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Chapter 1

The Advent of Quantum Groups

1.1 Introduction

At the writing of this thesis the theory of quantum groups is a young and burgeoning

area of study. The excitement surrounding the theory is due to its implications for

both pure and applied mathematics. My particular interest in the subject was aroused

on both accounts. I was actually introduced to the concept while reading a book on

the mathematical structure of quantum mechanics. Given my affinity for both pure

mathematics and mathematical physics, quantum groups was a very clear choice for

me. And what aspiring mathematician wouldn’t be thrilled to participate in a new and

exciting area of research? This, however, is a double edged sword since although there is

a lot of potential for one to contribute, brand new mathematical ideas are generally very

involved, complicated, abstract and just plain difficult. They are built on and blossom

from deep, as well as broad, mathematical ideas. One cannot hope to simply dive in,

but needs a diverse wealth of mathematical background just to get started.

Suffice it to say, this is what I very clearly discovered while writing this thesis and, to

a large extent, is why it turned out so long. Even despite the length, I was only able

to address the very basics of the theory. Nevertheless, the study was most worthwhile

and enlightening, giving me occasion to greatly expand my mathematical knowledge and

understanding as well as deepen my understanding of what I was taught in my course

work. It is my hope that the reader will gain a similar benefit from exploring this thesis

and will appreciate the beauty of this most fascinating subject.

1
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1.1.1 Basic Description

To some extent, quantum groups almost sound like science fiction, especially given the

weirdness surrounding the discoveries of quantum physics. So, just what are these

exciting new structures called quantum groups? It’s always good to be honest at the

outset of a significant undertaking. With that said, the reader might be disappointed

to learn that there is no rigorous, universally accepted definition of the term quantum

group. However, this has not prevented the development of a rich, powerful and elegant

theory with an ever broadening horizon of application. Interestingly, there is also a

significant collection of examples for which mathematicians in general can say, “Yeah,

that’s a quantum group.” The situation is reminiscent of the more common difficulty of

defining terms like “love”. Nevertheless, we can often identify very clear examples. This

is not to say that identifying quantum groups is merely a matter of judgement, but only

that there are several fruitful and fascinating approaches to the subject which lead to

broadly similar structures. For instance, one might take a purely algebraic approach or

one might view the matter from a functional-analytic perspective. What is universally

agreed upon is that the underlying ideas of quantum groups are (a) algebraic and non-

commutative geometry, (b) deformations of “classical” objects and (c) the category of

quantum groups should correspond to the opposite category of the category of Hopf

algebras. These will become clearer in the next section when we explore the relatively

short history of this exciting area of study.

The name quantum group is actually something of a misnomer, since they are not really

groups at all. In light of (c) above, one common interpretation of quantum groups is

that they are a particular kind of Hopf algebra, which one can intuitively think of as

a structure rich generalization of a group. In general, a Hopf algebra may or may not

be commutative or cocommutative. By a “special kind”, then, we mean that quantum

groups are Hopf algebras of the non-commutative and non-cocommutative type.

Now, there are several ways to understand how quantum groups generalize standard

groups. First, the reader might recall that groups have a strong affiliation with symme-

tries. That is to say, groups can be thought of as collections of transformations which

act on other objects. Quantum groups also possess this ability to act on structures. The

difference, however, is that whereas all transformations in a group are invertible, such is

not the case with quantum groups. Thus, with groups, it is always possible, by defini-

tion, to define an inverse map on the group in question and in case the group is abelian

the inverse map becomes an automorphism. For quantum groups one has a similar,

albeit weaker, version of an inverse mapping. This mapping is called an antipode and,

unlike an inverse mapping, it is not required that the antipode applied to itself be the
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identity. Instead, only certain linear combinations become invertible. This is referred to

by [1] as a “non-local linearized inverse”.

Even though the antipode is a relaxed version of the inverse, some remarkable proper-

ties are preserved in the generalization from groups to quantum groups. For instance,

[1] notes that like groups, quantum groups can act on themselves in an adjoint rep-

resentation. Also, the antipode, like the inverse, provides a corresponding conjugate

representation for every representation of a quantum group.

In this thesis we shall see extensive use of a very important concept in many areas of

mathematics called the tensor product, which is, in essence, the most general bilinear

operation possible. This provides a second way of understanding how quantum groups

generalize regular groups. Specifically, representations of groups are known to admit

a tensor product. This holds for representations of quantum groups as well. As be-

fore, however, there are some underlying modifications that come with this due to the

greater generality of quantum groups. Naturally, physicists probably lean toward this

understanding of quantum groups given the prevalence of tensors in the field.

Yet another way of understanding quantum groups is as self-dual objects. For instance,

Hopf algebras have the property that their dual linear spaces are also algebras. This view

has natural applications in physical quantum theory. Similarly, the notion of a quantum

group as a sort of non-commutative geometry is essential to quantum field theories. To

aid in our understanding of what this all means let us start from the beginning.

1.2 Background

One of the “miracles” of reality is that it appears to be “written” in the language of

mathematics. It is not a rare occasion that a bit of mathematics is developed with

no physical application in mind, yet sometime later finds itself as an indispensable

description of some aspect of our universe and its workings. However, this is not a one

way street. It can also happen that scientific undertakings inform our mathematics,

inspiring new ideas about what is or may be possible. The theory of quantum groups

happens to be an occasion of this. Their birthplace is in the work of theoretical and

mathematical physics, it being no accident that the adjective “quantum” suggests a

strong kinship with quantum mechanics in particular. Let us begin therefore with a

synopsis of the transition from classical to quantum mechanics.

The quantum revolution began in the 1920’s. Without plowing through the details of

the various experiments which called out for a complete overhaul of our understanding

of reality, suffice it to say that the intuitive heritage built and handed down to us
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failed miserably when applied at the atomic level. Our goal here will be to survey the

accompanying mathematical shift, which ultimately led to the advances in mathematics

considered in this thesis.

1.2.1 The Mathematical Structure of Classical Mechanics

A large part of physics involves studying physical systems and how they evolve over

time. Toward this end, one considers the phase space of a physical system which is a

manifold consisting of points representing all possible states of a particular system. Each

state/point P is described by a set of canonical variables {p, q} where p = (p1, ..., pn) and

q = (q1, ..., qn). Physical quantities that can be measured (e.g. position and momentum)

are called observables of the system and refer to polynomials in p, q along with real

continuous functions f(p, q) on the phase space. The important mathematical structures

studied in this context are the theory of functions and first order differential equations

on phase space manifolds.

Arising out of this is an algebra of observables or, more precisely, these observables give

rise to an abelian algebra A of real (or more generally complex) continuous functions

on the phase space. One of the immediate downfalls of this approach is the erroneous

assumption that the canonical variable can be measured with infinite precision, hence

the identification of a state with a unique point. What we have so far described, then,

is merely an idealization. In practice, infinite precision cannot be obtained which means

that there is always a measure of error involved. This leads to statistical mechanics

which deals with probability distributions rather than strict points. What exactly this

means and/or entails, however, is irrelevant to this thesis. The important issue is that

the associated algebra and hence geometry in the classical case is commutative.

1.2.2 The Mathematical Structure of Quantum Mechanics

The gist of quantum mechanics is that observables can only be measured with finite

precision. For instance, if one wants to measure the position of an electron with greater

and greater accuracy, then more energy must be inserted into the system which inevitably

changes its momentum. Ultimately, this means that there is a tradeoff in how accurately

one can measure both position and momentum simultaneously. This idea is summarized

by the now famous Heisenberg uncertainty relations. The resulting implication is that

it matters in what order one measures observables like position and momentum, which

is characterized by the Heisenberg commutation relations

qjpk − pkqj = i~δjk1
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where 1 is the multiplicative identity of the algebra, δjk is the Kronecker delta function

and ~ is Planck’s constant. The implications of this simple commuting relation are

enormous. It essentially says that the foundations of reality require a non-commutative

language and that the so called classical mechanics can be viewed as a limiting case.

That is, the algebra of observables becomes commutative as ~→ 0. In this sense, then,

we can think of the quantum case as a particular deformation of classical mechanics.

Of course, the above is a monumental simplification of the transition from classical to

quantum mechanics. For those interested in a more in depth treatment see [2] and [3].

1.2.3 Quantum Groups Emerge

Fast forward to the early 1980’s. One of the problems of interest was understanding

exactly solvable models in quantum mechanics, which involves integrable systems. Two

key tools for this area of study are the quantum inverse scattering method and the

quantum Yang-Baxter equation. From this emerged the first quantum group to be

written down, namely the quantum analogue or q-analogue of SU(2) which is the special

unitary group of degree 2 consisting of all 2 × 2 unitary matrices with determinant 1.

Unitary matrices are such that for any matrix U ∈ SU(2)

UU † = U †U = I

where U † indicates the conjugate transpose of U . The key participants were Kulish,

Reshetikhin, Sklyanin, Takhtajan, and L.D. Faddeev working with quantum inverse

scattering to study integral systems in quantum field theory. In short, the quantum

inverse scattering method is a means of finding exact solutions of two-dimensional models

in quantum field theory and statistical physics. While inverse scattering was central to

the development of quantum groups, the details are a bit physics heavy. The reader is

therefore referred to [4] for more details regarding the physical theory behind inverse

scattering.

Though the q-analogue of SU(2) was the first discovered quantum group, it was not

known as such. The actual name “quantum group” was coined by V.G. Drinfel’d in 1985

who, along with M. Jimbo, also did extensive work in the area of integrable systems.

At first, quantum groups were understood to be associative algebras whose defining re-

lations are expressed in terms of a matrix of constants known as a quantum R-matrix.

Universal R-matrices are also attributed to Drinfel’d. In the same year, Drinfel’d and

Jimbo independently observed that these algebras are really Hopf algebras. Hopf alge-

bras themselves were not novel at this time, but were introduced in the 50’s and since

the 60’s have been examined in depth. While the language of Hopf algebras has more
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than proved useful, the important feature of these particular Hopf algebras is that they

are deformations of universal enveloping algebras of Lie algebras as well as classical

matrix groups. This gives an idea behind the motivation of the term quantum group,

since it closely resembles the notion of quantum mechanics as a deformation of classical

mechanics. Drinfel’d introduced this new object along with ground breaking examples

at the International Congress of Mathematics in 1986. Not long after, non-commutative

deformations of the algebra of functions on SL2(C) and SU(2) were independently con-

structed by Yu. I. Manin and S.L. Woronowicz.

These deformations were originally intended to aid in the construction of solutions to

the now famous Yang-Baxter equation. This equation is of significant importance to

modern theoretical physics. In fact, it can very well be considered the basis of quantum

group theory [5], since solutions to the Yang-Baxter equation provide a starting point

for the quantum inverse scattering method [6], which, as mentioned above, is what led

to the discovery of quantum groups in the first place. Today, it is believed that quantum

groups provide the necessary framework for solving the holy grail of physics, namely the

unification of quantum mechanics with gravity. This alone makes quantum groups an

appealing and intriguing area of study.

Since their inception, however, quantum groups have graduated from their physics nurs-

ery to have far reaching effects in pure mathematics. For instance, quantum groups have

asserted their influence in such areas as category theory, representation theory, topology,

analysis, combinatorics, non-commutative geometry, symplectic geometry and knot the-

ory to name a few. The rapid growth of this theory unfortunately means that this thesis

will have to refrain from commenting on most of these fascinating applications and focus

on a very narrow slice of the theory. The goal is to present a sufficient algebraic basis

for entering this exciting world which is pregnant with possibility and has a richness of

theory promising to lead to ever greater discoveries.

1.3 Overview of Approach

Now that we have some idea of where quantum groups came from and their usefulness,

it will be good to lay out a general schematic for this thesis. As mentioned above, the

course followed in this thesis is algebraic in nature. We shall therefore embrace the view

adopted by [7] and [1]. Chapter 2 is meant to be something of a review of essential

structures such as vector spaces and modules, but we will also develop some specifically

important concepts such as the tensor product and duality.
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Beginning in Chapter 3 the material will very likely become less familiar. We introduce

the notion of an algebra along with the dual notion of a coalgebra. Some basics of

their theory will be considered, but the primary focus will be on the connection between

them. This will lead us to Chapter 4 where we first consider bialgebras, which are a

precursor to Hopf algebras. Since quantum groups are considered to be a special class

of Hopf algebra the greater portion of Chapter 4 endeavors to introduce the theory of

Hopf algebras in general, elucidating their unique features and providing a survey of

notable results. Admittedly, Chapter 4 is heavily focused on theory, but three central

examples of Hopf algebras will be considered to facilitate understanding, namely the

group algebra, GL(2) and SL(2), the latter two being related.

A large part of quantum group theory involves Lie groups and Lie algebras. Chapter

5 therefore takes something of a detour to explicate this important facet. While Lie

groups are especially relevant to the origin of quantum groups, emphasis is placed more

heavily on Lie algebras, since Lie groups lead into analytic methods, while Lie algebras

lead into algebraic methods, the latter coinciding with our approach.

Chapter 6 finally introduces the reader to the quantum setting with an invitation to

the quantum plane, which is a nice and simple example of a deformation of a classical

object, in this case the affine plane. Certain features, such as a quantum calculus, are

briefly discussed. In this chapter, the reader will also meet two well known examples

of quantum groups which act and coact on the quantum plane. These are GLq(2) and

SLq(2), which the reader may have gathered, are deformations of GL(2) and SL(2)

respectively.

As a grand finale, Chapter 7 gives the reader a taste of the more involved quantum

groups. In particular, Uq(sl(2)) is examined, which draws heavily upon material from

Chapter 5, but also calls upon Chapter 4. Again, the central idea is deformation. Ties

will also be made to material in Chapter 6 regarding the action of this quantum group

on the quantum plane and its duality with SLq(2).

Below is a category diagram, which provides something of a “road map” for our ensuing

investigations.
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Set

V ec

Alg Coalg

BiAlg

Lie Hopf (Q.G.)

FinSet A H∗ H FinGp

Figure 1.1

At this point the connecting arrows have been left blank to reduce clutter and confusion.

As we progress, the goal will be to illuminate and examine these connections in order

to gain a sufficient understanding of the objects residing in (Q.G.), namely quantum

groups.

It is hoped that, at worst, the reader finds this thesis an interesting read, but more

optimistically an inspiration to immerse his/herself ever deeper into this challenging

and exciting area of research and study. Because of its nascent status there is still much

to be discovered. But every journey of discovery needs a place to start so let us begin

this journey together and uncover the foundations of quantum group theory.



Chapter 2

The Basics: Vector Spaces and

Modules

Though there are several approaches to quantum groups, it is best to first take stock of

and understand the essential ingredients that go toward the theory. In this chapter we

introduce and develop some of these basic or foundational concepts required for grasping

the theory of quantum groups. Although the reader is hopefully acquainted with much

of this material, the aim will be to provide a sufficient refresher as well as to extend the

reader’s understanding so that the later, more difficult concepts are not so opaque. The

main focus of this chapter will be key aspects of the theory of vector spaces, especially

the development of the tensor product which will be heavily used throughout. A cursory

treatment of modules is also given since, while not of primary importance, they do show

up in some important areas of consideration.

2.1 Vector Spaces

Central to our study is the familiar notion of a vector space. It will be assumed that the

reader possesses a working understanding of these objects, but some time will be taken

to establish some of the more abstract areas of the theory. Let’s begin by agreeing on

some notation.

As a matter of common knowledge, vector spaces come with arrows, morphisms or maps

which allow one vector space to be transformed into another. Apropos, we call these

linear transformations.

9



Chapter 2. The Basics: Vector Spaces and Modules 10

Definition 2.1 (Linear Transformation). Let V and W be vector spaces over a field κ.

A function τ : V →W is a linear transformation (or linear morphism) if

τ(λu+ γv) = λτ(u) + γτ(v)

for all scalars λ, γ ∈ κ and all vectors u, v ∈ V . The set of all linear transformations

from V to W is denoted by L(V,W ) or homκ(V,W ). In this last case, the κ is often

suppressed if there is no danger of confusion. A linear transformation τ ∈ L(V, V ) (or

homκ(V, V )) is called a linear operator on V and the set of all linear operators on V is

usually abbreviated to L(V ). Alternatively, we can think of linear operators on a space

V as endomorphisms and so it is also common to write End(V ).

A result which is often useful is that hom(κ, V ) ∼= V for any vector space V . Note that

f ∈ hom(κ, V ) is determined by what it does to 1 ∈ κ. So, if {vi}i∈I is a basis for V ,

then let v̂i ∈ hom(κ, V ) be the map v̂i(1) = vi. The set {v̂i}i∈I thus forms a basis for

hom(κ, V ) and from this the isomorphism follows.

While linear transformations are generally important, we will be particularly interested

in a special kind of linear transformation known as a linear functional or linear form.

Definition 2.2 (Linear Functional). Let V be a vector space over κ. A linear transfor-

mation f ∈ L(V, κ), whose values lie in the base field κ is called a linear functional (or

functional) on V . The space of all linear functionals on V is denoted by V ∗.

One reason linear functionals are important is because for any vector space V there is

a corresponding dual vector space V ∗ := hom(V, κ). Addition and scalar multiplication

are given as follows

(f + g)(x) = f(x) + g(x)

(λf)(x) = λf(x)

for all f, g ∈ V ∗, x ∈ V and λ ∈ κ. Besides “linear functionals”, the vectors of V ∗ are

sometimes referred to as covectors or one-forms.

Right away we hit upon a crucial idea and theme in the study of quantum groups, namely

duality. The idea of duality in mathematics is pervasive, but nuanced. Crudely speaking,

a duality indicates a kind of complementary relationship between two “objects” where

results concerning one object translate into “complementary” results for the dual object.

It is also often the case that dual objects possess similar or complementary structures.

In this context, we can gain some insight as follows. If V is a vector space over a field

κ with basis {vi}i∈I , then for each basis element vi we can determine a corresponding
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covector v∗i ∈ V ∗ which is defined by

v∗i (vj) := δij [Kronecker map]

The set {v∗i }i∈I has the property of being linearly independent. This can be seen by

applying

0 = ai1v
∗
i1 + . . .+ ainvin∗

to a basis vector vik , which yields

0 =
n∑
j=1

aijv
∗
ij (vik)

=
n∑
j=1

aijδij ,ik

= aik

for all ik. When V is finite dimensional, then {v∗i } is a basis for V ∗ called the dual basis

of {vi} and V ∼= V ∗. This is not a natural isomorphism, but depends on the choice of

basis. There is, however, a natural isomorphism between V and the double dual V ∗∗

when the dimension of V is finite. For details see [8]. We’ll revisit this after introducing

the tensor product. Later, we’ll consider duality from a more categorical perspective.

Now that we have an understanding of the dual of a vector space, we introduce an

important map known as the transpose of a linear map, which relates vector spaces with

their duals.

Definition 2.3 (Transpose of a Linear Map). Let V and W be vector spaces over a

field κ with V ∗ and W ∗ their respective dual vector spaces. If f : V → W is a linear

map, then the transpose of f , (usually) denoted by f∗, is the linear map f∗ : W ∗ → V ∗

defined by

f∗(φ) := φ ◦ f

V
f7−→W φ7−→ κ

This type of map will make regular appearances throughout this thesis. For now, how-

ever, let us give due consideration to some other useful concepts.
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2.1.1 Direct Sums

Generally, whenever we have a particular mathematical object of interest it is useful to

determine in what ways new objects of this type may be constructed out of old ones.

One common means of doing this is via a direct sum. There are two equivalent ways of

looking at a direct sum. One is called the external direct sum, while the other is referred

to as the internal direct sum. They are defined as follows:

Definition 2.4 (External Direct Sum). Let Λ be an indexing set and Vα, with α ∈ Λ,

be a collection of vector spaces over a field κ. The external direct sum of this collection,

denoted by

V := [+]α∈ΛVα

is the vector space V whose elements are sequences indexed by Λ.

V = {(vα)α∈Λ : vα ∈ Vα,∀α ∈ Λ and almost all vα = 0}

The condition “almost all vα = 0” means that vα = 0 for all but a finite number of α.

Operations are component-wise.

Definition 2.5 (Internal Direct Sum). Let V be a vector space. We say that V is the

internal direct sum of a family of subspaces F := {Sα : α ∈ Λ} of V if every vector v ∈ V
can be written uniquely (up to order) as a finite sum of vectors from the subspaces in

F , that is, if for all v ∈ V ,

v = u1 + . . .+ un

where ui ∈ Sαi for a set of distinct αi ∈ Λ and furthermore, if

v = w1 + . . .+ wm

where wi ∈ Sβi for a distinct set of βi ∈ Λ, then m = n and appropriate reindexing

yields that αi = βi and wi = ui for all i. If V is the internal direct sum of F , we write

V =
⊕
α∈Λ

Sα

and refer to each Sα as a direct summand of V .

Note, in particular, that if β = {v1, ..., vn} is a basis for V , then V =
⊕

i Span(vi).

Although superficially different, an internal direct sum is isomorphic to its corresponding

external direct sum, and therefore, we merely refer to the direct sum without qualifica-

tion. We will adopt the symbol “⊕” in general, since the internal form is often most
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useful. Even so, the question might naturally arise as to why we need a new summation

symbol at all. Why not just use sigma notation? The answer to this is that the symbol

“⊕” conceptually captures more than just summation. We illustrate this in the following

theorem.

Theorem 2.6. A vector space V is the direct sum of a family F = {Sα : α ∈ Λ} of

subspaces if and only if

1. V is the sum of the Sα

V =
∑
α∈Λ

Sα (i.e. the Sα span V )

2. For each α ∈ Λ,

Sα ∩
(∑
β 6=α

Sβ

)
= {0} (i.e. the Sα’s are independent)

Proof. Suppose that V is the direct sum of a family F = {Sα : α ∈ Λ} of subspaces.

Then by definition (1) must hold. To show that (2) holds, let

v ∈ Sα ∩
(∑
β 6=α

Sβ

)

Then it must be that v = uα for some uα ∈ Sα and

v = uβ1 + . . .+ uβn

where βk 6= α, k ∈ {1, ..., n} and uβk ∈ Sβk for all k. But this says that v is expressible

in two ways and therefore the uniqueness of v forces both to be zero. Hence (2) holds

as desired.

Conversely, suppose that (1) and (2) hold. Then we need only establish uniqueness of

expression. Suppose

v = uα1 + . . .+ uαn

and

v = tβ1 + . . .+ tβm

where uαi ∈ Sαi and tβi ∈ Sβi . By adding in the appropriate number of zero terms

we can equalize the indexing sets so that we just have the indexing set {γ1, ..., γp}. We

therefore have

v = uγ1 + . . .+ uγp
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and

v = tγ1 + . . .+ tγp

Subtracting yields

(uγ1 − tγ1) + . . .+ (uγp − tγp) = 0

If we solve for any (uγr − tγr) ∈ Sγr , we will then have that this element is a sum of

vectors from subspaces other than Sγr , which by (2) means that uγr − tγr = 0 and hence

uγr = tγr , for all γr. We therefore have that v is unique and V is the direct sum of

F .

2.1.2 Quotient Spaces

It is well known that new vector spaces can also be constructed as quotient spaces.

We need not say more than this, but two results concerning quotient spaces are worth

mentioning. The first concerns something called a universal property of quotient spaces

and the second is the familiar First Isomorphism Theorem.

Theorem 2.7. Let S be a subspace of V and let τ ∈ L(V,W ) satisfy S ⊆ Ker(τ). Then

there is a unique linear transformation τ ′ : V/S →W with the property that

τ ′ ◦ πS = τ

where πS is the canonical projection of V to V/S. Moreover, Ker(τ ′) = Ker(τ)/S and

Im(τ ′) = Im(τ).

This universal property can be pictured in the following diagram:

V W

V/S

τ

πS
τ ′

Essentially, it says that τ ∈ L(V,W ) can be factored through the canonical projection

πS .

Theorem 2.8 (The First Isomorphism Theorem). Let τ : V →W be a linear transfor-

mation. Then the linear transformation τ ′ : V/Ker(τ)→W defined by

τ ′(v +Ker(τ)) = τ(v)
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is injective and

V/Ker(τ) ∼= Im(τ)

Since these results are well known in the theory of vector spaces, and more generally for

modules (see below), we shall omit the proofs here and simply take them for granted.

The interested reader, however, can find proofs for both of these theorems in [8].

2.1.3 Tensor Products

The tensor product can safely be deemed one of the most important foundational con-

cepts to quantum groups. Like direct sums, tensor products provide another very useful

way of creating new vector spaces out of old ones. More than this, we shall see that the

tensor product often provides a means of creating a new object out of old ones.

Central to the notion of tensor products is bilinearity. To really understand what the

tensor product is we build it from the ground up. The motivation proceeds as follows.

Definition 2.9. Let U , V and W be vector spaces over κ. Let U × V be the cartesian

product of U and V as sets. A set function f : U × V → W is bilinear if it is linear in

both arguments separately, that is, if

f(ru+ su′, v) = rf(u, v) + sf(u′, v)

and

f(u, rv + sv′) = rf(u, v) + sf(u, v′)

The set of all bilinear functions from U × V to W is denoted by homκ(U, V ;W ) ( or

hom(2)(U, V ;W )). A bilinear function f : U × V → κ, with values in the base field, is

called a bilinear form on U × V .

