at least every 141.2 milliseconds (18 samples), so there is no risk of 

overrunning the internal buffer. The circular buffer used by the demonstration program 

holds three seconds of data (384 data samples). 

 

It is important to note, that when collecting data from the Emotiv EPOC, the 

connection to the headset must be closed at the end of execution. Failing to close the 

connection leads to corrupted data in subsequent uses of the headset regardless of the 

program accessing it. This was discovered during the testing phase of the BCI 

demonstration. 

 

2.4.2 Preprocessing 

After the data was pulled from the headset, it was processed to identify the 

SSVEP response. However, before processing it, there were several things done to 

preprocess the data to isolate the occipital channels and sanitize the signal. First, the two 

occipital channels were averaged together. The SSVEP response should appear in both 
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and averaging helped eliminate some of the noise or non-important differences between 

the two. Also, a common average reference was utilized. The common average reference 

is an average value for all 14 electrodes of the headset over the course of the time signal. 

This, again, helped to reduce or eliminate the unimportant signals from the target signal 

by expressing the occipital lobe signal as variations from overall EEG activity. The DC 

offset was also removed from the resulting signal, although this could also have been 

accomplished by using a high-pass filter later in the processing stream. 

 

2.4.3 Processing 

Since SSVEP is based on a particular frequency being present in the EEG data, 

signal processing was done to analyze the various frequency components in the current 

window of data (i.e. the circular buffer). In order to accomplish this, the time signals 

were converted into the frequency domain using a Fourier transform. “The Fourier 

transform is a method of representing mathematical models of signals and systems in the 

frequency domain” [89]. A discrete Fourier transform (DFT) is  

an approximation of the Fourier transform that can be calculated from a finite set 

of discrete-time samples of an analog signal and which produces a finite set of 

discrete-frequency spectrum values. This Fourier transform approximation is well 

suited for calculation by a digital computer [9]. 

 

In this case, the analog signals were the EEG signals from the headset device. The 128 

Hz sampling rate produced the discrete-time samples of those signals. “Efficient 

computer algorithms for calculating discrete Fourier transforms ... fall under the general 

classification of fast Fourier transforms (FFTs)” [98]. A FFT is a computationally 

efficient way to approximate the frequency domain from a given time signal. Power 

Spectral Density (PSD) “is the power of each frequency component in the signal. ... The 
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DFS gives the amplitude of the sine and cosine component at each frequency. Power is 

the square of amplitude” [10]. In this demonstration, a PSD was used for the signal 

processing. 

 

MATLAB’s Signal Processing Toolbox includes an implementation of the Welch 

method for estimating the PSD. This function accepts the time signal, a window size for 

the subwindows for its internal FFT, the number of samples to overlap those 

subwindows, and the number of FFT points to use. The accuracy of a PSD depends upon 

the sampling rate of the signal, the number of FFT points used, the size and boundaries of 

the window of the time signal, the windowing function used, and other variables. The 

window of data used in the demonstration was 3 seconds, which resulted in 384 samples. 

Because the sample rate of the data is 128 Hz, a DFT will result in a sampling of the 

frequency domain with a bin width of .33 Hz. This means that the resulting frequency 

spectrum will be sampled at frequency values that are .33 Hz apart (e.g. 0 Hz, .33 Hz, .66 

Hz, 1 Hz, etc). However, in this demonstration, 512 FFT points were used, so the 384 

sample window was zero-padded to 512 samples. This artificially increased the bin 

resolution to .25 Hz. Although this appeared to improve the resolution of the frequency 

spectrum, it was a resampling of the same spectral information, which was the spectrum 

of the EEG convolved with the spectrum of a 3 second Hamming window. Zero-padding 

increased the density of samples taken on the resulting convolution, but did not change 

the width of the windowing function, which was the limiting factor on obtaining spectral 

information about the underlying EEG signal. The spectrum of the windowing function 

can be interpreted as a "smearing" function on the underlying EEG spectrum. The 



 

 

number of FFT points was chosen to be 512 rather

comparison of plots of the resulting spectra. This appeared to allow for better distinction 

between two relatively close frequencies as well as produce a stronger response (

Figure 6). 