The motivation for defining tensor products is to have a universal property for bilinear

functions, as “measured” by linearity. The key is to define a vector space T and a

bilinear map t : U × V → T so that any bilinear map f with domain U × V can be

factored uniquely through t in accordance with the commuting diagram:

U × V T

W

tbilinear

fbilinear
τlinear
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which just says that any bilinear map f : U × V →W can be factored in the form

f = τ ◦ t

where t is fixed and τ is a linear map depending on the chosen f . Athough this compo-

sition involves a linear map and a bilinear map, the composition is bilinear since

(τ ◦ t)(ru+ su′, v) = τ(t(ru+ su′, v))

= τ(rt(u, v) + st(u′, v))

= rτ(t(u, v)) + sτ(t(u′, v))

= r(τ ◦ t)(u, v) + s(τ ◦ t)(u′, v)

The second argument is similarly shown to be linear.

Let us now state this as a formal definition.

Definition 2.10 (Universal Pair for Bilinearity). Let U × V be the cartesian product

of two vector spaces over κ. A pair (T, t : U × V → T ) where T is a vector space and t

is bilinear, is universal for bilinearity if for every bilinear map g : U ×V →W , where W

is an arbitrary vector space over κ, there is a unique linear transformation τ : T → W

for which

g = τ ◦ t

Having a definition is one thing, but it remains to be seen that there exists such a

universal pair for bilinearity within the “universe” of vector spaces. There is more than

one way to demonstrate this existence. We shall explore two such methods. The first is

much more constructive in nature, while the second is of a more abstract essence, using

quotient spaces.

First Proof of Existence. Let {ui}i∈I be a basis for the vector space U and {vj}j∈J a

basis for the vector space V . Define a map t on U × V to the set of formal images of t

by assigning a formal image to each pair of basis elements. That is,

(ui, vj) 7→ t(ui, vj)

In order that t look more like a function we devise the formal notation ui⊗vj to represent

this image. Thus

t(ui, vj) := ui ⊗ vj

This is called the tensor product of ui and vj . Note that, in some sense, this is only a

pseudo-product, since ui⊗ vj is not in either U or V . In fact, even if we took ui, uj ∈ U
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we still find that ui ⊗ uj /∈ U . Instead, we define a new vector space T having formal

basis {ui ⊗ vj}(i,j)∈I×J . A generic element will thus have the form:

n∑
i=1

λi(uki ⊗ v`i)

We then extend our map t by bilinearity, and this makes t unique, since bilinear maps

are uniquely determined by what they do to the “basis” pairs (ui, vj).

For this reason too, if g : U × V → W is a bilinear function, then the condition that

g = τ ◦ t is equivalent to

τ(ui ⊗ vj) = g(ui, vj)

where τ is the linear map T → W we are constructing. And because {ui ⊗ vj}(i,j)∈I×J
is a basis of T this also uniquely defines a linear map τ : T →W so that (T, t) is indeed

universal for bilinearity.

Also, if u =
∑n

i=1 λiui ∈ U and v =
∑m

j=1 γjvj ∈ V then we have

u⊗ v := t(u, v) (2.1)

= t
( n∑
i=1

λiui,
m∑
j=1

γjvj

)
(2.2)

=
∑
i,j

λiγj(ui ⊗ vj) [using bilinearity of t] (2.3)

As a matter of notation, we denote the vector space T by U ⊗ V and call it the tensor

product of U and V . Here, the element u ⊗ v of U ⊗ V is known as a pure tensor. A

generic element of U ⊗ V will actually be a finite sum of pure tensors.

Although this way of defining U ⊗ V is straightforward, it has the disadvantage of

requiring a choice of a basis for U and V . The next method of defining U⊗V circumvents

this drawback quite elegantly.

Second Proof of Existence. Let FU×V be the free vector space over F with basis U ×V .

Let S be the subspace of FU×V generated by all vectors of the form

r(u,w) + s(v, w)− (ru+ sv, w)

and

r(u, v) + s(u,w)− (u, rv + sw)
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where r, s ∈ F and u, v and w are in the appropriate spaces. Now consider the quotient

space
FU×V
S

Quotienting out by S thus gives the necessary bilinear relations and it is this space that

we define to be the tensor product of U and V - i.e. U ⊗V . A typical element will have

the form:  ∑
(u,v)∈U×V

λ(u,v)(u, v)

+ S =
∑

(u,v)∈U×V

λ(u,v)[(u, v) + S]

where all but a finite number of λ(u,v) = 0. But because

λ(u, v)− (λu, v) ∈ S and λ(u, v)− (u, λv) ∈ S

we have that

λ(u,v)(u, v) + S = (λ(u,v)u, v) + S

= (u, λ(u,v)v) + S

which allows the scalar to be absorbed and we may simply write the elements of U ⊗ V
as ∑

[(u, v) + S]

If we denote (u, v) + S by u⊗ v, then the elements of U ⊗ V are simply

∑
u⊗ v

In this case the function t : U×V → U⊗V is just the canonical map and will be bilinear

due to the fact that we are quotienting FU×V out by S.

With this way of defining tensor products we now want to show that the pair

(U ⊗ V, t : U × V → U ⊗ V )

is universal for bilinearity. Consider the diagram given below.
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U × V FU×V U ⊗ V

W

j

t

f
σ

π

τ

We want to show that any bilinear function f factors through t. Note that t = π ◦ j,
where j is the inclusion map and π is the canonical projection map. Since U × V is a

basis of FU×V , there is a unique linear transformation

σ : FU×V →W

which extends f , i.e. σ ◦j = f . This follows from the universal property of vector spaces

(see [8]). Furthermore, since f is bilinear and σ is a linear transformation which extends

f , then σ will send the vectors generating S to zero. For instance,

σ
(
r(u,w) + s(v, w)− (ru+ sv, w)

)
= σ

(
rj(u,w) + sj(v, w)− j(ru+ sv, w)

)
= rσ(j(u,w)) + sσ(j(v, w))− σ(j(ru+ sv, w))

= rf(u,w) + sf(v, w)− f(ru+ sv, w) = 0

The linearity of the second argument is similarly shown. Thus, S ⊆ Ker(σ) and hence,

by Theorem 2.7, there is a unique linear transformation τ : U ⊗ V → W for which

τ ◦ π = σ and therefore

τ ◦ t = τ ◦ π ◦ j = σ ◦ j = f

Now suppose that there is τ ′ such that τ ′ ◦ t = f . Then σ′ = τ ′ ◦ π satisfies

σ′ ◦ j = τ ′ ◦ π ◦ j = τ ′ ◦ t = f

But the uniqueness of σ implies that σ′ = σ, which in turn implies that

τ ′ ◦ π = σ′ = σ = τ ◦ π

and the uniqueness of τ implies that τ ′ = τ .

The key result here is that bilinearity on U ×V is just linearity on U ⊗V . That is, there

is an isomorphism

hom(2)(U, V ;W ) ∼= L(U ⊗ V,W ) as abelian groups
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These two seemingly different definitions of a tensor product are equivalent. In fact,

any two models or constructions of the tensor product are isomorphic. To see this, let

U ⊗1 V and U ⊗2 V be tensor products resulting from Definition 2.10. Consider the

following diagram:

U × V

U ⊗1 V U ⊗2 V U ⊗1 V

t1
t2

t1

τ1 τ2

τ3

In the diagram, t1 and t2 are the associated bilinear maps. τ1 is the unique linear mor-

phism given by the universal property of (U ⊗1 V, t1). τ2 is the unique linear morphism

using the universal property of (U ⊗2 V, t2) and τ3 is the unique linear morphism again

given by the universal property of (U ⊗1 V, t1). Observe, however, that we can simply

take τ3 to be the identity morphism on U ⊗1 V - i.e. τ3 = idU⊗1V , or we can take

τ3 = τ2 ◦ τ1 and then, by uniqueness

idU⊗1V = τ2 ◦ τ1

By a symmetric line of reasoning, if we switch the roles of t1 and t2 we also get that

τ1 ◦ τ2 = idU⊗2V

This shows that U ⊗1 V ∼= U ⊗2 V and establishes, more generally, that any two models

of U ⊗ V will be isomorphic.

Next, we consider some important results concerning certain isomorphisms.

Corollary 2.11. For any triple (U, V,W ) of vector spaces, there is a natural isomor-

phism of abelian groups

L(U ⊗ V,W ) ∼= L(U,L(V,W ))

Proof. Recall that

hom(2)(U, V ;W ) ∼= L(U ⊗ V,W )

If ϕ ∈ hom(2)(U, V ;W ) and u ∈ U , then ϕ(u,−) ∈ L(V,W ). Consider, then, the additive

mapping

ϕ 7→ φ
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where φ : U → L(V,W ) is defined by φ(u) := ϕ(u,−). Since ϕ is bilinear, ϕ(u,−) will

be linear for any u ∈ U , and so, φ will be a morphism of abelian groups. This mapping

is onto, since if f ∈ L(U,L(V,W )) then choose ϕ : U × V → W to be the function

defined by

ϕ(u, v) := f(u)(v)

which is easily verified to be bilinear. By definition, then, ϕ gets mapped to the linear

map φ with

φ(u) := ϕ(u,−) := f(u)

Thus, onto is established.

Now suppose ϕ is in the kernel of the mapping in question. Then ϕ 7→ 0 ∈ L(U,L(V,W ))

where 0(u) = 0 ∈ L(V,W ). By the definition of our mapping, however,

0(u) := ϕ(u,−) = 0 ∈ L(V,W )

for all u ∈ U . Thus, for each u ∈ U we will have that ϕ(u, v) = 0(v) = 0 for all v ∈ V .

This implies that ϕ = 0 ∈ hom(2)(U, V ;W ) whence our mapping is also 1-1 and therefore

an isomorphism.

Proposition 2.12. Let (Ui)i∈I be a family of vector spaces and
⊕

i∈I Ui the direct sum

of this family. There exist linear maps qj : Uj →
⊕

i∈I Ui, such that for any vector space

V , we have that

hom
(⊕
i∈I

Ui, V
)
∼=
∏
i∈I

hom(Ui, V ), f 7→ (f ◦ qi)i

Proof. Define each qi in the following way: For all i ∈ I, let qi be the map such that for

u ∈ Ui
qi(u) := (uj)j∈I , with uj = 0 for j 6= i and uj = u for j = i

That these are linear is clear from their construction. Now let V be any vector space

and consider the map

Φ : hom
(⊕
i∈I

Ui, V
)
→
∏
i∈I

hom(Ui, V )
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such that Φ(f) := (f ◦ qi)i. This map is linear, since for any f, g ∈ hom
(⊕

i∈I Ui, V
)

and λ ∈ κ we have, using properties of composition, that

Φ(λf + g) =
(
(λf + g) ◦ qi

)
i

= (λf ◦ qi + g ◦ qi)i

= λ(f ◦ qi)i + (g ◦ qi)i

= λΦ(f) + Φ(g)

To show that Φ is an isomorphism we first consider its kernel. Suppose h ∈ Ker(Φ).

Then by definition Φ(h) = (h ◦ qi)i = (0). So, h ≡ 0 on Im(qi) for all i ∈ I. Note that

each qi is essentially a canonical injection of Ui into
⊕

i∈I Ui. Thus

∑
i∈I

Im(qi) =
⊕
i∈I

Ui

which means that h ≡ 0 on its entire domain and is therefore the zero map. This shows

that Ker(Φ) = {0} and hence that Φ is 1-1. To finish, let (gi)i∈I ∈
∏
i∈I hom(Ui, V ).

We want to know if there is f ∈ hom(
⊕

i∈I Ui, V ) such that f 7→ (gi)i∈I . This is the

same as asking if there is f such that

Ui
⊕

i∈I Ui

V

qi

gi f

commutes for all i. Since qi is just the canonical injection of Ui into
⊕

i∈I Ui, define

f :=
⊕
gi where (

⊕
gi)(vi)i∈I =

∑
gi(vi). This is the f we need to make the above

diagrams commute. This establishes that Φ is onto from which it follows that Φ is an

isomorphism.

We now show that the tensor product distributes over the direct sum of spaces.

Proposition 2.13.

(
⊕
i∈I

Ui)⊗ V ∼=
⊕
i∈I

(Ui ⊗ V )
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Proof. By Corollary 2.11 and Proposition 2.12 the following chain of natural isomor-

phisms hold for any vector space W :

hom
(

(
⊕
i∈I

Ui)⊗ V,W
)
∼= hom

(⊕
i∈I

Ui,hom(V,W )
)

∼=
∏
i∈I

hom(Ui,hom(V,W ))

∼=
∏
i∈I

(Ui ⊗ V,W )

∼= hom
(⊕
i∈I

(Ui ⊗ V ),W
)

Let αW represent the isomorphism

hom
(

(
⊕
i∈I

Ui)⊗ V,W
)
∼= hom

(⊕
i∈I

(Ui ⊗ V ),W
)

where W is considered to be a “variable”.

Now, if in particular W = (
⊕

i∈I Ui)⊗ V , then we have

hom
(

(
⊕
i∈I

Ui)⊗ V, (
⊕
i∈I

Ui)⊗ V
)
∼= hom

(⊕
i∈I

(Ui ⊗ V ), (
⊕
i∈I

Ui)⊗ V
)

For simplicity set T := (
⊕

i∈I Ui)⊗ V . Then the relevant isomorphism is αT . Define a

linear map φ :
⊕

i∈I(Ui ⊗ V )→ (
⊕

i∈I Ui)⊗ V by φ := αT (idT ).

Next, if W =
⊕

i∈I(Ui ⊗ V ), then

hom
(

(
⊕
i∈I

Ui)⊗ V,
⊕
i∈I

(Ui ⊗ V )
)
∼= hom

(⊕
i∈I

(Ui ⊗ V ),
⊕
i∈I

(Ui ⊗ V )
)

and if we set T̄ :=
⊕

i∈I(Ui ⊗ V ), then the relevant isomorphism is αT̄ . Now define a

linear map ψ : (
⊕

i∈I Ui)⊗ V →
⊕

i∈I(Ui ⊗ V ) by ψ := α−1
T̄

(idT̄ ).

Let W ′ be any vector space and f : W →W ′ a linear map. Then because α is a natural

isomorphism the following diagram commutes:

hom(T,W ) hom(T̄ ,W )

hom(T,W ′) hom(T̄ ,W ′)

αW

βf

αW ′

βf
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where βf is defined by βf (ω) := f ◦ ω for ω in the relevant domain. The commutativity

of this diagram gives us the following relation: for ω ∈ hom(T,W ), we have

αW ′(βf (ω)) = βf (αW (ω))

or

αW ′(f ◦ ω) = f ◦ αW (ω) (2.4)

We now verify that φ and ψ are inverses. Using W = T and W ′ = T̄ , one order of

composition yields

ψ ◦ φ = ψ ◦ αT (idT )

= αT̄ (ψ ◦ idT ) [by (2.4)]

= αT̄ (ψ)

= αT̄
(
α−1
T̄

(idT̄ )
)

= idT̄

A symmetric argument, using W = T̄ and W ′ = T , shows that the composition in

reverse order, namely φ ◦ ψ, results in idT . Thus, φ and ψ are inverses and hence

(
⊕
i∈I

Ui)⊗ V ∼=
⊕
i∈I

(Ui ⊗ V )

Now, whenever a product is defined we generally want it to possess the usual niceties

such as being associative and commutative. Tensor products do enjoy these properties,

but only to a slightly “weaker” degree. That is, instead of strict equality we must settle

for isomorphisms.

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) associative isomorphism

V ⊗W ∼= W ⊗ V commutative isomorphism

We also have, for any vector space V ,

κ⊗ V ∼= V ∼= V ⊗ κ

Recall, the tensor product of vector spaces is unique (up to isomorphism) and hence

these isomorphisms can be easily established by showing that each side is the appropriate

tensor product. In particular we have κ ∼= κ ⊗ κ, a fact that will be extensively used
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later. This follows from the fact that κ is one-dimensional with basis {1κ} and so κ⊗κ,

having basis {1κ ⊗ 1κ}, is also one-dimensional. The isomorphism is then provided by

the mapping λ 7→ λ⊗ 1 = 1⊗ λ with inverse λ⊗ µ 7→ λµ.

Finally, for convenience we write down some important relations that hold in U ⊗ V . If

u, u′ ∈ U and v, v′ ∈ V and λ ∈ κ, then bilinearity yields

(u+ u′)⊗ v = u⊗ v + u′ ⊗ v [right distribution]

u⊗ (v + v′) = u⊗ v + u⊗ v′ [left distribution]

λ(u⊗ v) = (λu)⊗ v = u⊗ (λv) [scalar multiplication]

Besides these, it will also be important to determine just when a tensor product is zero.

Note first that

0⊗ u = (0 + 0)⊗ u = 0⊗ u+ 0⊗ u

This implies that 0⊗ u = 0 and by similar reasoning u⊗ 0 = 0.

Now let {ui}i∈I be a linearly independent set of elements in U and {νj}j∈J an arbitrary

set of vectors from V . Suppose that

∑
i

ui ⊗ νi = 0

By the universal property, for any bilinear function f : U × V → W , there is a unique

linear function τ : U ⊗ V →W such that τ ◦ t = f . We therefore have

0 = τ
(∑

i

ui ⊗ νi
)

=
∑
i

τ
(
t(ui, νi)

)
=
∑
i

f(ui, νi)

Hence,
∑
f(ui, νi) = 0 must hold for any bilinear function f : U × V →W whatsoever.

Because each ui and νi is fixed, we may choose any bilinear function on U×V to discover

what exactly these elements must be. Let U∗ and V ∗ be the dual spaces of U and V

respectively. Take f : U × V → κ to be the bilinear map defined by

f(u, ν) = α(u)β(ν) α ∈ U∗, β ∈ V ∗
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To see that this is indeed bilinear, consider:

f(λu+ γu′, ν) = α(λu+ γu′)β(ν)

=
(
λα(u) + γα(u′)

)
β(ν)

= λα(u)β(ν) + γα(u′)β(ν)

= λf(u, ν) + γf(u′, ν)

Similar reasoning shows linearity in the second argument. We therefore have

∑
i

f(ui, νi) =
∑
i

α(ui)β(νi) = 0

We can extend {ui}i∈I to a basis of U , let us say {bk}k∈K where I ⊆ K and

{ui}i∈I ⊆ {bk}k∈K . Take α ∈ U∗ to be the covector u∗i defined on the basis by

u∗i (bj) := δij , [Kronecker map]

We therefore have

0 =
∑
i

u∗k(bi)β(νi) = β(νk)

for all β ∈ V ∗ and this implies that each νk = 0. We have therefore justified the following

theorem:

Theorem 2.14. If u1, ..., un are linearly independent vectors in U and ν1, ..., νn are

arbitrary vectors in V , then

∑
ui ⊗ vi = 0 =⇒ vi = 0, for all i

In particular, u⊗ v = 0 if and only if u = 0 or v = 0.

Theorem 2.15. Let w be a non-zero element of U ⊗ V and express

w =
n∑
i=1

ai ⊗ bi

with n minimal. Then {ai} and {bi} are linearly independent sets.

Proof. Suppose that the result is not true. Without loss of generality, we may assume

that {ai} is dependent. Furthermore, by relabeling we may assume that an depends on

the other ai’s so that

an =
n−1∑
i=1

λiai
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But then

w =
( n−1∑
i=1

ai ⊗ bi
)

+ an ⊗ bn

=
( n−1∑
i=1

ai ⊗ bi
)

+
( n−1∑
i=1

λiai

)
⊗ bn

=
n−1∑
i=1

ai ⊗ bi +
n−1∑
i=1

λiai ⊗ bn

=
n−1∑
i=1

(ai ⊗ bi + λiai ⊗ bn)

=
n−1∑
i=1

ai ⊗ (bi + λibn)

which contradicts the minimality of n. Therefore, {ai} must be linearly independent

and the result holds.

We end this section with two final useful results. The first concerns the tensor product

of vector subspaces. The second concerns the tensor product of linear maps and their

kernels.

Proposition 2.16. Let V and W be two κ-vector spaces, and X ⊆ V, Y ⊆ W vector

subspaces. Then (V ⊗ Y ) ∩ (X ⊗W ) = X ⊗ Y .

Proof. Since X is a vector subspace of V it has a basis, say {xi}i∈I , which is embedded

within a basis for V . Thus, we may complete or extend {xi}i∈I to a basis of V , say

{xi}i∈I′ (I ⊆ I ′). The same holds true for Y . That is, if {yj}j∈J is a basis of Y , then

we may extend it to a basis of W , say {yj}j∈J ′ (J ⊆ J ′).

We now know that X ⊗ Y has basis {xi ⊗ yj}(i,j)∈I×J . Since both V ⊗ Y and X ⊗W
are subspaces of V ⊗W we know that (V ⊗ Y ) ∩ (X ⊗W ) is a vector space. Note that

V ⊗ Y has basis {xi ⊗ yj}(i,j)∈I′×J , X ⊗W has basis {xi ⊗ yj}(i,j)∈I×J ′ and V ⊗W has

basis {xi ⊗ yj}(i,j)∈I′×J ′ .

Now, it is clear that X ⊗ Y ⊆ (V ⊗ Y ) ∩ (X ⊗W ). Suppose

t ∈ (V ⊗ Y ) ∩ (X ⊗W )

Then since t ∈ V ⊗ Y we have

t =
∑

(i,j′)∈I×J ′
λij′xi ⊗ yj′
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But also t ∈ X ⊗W and so

t =
∑

(i′,j)∈I′×J

γi′jxi′ ⊗ yj

Now consider that

0 = t− t

=
∑

(i,j′)∈I×J ′
λij′xi ⊗ yj′ −

∑
(i′,j)∈I′×J

γi′jxi′ ⊗ yj

Since {xi′ ⊗ yj′ : (i′, j′) ∈ I ′ × J ′} is independent, this implies that λij′ = 0 for j′ /∈ J ,

γi′j = 0 for i′ /∈ I and λij′ = γi′j for (i, j′) = (i′, j) ∈ I × J . So

t =
∑

(i,j)∈I×J

λijxi ⊗ yj ∈ X ⊗ Y

and therefore

(V ⊗ Y ) ∩ (X ⊗W ) ⊆ X ⊗ Y

thereby establishing the desired equality.

Before tackling the final result, we want to establish that the tensor product of two

linear maps is again a well-defined linear map. Let U,U ′, V, V ′ be vector spaces. Then

hom(U,U ′), hom(V, V ′) and hom(U ⊗V,U ′⊗V ′) are each vector spaces as well. Let the

following commutative diagram be our template:

hom(U,U ′)× hom(V, V ′) hom(U,U ′)⊗ hom(V, V ′)

hom(U ⊗ V,U ′ ⊗ V ′)

⊗

φ θ

If f ∈ hom(U,U ′) and g ∈ hom(V, V ′) note that the expression f(u)⊗ g(v) makes sense

(as opposed to f(u)g(v) in this context). Furthermore, it is clearly bilinear in u and v.

There is therefore a unique linear map, say (f � g) ∈ hom(U ⊗ V,U ′ ⊗ V ′) such that

(f � g)(u⊗ v) = f(u)⊗ g(v)
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In the above diagram, then, φ is the map: φ(f, g) = f � g. This map is bilinear, since

(
(λf + γg)� h

)
(u, v) = (λf + γg)(u)⊗ h(v)

= (λf(u) + γg(u))⊗ h(v)

= λf(u)⊗ h(v) + γg(u)⊗ h(v)

= λ(f � h)(u, v) + γ(g � h)(u, v)

=
(
λ(f � h) + γ(g � h)

)
(u, v)

A symmetric argument shows that linearity also holds in the second coordinate. Thus,

by the universal property of tensor products there is a unique linear map

θ : hom(U,U ′)⊗ hom(V, V ′)→ hom(U ⊗ V,U ′ ⊗ V ′)

with θ(f ⊗ g) = f � g. In fact, θ is an embedding map. To see this, it suffices to show

that θ is injective. So, if θ(f ⊗ g) = 0, then f(u)⊗ g(v) = 0 for all u ∈ U and v ∈ V . If

f = 0, then f ⊗ g = 0. Suppose, then, that f 6= 0. Then there exists a u ∈ U for which

f(u) 6= 0. Fix this u. Then since f(u)⊗ g(v) = 0 for all v ∈ V , it must be by Theorem

2.14 that g(v) = 0 for all v ∈ V and hence that g = 0. It follows that f ⊗ g = 0. Thus

θ is injective.

From here on we shall simply use the notation f ⊗ g to refer both to the tensor product

of linear maps and the linear map f � g.

Proposition 2.17. Let f : V → V ′ and g : W → W ′ be morphisms of κ-vector spaces.

Then

Ker(f ⊗ g) = Ker(f)⊗W + V ⊗Ker(g)

Proof. In light of Theorem 2.14, it is clearly true that

Ker(f)⊗W + V ⊗Ker(g) ⊆ Ker(f ⊗ g)

so we need only show the reverse inclusion. Let {vi}i∈I be a basis for Ker(f) and

{wj}j∈J a basis for Ker(g). Extend {vi}i∈I to a basis of V , say {vi}i∈I′ and extend

{wj}j∈J to a basis for W , say {wj}j∈J ′ . It follows easily that {f(vi)}i∈I′−I is linearly

independent in V ′ and {g(wj)}j∈J ′−J is linearly independent in W ′.



Chapter 2. The Basics: Vector Spaces and Modules 30

Now let t =
∑

(i,j)∈I′×J ′ λijvi ⊗ wj ∈ Ker(f ⊗ g). Then

0 =
∑

(i,j)∈I′×J ′
λijf(vi)⊗ g(wj)

=
∑

(i,j)∈(I′−I)×(J ′−J)

λijf(vi)⊗ g(wj)

since f(vi) = 0 for i ∈ I and g(wj) = 0 for j ∈ J . Also, the family

{f(vi)⊗ g(wj)}(i,j)∈(I′−I)×(J ′−J)

is linearly independent and therefore λij = 0 whenever i ∈ I ′ − I and j ∈ J ′ − J . Thus

t ∈ Ker(f)⊗W + V ⊗Ker(g) thereby establishing the equality.

2.1.4 Duality

Before ending our explicit discussion of vector spaces, let’s revisit the notion of duality

brought up at the start. Often, duality is conceived in terms of a pairing, which is given

by a bilinear form between two objects. So, if V is a finite dimensional vector space and

V ∗ its dual, then we can create a pairing

〈, 〉 : V ∗ × V → κ

defined by 〈f, v〉 := f(v). Thus, if {vi} is a basis for V and {v∗i } is the set of dual

elements, then 〈v∗i , vi〉 = δij .

Now, if f : U → V is a linear map and f∗ : V ∗ → U∗ is the transpose of f , then in terms

of our pairing, for any α ∈ V ∗ and u ∈ U we have

〈f∗(α), u〉 = 〈α, f(u)〉

Because the map 〈, 〉 is bilinear, it can be represented via the tensor product. That is,

we get a linear map, say 〈〉 : V ∗ ⊗ V → κ, such that

V ∗ × V V ∗ ⊗ V

κ

⊗

〈, 〉
〈〉

commutes. This approach to duality will be important later when we discuss a special

kind of duality between two important Hopf algebras central to our study.
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Let us now elaborate a bit on the nature of the map

θ : hom(U,U ′)⊗ hom(V, V ′)→ hom(U ⊗ V,U ′ ⊗ V ′)

introduced above.

Theorem 2.18. The map θ is an isomorphism provided at least one of the pairs

(U,U ′), (V, V ′) or (U, V ) consists of finite-dimensional vector spaces.

Proof. Begin by supposing that U and U ′ are finite dimensional. Write

U =
⊕
i∈I

κui and U ′ =
⊕
j∈J

κu′j

with {ui}i∈I a basis for U and {u′j}j∈J a basis for U ′. If we repeatedly apply Proposition

2.12 and Proposition 2.13 we end up with θ being the map

θ :
⊕
i,j

(
hom(κui, κu′j)⊗ hom(V, V ′)

)
→
⊕
i,j

hom(κui ⊗ V, κu′j ⊗ V ′)

which is possible due to the finite dimensionality of U and U ′. Because these are finite

direct sums and θ acts component wise, we only need to show that

hom(κui, κu′j)⊗ hom(V, V ′) ∼= hom(κui ⊗ V, κu′j ⊗ V ′)

which is just a special application of θ.

We know from the section on tensor products that θ is an embedding map and hence

is injective. But it is also quite clearly surjective here, since κui and κu′j are both

isomorphic to κ. We then use the fact that

hom(κui, κuj) ∼= hom(κ, κ) ∼= κ and κui ⊗ V ∼= κ⊗ V ∼= V

So θ is indeed an isomorphism. This completes the case for when U and U ′ are finite

dimensional. The other cases are proven via similar arguments.

The following corollary is a specialization of the above theorem. To see this, it will be

important to recall that

U∗ := hom(U, κ), V ∗ := hom(V, κ) and (U ⊗ V )∗ := hom(U ⊗ V, κ)
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Corollary 2.19. The map

θ : U∗ ⊗ V ∗ → (U ⊗ V )∗

is an isomorphism provided U or V are finite-dimensional.

Thus, the result follows simply from setting

U ′ = V ′ = κ

Note that the surjectivity of θ means that for h ∈ (U ⊗ V )∗, h can be represented by a

finite sum of the form
∑

i fi ⊗ gi for some fi, gi in U∗, V ∗ respectively.

Corollary 2.20. The map λU,V : V ⊗ U∗ → hom(U, V ) given for u ∈ U , v ∈ V and

α ∈ U∗ by

λU,V (v ⊗ α)(u) = α(u)v

is an isomorphism if U or V are finite dimensional.

From this corollary we see that if V is a finite dimensional vector space, then

V ∗ ⊗ V ∼= V ⊗ V ∗ ∼= End(V )

Since duality will be a regular theme, θ will be of interest to us again later when we

discuss algebras and coalgebras and the important connection between them.

2.2 Modules

Modules are an important generalization of vector spaces. Most of the ideas we con-

sidered with vector spaces can be extended to modules, but require some modification.

However, since we are primarily interested in vector spaces, this section will be rather

brief.

To motivate the idea of a module, let V be a vector space over a field κ and let τ ∈ L(V ).

Now consider the ring of polynomials κ[x]. For any p(x) ∈ κ[x] we know that the operator

p(τ) is well-defined and has the form

p(τ) = λ0ι+ λ1τ + λ2τ
2 + . . .+ λnτ

n

where λj ∈ κ (all j), ι is the identity operator and the notational convention τm refers

to the iterated composition of τ with itself m times. We can now define a product
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ς : κ[x]× V → V by

ς(p(x), v) = p(x)v = p(τ)(v)

If it isn’t already obvious, note the similarity of this map to the scalar product for vector

spaces. The only difference is that we have allowed the role of the scalar space to be

played by a mere ring rather than a field. To see this is, in fact, a generalized scalar

product we can check that the usual properties are satisfied. Let r(x), s(x) ∈ κ[x] and

u, v ∈ V . Then

r(x)(u+ v) = r(τ)[u+ v]

= λ0ι(u+ v) + . . .+ λnτ
n(u+ v)

= λ0u+ λ0v + . . .+ λnτ
n(u) + λnτ

n(v) [τ ∈ L(V )]

= r(τ)(u) + r(τ)(v) [after rearranging]

= r(x)u+ r(x)v

By similar reasoning we also find that

(r(x) + s(x))u = r(x)u+ s(x)u

[r(x)s(x)]u = r(x)[s(x)u]

1u = u

This example suggests a new structure, which, as mentioned above, generalizes the

notion of a vector space in an important way. We define this new structure as follows:

Definition 2.21 (Module). Let R be an arbitrary ring. A left module over R (i.e. left

R-module) is an abelian group M under addition together with an operation of R on M

(R×M →M with (r,m) 7→ rm) such that for all r, s ∈ R and x, y ∈M we have

r(x+ y) = rx+ ry

(r + s)x = rx+ sx

(rs)x = r(sx)

1x = x

Though it might seem, superficially, that weakening the requirement of the scalar space

from being a field to just a ring is insignificant, the result is actually quite drastic.

For instance, every vector space has a basis, but most modules do not. For example,

consider the abelian group Z2 as a Z-module. It’s not hard to see that Z2 has no linearly

independent subsets and hence no basis. Even when a module does have a basis, it need

not have a unique rank.
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Thankfully, as was mentioned above, many important results about vector spaces do

carry over to modules. For instance, one gets quotient modules along with analogous

isomorphism theorems, direct sums and products and even tensor products. We won’t,

however, concern ourselves too much with this. The important thing to keep in mind is

that modules embody the notion of an object acting on another object.

As a note, the above definition is actually for a left module. Right modules are similarly

defined and if we happen to be working with a commutative ring, then the distinction is

superfluous. But because everything that can be proved for a left module easily transfers

to right modules we will simply refer to left modules as modules. Here are a few common

examples.

Example 2.1. Any ring R is a module over itself.

Example 2.2. Any commutative group is a Z-module.

Example 2.3. All vector spaces are modules over their respective fields.

Example 2.4. Let R be a ring. Then the setMm,n(R) of all matrices of size m×n is an

R-module under the usual operations of matrix addition and scalar multiplication over

R. Since R is a ring, we can even take the product of matrices in Mm,n(R) provided

n = m.

2.2.1 Noetherian Rings and Noetherian Modules

One concept from ring and module theory that will be of use is the notion of being

Noetherian. This is to be understood as follows.

Theorem 2.22. Let R be a ring. The following statements are equivalent:

1. Any left ideal I of R is finitely generated - i.e. there exist a1, ..., an in I such that

I = Ra1 + . . .+Ran

2. Any ascending sequence I1 ⊂ I2 ⊂ I3 ⊂ . . . ⊂ R of left ideals of R is stationary -

i.e. there exists an integer k such that Ik+i = Ik for all i ≥ 0.

A ring R is said to be Noetherian if it satisfies one of the above equivalent conditions.

Example 2.5. Consider the polynomial ring κ[x] where κ is a field. Let I be a proper

non-zero ideal of κ[x] and let f ∈ I be of minimal degree. If g ∈ I, then there exist

q, r ∈ κ[x] such that g = fq + r with r = 0 or deg(r) < deg(f). Now, r = g − fq and
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hence is a member of I. But f has minimal degree, which forces r = 0. Thus, g = fq

demonstrating that any other member of I is a “multiple” of f . So, any non-zero proper

ideal I of κ[x] is principal, which satisfies condition 1. Therefore, κ[x] is Noetherian.

As with rings, an R-module M is Noetherian if it satisfies the ascending chain condition

but with submodules substituted for ideals. That is, if L1 ⊆ L2 ⊆ . . . is any ascending

chain of submodules in M , then there is k for which Lj = Lk for all j ≥ k.

Theorem 2.23. The following statements regarding R-modules are equivalent:

1. M is Noetherian

2. Every submodule of M is finitely generated.

3. Every nonempty set {Mα} of submodules of M has a maximal element with respect

to set inclusion.

For a proof, see [9].

2.2.2 Artinian Rings

As a matter of interest, just as there is an ascending chain condition there is the opposite

notion of a descending chain condition. Given a sequence of left ideals I1, I2, I3, ..., we

say it is a descending chain if

I1 ⊇ I2 ⊇ I3 ⊇ . . .

and we say that the descending chain is stationary if it is finite or there exists an integer

k such that Ik+i = Ik for all i ∈ N. Now, if R is a ring such that every descending chain

of left ideals is stationary, then R is said to be (left) Artinian.

Example 2.6. Let R = Mn(D) where D is a division ring. Any left ideal I of R is a

D-subspace and if I1 ⊇ I2 ⊇ . . . is a descending chain, then

dimD(Ik+1) ≤ dimD(Ik) ≤ n2

for all k and so the chain must be stationary. Therefore Mn(D) is Artinian.

This chapter has addressed some of the key foundational concepts required for delving

deeper into the theory of quantum groups. In summary, we explicated a new and

important way of creating new vector spaces with the tensor product which is universal

for bilinearity. We have also introduced the essential notion of duality and with that the
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important concept of the transpose of a linear transformation, which we will use next

chapter. Finally, we briefly reviewed the notion of a module which will be needed later

when we discuss actions and comodules. With these tools in hand, let us proceed to the

next level in our pursuit of the fundamentals of quantum groups.



Chapter 3

Algebras and Coalgebras

3.1 Algebras

Intuitively speaking, a κ-Algebra is just a vector space over a field κ equipped with a

bilinear vector product. This product is essentially a multiplication in that it provides

a second way (other than addition) to combine two vectors and obtain a third. This

multiplication must satisfy certain compatibility axioms with the vector space structure

(e.g. distributivity and scalar multiplication).

Definition 3.1 (Algebra). An algebra A over a field κ is a non-empty set A, together

with three operations, called addition (+), multiplication (juxtaposition) and scalar

multiplication (also juxtaposition) for which the following properties hold:

(i) A is a vector space over κ under addition and scalar multiplication.

(ii) A is a ring under addition and multiplication.

(iii) If λ ∈ κ and a, b ∈ A then

λ(ab) = (λa)b = a(λb)

Now suppose only that A is a ring. If we let ηA : κ → A be a ring map from a field κ

to the ring A such that Im(ηA) ⊂ Z(A) (the center of A), then we can equip A with a

vector space structure by defining scalar multiplication, ςA : κ×A→ A, by

ς(λ, a) = ηA(λ)a

The easiest way to denote ηA is to set ηA(λ) := λ · 1A for all λ ∈ κ. It is referred to as

the unit map. If we denote the multiplication map by µA : A×A→ A, it is easy to see

37
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that it is bilinear. Note that for any algebra A, the fact that multiplication is bilinear

gives the unique linear transformation A ⊗ A → A, which sends a ⊗ b → ab. In accord

with custom we will also denote this linear map by µ.

In summary, an algebra (A, ·,+;κ) over a field κ is a ring (A, ·,+) and an action of κ on

A (i.e. scalar multiplication) which is compatible with both the product and addition.

So, (A, ·,+) is a ring and (A,+;κ) is a vector space such that (iii) above holds.

Really we are saying that algebras can be approached from two points of view. On the

one hand, we can obtain an algebra by first starting with a vector space (A,+;κ) and

equipping it with a vector product (i.e. multiplication). On the other hand, we can

begin instead with a ring (A, ·,+) and infuse it with a vector space structure via the

unit map ηA : κ→ A as indicated above.

From the perspective of category theory, we are half way to establishing a category of

algebras. We have the objects, namely the algebras themselves, and now we need the

morphisms between these objects. Below we give two equivalent definitions. The first is

a more “standard” definition, while the second is suited for the conversion to coalgebras,

which we will come to a bit later.

Definition 3.2 (Algebra Morphism (standard)). Let A and B be algebras over a field

κ. A morphism of algebras is a map f : A→ B such that

f(λab+ c) = λf(a)f(b) + f(c)

for all λ ∈ κ and all a, b, c ∈ A.

More intuitively, f is a linear map which also preserves multiplication. This is repre-

sented by the commuting diagram:

A×A B ×B

A B

f × f

µA µB

f

Our second definition makes use of the ring map ηA : κ→ A given above.

Definition 3.3 (Algebra Morphism (alternative)). Let A and B be algebras over a field

κ. A morphism of algebras or algebra morphism is a ring map f : A→ B such that

f ◦ ηA = ηB



Chapter 3. Algebras and Coalgebras 39

This relation can be better pictured via the commuting diagram:

κ

A B

ηB
ηA

f

In this definition, all that is assumed prima facie about f is that it is a morphism of

rings which means that for all a, b, c ∈ A

f(ab+ c) = f(a)f(b) + f(c) and f(1) = 1

It is the added relationship with ηA and ηB that gives “scalar slideout”, since

f(λa) = f(λ · 1A · a)

= f(λ · 1A)f(a)

= λ · 1B · f(a)

= λf(a)

This means that our alternative definition implies the satisfaction of the standard defini-

tion. That the standard version implies the alternative definition is obvious. We denote

the space of all such morphisms by homAlg(A,B) (or by Algκ(A,B)) where A and B are

any two algebras. We now have a category of algebras, which we denote by Alg from

Figure 1.1.

3.1.1 Common Examples of Algebras

Example 3.1 (Opposite Algebra). Let A be any algebra, then we let Aop be the vector

space A, but with multiplication defined by

µAop := µA ◦ τA,A

where τA,A is the transposition map interchanging the order of factors of A × A. More

specifically, if a, b ∈ Aop, then µAop(ab) = ba.

Immediately we see that an algebra is commutative if and only if µAop = µA.
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Example 3.2 (Polynomial Algebra). Let κ be a field. Let κ[x] be the space of all

polynomials in the indeterminate x. That is

κ[x] :=

{ ∞∑
i=0

λix
i : ∀i λi ∈ κ, λi = 0 for almost all i

}

It is a well known fact that this forms a ring under addition and multiplication of poly-

nomials. But scalar multiplication is also obviously well defined, which makes κ[x] into

an algebra.

Example 3.3 (n × n Matrix Algebra). Let κ be a field. We denote the space of all

n× n matrices with entries in κ by Mn(κ). Under the usual operations of matrix addi-

tion, multiplication and scaling Mn(κ) is an associative algebra, but not, unless n = 1,

commutative.

Example 3.4 (Algebra of Endomorphisms). Let V be a κ-vector space. Then End(V ),

the space of all endomorphisms on V , is an algebra under the usual function addition

and function composition for multiplication. Since endomorphisms on a vector space are

linear we get another endomorphism by multiplying by a scalar from κ.

Example 3.5 (Group Algebra). The group algebra is reminiscent of the polynomial

algebra, which explains the notation κ[G] where κ is a field and G is a group with

operation ∗. Here the elements of G form a basis for the space. Formally we write

κ[G] :=
{∑
g∈G

λgg : λg = 0 for almost all g ∈ G
}

Like the polynomial algebra, addition is given by

∑
g∈G

λgg +
∑
g∈G

γgg =
∑
g∈G

(λg + γg)g

and scalar multiplication by

λ
∑
g∈G

γgg =
∑
g∈G

(λγg)g

The multiplication map makes use of the group operation ∗ and is defined by(∑
g∈G

λgg
)(∑

g∈G
γgg
)

=
∑
g,h∈G

(λgγh)g ∗ h

This will be an important example in Chapter 4.

Example 3.6 (Quotient Algebra). Let A be an algebra and I a two-sided ideal of A.

We can then create the quotient vector space A/I and endow it with a unique algebra

structure. As a quotient vector space addition and scalar multiplication are already well-

defined. For multiplication, if a + I and b + I are in A/I, then define their product
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by

(a+ I)(b+ I) := ab+ I

This is well-defined since if a + I = a′ + I and b + I = b′ + I, then a − a′ ∈ I and

b− b′ ∈ I. The fact that I is a two sided ideal tells us (a− a′)b = ab− a′b ∈ I and also

that a′(b − b′) = a′b − a′b′ ∈ I. But then ab − a′b + a′b − a′b′ = ab − a′b′ ∈ I thereby

implying that ab+I = a′b′+I. Therefore this multiplication is independent of the choice

of a representative and hence well-defined.

Note, here, that because multiplication is well-defined, the linear canonical projection

π : A→ A/I extends to an algebra morphism. That is,

π(ab) = ab+ I

= (a+ I)(b+ I)

= π(a)π(b)

3.1.2 Setting The Stage: A Preliminary Result

The point of this section is to establish a categorical result which will be instrumental

in our study of quantum groups. Specifically, we shall establish the connection between

the categories FinSet and A (see below) in Figure 1.1. Although seemingly isolated,

we will return to this and similar investigations throughout the thesis. We start with

defining a semi-simple ring.

There are a couple of ways to understand what a semi-simple ring is. For instance, from

a homological perspective, a ring R is semi-simple if and only if all of its left modules

are projective. For our purposes, we will use a more basic definition.

Definition 3.4 (Semi-simple Ring). A ring R is said to be semi-simple if it is the direct

sum of minimal left ideals.

According to the Wedderburn-Artin Theorem, if R is a semi-simple ring, then

R ∼=
k∏
i=1

Mni(Di) as rings

where each Di is a division ring. If R is also a C-algebra, then each division ring Di is

isomorphic to C as rings so that

R ∼=
k∏
i=1

Mni(C)
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Furthermore, if R is also commutative, then necessarily ni = 1 for all i yielding:

R ∼=
k∏
i=1

C := Ck

As a C-vector space, then, we get that dimCR = k.

Recall from basic ring theory that an ideal I of a ring R is maximal if whenever

I ⊆ J ⊆ R

J = I or J = R. For Ck there are exactly k such ideals, say M1,M2, ...,Mk where

Mi = {v ∈ Ck : ith component of v is 0}

and dimMi = k − 1. Since R is commutative, each Mi is also prime, meaning that for

any a, b ∈ R with ab ∈Mi, either a ∈Mi or b ∈Mi (or both). In case R is commutative

and Artinian, then prime and maximal are the same. But for any commutative ring R

with identity ⋂
Iprime

I = nil(R)

where nil(R) denotes the set of all nilpotent elements of R. Thus, for any commutative

Artinian ring

Jac(R) =
⋂

Mmaximal

M =
⋂

Iprime

I = nil(R)

where Jac(R) is the Jacobson radical of R.

Now let A be a finite dimensional commutative C-algebra with no nilpotent elements.

As in Example 2.6, since A is of finite dimension, every ideal will be a subspace so that

any descending chain must be stationary. This implies that A is Artinian. But A has no

nilpotent elements, which means nil(A) = 0, implying that Jac(A) = 0 and therefore A

is semi-simple (as a ring). We therefore find that

A ∼= Ck as rings with k = dimCA

Next consider AlgC(A,C). For any α ∈ AlgC(A,C) we have that α(1A) = 1C and hence

for any z ∈ C
α(z · 1A) = zα(1A) = z · 1C = z

This implies that α is onto and therefore, by the first isomorphism theorem for rings

A/Ker(α) ∼= C
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Since C is a field, this implies that Ker(α) is a maximal ideal. But A is commutative

and Artinian, which means Ker(α) is also a prime ideal.

The set of all proper prime ideals of a ring R is called the spectrum of R and denoted

by Spec(R). Thus, Ker(α) ∈ Spec(A). What we get is a function

AlgC(A,C)→ Spec(A)

α 7→ Ker(α)

Notice that this map is onto, since if M is one of the k maximal ideals of A, then A/M

is isomorphic to C.

A A/M Cπ ∼

α

The above diagram shows that this allows us to get an α ∈ AlgC(A,C) for which

M = Ker(α)

Not only is AlgC(A,C) → Spec(A) onto, but it is also one to one, for suppose that

Ker(α1) = Ker(α2) = M . Then, as a subspace, dimM = k − 1 as mentioned above

and so

A = M ⊕ C · 1A as vector spaces

Now, α1 and α2 agree on M , since both vanish. Notice too that α1 = α2 on C ·1A, since

α1(z · 1A) = z · 1C = z

and

α2(z · 1A) = z · 1C = z

Hence

AlgC(A,C)↔ Spec(A)

and since there are exactly k maximal/prime ideals of A we have

|Spec(A)| = k = dimCA
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Now switch gears and consider an arbitrary set X. Then CX represents the set of all

functions from X to C. We can think of CX as a C-vector space with basis

{δx : x ∈ X}, δx(y) =

{
1, if y = x

0, if y 6= x

Clearly, the size of the basis is determined by the size of X and hence dimCX = |X|.

Now, for each x ∈ X, let Cx be a copy of C corresponding to x. We then get a mapping

CX →
∏
x∈X

Cx

f 7→ (f(x))x∈X

which is clearly bijective and hence an isomorphism of vector spaces. But CX and
∏
Cx

can be viewed as C-algebras where the multiplication in CX is the ordinary product of

functions and the multiplication in
∏
Cx is component wise. It is then clear that the

above vector space isomorphism preserves these products and so

CX ∼=
∏
x∈X

Cx as C-algebras

Because C has no (non-zero) nilpotent elements, neither does CX . Furthermore, CX

is commutative. So, we have that CX is a commutative C-algebra with no (non-zero)

nilpotent elements. If X is also finite, then dimCX = |X| and per what we found above

we have

AlgC(CX ,C)↔ Spec(CX)

|Spec(CX)| = dimCX = |X|

What we get is a contravariant functor :

FinSet→ A

where FinSet is the category of finite sets and A is the category of finite dimensional,

commutative C-algebras with no nilpotent elements.

If f is an arbitrary element of CX , then we can express it as

f =
∑
x∈X

λxδx
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and so for any α ∈ AlgC(CX ,C) we have

α(f) = α
(∑
x∈X

λxδx
)

(3.1)

=
∑
x∈X

λxα(δx) [α is linear] (3.2)

For the identity we have

1CX =
∑
x∈X

δx

and for any α ∈ AlgC(CX ,C), α(1CX ) = 1C so therefore

α(1CX ) =
∑
x∈X

α(δx) = 1C (3.3)

Now, based on the definition of δx it is clear it is idempotent for all x ∈ X - i.e. δ2
x = δx.

Moreover, α(δ2
x) = (α(δx))2, since α is an algebra morphism. Therefore

(α(δx))2 = α(δx)

which means that α(δx) is an idempotent in C. However, there are only two elements

in C having this property, namely 0 and 1. Therefore, α(δx) = 0 or α(δx) = 1 for any

x ∈ X. Given (3.3), this implies that there is a unique x such that α(δx) = 1 and

α(δy) = 0 for y 6= x. This unique x we label by xα and so we get a function

AlgC(CX ,C)→ X

α 7→ xα

This means that for f ∈ CX , using (3.2), that

α(f) =
∑
x∈X

λxα(δx)

= λxα

But f(xα) =
∑

x∈X λxδx(xα) = λxα and therefore

α(f) = f(xα)

so that α is really evaluation at xα.