Figure 6: 

In order to further improve the results of signal isolation for the identification of 

SSVEP responses, the option of baseline removal was investigated and used in the 

demonstration application. A baseline was recorded while the user was viewing a solid 

50% gray screen. This establishe

present without any visual stimulation. Th

number of FFT points was chosen to be 512 rather than 384 based upon a visual 

comparison of plots of the resulting spectra. This appeared to allow for better distinction 

between two relatively close frequencies as well as produce a stronger response (

: EEG PSD Plots Using 384 and 512 FFT Points

In order to further improve the results of signal isolation for the identification of 

SSVEP responses, the option of baseline removal was investigated and used in the 

application. A baseline was recorded while the user was viewing a solid 

50% gray screen. This established a “standard” in terms of the brain activity that 

present without any visual stimulation. The baseline signal was then processed in similar 
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comparison of plots of the resulting spectra. This appeared to allow for better distinction 

between two relatively close frequencies as well as produce a stronger response (see 

 

oints 

In order to further improve the results of signal isolation for the identification of 

SSVEP responses, the option of baseline removal was investigated and used in the 

application. A baseline was recorded while the user was viewing a solid 

a “standard” in terms of the brain activity that was 

baseline signal was then processed in similar 
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fashion to the active EEG signals. However, the parameters to the PSD function were 

modified in order to smooth the spectrum through the use of averaging. This was useful 

as the baseline was intended to contain a measure of the “normal” or “non-target” powers 

in each frequency bin. Averaging and smoothing the spectrum helped to reduce any noise 

that may have been in the baseline recording. The smoothed baseline spectrum was 

subtracted from the live signal spectrum. The baseline is discussed further in the Results 

and Discussion section. 

 

2.4.4 Detection 

If one of the frequencies of the arrow stimuli was present in the data, with high 

enough power, the ball object was moved in the appropriate direction. Not only was this 

the object of the BCI demonstration, it also provided visual feedback to the user to allow 

them to see that the control was recognized. There are various ways in which this 

detection can be done. As mentioned in the previous section, the bin resolution of the 

frequency spectrum was .25 Hz. Most of the power at any given frequency should appear 

in the two nearest bins in the spectrum estimation. The demonstration program used the 

sum of the two nearest frequency bins to determine whether or not a control has been 

activated. If the sum of the two adjacent frequency bins surpassed the threshold value for 

the given control, that control was activated. If more than one control frequency was 

detected, the one which was a greater percentage above its threshold was triggered. The 

triggering of a control adjusted the ball’s location in the direction of that control. This 

location was then later used for drawing the ball in the proper place on screen. 
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2.4.5 Screen Drawing 

The display was developed using PTB for drawing on the screen. PTB provided 

access to various tools generally used for psychology experiments, such as presenting 

visual or auditory stimuli to users and gathering their feedback, with keyboard input for 

example. PTB gave access to low level graphics capabilities on the system for low-

latency display, which was necessary for displaying the visual stimuli at precise 

frequencies. To control the exact frequencies displayed to the user, a visual display 

system capable of high-precision control over the graphics card was used. To create the 

display system, PTB was initially used to generate a checkerboard pattern on the screen 

and alternate the pattern at regular intervals. This interval determined the frequency of the 

pattern change, which could be altered between runs of the checkerboard program. 

 

The above code was then modified to produce the display in the demonstration. 

To begin, the screen was initialized by PTB. This created a full-screen window and 

collected information about the monitor, such as the resolution and black and white color 

indices and, most importantly, the monitor refresh interval. Also, the pattern images for 

each of the arrows were loaded and converted to textures. According to the PTB 

documentation, textures are the fastest method of drawing on the screen. Because the 

program needed to execute with strict timing constraints, the drawing had to happen 

instantly. Once the textures had been loaded, they were drawn on the screen. The code 

did an initial flip of the screen to collect the first vertical blank (VBL) timestamp, which 

is discussed in the next section.  
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PTB uses a back buffer for drawing. This means that while an image is displayed 

on-screen, drawing commands are issued to generate images off-screen. Once all drawing 

commands have been issued, the flip command can be called. This switches the back 

buffer and the on-screen image. This way the display change can be synchronized with 

the vertical blank of the monitor. The vertical blank (VBL) on a CRT monitor refers to 

the time between when the electron beam moves from the bottom of the screen back to 

the top. To draw images on screen without a tearing effect, the flip of the back buffer 

with the on-screen images needs to happen during the VBL. PTB’s flip command allows 

for this synchronization. Additionally, it returns a timestamp of when the VBL occurred. 

This timestamp can then be used in combination with the monitor refresh interval to 

schedule future flips to occur at particular times in sync with the VBL. 

 

2.5 Task Scheduling 

MATLAB is a single-threaded programming language that can only execute one 

command at a time. In order to ensure that each of the control patterns was flipped at the 

proper rate, a static cyclic executive was used. 

The cyclic executive executes an application which is divided into a sequence of 

non-preemptible tasks, invoking each task in a fixed order throughout the 

execution history of the program. The cyclic executive repeats its task list at a 

specific rate called its cycle, or major cycle in the common situation in which all 

tasks do not execute at the same frequency. When the frequencies are not 

identical, the task list defines a sequence such that each task is repeated 

sufficiently often that its frequency requirement is met. In this case, the execution 

of each individual task is called a minor cycle, and the frequency of the major 

cycle will be set to the least common multiple of the frequencies of each task [11]. 

 

The “non-preemptible tasks” scheduled in the cyclic executive for this demonstration 

application were the flipping of the checkerboard patterns. The least common multiple 
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(LCM) of these events (based upon the frequencies mentioned previously) was 360. 

Rather than code this many minor cycles, this project used a cyclic executive that 

repetitively drew the patterns from a sorted list of events. The pseudocode is shown in 

Listing 1. 

Listing 1: Cyclic Executive Pseudocode 

while(true) 

{ 

    check keyboard input 

    if (enough time available) 

    { 

        collect data 

        analyze data 

        if (control detected) 

            move ball 

    } 

    if (up scheduled) - swap up arrow pattern and draw 

    if (down scheduled) - swap down arrow pattern and draw 

    if (left scheduled) - swap left arrow pattern and draw 

    if (right scheduled) - swap right arrow pattern and draw 

    draw ball 

    flip screen with back buffer 

} 

 

Within the main loop of the program (the major cycle of the cyclic executive), 

keyboard input checks, data collection and analysis, and control detection must also 

occur. The cyclic executive uses a timeline in which events are scheduled. The program 

is able to use the timeline to determine when there will be enough time to perform these 

tasks without interfering with the schedule of control flips. Figure 7 shows a portion of 

the timeline. Each color represents one of the four controls changing pattern. As can be 

seen from the timeline, the schedule of flips appears irregular. 
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gure 7: Cyclic Executive Timeline Segment 

Because the four directional control arrows were changing pattern at different 

frequencies, the gap of time between pattern flips varied. To account for

within which the program must collect and analyze data from the headset, a 

s made to ensure that there was enough time in which to complete the data work 

before the next scheduled flip. This was based on the flip matrix generated at the 

of execution. The flip matrix contained the schedule of when each control 

from one pattern to the next. It also contained the information about the gap 

between flips and determined when there was enough time to complete the data work 

anging the control patterns on schedule. If the data work 

than the allotted time, the next screen flip was delayed. For this reason, the flip matrix 

s consulted before doing any data acquisition or processing. If not enough time 

was skipped. 