Suppose now we fix an element x0 ∈ X. Then

f 7→ f(x0)
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is a function CX → C. But it is also clearly an algebra morphism and so we get

X → AlgC(CX ,C)

x 7→ Ex

where Ex is evaluation at x, Ex(f) = f(x) is a bijection and hence

X ≡ AlgC(CX ,C) as sets

So, for any A we have that A ∼= CX ∼= Ck where X = AlgC(A,C) or X = Spec(A) and

k = |X|.

What we get from all this is that our contravariant functor establishes an equivalence of

categories, namely

FinSetop ∼= A

the “inverse” being A → AlgC(A,C) or, alternatively A → Spec(A). We will build off

this result throughout this thesis, especially in Chapter 4. In fact, as a bit of foreshad-

owing, one natural question is to consider what happens when FinSetop is replaced with

FinGpop (the opposite category of finite groups). In other words, we shall be interested

to know what equivalence comes of this replacement.

FinGpop ∼= (?)

3.1.3 Free Algebras

Definition 3.5 (Free Algebra). Let X be a set. Then the free algebra on the set X

is the vector space κ{X} with basis the set of all words xi1 . . . xip in the alphabet X,

including the empty word ∅. Multiplication is given by concatenation of words - i.e.

(xi1 . . . xip)(xip+1 . . . xin) = xi1 . . . xipxip+1 . . . xin

Here the empty word acts as unit - i.e. ∅ = 1. A word is referred to as a monomial

and its degree is given by the length of the word. There is a universal property for free

algebras, which is stated in the following theorem.

Theorem 3.6. Let X be a set. Given an algebra A and a set-theoretic map f : X → A,

there exists a unique algebra morphism f : κ{X} → A such that f(x) = f(x) for all

x ∈ X.
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For a proof see [7]. Another way of saying this is that

homAlg(κ{X}, A) ≡ homSet(X,A)

so X 7→ κ{X} is the left adjoint of the inclusion functor Alg ↪→ Set. If X is finite with

|X| = n, then in particular we get that

homAlg(κ{X}, A) ≡ An

Any algebra A is the quotient of a free algebra κ{X} and an appropriate ideal I of

κ{X}. For example, simply take A and forget that it is an algebra, then create the free

algebra κ{A} and take I to be the two-sided ideal of κ{A} generated by the elements

(a+ b) · c− a · c− b · c, a · (b+ c)− a · b− a · c

(λa) · (λ′b)− (λλ′)(a · b)

for all a, b, c ∈ A and λ, λ′ ∈ κ. The algebra A is then recovered as the algebra κ{A}/I.

One important example is the polynomial algebra κ[x1, ..., xn] in n variables. This

algebra is isomorphic to the quotient algebra κ{x1, ..., xn}/I, where I is the two-sided

ideal of κ{x1, ..., xn} generated by all elements of the form xixj − xjxi, i, j = 1, ..., n.

These relations give us commutativity.

Proposition 3.7. For any algebra A′ there is a natural bijection

homAlg(κ{X}/I,A′) ≡ {f ∈ homSet(X,A′) : f(I) = 0}

Proof. This is a consequence of the fact that homAlg(κ{X}, A) ≡ homSet(X,A).

Corollary 3.8. For any algebra A the following natural bijection holds:

homAlg(κ[x1, ..., xn], A) ≡ {(a1, ..., an) ∈ An : aiaj = ajai for all (i, j)}

Proof. This follows by a straightforward application of the previous Proposition.

Note that if A is a commutative algebra, then we simply get

homAlg(κ[x1, ..., xn], A) ≡ An, as sets
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From this we get an important functor from the category of commutative κ-algebras to

the category of sets where A F7−→ An can be thought of as

A 7→ homAlg(κ[x1, ..., xn], A) ≡ An

This is what is known as a representable functor being represented by κ[x1, ..., xn]. The

polynomial algebra κ[x1, ..., xn] is itself referred to as the representing object for F . Gen-

erally, a representable functor Alg F7−→ Set is called an affine scheme. Another example

is given by κ{X} where A F7−→ AX is represented by κ{X} as a functor Alg F7−→ Set. It is

a well known and famous result that there exists a type of duality between commutative

algebra and geometry. For this reason, the elements of homAlg(κ[x1, ..., xn], A) are often

referred to as A-points of κ[x1, ..., xn]. We will deal with this again in a more specific

context in Chapter 6 when we consider the affine line and the affine plane.

We end this section with one last result which will be of use later. For our purposes, we

will omit a proof and simply take it for granted.

Proposition 3.9. Let A be an algebra with generating set X and a set of defining

relations R. Then if B is any algebra and f : X → B is a function such that f preserves

the relations of R, then f extends uniquely to an algebra morphism f : A→ B.

3.1.4 Tensor Products of Algebras

As promised, just as we are able to generate new vector spaces out of old ones using the

tensor product, if A and B are algebras over κ, we can define an algebra structure on

A ⊗ B. This can be done in a straightforward way. Let a ⊗ b, a′ ⊗ b′ ∈ A ⊗ B, where

a, a′ ∈ A and b, b′ ∈ B. We then take the product of these pure tensors to be given by

(a⊗ b)(a′ ⊗ b′) := aa′ ⊗ bb′

and then extend additively to all of A⊗B. Such a product will be well defined since, as

a tensor product of vector spaces, A⊗B has a basis, meaning all elements have unique

expressions as linear combinations of this basis. So, suppose {ai}i∈I is a basis for A and

{bj}j∈J is a basis for B. Then we know {ai⊗ bj}(i,j)∈I×J is a basis for A⊗B as a vector

space. Now suppose a⊗ b = a′ ⊗ b′ and c⊗ d = c′ ⊗ d′. We want to show that

ac⊗ bd = a′c′ ⊗ b′d′

If

a =
∑
i

λiai, a′ =
∑
i

λ′iai, b =
∑
j

γjbj , b′ =
∑
j

γ′jbj
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c =
∑
i

ζiai, c′ =
∑
i

ζ ′iai, d =
∑
j

ξjbj , d′ =
∑
j

ξ′jbj

then

a⊗ b =
∑
i,j

λiγj(ai ⊗ bj) =
∑
i,j

λ′iγ
′
j(ai ⊗ bj) = a′ ⊗ b′

c⊗ d =
∑
i,j

ζiξj(ai ⊗ bj) =
∑
i,j

ζ ′iξ
′
j(ai ⊗ bj) = c′ ⊗ d′

which implies that λiγj = λ′iγ
′
j for all i, j and ζiξj = ζ ′iξ

′
j for all i, j. With this we have

ac⊗ bd =
∑
i,j,k,`

λiγjζkξ`(aiaj ⊗ bkb`)

a′c′ ⊗ b′d′ =
∑
i,j,k,`

λ′iγ
′
jζ
′
kξ
′
`(aiaj ⊗ bkb`)

Since the coefficients will clearly be equal it follows that ac⊗ bd = a′c′ ⊗ b′d′.

The unit, of course, is 1A⊗1B, which we abbreviate to 1⊗1. A⊗B also clearly contains

isomorphic copies of A and B as sub-algebras. This can be seen by defining embedding

maps:

iA : A→ A⊗B, iB : B → A⊗B

iA(a) = a⊗ 1, iB(b) = 1⊗ b

for all a ∈ A and b ∈ B. Note further that these maps are algebra morphisms. They

will help us establish a universal property for the tensor product of algebras.

Theorem 3.10. Let f : A → C and g : B → C be algebra morphisms such that, for

any pair (a, b) ∈ A× B, the relation f(a)g(b) = g(b)f(a) holds in C. Then there exists

a unique morphism of algebras f ⊗ g : A ⊗ B → C such that (f ⊗ g) ◦ iA = f and

(f ⊗ g) ◦ iB = g.

This can be pictured in the following commuting digram.

A C

A⊗B B

f

iA

iB

gf ⊗ g
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The essence of this theorem is that

homAlg(A⊗B,C) ∼= {(f, g) : ∀a ∈ A, b ∈ B, f(a)g(b) = g(b)f(a) ∈ C}

⊆ homAlg(A,C)× homAlg(B,C)

with equality holding in case C is commutative.

Proof. Suppose α : A⊗B → C is an algebra morphism satisfying the relations α◦iA = f

and α ◦ iB = g. Then

α(a⊗ b) = α((a⊗ 1)(1⊗ b))

= α(a⊗ 1)α(1⊗ b)

= (α ◦ iA)(a)(α ◦ iB)(b)

= f(a)g(b)

which means that α is uniquely determined by f and g. Thus, such an algebra morphism

is unique.

Let us therefore define α : A⊗B → C by α(a⊗ b) := f(a)g(b). All that is needed, then,

is to verify that this definition entails that α is an algebra morphism.

For a⊗ b, a′ ⊗ b′ ∈ A⊗B we have

α((a⊗ b)(a′ ⊗ b′)) = α(aa′ ⊗ bb′)

= f(aa′)g(bb′)

= f(a)f(a′)g(b)g(b′)

= f(a)g(b)f(a′)g(b′) [commutativity condition]

= α(a⊗ b)α(a′ ⊗ b′)

and, hence, α is an algebra morphism. Now, since α is the unique algebra morphism

out of A⊗B determined by f and g we denote α by f ⊗ g.

An important result which we will make use of in the sequel is given in the following

theorem:

Theorem 3.11. Let A = κ{X}/I be a quotient of the free algebra on a set X. Take

two copies of X, say X1 and 1X. Let I1 and 1I be the corresponding ideals in κ{X1}
and κ{1X}. Then the tensor product algebra A⊗A is isomorphic to the algebra

A⊗2 := κ{X1 t 1X}/(I1, 1I,X1 · 1X − 1X ·X1)
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where X1 t 1X denotes the disjoint union of the two copies and where X1 · 1X − 1X ·X1

is the two-sided ideal generated by all elements of the form

x1 · 1x− 1x · x1

with x1 ∈ X1 and 1x ∈ 1X.

Proof. For any x ∈ X, take the corresponding copy in X1 to be x1 and the corresponding

copy in 1X to be 1x. Now define a function f : X1 t 1X → A⊗A by

f(x1) := x⊗ 1 and f(1x) := 1⊗ x

By Theorem 3.6 this extends to a unique morphism of algebras f : κ{X1t1X} → A⊗A.

Now,

A⊗A =
κ{X}
I
⊗ κ{X}

I

so it is clearly the case that f(I1) = f(1I) = 0. But we also want

X11X − 1XX1 ⊂ Ker(f)

Consider, then, what f does to the generators x11x− 1xx1.

f(x1 · 1x− 1x · x1) = f(x1)f(1x)− f(1x)f(x1)

= (x⊗ 1)(1⊗ x)− (1⊗ x)(x⊗ 1)

= (x⊗ x)− (x⊗ x) = 0

We therefore get a uniquely induced algebra morphism f : A⊗2 → A⊗A.

By Theorem 3.10 there exists an algebra morphism g : A⊗A→ A⊗2 such that

g(x⊗ y) = x1 · 1y

Notice that g is the inverse of f , since

f(g(x⊗ y)) = f(x1 · 1y)

= f(x1)f(1y)

= (x⊗ 1)(1⊗ y)

= x⊗ y
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and

g(f(1xy1)) = g(f(1x)f(y1))

= g((1⊗ x)(y ⊗ 1))

= g(y ⊗ x)

= y1 · 1x = 1xy1

This is sufficient, since f and g are algebra morphisms and so this inverse property will

extend over all sums and products. Therefore, we may conclude that

A⊗A ∼= A⊗2

3.1.4.1 Multilinear Maps and Iterated Tensor Products

Theorem 3.11 is important, at least in part, because it provides motivation for what is

known as the tensor algebra of a vector space V , which we introduce below. First we

do some brief preliminary work that will extend the notion of bilinearity and hence the

tensor product of vector spaces.

Definition 3.12. Let V1, V2, ..., Vn and W be vector spaces over a field κ. A function

f : V1 × . . .× Vn →W

is said to be multilinear if it is linear in each variable separately - i.e.

f(u1, ..., uk−1, λv + γv′, uk+1, ..., un) = λf(u1, ..., uk−1, v, uk+1, ..., un) + γf(u1, ..., uk−1, v
′, uk+1, ..., un)

for all k = 1, ..., n.

Multilinear functions in n variables are also commonly known as n-linear functions. We

denote the set of all n-linear functions by

homκ(V1, ..., Vn;W )

A multilinear function f : V1 × . . .× Vn → κ is called a multilinear form or n-form.

We can extend the notion of tensor products of vector spaces in two ways, each being

respectively similar to how the tensor product was defined above. In light of this, our

discussion will be brief.
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First Way

Let Bi = {ei,j : j ∈ Ji} be a basis for Vi (i = 1, ..., n). For each n-tuple, (e1,i1 , ..., en,in),

we create a new “object” denoted

e1,i1 ⊗ . . .⊗ en,in

and then define T to be the vector space with basis

D = {e1,i1 ⊗ . . .⊗ en,in : ek,ik ∈ Bk}

Now define a map t : V1 × . . .× Vn → T by setting

t(e1,i1 , ..., en,in) = e1,i1 ⊗ . . .⊗ en,in

Finally, extend by multilinearity and we have a unique multilinear map, which is as

“universal” as possible among multilinear maps.

Second Way

Let V1, ..., Vn be vector spaces over a field κ and let T be the subspace of the free vector

space F on V1 × . . .× Vn generated by all vectors of the form

λ(v1, ..., vk−1, u, vk+1, ..., vn) + γ(v1, ..., vk−1, u
′, vk+1, ..., vn)

− (v1, ..., vk−1, λu+ γu′, vk+1, ..., vn)

for all λ, γ ∈ κ and vectors from their appropriate spaces. We then take the quotient

space F/T to be the tensor product of V1, ..., Vn and write

V1 ⊗ . . .⊗ Vn

As before, a typical element (v1, ..., vn)+T is written as v1⊗ . . .⊗vn. Thus, any element

of V1 ⊗ . . .⊗ Vn is a sum of pure tensors:

∑
vi1 ⊗ . . .⊗ vin

where the vector space operations are linear in each variable.

3.1.4.2 Important Multilinear Maps

Having introduced the notion of mulilinear maps, it will be important here to make

special mention of a select subset of these maps.
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Definition 3.13 (Symmetric Multilinear Map). A multilinear map f : V n → W is

called symmetric if the image of any element is invariant under any permutation of it’s

coordinate positions - i.e.

f(v1, ..., vn) = f(vσ(1), ..., vσ(n))

for all σ ∈ Sn.

Definition 3.14 (Antisymmetric Multilinear Map). A multilinear map f : V n →W is

called antisymmetric (or skew-symmetric) if

f(v1, ..., vn) = (−1)σf(vσ(1), ..., vσ(n))

where

(−1)σ =

{
−1 if σ is odd

1 if σ is even

Definition 3.15 (Alternating Multilinear Map). A multilinear map f : V n → W is

called alternating if

f(v1, ..., vn) = 0

whenever vi = vj and i 6= j.

Note, if the characteristic of the underlying vector space is not 2, then every anti-

symmetric multilinear map is also an alternating map and vice versa. To see this, let

f : V n → W be an antisymmetric multilinear map. Suppose v = (x1, ..., xn) ∈ V n is

such that xi = xj for some i 6= j. Then

f(x1, ..., xi, ..., xj , ...xn) = −f(x1, ..., xj , ..., xi, ..., xn)

= −f(x1, ..., xi, ..., xj , ...xn)

and hence

2f(x1, ..., xi, ..., xj , ...xn) = 0

But the characteristic is not 2 and therefore f(x1, ..., xi, ..., xj , ...xn) = 0 thereby making

f alternating. The other direction is actually always true regardless of the characteristic.

Like bilinear maps, multilinear maps possess a universal property. This is expressed in

the following theorem, which we shall merely state. The reader not satisfied only with

statements may consult [8] for a proof.

Theorem 3.16. Let V1, ..., Vn be vector spaces over the field κ. The pair (V1⊗. . .⊗Vn, t),
where

t : V1 × . . .× Vn → V1 ⊗ . . .⊗ Vn
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is the multilinear map defined by

t(v1, ..., vn) = v1 ⊗ . . .⊗ vn

has the following property. If f : V1 × . . .× Vn →W is any multilinear map to a vector

space W over κ, then there is a unique linear transformation τ : V1 ⊗ . . .⊗ Vn →W for

which

τ ◦ t = f

That is to say, the following diagram commutes.

V1 × . . .× Vn V1 ⊗ . . .⊗ Vn

W

t

f
τ

3.1.5 Graded Algebras

In this section we briefly consider an important classifying property possessed by certain

algebras, namely a grading, which essentially amounts to being able to express these

algebras as a special kind of direct sum that respects multiplication. In the next section

we will see that it is a property possessed by the, very important, tensor algebra.

Definition 3.17 (Graded Algebra). An algebra A over a field κ is said to be graded if

as a vector space over κ, A can be written as the direct sum of a family of subspaces

(Ai)i∈N - i.e.

A =
⊕
i∈N

Ai

and such that multiplication behaves according to

Ai ·Aj ⊆ Ai+j for all i, j ∈ N

The elements of Ai are said to be homogenous of degree i, which is essentially a sort of

“equivalence”. The unit of a graded algebra will belong to A0.

A simple, but instructive example of a graded algebra is the free algebra on a set X.

Such an algebra is graded by the length of the words. This means that the subspace Ai
of κ{X} is defined to be the subspace linearly generated by all monomials (words) of

length i.
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On a related note, the polynomial algebra κ[x] is a prime example of a graded algebra.

Simply define κi[x] to be the subspace of κ[x] consisting of all scalar multiples of xi.

Clearly, then, we have that

κ[x] =
∞⊕
i=0

κi[x]

This example, of course, can be generalized to the algebra of polynomials in several

variables, namely κ[x1, ..., xn]. In this case, each subspace consists of homogeneous

polynomials of degree i, where a homogeneous polynomial of degree i is one whose

terms are all of degree i. For instance, x1x
2
2 + x1x2x3 is an instance of homogeneous

polynomial of degree 3.

3.1.6 The Tensor Algebra

The tensor algebra is one of our most important examples. In fact, it will be instrumental

in Chapter 5 when we define something called a universal enveloping algebra, which, in

turn, leads to our most important quantum group. We will also consider the tensor

algebra again in the next chapter.

To start, we use our antecedent work and define

T 0(V ) := κ, T 1(V ) := V and Tn(V ) := V ⊗n

for any vector space V , which we can now take to mean the tensor product of n copies

of V . Using this idea we define the vector space, T (V ) by

T (V ) :=
∞⊕
i=0

T i(V )

This vector space has an induced associative product coming from the canonical isomor-

phisms

Tn(V )⊗ Tm(V ) ∼= Tn+m(V )

which equips it with an algebra structure. So considered, T (V ) is called the tensor

algebra of V . Notice that the tensor algebra is very clearly an example of a graded

algebra where Tn(V ) is the space of homogeneous elements of degree n, where degree

n, like the free algebra, refers to length of “words”. For example, if a, b, c ∈ V , then

a⊗ b⊗ b+ a⊗ b⊗ c is in T 3(V ) and is a homogeneous element of degree 3.

Admittedly, operating in T (V ) is a bit “clunky”, since a product takes the explicit form

(x1 ⊗ . . .⊗ xn)(xn+1 ⊗ . . .⊗ xn+m) = x1 ⊗ . . .⊗ xn ⊗ xn+1 ⊗ . . .⊗ xm+n
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where x1, ..., xn, xn+1, ..., xn+m ∈ V . We can make this more convenient by realizing

that the unit for this product is the image of 1 ∈ κ = T 0(V ). Let iV be the canonical

embedding of V = T 1(V ) into T (V ). We therefore have that

x1 ⊗ . . .⊗ xn = iV (x1) . . . iV (xn)

which permits us to write x1 ⊗ . . . ⊗ xn = x1 · · ·xn whenever x1, ..., xn are in V . Note,

this is merely a convenience at our disposal and won’t necessarily be the norm. Instead,

the reader will be notified when it is in use and should be expected only when notation

might become convoluted. The reader should also note the clear resemblance to free

algebras. In fact, the next result establishes a concrete connection between the two.

Proposition 3.18. (a) The algebra T (V ) is graded such that Tn(V ) is the subspace

of degree n homogeneous elements.

(b) [Universal Property] For any algebra A and any linear map f : V → A, there exists

a unique algebra morphism f : T (V )→ A such that f ◦ iV = f . Consequently, the

map f 7→ f ◦ iV is a natural bijection:

homAlg(T (V ), A) ∼= hom(V,A)

and so T is the left adjoint of the inclusion functor Alg ↪→ V ec.

(c) Let I be an indexing set for a basis B of the vector space V . Then the tensor

algebra T (V ) is isomorphic to the free algebra κ{I}.

Proof. (a) Since T (V ) =
⊕∞

i=0 T
i(V ) by definition and Tn(V ) ⊗ Tm(V ) ∼= Tn+m(V )

it is immediate that T (V ) is graded with the subspaces Tn(V ) consisting of degree n

homogeneous elements.

(b) For any integer n ≥ 0 define fn : V n → A to be the multilinear map

fn(v1, ..., vn) = f(v1) · · · f(vn)

By Theorem 3.16 there is a unique linear map f̄n : V ⊗n → A with

f̄n(v1 ⊗ . . .⊗ vn) = f(v1) · · · f(vn)

Putting all these maps together yields a linear, and clearly algebra, morphism

f̄ : T (V )→ A
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which will also be unique given that V generates T (V ) as an algebra. Now, for any

v ∈ V we find that (f̄ ◦ iV )(v) = f̄(v) = f1(v) = f(v). Thus, (b) is established.

(c) Let B := {bi}i∈I be a basis for V . Since B is indexed by I there is a bijection

between them with i↔ bi, which we may use to identify I and B. Using this we have

I κ{I}

B

V

i

i′

∃!̂i

In the diagram, î is the linear transformation extending i′ and, via the identification of

B with I, also extending i. If we now apply the universal property for T (V ) and the

universal property for κ{I} we get

I κ{I}

B

V

T (V )

i

î

iV

î

iV

where î is the unique algebra morphism such that î◦ iV = î and iV is the unique algebra

morphism such that iV (i) = iV (ei) for all i ∈ I or iV = iV ◦ î. From these we find that

î = (̂i ◦ iV ) ◦ î, iV = (iV ◦ î) ◦ iV

But because iV and î are unique and

î = id ◦ î, iV = id ◦ iV

it must be that î ◦ iV = id = iV ◦ î. It follows that T (V ) ∼= κ{I}.
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As indicated in (b), T can be thought of as a functor. If α : V → W is a linear map,

then

Tα : T (V )→ T (W )

is the algebra map obtained from setting A = T (W ). It is this functor T that gives the

connection from V ec to Alg, namely V 7→ T (V ), in Figure 1.1.

As we have seen, the tensor algebra is something like a tensor version of a free algebra.

Recall, too, that if we start with the free algebra κ{x1, ..., xn} and factor out the ideal

I of κ{x1, ..., xn} generated by all elements of the form xixj − xjxi, where i, j run over

{1, .., n}, then the result is the polynomial algebra κ[x1, ..., xn]. There is an important

analogue of this in the case of the tensor algebra called the symmetric algebra. It is

defined by taking the tensor algebra T (V ) of a vector space V and factoring out the

ideal I(V ) generated by all elements of the form x⊗ y − y ⊗ x, where x and y run over

V . That is,

S(V ) := T (V )/I(V )

The symmetric algebra is also graded and the image of Tn(V ) under the projection of

T (V ) onto S(V ) is denoted Sn(V ). For this reason, the symmetric algebra can also be

expressed as

S(V ) =
∞⊕
i=0

Si(V )

The analogue result for the symmetric algebra is as follows.

Proposition 3.19. (a) The algebra S(V ) is commutative, and is graded such that Sn(V )

is the subspace of degree n homogeneous elements. (b) For any algebra A and any linear

map f : V → A such that f(x)f(y) = f(y)f(x) for any x, y ∈ V , there exists a unique

algebra morphism f̄ : S(V )→ A such that f̄ ◦ iv = f , where iv is the canonical map from

V = T 1(V ) to S(V ). (c) If I is an indexing set for a basis of V , then the symmetric

algebra S(V ) is isomorphic to the polynomial algebra κ[I] on the set I.

One interesting result, that does not hold for the tensor algebra, is that for any vector

space V ′, we have an isomorphism

S(V ⊕ V ′) ∼= S(V )⊗ S(V ′)

Note, too, that (b) implies the bijection

homAlg(S(V ), A) ≡ hom(V,A)

when A is commutative.
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3.2 Coalgebras

Now that we have defined the concept of an algebra and the language of tensor products,

we introduce the dual of an algebra, known as a coalgebra. The use of “dual” here is

different from how we used it before, but, as we will come to see, there is a connection

between the two. Because coalgebras are dual to algebras, we shall begin with a refor-

mulation of the definition and axioms of an algebra in terms of tensor products so as to

make this form of duality more transparent.