During the program’s initialization, the flip matrix is generated

Listing 2: Flip Matrix Generation 

get the LCM of all four control flip intervals 

generate a matrix of binary values for each of the frames (from 1 to 

the LCM) and for each control indicating whether or not that control 

should flip on that frame based upon each control’s flip interval

count the non-flip frames (gaps) between flips of any control

combine the gap list with the flip list 
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flip frames (gaps) between flips of any control 
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2.6 Data Logging & Playback 

In order to evaluate detection algorithms, it was important to implement capability 

for analyzing data from runs of the demonstration application. The demonstration 

program captured the most recent 120 seconds of data and dumped it out to a CSV file. 

Not only did it output the EEG data that was captured during the run of the application, it 

also included the values of the thresholds, the number of data samples that were pulled 

from the headset each time data was collected, and the indicators of which arrow had the 

user’s focus at any given time. This data allowed for post-run analysis offline to evaluate 

detection methods and thresholds. 

 

In addition to dumping the last two minutes of data from the demonstration to a 

CSV file, it was necessary to develop a tool for analyzing the data. The tool is capable of 

playing back the data that was captured during a demonstration run. The playback utility 

shows several plots of the data, such as a rolling plot of the current window of EEG data 

being analyzed, and a plot of the frequency components of each of the four controls with 

the threshold values being applied at the time (see Figure 8). On the last plot, there is also 

a visual indication of which arrow had the user’s focus during the current window of 

data. By default, this tool analyzes the data in the same way that the demonstration 

application does. For example, if thresholds were adjusted during the run of the 

demonstration, the adjusted thresholds were also used for detection during playback. 
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Figure 8: Data Playback Tool Screenshot 

 

The playback tool allows for visual analysis of what happened during the last two 

minutes of the demonstration. It also collects statistics about the detections and analysis. 

Because keyboard keys were used to indicate the user’s focus during the run of the 

demonstration, it could be determined if detections made during analysis of any window 

were correct or false. Additionally, the power of each control frequency in the signal can 

be collected for each window. Using this information, the average power of each control 

frequency could be determined while the user directed attention at that control, focused 

on a different control, or was not focused on any control. The goal of determining these 

values was to identify the proper values for thresholds which maximize the true 
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detections and minimize false detections. Besides tuning the thresholds, the playback tool 

allowed the detection algorithm itself to be modified and re-run on the same set of data. 

This allowed for direct comparison of multiple detection methods. 
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III. RESULTS & DISCUSSION 

3.1 SSVEP Verification 

Initial verification of the presence of an SSVEP response was obtained by 

recording the EEG signals using the aforementioned C# program while simultaneously 

running the checkerboard display program. This allowed EEG data to be captured and 

saved to a CSV file while the user watched a flashing checkerboard. Static analysis was 

then performed on the CSV file. 

 

After isolating the important signal data as much as possible using the 

preprocessing steps, the resulting signal was passed through MATLAB’s PSD function. 

This returned a spectrum of the signal, a function of the power per hertz, which allowed 

the various frequency components of the signal to be analyzed. The spectrum was then 

plotted to produce a visual representation of the power or energy of each frequency 

component in the signal. A large spike could be seen at the frequency of interest. Because 

the user was viewing a checkerboard which was alternating its pattern at a specific rate, 

this frequency had a very strong power in the spectrum. Figure 9 shows the spectrum 

obtained from a two second window, using the Welch PSD method with a single window 

(resulting in no overlap) and 512 fft points. A large spike is seen at 9.5 Hz, which is the 

nearest bin frequency to the stimulus. 
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3.2 Display Timing Verification

3.2.1 Refresh Rate Confirmation

Early attempts to verify an SSVEP response in the EEG signals gave peaks at 

frequencies in unexpected bins. For example, the checkerboard was scheduled to flip 

every 5 frames with the monitor refresh rate set to 85 Hz

SSVEP response at 17 Hz. However, the results of plotting the EEG spectrum were 

showing a spike around 13 Hz. This generated suspicion that the display 

at 60 Hz rather than the reported 85 Hz. If the checkerboard 

every 5 frames on a 60 Hz display, the expected response would be around 12 Hz, which 

was much closer to the 13 Hz that was seen. In order to verify the accuracy of the display 