Before giving the tensor definition of algebra, recall that if A is an algebra over a field κ,

then it is also a vector space over κ. Thus, A⊗ κ ∼= A ∼= κ⊗A as vector spaces. But κ

is also an algebra in its own right. We can therefore think of A⊗ κ as a tensor product

of algebras. We then get that A ⊗ κ ∼= A ∼= κ ⊗ A as algebras under the isomorphism

a⊗ 1 7→ a (resp. 1⊗ a 7→ a).

Definition 3.20. A κ-algebra is a triple (A,µ, η) where A is a vector space and

µ : A⊗A→ A and η : κ→ A

are linear maps such that the diagrams:

A⊗A⊗A A⊗A

A⊗A A

µ⊗ id

id⊗ µ

µ

µ

and

κ⊗A A⊗A A⊗ κ

A

η ⊗ id

∼ µ

id⊗ η

∼

commute.

The first diagram essentially shows that multiplication (µ) is associative and the second

shows that η(1κ) is the unit for µ. Note that an algebra is commutative if, in addition

to the above, the following diagram commutes:
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A⊗A A⊗A

A

τA,A

µ µ

where τA,A is the transposition map that swaps the factors of an element a⊗ b ∈ A⊗A.

That is

τA,A(a⊗ b) = b⊗ a

The reader should note that if we represent the product µ(a ⊗ b) by ab, then the dis-

tributive property follows from the distributivity of the tensor product over addition

along with the linearity of µ. More explicitly, if a, b, c ∈ A, then

µ(a⊗ (b+ c)) = µ(a⊗ b+ a⊗ c)

= µ(a⊗ b) + µ(a⊗ c)

which translates to

a(b+ c) = ab+ ac

Note the use of the tensor product with the linear functions involved in the above

diagrams (e.g. µ ⊗ id). Recall (following Proposition 2.16) that this usage is to be

understood as follows:

If f : U → U ′ and g : V → V ′ are linear maps, then their tensor product

f ⊗ g : U ⊗ V → U ′ ⊗ V ′

is given by

(f ⊗ g)(u⊗ v) = f(u)⊗ g(v)

for all u ∈ U and v ∈ V .

To match what we will see below with coalgebra morphisms, we shall give a different

version of the definition for an algebra morphism.

Definition 3.21 (Algebra Morphism Revisited). Let (A,µA, ηA) and (B,µB, ηB) be

two κ-algebras. The κ-linear map f : A→ B is a morphism of algebras if the following

diagram commutes:



Chapter 3. Algebras and Coalgebras 62

A⊗A B ⊗B

κ

A B

f ⊗ f

µA

f

µB

ηA ηB

The outer square is the tensor version of the diagram in Definition 3.2, and the inner

triangle says that f respects the units of A and B.

We now proceed to define a coalgebra. As stated in the opening of this section, coalgebras

are dual to algebras, and so we return to this central concept which was introduced in

the previous chapter. Here, however, is where we begin to see some of the nuance. The

duality referred to in this context is of a quasi-categorical nature. That is, given an

object (e.g. algebra) there is an associated object (here a coalgebra) which is obtained

by reversing all the arrows in the diagrams. Where this version of duality departs from

the category version is that there is some asymmetry involved because of the linear

maps used in defining algebras. In other words, if it were merely a matter of reversing

arrows, then there would be no need to study coalgebras separately because every result

about algebras would have a corresponding result obtained by reversing the direction of

arrows. We proceed, then, with the intention of seeing where this “asymmetry” leads.

Definition 3.22 (Coalgebra). A coalgebra is triple (C,∆, ε) where C is a vector space,

while ∆ : C → C ⊗ C and ε : C → κ are linear maps such that the following diagrams

commute:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

∆⊗ id

id⊗∆

and

κ⊗ C C ⊗ C C ⊗ κ

C

ε⊗ id

∼
∆

id⊗ ε

∼
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The first diagram represents coassociativity and the second the counit. The map ∆ is

called the coproduct (or comultiplication) and ε is called the counit of the coalgebra.

We also say that the coalgebra is cocommutative if

C

C ⊗ C C ⊗ C

∆ ∆

τC,C

commutes. Finally, note that the isomorphism κ⊗C ∼= C ∼= C⊗κ holds under the same

mapping as the algebra case, namely c 7→ c⊗ 1 (resp. c 7→ 1⊗ c).

This is not an altogether unfamiliar concept. Suppose we just have a set X and let

∆ : X → X × X be the diagonal function ∆(x) = (x, x). Let ε be the unique map

X → 1 where 1 is the singleton {∗}. It is clearly the case that

X × 1 ∼= X ∼= 1×X

Finally, let 1X be the identity function on X. We then have the following commutative

diagrams:

X X ×X

X ×X X ×X ×X

∆

∆ 1X ×∆

∆× 1X

and

1×X X ×X X × 1

X

1X × εε× 1X

∆
∼ ∼

which have the same form as the coalgebra axioms.

Example 3.7. We can also motivate the definition of a coalgebra with our work from

Section 3.1.2. Take X to be a finite group G. Then per the definition of a group, G has

structure maps
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m : G×G→ G u : {1} → G S : G→ G

(g, h) 7→ g ∗ h 1 7→ e g 7→ g−1

where ∗ is the group operation and e is the group unit. Now consider the space CG. The

multiplication of the group G induces a map CG → CG×G where f ∈ CG is mapped to f̃

defined by f̃(g1, g2) = f(g1 ∗ g2). But CG×G ∼= CG ⊗ CG where α ∈ CG×G corresponds

to α1 ⊗ α2 ∈ CG ⊗ CG with α1(g) = α(g, 1) and α2(g) = α(1, g). This isomorphism

will be considered in a more general setting and with greater detail in Chapter 4. But

taking this for granted, we actually have an induced map ∆ : CG → CG ⊗ CG where

∆(f) = f̃1 ⊗ f̃2.

Likewise, u : {1} → G induces a map CG → C{1} ∼= C where

f 7→ f ◦ u 7→ f(u(1)) = f(e)

Call this induced map ε.

Finally, S : G→ G induces a map CG → CG where

f 7→ f ◦ S

So, for each structure map on the group G we get a corresponding linear structure map.

To recap, these are

∆ : CG → CG ⊗ CG ε : CG → C S : CG → CG

f 7→ ∆(f) f 7→ f(e) f 7→ S(f)

where ∆, ε and S are the transpose maps of m,u and S respectively. As already indicated,

this means, in particular, that

∆(f)(g, h) := f(gh) and S(f)(g) := f(g−1)

For our current purposes, however, we need not worry about the map S. Instead, consider

∆. Note that since the group multiplication is associative we have the commuting diagram

G×G×G G×G

G×G G

m× id

id×m m

m
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Now, G → CG is a functor (we’ll consider this later) and so we immediately get the

corresponding commutative diagram

CG×G×G CG×G

CG×G CG

and via the above isomorphism, the above diagram yields

CG ⊗ CG ⊗ CG CG ⊗ CG

CG ⊗ CG CG

∆⊗ id

id⊗∆ ∆

∆

or more specifically that

(∆⊗ id) ◦∆(f) = (id⊗∆) ◦∆(f)

which is exactly the coproduct axiom in our definition. A similar procedure yields the

counit axiom.

In the next chapter we’ll show more completely that κG is a coalgebra for κ an arbitrary

field and G a finite group.

At this point, let us make a change of notation. In the definition of algebra we used µ for

multiplication. Now, there is nothing wrong with using µ, in fact, it is used because it is

suggestive. Nevertheless, because we wish to emphasize the duality between algebras and

coalgebras we shall denote the product by ∇ to highlight more obviously its connection

to the coproduct ∆.

Definition 3.23 (Coalgebra Morphism). Let (C,∆C , εC) and (D,∆D, εD) be two κ-

coalgebras. The κ-linear map g : C → D is a morphism of coalgebras if the following

diagram is commutative.
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C D

κ

C ⊗ C D ⊗D

g

∆C

εC εD

g ⊗ g

∆D

We now have a category of coalgebras, which we denote by CoAlg (see Figure 1.1).

Definition 3.24 (Subcoalgebra). Let (C,∆, ε) be a coalgebra. A κ-subspace D of C is

called a subcoalgebra if

∆(D) ⊆ D ⊗D

Example 3.8 (Ground Coalgebra). A basic first example is the ground coalgebra. Just

as the ground field κ is naturally an algebra, it also has a canonical coalgebra structure.

The coproduct is determined by ∆(1) := 1 ⊗ 1 while the counit is simply ε(1) := 1. In

this case, the counit is just the identity map, since

ε(λ) = ε(λ · 1) = λε(1) = λ · 1 = λ

As for the coproduct, it is just the isomorphism κ ∼= κ⊗ κ, since

∆(λ) = λ∆(1) = λ(1⊗ 1) = λ⊗ 1 = 1⊗ λ

Example 3.9 (Opposite Coalgebra). Another simple example is the opposite coalgebra.

This is a more generic example because we can take any coalgebra C and get its opposite

coalgebra denoted by Ccop. The coproduct for Ccop is defined by

∆op := τC,C ◦∆

The counit, however, remains unchanged.

Example 3.10 (Trig-Coalgebra). A more concrete example is the trigonometric coal-

gebra. Let C be the κ-vector space having basis {s, c}. Define the coproduct by

∆(s) := s⊗ c+ c⊗ s

∆(c) := c⊗ c− s⊗ s
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and the counit by

ε(s) := 0

ε(c) := 1

By way of illustration, let us show that c satisfies the coassociativity axiom. Going one

direction we have

(∆⊗ id)(∆(c)) = (∆⊗ id)(c⊗ c− s⊗ s)

= ∆(c)⊗ c−∆(s)⊗ s

= (c⊗ c− s⊗ s)⊗ c− (s⊗ c+ c⊗ s)⊗ s

= c⊗ c⊗ c− s⊗ s⊗ c− s⊗ c⊗ s− c⊗ s⊗ s

Going the other direction yields

(id⊗∆)(∆(c)) = (id⊗∆)(c⊗ c− s⊗ s)

= c⊗∆(c)− s⊗∆(s)

= c⊗ (c⊗ c− s⊗ s)− s⊗ (s⊗ c+ c⊗ s)

= c⊗ c⊗ c− c⊗ s⊗ s− s⊗ s⊗ c− s⊗ c⊗ s

Hence, we get identical results (save for the order of terms).

The reason for the name “trigonometric coalgebra” becomes clear once one realizes that

the use of c and s is suggestive of cosine and sine. The definition of this coalgebra is

based on the behavior of sine and cosine, since

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

sin(0) = 0

cos(0) = 1

We will revisit this example a little later.

Example 3.11 (Polynomial Coalgebra in One Variable). Next, consider the polynomial

ring κ[x]. This becomes a coalgebra if we set

∆(xn) := (x⊗ 1 + 1⊗ x)n ε(xn) := 0, n ≥ 1

∆(1) := 1⊗ 1 ε(1) := 1
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Let us verify that id⊗∆ = ∆⊗ id on a generic basis element xn. First, we find that

(id⊗∆)
(
∆(xn)

)
= (id⊗∆)

(
(x⊗ 1 + 1⊗ x)n

)
= (id⊗∆)

( n∑
k=0

(
n

k

)
xn−k ⊗ xk

)
=

n∑
k=0

(
n

k

)
xn−k ⊗∆(xk)

=
n∑
k=0

(
n

k

)
xn−k ⊗

( k∑
m=0

(
k

m

)
xk−m ⊗ xm

)
=

n∑
k=0

k∑
m=0

(
n

k

)(
k

m

)
xn−k ⊗ xk−m ⊗ xm

Second, we find that

(∆⊗ id)
(
∆(xn)

)
= (∆⊗ id)

(
(x⊗ 1 + 1⊗ x)n

)
= (∆⊗ id)

( n∑
k=0

(
n

k

)
xk ⊗ xn−k

)
=

n∑
k=0

(
n

k

)
∆(xk)⊗ xn−k

=
n∑
k=0

(
n

k

)( k∑
m=0

(
k

m

)
xm ⊗ xk−m

)
⊗ xn−k

=
n∑
k=0

k∑
m=0

(
n

k

)(
k

m

)
xm ⊗ xk−m ⊗ xn−k

Clearly the two results are equal, since both are

∑
i+j+k=n

(
n

i+ j

)(
i+ j

i

)
xi ⊗ xj ⊗ xk

For the counit we will compute (id⊗ ε)(∆(xn)) only, since the other case is essentially

symmetric. We have

(id⊗ ε)(∆(xn)) = (id⊗ ε)
( n∑
k=0

(
n

k

)
xn−k ⊗ xk

)
=

n∑
k=0

(
n

k

)
xn−k ⊗ ε(xk)

= xn ⊗ 1

We will return to this example below when we consider the finite dual, where we will see
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something of a motivation behind defining the coalgebra structure in this manner. We

will also consider it in Chapter 6 where the need for this particular coalgebra structure

will be even more apparent.

3.2.1 Sweedler’s sigma notation

At this point we take an important detour in order to consider some convenient notation

adopted by those working in this field. If x is an element of the coalgebra (C,∆, ε), then

∆(x) ∈ C ⊗ C is a finite sum of the form

∆(x) =
∑
i

x1i ⊗ x2i , x1i , x2i ∈ C

Dealing with multiple subscripts, however, can become quite convoluted so we agree to

abbreviate the above to

∆(x) =
∑
(x)

x(1) ⊗ x(2)

Some authors (usually of a physics persuasion) omit the summation sign completely

and simply write x(1) ⊗ x(2) and take the superscript with parentheses to indicate that

summation is intended. What is important to keep in mind is that this version is a

purely formal sum; it is purely symbolic. More specifically, the c(1)⊗c(2) are not specific

elements, but rather stand for generic elements as a way of separating the first factor

from the second factor and are not uniquely determined.

What we can do with this notation is determined by the commuting diagrams that

establish the particular structure with which we happen to be working. For instance,

with such a convention at our disposal we can express the coassociativity of ∆ by

∑
(x)

( ∑
(x(1))

(x(1))(1) ⊗ (x(1))(2)
)
⊗ x(2) =

∑
(x)

x(1) ⊗
( ∑

(x(2))

(x(2))(1) ⊗ (x(2))(2)
)

This becomes

∑
(x)

∑
(x(1))

(x(1))(1) ⊗ (x(1))(2) ⊗ x(2) =
∑
(x)

∑
(x(2))

x(1) ⊗ (x(2))(1) ⊗ (x(2))(2)

which we can write more succinctly as

∑
(x),(x(1))

(x(1))(1) ⊗ (x(1))(2) ⊗ x(2) =
∑

(x),(x(2))

x(1) ⊗ (x(2))(1) ⊗ (x(2))(2)



Chapter 3. Algebras and Coalgebras 70

This is where the power of Sweedler’s convention becomes most evident. Using the

convention a second time we identify both sides of this last equation with

∑
(x)

x(1) ⊗ x(2) ⊗ x(3)

where we have three representative factors. In some sense this means that our choice of

labeling is artificial. What is more important is what is implied. If the comultiplication

is now applied yet again we find that

∑
(x)

∆(x(1))⊗ x(2) ⊗ x(3) =
∑
(x)

x(1) ⊗∆(x(2))⊗ x(3) =
∑
(x)

x(1) ⊗ x(2) ⊗∆(x(3))

which we take to be the element

∑
(x)

x(1) ⊗ x(2) ⊗ x(3) ⊗ x(4)

In other words, the following diagram commutes.

H ⊗H

H H ⊗H ⊗H H ⊗H ⊗H ⊗H

H ⊗H

∆

∆

id⊗∆

∆⊗ id

∆⊗ id⊗ id

id⊗∆⊗ id

id⊗ id⊗∆

Figure 3.1

In general, define the map ∆(n) : C → C⊗(n+1) inductively on n ≥ 1 by ∆(1) = ∆ and

∆(n) = (∆⊗ idC⊗(n−1)) ◦∆(n−1) = (idC⊗(n−1) ⊗∆) ◦∆(n−1)

Following the above conventions we simply write

∆(n)(x) =
∑
(x)

x(1) ⊗ . . .⊗ x(n+1)

Furthermore, we can express the condition for counitality (see Definition 3.22) by

∑
(x)

ε(x(1))x(2) = x =
∑
(x)

x(1)ε(x(2)) (3.4)
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for all x ∈ C. To see this, let x ∈ C. Sweedler’s notation says ∆(x) =
∑

(x) x
(1)⊗x(2). If

we now apply ε⊗ id to this we get
∑

(x) ε(x
(1))⊗x(2), but recall that κ⊗C is isomorphic

to C under the mapping x 7→ 1⊗ x, so ε(x(1))⊗ x(2) 7→ ε(x(1))x(2). The other equality

is similarly shown.

To get a feel for the Sweedler notation we can express the commutativity of the first

diagram in the definition of a coalgebra morphism as

∆D(g(x)) =
∑
(x)

g(x)(1) ⊗ g(x)(2) =
∑
(x)

g(x(1))⊗ g(x(2))

Also, we can now say that a coalgebra is commutative if

∑
(x)

x(1) ⊗ x(2) =
∑
(x)

x(2) ⊗ x(1)

for all x ∈ C.

3.2.2 Some Basic Coalgebra Theory

Definition 3.25 (Coideal). Let (C,∆, ε) be a coalgebra and I a κ- subspace of C. Then

I is called:

1. a left (resp. right) coideal if ∆(I) ⊆ C ⊗ I (resp. ∆(I) ⊆ I ⊗ C).

2. a coideal if

∆(I) ⊂ I ⊗ C + C ⊗ I

and ε(I) = 0.

In the case of an ordinary algebra, A, we say that a subspace I is an ideal if it is both

a left and a right ideal. Oddly, this is not the case with a coideal. In fact, if I is a

coideal, it may be that I is neither a left nor a right coideal. For instance, consider

the polynomial ring κ[x] mentioned above. Now consider the subspace spanned by x,

namely κx. By definition, for any λx ∈ κx we have that

∆(λx) = λ(x⊗ 1 + 1⊗ x) ∈ κx⊗ κ[x] + κ[x]⊗ κx

Also, it follows straight from the definition of ε that ε(κx) = 0. Thus, κx is a coideal.

Notice, though, that ∆(λx) = x⊗ λ+ λ⊗ x is not a member of κx⊗ κ[x] or κ[x]⊗ κx.

But should I be a left and right coideal, then by Proposition 2.16

∆(I) ⊆ (C ⊗ I) ∩ (I ⊗ C) = I ⊗ I
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and is thus a subcoalgebra.

We now proceed to establish an important theorem, which reveals a particular sort of

finiteness property that is inherent to coalgebras.

Theorem 3.26 (The Fundamental Theorem of Coalgebras). Every element of a coal-

gebra C is contained in a finite dimensional subcoalgebra.

Proof. Let c be an arbitrary element in C. We want to show that c ∈ D where D is a

finite dimensional subcoalgebra (i.e. ∆(D) ⊆ D ⊗D). In this proof it will actually be

better to forego using Sweedler’s notation. If we apply ∆ to c we get a finite sum of the

form

∆(c) =
∑
i

ai ⊗ bi

Now consider the element ∆2(c) ∈ C⊗C⊗C, which is a finite sum, that can be written

as follows:

(∆⊗ id)(∆(c)) =
∑
i

∆(ai)⊗ bi (3.5)

=
∑
i

(∑
j

cj ⊗ aij
)
⊗ bi (3.6)

=
∑
i,j

cj ⊗ aij ⊗ bi (3.7)

Now because C is a vector space, it has a basis, say {ek}k∈K . We can therefore express

the cj ’s and bi’s in terms of these basis elements (also finite sums) to get

∆2(c) =
∑
i,j

(∑
k

λjkejk

)
⊗ aij ⊗

(∑
k

γikeik

)

Once we expand this out we can reindex to get something of the form (3.7) again. What

this tells us is that, from the beginning, we can assume that we can write

∆2(c) =
∑
i,j

cj ⊗ aij ⊗ bi

where the cj ’s and bi’s are linearly independent.

Take D to be the space spanned by the aij ’s. Of course, D will be a finite dimen-

sional subspace since there are only a finite number of aij ’s. Now consider the following

commuting diagram:
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C C ⊗ κ

κ⊗ C ⊗ κ

C ⊗ C C ⊗ C ⊗ C

∼

∆

∆⊗ id

ε⊗ id⊗ ε

∼

From this we get that c =
∑

i,j ε(cj)ε(bi)aij , which implies that c ∈ D. It therefore

remains to show that D is a subcoalgebra - i.e. that ∆(D) ⊆ D ⊗D. We know that

∑
i,j

∆(cj)⊗ aij ⊗ bi =
∑
i,j

cj ⊗∆(aij)⊗ bi

and because the bi’s are linearly independent, this implies that

∑
j

∆(cj)⊗ aij =
∑
j

cj ⊗∆(aij) for all i

It follows that
∑

j cj ⊗∆(aij) ∈ C ⊗C ⊗D. But the cj ’s are also linearly independent,

which implies that ∆(aij) ∈ C ⊗ D for all i, j. Using a symmetric argument one can

also show that ∆(ai,j) ∈ D ⊗ C for all i, j. So, we have found that

∆(aij) ∈ (C ⊗D) ∩ (D ⊗ C) = D ⊗D for all i, j

using Proposition 2.16 and hence ∆(D) ⊆ D ⊗D as desired.

Theorem 3.27. Let f : C → D be a coalgebra morphism. Then Im(f) is a subcoalgebra

of D and Ker(f) is a coideal in C.

Proof. It is a well known fact that Ker(f) is a κ-subspace of C, while Im(f) is a κ-

subspace of D. Since f is a coalgebra morphism, the following diagram is commutative.

C D

C ⊗ C D ⊗D

f

∆C

f ⊗ f

∆D
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Using this diagram we see that

∆D(Im(f)) = ∆D(f(C))

= (f ⊗ f)(∆C(C))

⊆ (f ⊗ f)(C ⊗ C)

= f(C)⊗ f(C)

= Im(f)⊗ Im(f)

which shows that Im(f) is a subcoalgebra in D.

The diagram also indicates that since

∆D(f(Ker(f))) = 0

then

(f ⊗ f)(∆C(Ker(f))) = 0

and using Proposition 2.17 it follows that

∆C(Ker(f)) ⊆ Ker(f ⊗ f) = Ker(f)⊗ C + C ⊗Ker(f)

Finally, since f is a coalgebra morphism we also get the following commutative diagram:

C D

κ

f

εC εD

which tells us that

εC(Ker(f)) = εD
(
f(Ker(f))

)
= 0

and thus Ker(f) is a coideal.

Having developed the idea of a coideal, we can now proceed to construct specific factor

objects, which shall be called factor coalgebras. We will also see that such objects admit

a universal property of their own.

Theorem 3.28. Let C be a coalgebra, I a coideal and π : C → C/I the canonical

projection of κ-vector spaces. Then:

(i) There exists a unique coalgebra structure on C/I such that π is a morphism of

coalgebras.
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(ii) If f : C → D is a morphism of coalgebras with I ⊆ Ker(f), then there exists a

unique morphism of coalgebras f : C/I → D for which f ◦ π = f .

Proof. (i) From the definition of a coideal, we have that

(π ⊗ π)(∆(I)) ⊆ (π ⊗ π)(I ⊗ C + C ⊗ I)

Observe that if i⊗ c+ c′ ⊗ i′ ∈ I ⊗ C + C ⊗ I, then

(π ⊗ π)(i⊗ c+ c′ ⊗ i′) = (π ⊗ π)(i⊗ c) + (π ⊗ π)(c′ ⊗ i′)

= π(i)⊗ π(c) + π(c′)⊗ π(i′)

= 0⊗ π(c) + π(c′)⊗ 0

= 0

So, (π ⊗ π)(I ⊗ C + C ⊗ I) = 0 and thus also (π ⊗ π)(∆(I)) = 0. If we view C as a

vector space, then the universal property of the factor vector space implies that there

exists a unique linear map

∆ : C/I → C/I ⊗ C/I

for which the following diagram commutes.

C C/I

C ⊗ C C/I ⊗ C/I

π

∆

π ⊗ π

∆

This map is defined in the obvious way, namely

∆ := (π ⊗ π) ◦∆ or ∆(c) :=
∑
(c)

c(1) ⊗ c(2)

where c = π(c) is the coset represented by c. We now construct the following “cube”

diagram from the coassociativity diagram for C:
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C/I C/I ⊗ C/I

C C ⊗ C

C/I ⊗ C/I C/I ⊗ C/I ⊗ C/I

C ⊗ C C ⊗ C ⊗ C

∆

∆

π

∆⊗ id

∆

∆⊗ id

π ⊗ π

∆

id⊗∆

π ⊗ π

π ⊗ π ⊗ π

id⊗∆

The top, both sides and the bottom of this diagram commute due to the commutativity

of the previous diagram for π. Also, the front commutes by the coassociativity of C and

the back commutes since π is onto. Using this diagram we see that

(∆⊗ id)(∆(c)) = (id⊗∆)(∆(c)) =
∑

c(1) ⊗ c(2) ⊗ c(3)

and hence ∆ is coassociative. Moreover, since I is a coideal, we have that ε(I) = 0 and

so can again use the universal property of factor vector spaces to get that there exists a

unique linear map ε : C/I → κ such that the following diagram commutes:

C C/I

κ

π

ε ε

Hence, for any c ∈ C we get that ε(c) = ε(c) and then

∑
(c)

ε(c(1))c(2) = π
(∑

(c)

ε(c(1))c(2)
)

= π(c) = c

and also ∑
(c)

c(1)ε(c(2)) = π
(∑

(c)

c(1)ε(c(2))
)

= π(c) = c

Thus ∑
(c)

ε(c(1))c(2) = c =
∑
(c)

c(1)ε(c(2))

which is the Sweedler way of saying that the second (counit) diagram in Definition 3.22

commutes for C/I . It follows, then, that (C/I,∆, ε) is a coalgebra and π is a coalgebra
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morphism. Furthermore, the uniqueness of the coalgebra structure on C/I for which π

is a coalgebra morphism follows from the uniqueness of ∆ and ε.

So, in case I is a coideal the map ∆ factors through a map

∆ : C/I → C/I ⊗ C/I

C C/I ⊗ C/I

C/I

π

∆ ◦ π

∆

Likewise, the counit map factors through a map

ε : C/I → κ

C κ

C/I

π

ε

ε

(ii) From the point of view of vector spaces, the universal property of factor vector spaces

implies that there exists a unique morphism of κ-vector spaces f : C/I → D such that

f ◦ π = f , defined by f(c) := f(c) for all c ∈ C. Now consider the diagram:

C/I

C D

C/I ⊗ C/I

C ⊗ C D ⊗D

π

f

∆C

∆

f

∆D

π ⊗ π

f ⊗ f

f ⊗ f
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Note that

∆D(f(c)) = ∆D(f(c))

=
∑
(c)

f(c)(1) ⊗ f(c)(2)

=
∑
(c)

f(c(1))⊗ f(c(2))

=
∑
(c)

f(c(1))⊗ f(c(2))

= (f ⊗ f)(∆(c))

which means that the back right face of the diagram commutes.

C

C/I D

κ

ϕ
π

εC

ε

f

εD

But we also can easily see, per the above diagram, that

εD(f(c)) = εD(f(c)) = εC(c) = ε(c)

and thus we have shown that f is a morphism of coalgebras.

What we can deduce from this is that coalgebras also admit a fundamental isomorphism

theorem.

Corollary 3.29 (The Fundamental Isomorphism Theorem for Coalgebras). Let

f : C → D

be a morphism of coalgebras. Then there exists a canonical isomorphism of coalgebras

between C/Ker(f) and Im(f).

Proof. By Proposition 3.27 we know that Ker(f) is a coideal of C and Im(f) is a

subcoalgebra of D. By the previous theorem
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C Im(f)

C/Ker(f)

f

π
f

we know that C/Ker(f) is a coalgebra and there exists a unique coalgebra morphism

f : C/Ker(f) → Im(f) with f(c) = f(c) for all c ∈ C. Furthermore, we know that

f and π are onto, and so, therefore f is too. Thus, we need only show that f is 1-1.

Suppose that c ∈ Ker(f). Then f(c) = 0. But f(c) = f(c) and hence c ∈ Ker(f)

thereby implying that c = 0. Therefore, Ker(f) = {0} and f is 1-1.

3.2.3 The Tensor Product of Coalgebras

One of the key underlying themes in this thesis is tensor products. We have considered

that the tensor product of vector spaces is again a vector space and the tensor product

of algebras is again an algebra. We now want to know if the same holds for coalgebras.

That is, if C and D are two κ-coalgebras, is C ⊗D a κ-coalgebra? The quick answer is,

yes, and we can see this as follows: Recall that U ⊗ V ∼= V ⊗ U as vector spaces and

(U ⊗ V ) ⊗W ∼= U ⊗ (V ⊗W ) as vector spaces. The first isomorphism is specifically

given by the “flip” or “transpose” map τU,V defined by τU,V (u⊗ v) := v ⊗ u.

Now, since C and D are each coalgebras we have the map

∆C ⊗∆D : C ⊗D → (C ⊗ C)⊗ (D ⊗D)

since ∆C and ∆D are linear. We then have the isomorphism of vector spaces

(C ⊗ C)⊗ (D ⊗D) ∼= C ⊗ (C ⊗D)⊗D

But using the twist map we get the isomorphism

id⊗ τC,D ⊗ id : C ⊗ (C ⊗D)⊗D → C ⊗ (D ⊗ C)⊗D

and then we apply the second isomorphism again to get

C ⊗ (D ⊗ C)⊗D ∼= (C ⊗D)⊗ (C ⊗D)

Composing these maps gives

(id⊗ τC,D ⊗ id) ◦ (∆C ⊗∆D) : C ⊗D → (C ⊗D)⊗ (C ⊗D)
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This will be our map ∆ for C ⊗ D. To verify the coassociativity axiom we will show

that the required diagram commutes in this context. To accomplish this, we first note

that since C and D are coalgebras individually we get the commuting diagram:

C ⊗D (C ⊗ C)⊗ (D ⊗D)

(C ⊗ C)⊗ (D ⊗D) (C ⊗ C ⊗ C)⊗ (D ⊗D ⊗D)

∆C ⊗∆D

∆C ⊗∆D

(∆C ⊗ id)⊗ (∆D ⊗ id)

(id⊗∆C)⊗ (id⊗∆D)

which is essentially a tensoring of C and D’s coassociativity diagrams. Now, using the

twist map we have the isomorphisms

(C ⊗ C)⊗ (D ⊗D) ∼= (C ⊗D)⊗ (C ⊗D)

and

(C ⊗ C ⊗ C)⊗ (D ⊗D ⊗D) ∼= (C ⊗ C)⊗ (D ⊗D)⊗ (C ⊗D)

The first isomorphism is specifically given by idC ⊗ τC,D ⊗ idD and the second by

(idC⊗C ⊗ τC,D ⊗ idD⊗D) ◦ (idC⊗C⊗D ⊗ τC,D ⊗ idD)

We therefore get the commuting square:

(C ⊗ C)⊗ (D ⊗D) (C ⊗ C ⊗ C)⊗ (D ⊗D ⊗D)

(C ⊗D)⊗ (C ⊗D) (C ⊗ C)⊗ (D ⊗D)⊗ (C ⊗D)

(∆C ⊗ id)⊗ (∆D ⊗ id)

∼

(∆C ⊗∆D)⊗ (id⊗ id)

∼

Similarly we have that

(C ⊗ C)⊗ (D ⊗D) (C ⊗D)⊗ (C ⊗D)

(C ⊗ C ⊗ C)⊗ (D ⊗D ⊗D) (C ⊗D)⊗ (C ⊗ C)⊗ (D ⊗D)

∼

(id⊗∆C)⊗ (id⊗∆D)

∼

(id⊗ id)⊗ (∆C ⊗∆D)

commutes. The final square

(C ⊗ C ⊗ C)⊗ (D ⊗D ⊗D) (C ⊗D)⊗ (C ⊗ C)⊗ (D ⊗D)

(C ⊗ C)⊗ (D ⊗D)⊗ (C ⊗D) (C ⊗D)⊗ (C ⊗D)⊗ (C ⊗D)

∼

∼

∼

∼
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commutes because the isomorphisms involved are just equivalent permutations achieved

via the twist map. That is

(IτIII) ◦ (IIIτI) ◦ (IIτII) = (IIIτI) ◦ (IτIII) ◦ (IIτII)

where I is the relevant identity map and “⊗” is suppressed for brevity.

Putting all this together implies that

C ⊗D (C ⊗D)⊗ (C ⊗D)

(C ⊗D)⊗ (C ⊗D) (C ⊗D)⊗ (C ⊗D)⊗ (C ⊗D)

∆

∆

∆⊗ id

id⊗∆

commutes, thereby showing coassociativity. The counit is defined by ε := εC ⊗ εD

(identifying κ with κ⊗κ) and the counit axiom is proved similarly. Thus, C⊗D is itself

a coalgebra.

3.2.4 The Algebra/Coalgebra Connection

The dual of a vector space determines an important connection between algebras and

coalgebras. This is where we will see the relationship between our two uses of the term

“dual”. More importantly, the following work will uncover the categorical relationship

between Alg and CoAlg in Figure 1.1.

Recall that in the construction of the tensor product of linear maps we obtained the

linear map

θ : hom(U,U ′)⊗ hom(V, V ′)→ hom(U ⊗ V,U ′ ⊗ V ′)

defined by (
θ(f ⊗ g)

)
(u⊗ v) = f(u)⊗ g(v)

We shall also make use of a generalization of Corollary 2.19, extending the specialized

version of θ to similar maps involving multiple tensor products.

Lemma 3.30. For any κ-vector spaces V1, ..., Vn the map

θ : V ∗1 ⊗ . . .⊗ V ∗n → (V1 ⊗ . . .⊗ Vn)∗

defined by

θ(f1 ⊗ . . .⊗ fn)(v1 ⊗ . . .⊗ vn) := f1(v1) · · · fn(vn)
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is injective. Moreover, if all the spaces Vi are finite dimensional, then θ is an isomor-

phism.

For our purposes we will take this for granted (see [8]).

We now make the important connection between algebras and coalgebras, via use of the

material in section 2.1.4 involving dual vector spaces.

Theorem 3.31. The dual vector space of a coalgebra is an algebra.

Proof. Let (C,∆, ε) be a coalgebra. Consider, from Corollary 2.19, the (not necessarily

isomorphic) map

θ : C∗ ⊗ C∗ → (C ⊗ C)∗

defined by

θ(φ1 ⊗ φ2)(c1 ⊗ c2) := φ1(c1)⊗ φ2(c2) := φ1(c1)φ2(c2)

Set A = C∗, ∇ = ∆∗ ◦ θ and η = ε∗ where the superscript ∗ on the linear maps ∆ and ε

indicates their transpose. To see that such a setup yields an algebra, we check that the

diagrams in the definition of algebra commute.

Since we started with a coalgebra, the coassociativity diagram commutes:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

∆⊗ id
id⊗∆

If we now take the transpose of this diagram we get

C∗ (C ⊗ C)∗

(C ⊗ C)∗ (C ⊗ C ⊗ C)∗

∆∗

∆∗

(∆⊗ id)∗

(id⊗∆)∗

which automatically commutes. But since the maps

θ : C∗ ⊗ C∗ → (C ⊗ C)∗ and θ′ : C∗ ⊗ C∗ ⊗ C∗ → (C ⊗ C ⊗ C)∗

are embedding maps, we get the commuting diagram
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C∗ ⊗ C∗ ⊗ C∗ C∗ ⊗ C∗

C∗ ⊗ C∗ C∗

∇ ⊗ id

id⊗∇

∇

∇

which is exactly the associativity diagram we need for showing that C∗ is an algebra.

For the unit diagram, we proceed similarly. First, we have that the diagram

κ⊗ C C C ⊗ κ

C ⊗ C

∼ ∼

∆
ε⊗ id id⊗ ε

commutes. Taking the transpose yields the commuting diagram

(κ⊗ C)∗ C∗ (C ⊗ κ)∗

(C ⊗ C)∗

∼

(ε⊗ id)∗

∼

(id⊗ ε)∗
∆∗

But θ : C∗⊗C∗ → (C⊗C)∗, θ′ : κ∗⊗C∗ → (κ⊗C)∗ and θ′ ◦τκ∗,C∗ : C∗⊗κ∗ → (C⊗κ)∗

are embedding maps, which implies that

κ∗ ⊗ C∗ C∗ ⊗ C∗ C∗ ⊗ κ∗

C∗

η ⊗ id id⊗ η

∇∼ ∼

is a commuting diagram. Since κ∗ ∼= κ as vector spaces under the canonical isomorphism

ψ(f) = f(1) for all f ∈ κ∗, the above diagram tells us that the unit diagram for C∗

commutes. Therefore, (C∗,∇, η) is an algebra.

From the above proof, the reader should especially note how taking the dual allows for

a canonical way to reverse arrows in this context, which gives the connection between

each duality. We therefore have a functor CoAlg ∗→ Alg, where a coalgebra C is sent to

the algebra C∗ and a coalgebra morphism f is sent to its transpose f∗.
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Given a coalgebra C, the actual multiplication in the algebra C∗ is to be understood as

follows. For α, β ∈ C∗, the product αβ ∈ C∗ is the map given by

αβ(c) = (α⊗ β)(∆(c))

=
∑
(c)

α(c(1))β(c(2))

Now, for any κ-algebra A, the multiplication is completely determined by the products of

the basis elements. For example, if {b1, b2, ..., bn} is a basis for A we define the structure

constants (or structure coefficients) cijk by

bibj =
n∑
k=1

cijkbk

If we now start with a finite dimensional coalgebra C with basis {c1, c2, ..., cn} then the

dual space C∗ has dual basis {c∗1, c∗2, ..., c∗n}. Since the dimension is finite we may identify

C∗ ⊗ C∗ with (C ⊗ C)∗ and hence the multiplication for C∗ is ∇ = ∆∗, which means

that

∇(c∗r ⊗ c∗s) = (c∗r ⊗ c∗s) ◦∆

If applied to a basis element of C, say ck, one gets (c∗r ⊗ c∗s)(∆(ck)) and so we consider

∆(ck) as an element of C ⊗ C. We write

∆(ck) =
∑
i,j

λijkci ⊗ cj

Then we have

∇(c∗r ⊗ c∗s)(ck) = (c∗r ⊗ c∗s)
(∑

i,j

λijkci ⊗ cj
)

=
∑
i,j

λijkc
∗
r(ci)⊗ c∗s(cj)

=
∑
i,j

λijkc
∗
r(ci)c

∗
s(cj)

= λrsk

This means that the multiplication in C∗ of basis elements is given by

c∗rc
∗
s =

∑
k

λrskc
∗
k

where the λrsk’s are the structure constants for C∗.
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Now, the unity of C∗ is obtained by

1κ 7→ 1∗κ 7→ ε∗(1∗κ) = 1∗κ ◦ ε

since η = ε∗ once we identify κ∗ with κ. Considered as an element of C∗, this unity acts

on the basis of C by (1∗κ ◦ ε)(b`) = ε(b`). This means that the unit of C∗, as an algebra,

is the functional which sends bi 7→ ε(bi) for all i, so 1C∗ = ε.

Example 3.12 (Trigonometric Coalgebra). Let’s look again at the interesting case of

the trigonometric coalgebra, call it C. As a vector space it has basis {c, s} and hence is

of dimension 2. Recall that the coalgebra structure is given by

∆(c) = c⊗ c− s⊗ s

∆(s) = s⊗ c+ c⊗ s

ε(c) = 1, ε(s) = 0

Since the dimension is finite, the dual vector space, C∗, is isomorphic to C as vector

spaces. Accordingly, C∗ has dual basis {c∗, s∗} and by the above theorem is an algebra.

Note right away that c∗ is the element of C∗ := hom(C, κ) such that c∗(c) = 1 and

c∗(s) = 0, while s∗ is the element such s∗(s) = 1 and s∗(c) = 0.

Now, η := ε∗ and once we identify κ∗ with κ we see that

η(1) = ε∗(1∗) = 1∗ ◦ ε = ε

Thus, η(1)(c) = 1 and η(1)(s) = 0 and therefore η(1) = c∗. This means that c∗ is

actually the identity element for C∗, which tells us immediately that

c∗ · c∗ = c∗, c∗ · s∗ = s∗ · c∗ = s∗

c∗ · s∗ − s∗ · c∗ = 0, c∗ · s∗ + s∗ · c∗ = 2s∗

where we are using “·” as short hand for ∇. Let us now see what other relations hold

within this algebra. Using our work with the structure constants we find

c∗ · c∗ = λccss
∗ + λcccc

∗ = c∗

implying that λccs = 0 and λccc = 1. As for s∗ · s∗ we have

s∗ · s∗ = λssss
∗ + λsscc

∗



Chapter 3. Algebras and Coalgebras 86

as an element of C∗ where

∆(s) = λsss(s⊗ s) + λscs(s⊗ c) + λcss(c⊗ s) + λccs(c⊗ c)

But because ∆(s) = s ⊗ c + c ⊗ s it must be that λsss = λccs = 0 and λscs = λcss = 1.

Likewise, because ∆(c) = c⊗c−s⊗s we get that λssc = −1, λccc = 1 and λscc = λcsc = 0.

We therefore find that s∗ · s∗ = −c∗ = −1C∗.

Let us agree to write c∗ · c∗ and s∗ · s∗ respectively as (c∗)2 and (s∗)2. Then we see that

(c∗)2 + (s∗)2 = 0 and (c∗)2 − (s∗)2 = 2c∗

We know of something familiar that behaves the same way, namely i2 = −1. Thus, C∗,

remarkably, is isomorphic, as an algebra, to κ[i] with i2 = −1 or κ[x]/〈x2 + 1〉.

Conversely, suppose we start with C, which has R-basis {1, i}. Then the dual space C∗

has dual basis {1∗, i∗}. The structure constants are

c111 = c1ii = ci1i = 1, cii1 = −1

c11i = c1i1 = ci11 = ciii = 0

These determine the coalgebra structure. We have

∆(1∗) = c1111∗ ⊗ 1∗ + c1i11∗ ⊗ i∗ + ci11i
∗ ⊗ 1∗ + cii1i

∗ ⊗ i∗

= 1∗ ⊗ 1∗ − i∗ ⊗ i∗

∆(i∗) = c11i1∗ ⊗ 1∗ + c1ii1∗ ⊗ i∗ + ci1ii
∗ ⊗ 1∗ + ciiii

∗ ⊗ i∗

= 1∗ ⊗ i∗ + i∗ ⊗ 1∗

Furthermore, ε(1∗) = 1 and ε(i∗) = 0 since 1C = 1 · 1 + 0 · i. If we now set 1∗ := c and

i∗ := s we find that C∗ is the trigonometric coalgebra.

Suppose that C is any coalgebra. Then we now know that its dual C∗ := hom(C, κ) is

an algebra. Let us now explore the connection between ideals of C∗ and sub-coalgebras

of C. For any subspace L of C∗ define an associated set L⊥ by

L⊥ := {c ∈ C : `(c) = 0 for all ` ∈ L}

It is easy to see that this set is a subspace of C.
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Proposition 3.32. If L is an ideal of C∗, then L⊥ is a sub-coalgebra of C.

Proof. It needs to be shown that ∆(L⊥) ⊆ L⊥⊗L⊥. Let c ∈ L⊥. Then c ∈ C and hence

∆(c) ∈ C ⊗C. Now, every element of the tensor product C ⊗C can be expressed in the

form
n∑
i=1

ai ⊗ bi

where {ai} and {bi} are linearly independent sets (see Theorem 2.15). We can therefore

write

∆(c) =
n∑
i=1

ai ⊗ bi

Now, {ai} and {bi} can be considered bases of the vector subspaces Span(a1, ..., an)

and Span(b1, ..., bn) of C respectively. Therefore, we ascertain dual bases {a∗i } and {b∗i }
respectively, which we can take to consist of elements of C∗ and where the reader should

recall that

a∗i (aj) = δij and b∗i (bj) = δij

Let us suppose that ∆(c) /∈ L⊥ ⊗ L⊥. Then there exist ar or bs such that `(ar) 6= 0 or

`′(bs) 6= 0 for some `, `′ ∈ L. Now, since L is an ideal, it follows that a∗i · `′ ∈ L for all i

and ` · b∗i ∈ L for all i. Therefore, it must be that

a∗i · `′(c) = 0, ` · b∗i (c) = 0 for all i

Without loss of generality, suppose `′(bs) 6= 0. Then, since the multiplication in C∗ is

given by ∆∗ we have

0 = a∗s · `′(c)

= (a∗s ⊗ `′)(∆(c))

= (a∗s ⊗ `′)
( n∑
i=1

ai ⊗ bi
)

=
n∑
i=1

a∗s(ai)⊗ `′(bi)

= 1⊗ `′(bs)

= 1`′(bs) = `′(bs)

which is a contradiction, since `′(bs) 6= 0. Hence, each bs is in L⊥, and likewise, each ar
must be in L⊥ and our assumption that ∆(c) /∈ L⊥ ⊗ L⊥ is therefore false. Therefore,

L⊥ must be a sub-coalgebra of C.
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Suppose we now start with a subspace D of C. Then we again construct an associated

space D⊥ defined by

D⊥ := {f ∈ C∗ : f(d) = 0 for all d ∈ D}

In terms of vector spaces, this is also known as the annihilator of D.

Proposition 3.33. For any subspace D of C we have

D⊥⊥ = D

Proof. By definition we know that

D⊥⊥ := {c ∈ C : f(c) = 0 for all f ∈ D⊥}

Thus, it is clear that D ⊆ D⊥⊥. Suppose, however, that D⊥⊥ 6= D. Then there is

b ∈ D⊥⊥ such that b /∈ D.

From linear algebra we know that any subspace of a vector space has a complement.

Thus, as vector spaces we have

C = D ⊕ T

for some subspace T of C. As an element of C, therefore, we can write b = d + t for

some d ∈ D and non-zero t ∈ T . Now there exists g ∈ C∗ such that g(t) 6= 0, but

g(D) = 0. So, g ∈ D⊥, which implies that g(b) = 0. But then we also have that

g(b) = g(d+ t) = g(d) + g(t) = g(t) 6= 0, which is a contradiction. Thus, we must have

that D⊥⊥ = D after all.

Proposition 3.34. D is a sub-coalgebra of C if and only if D⊥ is an ideal of C∗.

Proof. Suppose D is a sub-coalgebra of C. Clearly D⊥ is a subspace of C∗. Let f ∈ D⊥

and g ∈ C∗ and consider the product map f · g. For any d ∈ D we have

(f · g)(d) = (f ⊗ g)(∆(d))

= (f ⊗ g)
(∑

(d)

d(1) ⊗ d(2)
)

=
∑
(d)

f(d(1))⊗ g(d(2))

= 0 [since f(d(1)) = 0]

Similar reasoning shows that (g · f)(d) = 0 for all d ∈ D, and hence, f · g, g · f ∈ D⊥. It

follows that D⊥ is an ideal of C∗.
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The converse holds as a consequence of Proposition 3.32 and Proposition 3.33.

Proposition 3.35. We have the following isomorphism of algebras:

C∗

D⊥
∼= D∗

Proof. Since D is a sub-coalgebra of C we can think of the coalgebra D as embedded

in C. In other words, we have an injective coalgebra map i : D → C. By taking the

transpose of i we get a surjective algebra map i∗ : C∗ → D∗ and hence

Im(i∗) = D∗

Now, it is clear that f ∈ D⊥ is equivalent to f restricting to the zero map on D. Thus,

D⊥ ⊆ Ker(i∗). Conversely, if g ∈ Ker(i∗), then i∗(g) = 0D entailing that g ◦ i = 0D.

This implies that g(D) = 0 and hence that g ∈ D⊥. So

D⊥ = Ker(i∗)

Therefore, by the First Isomorphism Theorem and the fact that i∗ is an algebra map

C∗

D⊥
∼= D∗ as algebras

Proposition 3.36. If C is a finite dimensional coalgebra, then for any subspace L of

C∗

L⊥⊥ = L

Proof. Since C is finite dimensional we have that

C ∼= C∗∗ as vector spaces

If we now identify C with C∗∗ we get, by Proposition 3.33, that L⊥⊥ = L for any

subspace L.

What we have so far shown is that ⊥ acts like a map, which we denote by Perp. In

other words, we have

Perp(D) = D⊥, P erp(L) = L⊥
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Notice, too, that Perp is its own inverse and hence we get an order reversing (in the

sense of reversing inclusion) bijection:

{sub-coalgebras of C} ↔ {ideals of C∗}

Interestingly, although algebras and coalgebras are duals of one another, it is not gener-

ally true that the dual vector space of an algebra carries a natural coalgebra structure.

This is due to the failure of the canonical map θ : U∗ ⊗ V ∗ → (U ⊗ V )∗ to always be

invertible. To circumvent this issue, we must restrict ourselves to the finite dimensional

case, for then, θ will be an isomorphism.

Theorem 3.37. The dual vector space of a finite-dimensional algebra has a coalgebra

structure.

Proof. Let (A,∇, η) be a finite-dimensional algebra. Then the map

θ : A∗ ⊗A∗ → (A⊗A)∗

is an isomorphism, which allows us to define ∆ by

∆ := θ−1 ◦ ∇∗

Also, set ε := η∗. Now because A is an algebra we have the commuting diagram

A⊗A⊗A A⊗A

A⊗A A

∇⊗ id

id⊗∇

∇

∇

Like before, we can take the transpose of this diagram to get another commuting dia-

gram, namely

(A⊗A⊗A)∗ (A⊗A)∗

(A⊗A)∗ A∗

(∇⊗ id)∗

(id⊗∇)∗ ∇∗

∇∗

Since we are working in the finite dimensional case, we have the nice result that

(A⊗A⊗A)∗ ∼= A∗ ⊗A∗ ⊗A∗ and (A⊗A)∗ ∼= A∗ ⊗A∗
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as vector spaces. Under these identifications, this last commuting diagram actually

becomes the coassociativity diagram for A∗.