Figure 9: Plot Showing SSVEP Response at 9.5 Hz 

3.2 Display Timing Verification 

3.2.1 Refresh Rate Confirmation 

attempts to verify an SSVEP response in the EEG signals gave peaks at 

frequencies in unexpected bins. For example, the checkerboard was scheduled to flip 

every 5 frames with the monitor refresh rate set to 85 Hz, which should have

e at 17 Hz. However, the results of plotting the EEG spectrum were 

showing a spike around 13 Hz. This generated suspicion that the display 

at 60 Hz rather than the reported 85 Hz. If the checkerboard was changing 

every 5 frames on a 60 Hz display, the expected response would be around 12 Hz, which 

was much closer to the 13 Hz that was seen. In order to verify the accuracy of the display 
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was much closer to the 13 Hz that was seen. In order to verify the accuracy of the display 
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a Fluke Scopemeter, a 5V power supply, a breadboard, a 10 kOhm resistor and a 

photoresistor. Both the resistor and the photoresistor were wired to the breadboard on the 

power supply. These were also wired into the Scopemeter for measuring the current 

Figure 10). 

 

Figure 10: Experiment Wiring Diagram 

The photoresistor was positioned so it was directly against the monitor over a 

single square of the checkerboard. When the checkerboard pattern was being displayed, 

d the oscillations in current through the photo-resistor. Th

period showed that the displayed frequency was indeed accurate. This experiment 

confirmed that PTB was correctly measuring the refresh rate of the monitor and that 

properly working. The frequency mismatch was later discovered 

to be caused by a bug in the code analyzing the EEG signals. Rather than evaluating the 

two occipital channels, two EEG sensors from further forward and on the right side of the 

user’s head were being used by mistake. 
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3.2.2 Missed Flips 

In addition to the VBL timestamp that was returned from PTB’s flip call, several 

other values were also returned. One of these values indicated whether or not the flip 

missed the stimulus onset time requested. A call to flip generally included a requested 

time for PTB to make the switch of the front and back buffers. The flip attempted to 

synchronize with the first VBL after the requested time. If PTB was able to make the 

switch at the requested time, it returned a negative missed value; otherwise it returned a 

positive value. This allowed the demonstration to determine if a significant number of 

flips were missed. 

 

One of the biggest challenges with creating the basic display system was 

encountering a large number of missed frames. While a few sparse missed frames would 

not be a problem, many missed frames caused the displayed frequency to be altered 

significantly. In order for SSVEP to be effective, the pattern displayed on the screen had 

to alternate at a consistent frequency. PTB documentation recommended running the 

software on a realtime operating system for the best performance. However, it also 

provided methods for reducing the impact of a non-realtime operating system. For 

example, this project was built on a Windows 7 machine. Windows is not a realtime 

operating system. It does, however, provide process priority. PTB has a function which 

will request elevation to a higher priority for the MATLAB process. In order to elevate to 

“realtime priority”, MATLAB had to be started with administrative privileges. 

Otherwise, the highest priority PTB could achieve is “high priority”. Running the 
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program with “realtime priority” significantly reduced the number of missed flips seen 

during a run of the checkerboard display program. 

 

3.3 Baseline Removal 

One other method used to improve the signal was to utilize a baseline. A baseline 

was established by recording the EEG data while the user was not being presented with 

any stimulus. This gathered data about the normal signals present in the user’s brain 

which was then used to further isolate the components of the signal affected by the 

stimulus. Figure 11 shows an example baseline spectrum. 