The same holds true for establishing the counit axiom. We start with the commuting unit

diagram for A and take its transpose. Using the same isomorphisms we get the desired

commuting counit diagram for A∗. This shows that (A∗, θ−1 ◦ ∇∗, η∗) is a coalgebra.

While the proof of the previous theorem is elegant, it doesn’t show the structure of

specific elements. To see the “nuts and bolts” of what the above theorem means, let

us consider two concrete examples. For both the forthcoming examples we should point

out again that because we will be working with finite dual vector spaces, the map

θ : A∗ ⊗A∗ → (A⊗A)∗ is an isomorphism. As in our proof, the coproduct is:

∆ := θ−1 ◦ ∇∗

which we can simply think of as ∆ = ∇∗ after identifying A∗ ⊗A∗ with (A⊗A)∗. The

counit, again, is ε := ψ ◦ η∗ where ψ is the canonical isomorphism from κ∗ to κ, that is,

ψ(f) := f(1) for f ∈ κ∗.

Example 3.13. First, take the finite dimensional matrix algebra A := M2(κ). This

algebra is 4-dimensional with basis{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}

For ease, let us denote this basis by {E11, E12, E21, E22}, where the subscripts indicate

the position of the 1 entry. The dual vector space A∗ is also 4-dimensional, having dual

basis {f11, f12, f21, f22} (using f instead of E∗). These maps are defined by

fij(Ek`) :=

{
1 if i = k and j = `

0 otherwise
= δikδj`

We would like to understand the coalgebra structure on A∗ guaranteed by Theorem 3.37.

Note first that the algebra structure of M2(κ) is given by EijEk` = δj,kEi`. Once we

identify A∗ ⊗A∗ with (A⊗A)∗ we get

∆(fij) = ∇∗(fij) = fij ◦ ∇
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Now because of this algebra structure, the structure constants must be of the form

λijk`,rs =

{
1 if j = k, i = r and ` = s

0 otherwise

Thus,

∆(frs) =
∑

λijk`,rsfij ⊗ fk`

=
∑

frk ⊗ fks

In this case, there is no need for the summation; though, it shows that the same argument

works for higher dimensions. We therefore define

∆(fij) := fi1 ⊗ f1j + fi2 ⊗ f2j

and with this in hand, one can show, using the counit axiom, that ε must be defined by

ε(fij) := δij

We then extend these by linearity to the rest of A∗.

More generally, when Mn(A)∗ is identified with Mn(A), ε becomes the trace map. So,

in this case, if f =
∑2

i,j=1 λijfij, then

ε(f) = ε
( 2∑
i,j=1

λijfij

)

=
2∑

i,j=1

λijε(fij)

=
2∑

i,j=1

λijδij

= λ11 + λ22

= tr(f)

where f is regarded as the matrix

[
λ11 λ12

λ21 λ22

]
.

As indicated, the example just considered is a special case, which can be extended to the

more general algebra Mn(κ). That is, since Mn(κ) is finite dimensional for any positive

integer n, the dual vector space of Mn(κ) has a coalgebra structure. This structure is

understood according to similar reasoning to that used above.
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Example 3.14. Let A := κ[x]/〈g(x)〉 where g(x) is some monic degree n polynomial.

The dual vector space, then, is A∗ = hom(κ[x]/〈g(x)〉, κ) and A ∼= A∗. Note that A

has basis {1, x, x2, ..., xn−1} and so A∗ has basis {f0, f1, ..., fn−1} where fi(xj) := δij.

We also know that the tensor product A∗ ⊗ A∗ will have basis {fi ⊗ fj}i,j. Thus, for

arbitrary f ∈ A∗ we will have ∆(f) =
∑

i,j λijfi ⊗ fj. But since we have given the

general definition of ∆ to be θ−1 ◦ ∇∗ we also have

∆(f) = (θ−1 ◦ ∇∗)(f)

= θ−1(f ◦ ∇)

Next, let us consider what this does to a basis tensor xk ⊗ x` ∈ A⊗A. We have

θ−1((f ◦ ∇))(xk ⊗ x`) = f(∇(xk ⊗ x`))

= f(xk+`)

But also

∆(f)(xk ⊗ x`) =
∑
i,j

λij(fi ⊗ fj)(xk ⊗ x`)

=
∑
i,j

λijfi(xk)⊗ fj(x`)

=
∑
i,j

λijfi(xk)fj(x`)

=
∑
i,j

λijδikδj`

= λk`

so we can equate f(xk+`) and λk`. Putting this all together allows us to write

∆(f) =
∑
i,j

f(xi+j)fi ⊗ fj

At this point we must address an issue, which arises when i + j becomes too large. To

simplify matters, examine ∆(fk). By the formula for ∆ we have

∆(fk) =
∑
i,j

fk(xi+j)fi ⊗ fj

=
∑
i,j

δk,i+jfi ⊗ fj

Since we are factoring out an arbitrary degree n monic polynomial g, we can only use

δk,i+j for i+ j < n. In case i+ j ≥ n we need something that will efficiently reveal what
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is happening. Suppose g(x) = a0 + a1x + . . . + an−1x
n−1 + xn. Then the companion

matrix of g is defined to be

Mg :=



0 0 0 . . . −a0

1 0 0 . . . −a1

1 0 . . . −a2

1
...

© . . .

1 −an−1


We can associate each of the columns of Mg, in a canonical way, with a basis element

of A. First, we make the assignment

1↔ e0 =



1

0

0
...

0


then

x↔ e1 =



0

1

0
...

0


, x2 ↔ e2 =



0

0

1
...

0


, ..., xn ↔ en =



−a0

−a1

−a2

...

−an−1


For any x` one can find its coefficients with respect to the basis {1, x, x2, ..., xn−1} by

examining the first column of M `
g . For example,

x2 = 0 · 1 + 0 · x+ 1 · x2 + 0 · x3 + . . .+ 0 · · ·xn−1

If we then compute M2
g we will find that e2 has shifted to the first column position and

e2 contains the coefficients just mentioned. Note further that if we compute Mn
g , then

the first column will be en, which contains the coefficients of xn with respect to the basis

of A, and is also what we find from solving g(x) = 0 for xn. We can also compute the

specific coefficient for any xk ∈ {1, x, x2, ..., xn−1} in x`. It is given by

etkM
`
ge0, [t indicates transpose]
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Thus, for i + j ≥ n we have that fk(xi+j) = etkM
i+j
g e0, which means that we should

actually write

∆(fk) =
∑
i,j

(etkM
i+j
g e0)fi ⊗ fj

For the counit, since ε = ψ ◦ η∗, we find

ε(fk) = (ψ ◦ η∗)(fk)

= ψ(η∗(fk))

= ψ(fk ◦ η)

= (fk ◦ η)(1)

= fk(η(1))

= fk(1) = δk0

which is what we would find using the counit diagram.

In the generic case, for finite dimensional A∗ with basis {b∗1, b∗2, ..., b∗n}, since ∆ = ∇∗ we

have that ∆(b∗` ) = b∗` ◦ ∇. Thus

∆(b∗` )(bi ⊗ bj) = b∗` (∇(bi ⊗ bj))

= b∗` (bibj)

= b∗`

(∑
k

cijkbk

)
=
∑
k

cijkb
∗
` (bk)

= cij`

So the structure constants of the finite dimensional algebra A are also structure constants

for the coalgebra A∗, since we can now write

∆(b∗k) =
∑
i,j

cijkb
∗
i ⊗ b∗j

In this context, perhaps we can call them co-structure constants or structure co-constants.

Theorem 3.37 raises an interesting question. Essentially, it says that any finite-dimensional

algebra can also be given a coalgebra structure via the vector space isomorphism A ∼= A∗.

This means we can think of the space either as an algebra or as a coalgebra. But one

might then wonder whether these structures are compatible in a natural way. The answer

often turns out to be yes and we will talk about such structures in the next chapter.
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It would still be nice to be able to associate a coalgebra, in a natural way, to any algebra

A. Fortunately, we can do this as long as we resign ourselves to defining the coalgebra

on a particular subspace of A∗. This subspace is

A◦ = {f ∈ A∗ : Ker(f) contains an ideal of finite codimension}

where a subspace W of a vector space V has finite codimension if dim(V/W ) is finite.

It would be prudent to at least quickly verify that A◦ is actually a subspace of A∗.

Toward this end, note that if W and U are subspaces of finite codimension in V , then

W ∩ U will likewise have finite codimension, since there exists an injective morphism

V/(W∩U)→ V/W×V/U . So, if f, g ∈ A◦, then Ker(f)∩Ker(g) ⊆ Ker(f+g) implying

that f + g ∈ A◦. Likewise, αf ∈ A◦, for α ∈ κ, f ∈ A◦, since Ker(f) ⊆ Ker(αf).

This subspace is known as the finite dual of the algebra A. The finite dual has a natural

coalgebra structure, but to show this requires a bit of preliminary work. For a complete

treatment of the finite dual see [10]. Here it will be sufficient to simply consider a useful

example.

Consider the polynomial algebra in one indeterminate κ[x]. This algebra is infinite

dimensional with standard basis {1, x, x2, ...}. The “dual” elements 1̂, x̂, x̂2, ... defined

by

x̂i(xj) = δij

are in κ[x]◦, since for each x̂i, Ker(x̂i) contains the ideal generated by xi+1 and κ[x]/〈xi+1〉
is finite dimensional. The set {1̂, x̂, x̂2, ...} acts as a dual basis for κ[x]◦.

Now, because xixj = xi+j in κ[x], then xixj =
∑

k cijkx
k tells us that the structure

constants are

cijk = δi+j,k

and therefore, the coalgebra structure is given by a coproduct:

∆(x̂k) =
∑
ij

cijkx̂
i ⊗ x̂j

=
∑
i+j=k

x̂i ⊗ x̂j

and counit determined by (ε⊗ id)(∆(x̂k)) or equivalently by (id⊗ ε)(∆(x̂k)):

(ε⊗ id)(∆(x̂k)) = (ε⊗ id)
( ∑
i+j=k

x̂i ⊗ x̂j
)

=
∑
i+j=k

ε(x̂i)⊗ x̂j
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This implies that ε(x̂i) = δi0, which is the same as η∗.

We can transfer this coalgebra structure to κ[x] by identifying x̂i with xi. The coproduct,

then, is

∆(xk) =
∑
i+j=k

xi ⊗ xj

and the counit ε(xi) = δi0.

In Example 3.11 we introduced, out of thin air, a coalgebra structure on κ[x]. Our

work here has produced a similar, albeit different, coalgebra structure for κ[x]. In some

sense, though, this construction now motivates the definition used in that example,

since we need only add in the correct binomial coefficients to recover the coproduct

∆(xn) = (x⊗ 1 + 1⊗ x)n.

Taking the finite dual now gives us the means to go from Alg to CoAlg, thereby es-

tablishing the connection in Figure 1.1. Next, we shall consider how the dual gives a

contravariant equivalence between more specific objects in these categories.

3.2.5 Co-Semi-Simple Coalgebras

Definition 3.38 (Simple Coalgebra). Let C be a coalgebra. Then C is said to be simple

if it has no proper sub-coalgebras.

An easy, straightforward example of such a coalgebra is afforded by any one dimensional

coalgebra.

Definition 3.39 (Co-Semi-Simple Coalgebra). Let C be a coalgebra. Then C is said

to be co-semi-simple if it is a direct sum of simple sub-coalgebras.

Proposition 3.40. Any simple coalgebra is finite dimensional.

Proof. Suppose C is a simple coalgebra. Let c ∈ C be a non-zero element of C. Then,

by the Fundamental Theorem of Coalgebras (see Theorem 3.26) c is contained in a finite

dimensional subcoalgebra C ′ of C. But C is simple and therefore C ′ = C. Thus, C is

finite dimensional.

Theorem 3.41. If C is a simple coalgebra, then C∗ is a simple algebra.

Proof. In the previous section we showed that sub-coalgebras of C are in bijective corre-

spondence to ideals of C∗. But since C is simple it has no proper sub-coalgebras. Thus,

there are no corresponding non-trivial proper ideals of C∗ and hence C∗ is simple.
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Corollary 3.42. C is a finite-dimensional co-semi-simple coalgebra if and only if C∗ is

a finite-dimensional semi-simple algebra.

Proof. If C is a finite-dimensional co-semi-simple coalgebra, then, by definition

C =
⊕
i

Ci

where each Ci is a simple sub-coalgebra. Since C is finite dimensional taking the dual

yields

C∗ =
⊕
i

C∗i

where each C∗i is now a simple algebra. Therefore, C∗ is semi-simple.

The converse is established in the same manner. Simply start with a finite-dimensional

semi-simple algebra A. Then A =
⊕

iAi where each Ai is simple. By taking the

dual we get A∗ =
⊕

iA
∗
i . Since each Ai has no non-trivial proper ideals, there are no

corresponding proper sub-coalgebras in A∗i . Thus, each A∗i is a simple coalgebra and

hence A∗ is co-semi-simple.

Proposition 3.43. Any simple, complex co-commutative coalgebra C is one dimen-

sional.

Proof. Suppose C is a simple complex co-commutative coalgebra. By Proposition 3.40

C must be finite dimensional. Furthermore, by Theorem 3.41 and the fact that C is co-

commutative, C∗ is a finite dimensional simple commutative algebra. These properties

imply that

C∗ ∼=
1∏
i=1

C = C as C-algebras

which further implies that C ∼= C as vector spaces. Therefore, C is a one-dimensional

complex coalgebra.

What this section shows is that taking duals yields a contravariant functor from the cate-

gory of finite-dimensional co-semi-simple coalgebras to the category of finite-dimensional

semi-simple algebras. In fact, what we have is a contravariant equivalence

{f.d. co-semi-simple coalgebras} ∼= {f.d. semi-simple algebras}

At the beginning of this chapter we concluded that

FinSetop ∼= {f.d., commutative C-algebras with no nilpotent elements}
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Note that finite-dimensional C-algebras with no nilpotent elements are the same as

finite-dimensional commutative semi-simple C-algebras. So, what we have seen in this

section is what happens when we drop the commutativity requirement.



Chapter 4

Bialgebras and Hopf Algebras

While algebras and coalgebras are separately very interesting, the aim of this chapter is

to explore a more intimate setting where algebra and coalgebra structures are “married”

into a single structure called a bialgebra. Using these as a springboard, we then turn

to the most important objects in our study called Hopf Algebras. They are the “most”

important because, as we shall see later, quantum groups are a special kind of Hopf

Algebra.

Comparatively speaking, Hopf Algebras are a neoteric phenomenon. Their mathematical

origins trace back to the study of algebraic topology and algebraic group theory. The

name “Hopf Algebra” (technically algebre de Hopf ) was coined by Armand Borel in

1953 in honor of Heinz Hopf and his work in the 1940’s. The actual definition of a Hopf

Algebra went through several revisions as various mathematicians developed the theory.

Although an interesting study in its own right, we shall here be concerned only with the

contemporary meaning of the term.

4.1 Bialgebras

Even more interesting than being an algebra or coalgebra alone is to possess both struc-

tures “simultaneously” - i.e. in a compatible way. This means that a vector space H

is at once an algebra (H,∇, η), and a coalgebra (H,∆, ε), where some compatibility

condition exists on the structure maps ∇, η,∆, ε. It is to this compatibility that we now

turn.

The following theorem is key to the definition of a bialgebra and expresses the compat-

ibility we require. To prove it, we equip H ⊗H with the structures of a tensor product

of algebras and a tensor product of coalgebras.

100
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Theorem 4.1. The following two statements are equivalent.

1. The maps ∇ and η are morphisms of coalgebras.

2. The maps ∆ and ε are morphisms of algebras.

Proof. With regards to (1), note that ∇ can be a morphism of coalgebras if and only if

the following diagrams commute:

H ⊗H H

H ⊗H ⊗H ⊗H

H ⊗H ⊗H ⊗H H ⊗H

∇

∆⊗∆

id⊗ τ ⊗ id

∇⊗∇

∆

H ⊗H H

κ⊗ κ

κ κ

∇

ε⊗ ε

∼

id

ε

Similarly, for η to be a morphism of coalgebras it is necessary and sufficient that the

following two diagrams commute:

κ H

κ⊗ κ H ⊗H

η

∼

η ⊗ η

∆

κ H

κ

η

id ε

Looking at (2), by definition, ∆ is a morphism of algebras if and only if the following

diagrams commute:

H ⊗H H ⊗H ⊗H ⊗H

H H ⊗H

∆⊗∆

∇

∆

∇H⊗H

κ H

H ⊗H

η

ηH⊗H ∆

Compare the first diagram here to the first diagram for ∇. These will be equivalent

provided that ∇H⊗H = (∇ ⊗ ∇) ◦ (id ⊗ τ ⊗ id). We implicitly showed this when we

addressed the tensor product of algebras earlier and defined the product by

(a⊗ b) · (c⊗ d) = ac⊗ bd

The second diagram for ∆ is clearly equivalent to the first diagram for η.
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Note, too, that ε is a morphism of algebras if and only if the second diagram for ∇ and

the second diagram for η commute (ηκ = id). The equivalence of (1) and (2), therefore,

is clear.

This result allows us to define our new structure.

Definition 4.2 (Bialgebra). A bialgebra over a field κ is a quintuple (H,∇, η,∆, ε)
where (H,∇, η) is a κ-algebra and (H,∆, ε) is a κ-coalgebra verifying the equivalent

conditions of theorem 4.1.

Despite having two equivalent ways to check for a bialgebra, the second condition is

generally easiest and, therefore, most commonly used. In a more practical format, the

diagrams tell us that for ∆ and ε to be algebra morphisms requires

∆(hg) = ∆(h)∆(g), ε(hg) = ε(h)ε(g) (4.1)

∆(1) = 1⊗ 1, ε(1) = 1 (4.2)

for all h, g ∈ H. We can also express the condition that ∆ is an algebra morphism in

Sweedler notation. Let h, g ∈ H. Then

∆(hg) =
∑
(hg)

(hg)(1) ⊗ (hg)(2)

and

∆(h)∆(g) =
(∑

(h)

h(1) ⊗ h(2)
)(∑

(g)

g(1) ⊗ g(2)
)

=
∑

(h)(g)

h(1)g(1) ⊗ h(2)g(2)

Therefore, if ∆ is an algebra morphism, then

∑
(hg)

(hg)(1) ⊗ (hg)(2) =
∑

(h)(g)

h(1)g(1) ⊗ h(2)g(2)

Definition 4.3 (Bialgebra Morphism). Let B and B′ be two κ-bialgebras. A κ-linear

map f : B → B′ is called a morphism of bialgebras if it is simultaneously a morphism of

algebras and a morphism of coalgebras between the underlying algebras and coalgebras

respectively.

We now have our category BiAlg from Figure 1.1. As always, whenever we are able to

create a new category of objects, we are interested in how to obtain factor objects. For

factor bialgebras we have the following theorem:
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Theorem 4.4. Let B be a bialgebra, and I a κ-subspace of B which is an ideal in

the underlying algebra and a coideal in the underlying coalgebra. Then the structures

of factor algebra and of factor coalgebra on B/I define a bialgebra, and the canonical

projection π : B → B/I is a bialgebra morphism. Moreover, if the bialgebra B is

commutative (resp. cocommutative), the factor bialgebra B/I is also commutative (resp.

cocommutative).

Proof. Since B is a bialgebra, it is, by definition, compatibly both an algebra and a

coalgebra. Because I is an ideal of (B,∇, η) we know, by Example 3.6, that B/I is a

(uniquely determined) algebra and that π : (B,∇, η) → B/I is an algebra morphism.

Likewise, because I is also a co-ideal of (B,∆, ε) we know, by Theorem 3.28, that B/I

is a (uniquely determined) coalgebra with π : (B,∆, ε) → B/I a coalgebra morphism.

Since both structures are unique, our task lies in verifying that these two structures are

compatible. That is, we must show that ∆ and ε (for B/I) are algebra morphisms. Let’s

start with ∆, which, in the quotient coalgebra case, we denoted by ∆. The goal is to

show that

B/I ⊗B/I B/I ⊗B/I ⊗B/I ⊗B/I

B/I B/I ⊗B/I

∆⊗∆

∇

∆

∇B/I⊗2

commutes. To see that it does, consider the following diagram:

B/I ⊗B/I B/I ⊗B/I ⊗B/I ⊗B/I

B ⊗B B ⊗B ⊗B ⊗B

B/I B/I ⊗B/I

B B ⊗B

∆⊗∆

π ⊗ π

∇
∇B/I⊗2

π ⊗ π ⊗ π ⊗ π

∆⊗∆

∇
∆

π

∆

π ⊗ π

∇B⊗2

Note that the front face commutes, since ∆ is an algebra morphism. The left and bottom

faces commute because π is an algebra morphism and a coalgebra morphism. Also, the

right face commutes, since π⊗π will also be an algebra morphism. Finally, the top face

commutes, since it is essentially tensoring the coalgebra morphism diagram of π (i.e. the
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bottom face) with itself. Thus, since all these faces commute, the back face is forced to

commute as well, which is what we wanted.

To finish showing that ∆ is an algebra morphism we also need

B/I B/I ⊗B/I

κ

∆

η ηB/I⊗2

to commute. Again, to see that it does, consider the following diagram:

B B ⊗B

κ

B/I B/I ⊗B/I

∆

π

ηB ηB⊗2

ηB/I ηB/I⊗2

π ⊗ π

∆

Now, the upper triangle commutes because ∆ is an algebra morphism. Likewise, the

left and right triangles commute, since π and π⊗ π are algebra morphisms. Finally, the

overall square commutes on account of π also being a coalgebra morphism. Therefore,

the lower triangle is forced to commute and ∆ is an algebra morphism.

The case for ε is demonstrated similarly.

Due to the connection established between algebras and coalgebras by taking duals, we

get the following result for bialgebras.

Proposition 4.5. Let B be a finite-dimensional bialgebra. Then B∗ is a bialgebra

with algebra structure which is dual to the coalgebra structure of B and with coalgebra

structure which is dual to the algebra structure of B. The bialgebra B∗ is called the dual

bialgebra of B.

Proof. The proof here is fairly straightforward. One simply has to apply ∗ to the vector

spaces and linear transformations. This reverses all arrows while preserving commuta-

tivity of diagrams. The condition of finite dimensionality is needed in order to substitute

(B⊗B)∗ and (B⊗B⊗B)∗ with B∗⊗B∗ and B∗⊗B∗⊗B∗ respectively. Finally, since
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∗ converts algebra morphisms to coaglebra morphisms and vice versa, the desired result

holds.

We now expand upon our work with the tensor algebra, which, as already mentioned,

is one of the most important examples in this thesis. Here we will show that it is also a

bialgebra. To motivate this, let V be a vector space and consider the map

V → T (V )⊗ T (V ), v 7→ 1⊗ v + v ⊗ 1

By Theorem 3.18 this extends uniquely to an algebra morphism

T (V )→ T (V )⊗ T (V )

which will be our coproduct ∆. The map ε(v) = 0 extends to T (V ) in similar fashion.

Example 4.1 (Tensor Bialgebra). Given a vector space V , there exists a unique bialge-

bra structure on the tensor algebra T (V ) such that

∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0

for any v ∈ V . This bialgebra structure is cocommutative and for all v1, ..., vn ∈ V we

have

ε(v1 · · · vn) = 0

and

∆(v1 · · · vn) = 1⊗ v1 · · · vn +
n−1∑
p=1

∑
σ

vσ(1) · · · vσ(p) ⊗ vσ(p+1) · · · vσ(n) + v1 · · · vn ⊗ 1

where σ runs over all permutations of the symmetric group Sn such that

σ(1) < σ(2) < ... < σ(p) and σ(p+ 1) < σ(p+ 2) < ... < σ(n)

Such a permutation σ is called a (p, n− p)-shuffle.

Proof Sketch. We have already shown that the maps ∆ and ε are unique. To show the

result for ∆(v1 · · · vn) one can use induction, but we shall simply illustrate the situation

by computing a few examples. Consider, for instance, ∆(v1v2):

∆(v1v2) = ∆(v1)∆(v2)

= (1⊗ v1 + v1 ⊗ 1)(1⊗ v2 + v2 ⊗ 1)

= 1⊗ v1v2 + v2 ⊗ v1 + v1 ⊗ v2 + v1v2 ⊗ 1
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Since n = 2, we are dealing with S2, which only has two permutations. Note that the

end terms are “fixed” in the sense that v1v2 occurs on each side of the tensor product.