 

Figure 11: Smoothed Baseline Spectrum 

In the future, the baseline measurement may not be necessary for the 

demonstration program. As seen in Figure 11, the smoothed baseline could be 
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approximated by a low-order polynomial and could possibly be estimated from live data 

rather than requiring an extra calibration step. As will be discussed in the next section, it 

was determined that each control frequency requires a unique threshold with or without 

baseline removal, so the baseline could possibly be folded into threshold determination. 

Rather than subtracting the baseline, the value of the baseline at any control value could 

perhaps also be added to the threshold value. This would reduce the number of necessary 

calibration steps by one. Whether the baseline and threshold calibrations need to be 

performed for each unique user is a matter for further study. Additionally, future study 

should investigate whether a baseline must be established once or before each run of the 

demonstration application, or if it can be continuously estimated during the application’s 

execution. 

 

3.4 Threshold Determination 

The thresholds set the level of power required for a particular control frequency to 

trigger the control action. Initially, the project hoped to be able to use a single, flat 

threshold for detection, allowing one value to be chosen for the required power to 

activate any of the four controls. However, it was discovered that the SSVEP response 

generated at any given frequency was significantly different. “The amplitude of a typical 

EEG signal decreases as 1/f in the spectral domain” [5]. Because of this, it was 

determined that a single threshold would not be sufficient. It may be possible to use a 

function as a threshold, setting one value for a particular control frequency with the 

others calculated based on this value. Currently, the demonstration uses a second order 
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polynomial, although each threshold may be individually tuned using keyboard input 

while the demonstration is running. 

  

The polynomial threshold used in the demonstration was generated based upon 

average responses seen at the control frequencies. EEG data was recorded while the user 

was focused on a checkerboard flashing at a single control frequency. The data was then 

analyzed to determine the average power of the target frequency in the EEG signal for a 

rolling 2 second window. This was done for all four control frequencies. A polynomial 

was then fit to the average response from those tests. As will be discussed in the next 

section, these thresholds did not produce usable results. Further analysis and study of 

additional EEG data is necessary to determine a proper method for setting the thresholds. 

 

3.5 Response Latency Testing 

An experiment was performed in which the user was presented with the 

checkerboard pattern flashing at 8.5 Hz for several seconds before the pattern changed to 

9.444 Hz. The data was then analyzed to determine how much time passed between the 

change in the stimulus frequency and the change in the SSVEP response in the EEG data. 

This experiment was run five times. The average response latency was 1.73 seconds. The 

maximum latency was 2.00 seconds with a minimum of 1.53 seconds. This implies that 

with the current signal processing methods, detection latency is primarily determined by 

the time required for the SSVEP signal to dominate the content of the PSD window (just 

over half the window width). This indicates that the BCI demonstration should be able to 
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detect a control activation within two seconds of the user shifting focus from one control 

to another with the current window size of three seconds. 

 

3.6 BCI Testing 

After implementing the basic setup of the BCI demonstration application, testing 

was done. The performance of the SSVEP BCI demonstration application was highly 

dependent upon the threshold values set for detection. When the thresholds were set to a 

very low level, the user exhibited a good amount of control over the ball when focused on 

a particular control. In other words, the ball moved in the correct direction indicated by 

the control on which the user was focused. However, when the user was not focused on 

any control, the ball moved somewhat sporadically around the screen. Because the 

thresholds were low enough, “normal” brain activity caused the control frequencies to 

have enough power to trigger movement of the ball. 

 

If the thresholds were set high enough, false detections were reduced. 

Unfortunately, when the thresholds were set too high, the controls became difficult to 

trigger. Both of these phenomenon were observed during testing, showing that a simple 

ad-hoc threshold setting would not be satisfactory. 

 

Based upon these results, a receiver operating characteristic (ROC) analysis is 

necessary to improve the performance of this demonstration. As cited by Fawcett, “a 

[ROC] graph is a technique for visualizing, organizing and selecting classifiers based on 

their performance. ROC graphs have long been used in signal detection theory to depict 
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the tradeoff between hit rates and false alarm rates of classifiers” [12]. Utilizing a ROC 

analysis will help to tune the thresholds to a point that minimizes false detections while 

maximizing true detections. An ROC graph is shown in Figure 12. 

 

Figure 12: Example ROC Curve (borrowed from [14]) 

 

Another way to further tune the thresholds would be to incorporate better baseline 

characterization into the analysis. A single baseline measurement is subtracted from the 

live signals in the demonstration. It is possible that the baseline is not sufficiently 

stationary to allow a single characterization prior to beginning a session. Continuous 

estimation of the baseline from all spectral frequencies could improve the performance. 

 

One other topic of interest is artifact removal. Artifacts are natural or external 

events which generate disturbances in the EEG signal. For example, eye blinks, eye 

movement, and facial muscle movements are examples of natural artifacts that impact the 

EEG. Besides the natural artifacts, external artifacts can impact the signal, such as 

bumping the headset or adjusting the position of the electrodes. External artifacts are 
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usually easy to reduce or eliminate. However, natural artifacts such as eye blinks are very 

hard to prevent. All of these artifacts can have various effects on the processing of the 

EEG signals. To reduce these effects, techniques can be implemented to account for and 

eliminate the artifacts in the original signals. This is another area of future research that 

could potentially improve the performance and/or usability of the demonstration 

application. 

 

Based on the strong SSVEP response seen during the SSVEP Verification phase, 

as well as the poor performance and weak responses seen in the BCI demonstration itself, 

the influence of distractors should be investigated. During initial testing, all data was 

recorded while the user viewed a single checkerboard on the screen flashing at a 

particular frequency. The primary difference between initial testing and the BCI 

demonstration was the BCI demonstration included four different controls pulsating at 

different frequencies, all on the same screen. The controls were also much smaller than 

the initial checkerboard. Because SSVEP is attention-based, the presence of additional 

controls may be interfering with the response (Figures 13 and 14). 
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Figure 13: Responses Seen at 8.5 Hz, 10.75 Hz, and 14.25 Hz While The User Was 

Focused on The Control Flashing at 14.167 Hz During the BCI Demonstration 

 

Figure 14: Responses Seen at 9.5 Hz and 10.75 Hz While the User Was Focused on 

The Control Flashing at 9.444 Hz During The BCI Demonstration 
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IV. CONCLUSION 

Based upon the results of the demonstration application, it appears likely that 

SSVEP-based BCI is feasible using the Emotiv EPOC EEG headset. Although the 

program in its current form is not fully functional, further tuning and adjustment would 

produce a usable application. The results of the SSVEP verification phase of this study 

showed a definite ability to measure the SSVEP response from the EEG signals coming 

from the EPOC. Although, static analysis and realtime analysis are very different, the 

BCI demonstration shows potential and appears feasible. 

 

One area which was not explored is the impact of the visual stimulus itself. Some 

of the initial testing was done using a large rectangular checkerboard pattern, whereas the 

demonstration application used smaller triangular checkerboards. This may have had an 

impact on the SSVEP response in the brain. In addition to the size and shape, the color of 

the stimulus could also have an impact. Zhu et. al. conducted a literature review studying 

the various stimulation methods used in SSVEP studies and determined that 

“improvements to stimuli can enhance the SSVEP [signal to noise ratio], simplify signal 

processing, enable the use of more targets, [and] prevent loss of attention” [4]. 

 

Additionally, the determination of the detection thresholds should be studied in 

more detail using an ROC analysis. Further study of the baseline and thresholds would be 

beneficial. The following are several questions for further research. Can a baseline be 

estimated dynamically versus statically? Is it feasible to fold the baseline into the 

thresholds? Can a single threshold be obtained as a required ratio over baseline, as 
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implied in [14]? How much variation in baseline and optimal thresholds occurs across 

subjects? What is the impact on the SSVEP response of having distractors in the user’s 

field of view? 
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