The two middle terms reflect the two permutations in S2. Let’s do one more to get a

better idea of these shuffles. For n = 3 we have

∆(v1v2v3) = ∆(v1v2)∆(v3)

= (1⊗ v1v2 + v2 ⊗ v1 + v1 ⊗ v2 + v1v2 ⊗ 1)(1⊗ v3 + v3 ⊗ 1)

= 1⊗ v1v2v3 + v2 ⊗ v1v3 + v1 ⊗ v2v3 + v1v2 ⊗ v3+

v3 ⊗ v1v2 + v2v3 ⊗ v1 + v1v3 ⊗ v2 + v1v2v3 ⊗ 1

Again, we get the end terms with v1v2v3 occurring on each side of the tensor product.

Now S3 has six permutations, which are reflected in the middle terms. Notice, however,

that indices are always in ascending order on each side of the tensor product. Because of

this, the only permutation we don’t get from S3 is 321. Instead, we get another instance

of 123, but with the tensor product in a different place. Another way to think of these

shuffles is as follows. Besides the end terms, we have six middle terms. Three of them

have the form ⊗ where the slot on the left of ⊗ represents all the ways of choosing

one of v1, v2, v3. Given such a choice, the remaining two must go into the other two slots

in ascending index order. The other three terms can be thought of symmetrically, but

have the form ⊗ . This symmetry is what gives co-commutativity.

The result for ε is trivial, since ε is an algebra morphism. The counit diagram is

then easily checked using the formula for ε. Likewise, coassociativity is checked in a

straightforward manner using the formula for ∆.

Since providing a bialgebra structure on T (V ) entails providing a coalgebra structure,

we see that the functor T also takes us from V ec to CoAlg (see Figure 1.1). In fact, we

now see that T goes from V ec straight to BiAlg.

4.1.1 The Tensor Product of Bialgebras

Let B and B′ be bialgebras. We now wish to consider whether B⊗B′ is a bialgebra. Of

course, we already know thatB⊗B′ is an algebra and a coalgebra, so the question reduces

to whether these structures are compatible. We’ll show this by verifying compatibility

condition (2). This requires the commutativity of the following diagram:
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B ⊗B′ ⊗B ⊗B′ B ⊗B′ ⊗B ⊗B′ ⊗B ⊗B′ ⊗B ⊗B′

B ⊗B′ B ⊗B′ ⊗B ⊗B′

∆B⊗B′ ⊗∆B⊗B′

∇B⊗B′

∆B⊗B′

∇B⊗B′⊗B⊗B′

Commutativity can be proved by splitting this diagram into two subdiagrams. Based

on the definition of ∆B⊗B′ ⊗∆B⊗B′ , the first of these is

B ⊗B′ ⊗B ⊗B′ B ⊗B ⊗B′ ⊗B′ ⊗B ⊗B ⊗B′ ⊗B′

B ⊗B′ B ⊗B ⊗B′ ⊗B′

∆B ⊗∆B′∆B ⊗∆B′

∇B⊗B′

∆B ⊗∆B′

∇B⊗B⊗B′⊗B′

Since B and B′ are algebras, so are B ⊗B, B′ ⊗B′, B ⊗B′ and B ⊗B ⊗B′ ⊗B′. The

question of the commutativity of this diagram amounts to asking if the map ∆B ⊗∆B′

is an algebra morphism. Surely it is, since ∆B and ∆B′ are algebra morphisms and the

tensor product of two algebra morphisms is an algebra morphism. The second half of

the diagram is given by the following subdiagram:

B ⊗B ⊗B′ ⊗B′ ⊗B ⊗B ⊗B′ ⊗B′ B ⊗B′ ⊗B ⊗B′ ⊗B ⊗B′ ⊗B ⊗B′

B ⊗B ⊗B′ ⊗B′ B ⊗B′ ⊗B ⊗B′

id⊗ τ ⊗ id⊗ id⊗ τ ⊗ id

∇B⊗B⊗B′⊗B′

id⊗ τ ⊗ id

∇B⊗B′⊗B⊗B′

As in the previous case, the commutativity of this diagram depends on whether id⊗τ⊗id

is an algebra morphism. It is obvious that id is an algebra morphism and it easy to see

that τ is as well (recall τ(a⊗ b) = b⊗ a). Thus, so is the tensor product id⊗ τ ⊗ id. It

follows that the original diagram commutes as well.

The final requirement for showing that ∆B⊗B′ is an algebra morphism is the commuta-

tivity of the following diagram:

κ B ⊗B′

B ⊗B′ ⊗B ⊗B′

ηB⊗B′

ηB⊗B′⊗B⊗B′ ∆B⊗B′
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To show that this commutes we shall again break it into subdiagrams as follows:

κ κ⊗ κ B ⊗B′

B ⊗B ⊗B′ ⊗B′

B ⊗B′ ⊗B ⊗B′

∼

ηB⊗B′⊗B⊗B′

ηB ⊗ ηB′

∆B ⊗∆B′

id⊗ τ ⊗ id

ηB⊗B⊗B′⊗B′

The upper subtriangle commutes because ∆B ⊗ ∆B′ is an algebra morphism and the

lower subtriangle commutes because id ⊗ τ ⊗ id is an algebra morphism. We have

therefore shown that ∆B⊗B′ is an algebra morphism.

Finally, since we may identify κ with κ ⊗ κ, we have εB⊗B′ := εB ⊗ εB′ , which is an

algebra morphism, since εB and εB′ are both algebra morphisms. This means that

condition (2) is verified and, therefore, that B ⊗B′ is a bialgebra.

4.2 Hopf Algebras

Having successfully joined the structures of algebra and coalgebra compatibly into a

single bialgebra, we are now in a position to graduate to a higher level of sophistication

whereupon we consider the celebrated Hopf algebra. A Hopf algebra is a particularly

important and fascinating kind of bialgebra, which comes equipped with some extra,

elegant structure. This structure comes from the possession of an additional structure

map (joining the ranks of product, coproduct, unit and counit). This “mystery map”

emerges quite nicely from an investigation of the linear maps from a coalgebra to an

algebra.

Let (A,∇, η) be an algebra and (C,∆, ε) a coalgebra. Now consider the vector space

of all linear maps from C to A, L(C,A). Suppose we wish to endow L(C,A) with an

algebra structure of its own. We can do this by defining a multiplication ? on L(C,A).

Notice that for f, g ∈ L(C,A), ? obviously cannot be a straightforward composition of

f and g. We therefore need a way of combining any two linear maps f, g ∈ L(C,A) to

obtain another, say h ∈ L(C,A). An essential strategy in mathematics is to see if one can

construct what is needed out of what is already available. Let us see what “resources”

are currently at our disposal. Given f, g ∈ L(C,A), we want f ? g ∈ L(C,A). We

therefore need a fixed map defined on C that will give us occasion to make use of both

f and g, which are also defined on C. The only promising candidate is the coproduct of
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C, namely ∆ : C → C ⊗ C. To use f and g, we can take their tensor product, f ⊗ g,

which is a map from C ⊗ C to A⊗A. This is a good start. If only we had a map from

A⊗A→ A we could complete the job. Lo and behold, our algebra A has just the map

we need, namely ∇ : A ⊗ A → A. Putting these together via composition yields the

mapping f ? g as:

C C ⊗ C A⊗A A
∆ f ⊗ g ∇

which is clearly linear, since ∆,∇, f and g are all linear.

Using Sweedler notation, this translates to:

(f ? g)(c) :=
∑

f(c(1))g(c(2)) for any c ∈ C

This product map is actually a particular manifestation of one that haunts several diverse

branches of mathematics known as convolution. For this reason, we retain the name and

refer to ? as the convolution product. The term “convolution” comes from the Latin

word convolutus meaning “to roll together”. Intuitively, then, covolution is a way to

“meld together” two functions to obtain something of a “hybrid”. In an analysis context

convolution takes the form of an integral transform. That is, if f and g are two functions,

then one form of convolution is given by

f ? g ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ

In discrete contexts a sum is used instead of an integral or when integration is not

defined.

Observe that the convolution product is associative, since if f, g, h ∈ L(C,A) and c ∈ C,

then we have the following commuting diagram:

C ⊗ C A⊗A

C C ⊗ C ⊗ C A⊗A⊗A A

C ⊗ C A⊗A

∆

∆

∆⊗ id

id⊗∆

f ⊗ g ⊗ h

∇⊗ id

id⊗∇

∇

∇
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In Sweedler notation, this becomes

(
(f ? g) ? h

)
(c) =

∑
(f ? g)(c(1))h(c(2))

=
∑(∑

f(c(1)(1))g(c(1)(2))
)
h(c(2))

=
∑

f(c(1))g(c(2))h(c(3))

=
∑

f(c(1))(g ? h)(c(2))

=
(
f ? (g ? h)

)
(c)

where the upper route is (f ? g) ? h and the lower route is f ? (g ? h). Furthermore, the

convolution product is bilinear. Let f, g, h ∈ L(C,A) and k ∈ κ. Then

(
(kf + g) ? h

)
(c) =

∑
(kf + g)(c(1))h(c(2))

=
∑(

kf(c(1)) + g(c(1))
)
h(c(2))

=
∑(

kf(c(1))h(c(2)) + g(c(1))h(c(2))
)

= k
∑

f(c(1))h(c(2)) +
∑

g(c(1))h(c(2))

= k(f ? h)(c) + (g ? h)(c)

A symmetric argument will show that the convolution product is linear in the second

component.

The unit with respect to the convolution product is not immediately obvious, but there is

really only one reasonable candidate from L(C,A), namely, the composition C ε7−→ κ
η7−→ A.

Let us therefore conduct a bit of exploration to ascertain if it is the unit.

C ⊗ C

C C ⊗ κ A⊗A

C A

∆

∼

=

id⊗ ε

f ⊗ η

∼

∇

f

Figure 4.1: Revised diagram for f ? ηε = f .

Let f ∈ L(C,A). Recall that for any c ∈ C the counit property of C implies

c =
∑

ε(c(1))c(2) =
∑

c(1)ε(c(2))
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Thus

f(c) = f
(∑

c(1)ε(c(2))
)

=
∑

f(c(1))ε(c(2)) [by linearity of f ]

= (f ? ε)(c)

=
∑

f(c(1))⊗ ε(c(2)) [A ∼= A⊗ κ]

By Definition 3.20, the diagram

A⊗ κ A⊗A

A

id⊗ η

∼ ∇

commutes, meaning

∑
f(c(1))⊗ ε(c(2)) =

∑
f(c(1))η(ε(c(2))) = f(c)

But notice ∑
f(c(1))η(ε(c(2))) = (f ? (η ◦ ε))(c)

which suggests that η ◦ ε ∈ L(C,A) is our desired unit. Indeed, a similar argument will

show that η ◦ ε is a left unit as well. For convenience, let us denote this unit by 1?
(1? := η ◦ ε). Note that if C is a bialgebra, then ε is an algebra morphism and so is 1?,

since

1?(xy) = η(ε(xy))

= ε(xy)η(1)

= ε(x)ε(y)1

= ε(x)1ε(y)1

= 1?(x)1?(y)

We will make use of this result later when working with Hopf algebras.

Having successfully imposed an algebra structure on L(C,A), imagine the case in which

we have a bialgebra H. If Hc is the underlying coalgebra structure and Ha is the

underlying algebra, then L(Hc, Ha) is an algebra under the above construction and

id : H → H ∈ L(Hc, Ha). This last fact is interesting because it leads us to the notion

of an antipode.
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As the name suggests, the antipode will play a role similar to an inverse mapping. It is

defined as follows.

Definition 4.6 (Antipode). Let H be a bialgebra. A linear map S : H → H is called

an antipode of the bialgebra H if S is the inverse of the identity map id : H → H with

respect to the convolution product in L(Hc, Ha). That is

S ? id = id ? S = 1?

or

∑
S(h(1))h(2) =

∑
h(1)S(h(2)) = 1?(h) for all h ∈ H

If the reader is familiar with “antipodal” mappings from spherical geometry a word of

caution is in order: in this context, it is not required that S2 = id, and, as a linear map,

S may not even have an inverse with respect to composition. It turns out that S only

has this kind of inverse in certain circumstances, one of which we will see below.

That a bialgebra has an antipode is not a general property. This leads us to define a

special kind of bialgebra, which, the reader may have guessed, is the anticipated Hopf

algebra, where the antipode is the “mystery map” we set out to uncover.

Definition 4.7 (Hopf Algebra). A bialgebra H having an antipode is called a Hopf

algebra.

It is immediately evident that Hopf algebras have quite a bit of structure. If we wanted

to be inefficient we would technically have to say that a Hopf algebra is a sextuple

(H,∇, η,∆, ε, S) such that, in addition to the commuting diagrams given in the definition

of bialgebras, the following diagram commutes.

H ⊗H H ⊗H

H κ H

H ⊗H H ⊗H

S ⊗ id

∇∆

ε

∆

η

id⊗ S

∇

Figure 4.2: This diagram encodes the antipode axiom for a Hopf algebra.
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Definition 4.8 (Hopf Algebra Morphism). Let H and J be two Hopf algebras. A map

f : H → J is called a morphism of Hopf algebras if it is a morphism of the underlying

biagebras.

We now have the means to define the category of Hopf algebras. We shall denote this

category by Hopf , which is the key to our study and is the central player in Figure 1.1.

Now that we know what a Hopf algebra is and a little of its background, we shall

proceed to explore some of the rich structure and beauty of these objects. We begin

with a consideration of how morphisms from Hopf interact with the antipodes of Hopf

algebras.

Proposition 4.9. Let H and J be two Hopf algebras with respective antipodes SH and

SJ . Given a linear map f : H → J , then

(i) SJ ◦ f is a left convolution inverse of f if f is a morphism of coalgebras.

(ii) f ◦ SH is a right convolution inverse of f if f is a morphism of algebras.

(iii) SJ◦f = f◦SH if f is a morphism of Hopf algebras. In this case it is the convolution

inverse of f .

Part (iii) tells us that Hopf algebra morphisms preserve antipodes.

Proof. From above we know that L(H,J) is an algebra with respect to the convolution

product. Note that SJ ◦ f and f ◦ SH are both elements of this algebra. From the

definitions of Hopf algebra morphism and antipode we have the following diagram to

reference:

J ⊗ J J J J ⊗ J

κ

H ⊗H H H H ⊗H

∇J

f ⊗ f

∇H

f

ηJ

ηH εH

f

∆H

f ⊗ f

εJ

∆J

SJ ⊗ id

id⊗ SJ

SH ⊗ id

id⊗ SH

Figure 4.3: Hopf morphism diagram combined with antipode diagram.
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(i) From the above diagram, we single out the following subdiagram:

κ

H J J

H ⊗H J ⊗ J J ⊗ J

εH

f

∆H

εJ

∆J

f ⊗ f SJ ⊗ id

∇

ηJ

1

2

3

Note that blocks (1) and (2) commute on account of f being a coalgebra morphism,

while block (3) commutes since SJ ? id = 1?. Algebraically, this says

((SJ ◦ f) ? f)(h) =
∑

(SJ ◦ f)(h(1))f(h(2))

=
∑

SJ(f(h(1)))f(h(2))

=
∑

SJ(f(h)(1))f(h)(2) [f is coalgebra morphism]

= (SJ ? id)(f(h))

= (ηJ ◦ εJ)(f(h))

= (ηJ ◦ εH)(h) = 1?(h) [see diagram]

So SJ ◦ f is a left inverse for f with respect to the convolution product when f is a

coalgebra morphism. Thus, (i) is established.

(ii) Now single out the following subdiagram from Figure 4.3.

H ⊗H H ⊗H J ⊗ J

H H J

κ

∆H

εH
ηH ηJ

id⊗ SH f ⊗ f

∇H

f

∇J1

2

3
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This time, blocks (1) and (2) commute because f is an algebra morphism and block (3)

commutes because id ? SH = 1?. Algebraically, we have

(f ? (f ◦ SH))(h) =
∑

f(h(1))f(SH(h(2)))

=
∑

f(h(1)SH(h(2))) [f is algebra morphism]

= f
(∑

h(1)SH(h(2))
)

= f(id ? SH(h))

= f(ηH(εH(h)))

= ηJ(εH(h)) = 1?(h) [see diagram]

so that f ◦ SH is a right inverse for f with respect to the convolution product, which

establishes (ii).

(iii) If f is now taken to be a Hopf algebra morphism, then by (i) and (ii) f has both a

left and a right inverse. It is therefore convolution invertible, whence SJ ◦f = f ◦SH .

This last part means that every Hopf morphism is invertible in the algebra L(H,J) with

convolution product. Thus, the set of Hopf morphisms is contained in the group of units

of L(H,J).

We now turn to some important properties of the antipode. Our first result says that a

bialgebra can have at most one antipode.

Proposition 4.10. Let H be a Hopf Algebra. If S is the antipode of H, then S is

unique.

Proof. Suppose that S and S′ are antipodes for H. Then

S = S ? (η ◦ ε)

= S ? (id ? S′)

= (S ? id) ? S′

= (η ◦ ε) ? S′ = S′

Before proceeding to the next result, let us recall the opposite algebra and the opposite

coalgebra. For any algebra A, there is an opposite algebra, denoted by Aop, which has

the same underlying vector space as A, but with a multiplication defined by

∇Aop := ∇A ◦ τA,A, ∇Aop(a⊗ a′) = a′a
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Similarly, for any coalgebra C, there is an opposite coalgebra Ccop having the same

underlying vector space, but with comultiplication

∆op := τC,C ◦∆, ∆op(c) =
∑

c(2) ⊗ c(1)

Proposition 4.11. If B = (B,∇, η,∆, ε) is a bialgebra, then

Bop = (B,∇op, η,∆, ε), Bcop = (B,∇, η,∆op, ε) and Bopcop = (B,∇op, η,∆op, ε)

are also bialgebras.

Proof. To show that Bop is a bialgebra we need (B,∆, ε) to be a coalgebra, (B,∇op, η)

to be an algebra and Theorem 4.1 to be satisfied. Since B is an algebra, it is immediate

that Bop is an algebra.

b1 ⊗ b2 ⊗ b3
id⊗∇op7−−−−−→ b1 ⊗ (b3b2) ∇

op

7−−→ b3b2b1

and

b1 ⊗ b2 ⊗ b3
∇op⊗id7−−−−−→ (b2b1)⊗ b3

∇op7−−→ b3b2b1

But since B is a coalgebra, Bop must be a coalgebra too. For the bialgebra conditions

note that ∆ and ε are algebra morphisms by hypothesis and η is a coalgebra map by

hypothesis. We therefore only need to verify that ∇op is a coalgebra map, which is done

by showing that the bialgebra diagrams commute. Let b1 ⊗ b2 ∈ B ⊗B. Then

b1 ⊗ b2
∆⊗∆7−−−→

∑
b
(1)
1 ⊗ b

(2)
1 ⊗ b

(1)
2 ⊗ b

(2)
2

id⊗τ⊗id7−−−−−→
∑

b
(1)
1 ⊗ b

(1)
2 ⊗ b

(2)
1 ⊗ b

(2)
2

∇op⊗∇op7−−−−−−→
∑

b
(1)
2 b

(1)
1 ⊗ b

(2)
2 b

(2)
1

Going the other way

b1 ⊗ b2
∇op7−−→ b2b1

∆7−→
∑

(b2b1)(1) ⊗ (b2b1)(1)

=
∑

b
(1)
2 b

(1)
1 ⊗ b

(2)
2 b

(2)
1 [∆ is an algebra morphism]

Finally

b1 ⊗ b2
ε⊗ε7−−→ ε(b1)⊗ ε(b2) ∼7−→ ε(b1)ε(b2)

and

b1 ⊗ b2
∇op7−−→ b2b1

ε7−→ ε(b2b1) = ε(b2)ε(b1)
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Since κ is a field, we have that ε(b1)ε(b2) = ε(b2)ε(b1).

The other two are shown in similar fashion.

Definition 4.12 (Antialgebra morphism). Let A and A′ be algebras. A κ-linear map

f : A → A′ of the underlying vector spaces is said to be an antialgebra morphism if

f(ab) = f(b)f(a) for all a, b ∈ A.

Proposition 4.13. Let H be a Hopf algebra with antipode S. Then:

1. S(hg) = S(g)S(h) for all h, g ∈ H - i.e. S ◦ ∇ = ∇op ◦ (S ⊗ S). Also, ∇ has

convolution inverse S ◦ ∇.

2. S(1H) = 1H

3. ∆(S(h)) =
∑
S(h(2))⊗S(h(1)) - i.e. ∆◦S = (S⊗S)◦∆op. Also, ∆ has convolution

inverse ∆ ◦ S.

4. ε(S(h)) = ε(h)

Notice that (1) and (2) say that the antipode is an antialgebra morphism, while (3) and

(4) say that the antipode is also an anticoalgebra morphism.

Proof. Since H is a Hopf algebra we can consider H⊗H with the structure of the tensor

product of coalgebras and H with its algebra structure. Using the convolution product

we therefore have that L(H ⊗ H,H) is an algebra. From this algebra, single out the

maps ∇, α, and γ defined by

∇(h⊗ g) = hg, α(h⊗ g) = S(g)S(h), γ(h⊗ g) = S(hg)

for any h, g ∈ H. Note that ∇ is just the product map of H, γ is the composite map

S ◦ ∇ and α is the composition ∇op ◦ (S ⊗ S).

The strategy here will be to show that ∇ is a left convolution inverse for α and a right

convolution inverse for γ. Since we are working in an algebra, this will tell us that α = γ.

Let h, g ∈ H. Then

(∇ ? α)(h⊗ g) =
∑
∇
(
(h⊗ g)(1)

)
α
(
(h⊗ g)(2)

)
=
∑
∇(h(1) ⊗ g(1))α(h(2) ⊗ g(2)) [Using (4.1) and def. of convolution]

=
∑

h(1)g(1)S(g(2))S(h(2))

=
∑
(h)

h(1)
(∑

(g)

g(1)S(g(2))
)
S(h(2))

=
∑

h(1)1?(g)S(h(2)) [by def 4.6]
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Recall that 1? := η ◦ ε. From Definition 3.1 Im(η) ⊂ Z(H) yielding:

∑
h(1)1?(g)S(h(2)) =

(∑
h(1)S(h(2))

)
1?(g)

= 1?(h)1?(g) [by def 4.6]

= 1?(hg) [by (4.1)]

= 1?(h⊗ g)

where this last 1? is ηH ◦ εH⊗H ∈ L(H ⊗H,H). Thus, ∇ is a left convolution inverse

for α.

That ∇ is a right convolution inverse of γ follows from Proposition 4.9, since ∇ is a

coalgebra morphism. Thus, (1) is established.

For (2) we simply apply the definition of the antipode to 1 ∈ H. Following the commu-

tative antipode diagram (see Figure 4.2) we have

1H
∆7−→ 1H ⊗ 1H

S⊗id7−−−→ S(1H)⊗ 1H
∇7−→ S(1H), [∆(1H) = 1H ⊗ 1H by (4.2)]

and

1H
ε7−→ ε(1H)

η7−→ η(ε(1H)) = 1?(1H) = 1H [η, ε are alg. morphisms]

where the commutativity gives S(1H) = 1H .

The technique for (3) is similar to that used for (1) except that we now consider H

with its coalgebra structure and view H ⊗H as a tensor product of algebras. Using the

convolution product, we have that L(H,H ⊗H) is an algebra with unit

1?H⊗H = ηH⊗H(ε(h))

where ηH⊗H = ηH ⊗ ηH (under the identification of κ with κ⊗ κ).

It is equivalent to show that ∆◦S = (S⊗S)◦∆op. Single out the maps δ, β ∈ L(H,H⊗H)

defined by

δ(h) = ∆(S(h)), β(h) =
∑

S(h(2))⊗ S(h(1))

for any h ∈ H. Note that δ is obviously just the composite map ∆ ◦ S, while β is the

composite map (S ⊗ S) ◦∆op. Immediately we get that ∆ is a left convolution inverse

for δ by Proposition 4.9, since ∆ is an algebra morphism.

We now show that ∆ is a right convolution inverse for β. The following computation

relies heavily on the coassociativity of ∆ expressed in Sweedler notation. Details will
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follow the computation.

(β ?∆)(h) =
∑

β(h(1))∆(h(2))

=
∑(∑

S(h(1,2))⊗ S(h(1,1))
)

∆(h(2))

=
∑(∑

S(h(1,2))⊗ S(h(1,1))
)(∑

h(2,1) ⊗ h(2,2)
)

=
∑(

S(h(1,2))⊗ S(h(1,1))
)
(h(2,1) ⊗ h(2,2))

=
∑

(S(h(2))⊗ S(h(1)))(h(3) ⊗ h(4)) [a]

=
∑

S(h(2))h(3) ⊗ S(h(1))h(4)

=
∑

S(h(2,1))h(2,2) ⊗ S(h(1))h(3) [b]

=
∑

ε(h(2))1⊗ S(h(1))h(3)

=
∑

1⊗ S(h(1))ε(h(2))h(3) [ε(h(2)) is a scalar]

=
∑

1⊗ S(h(1))ε(h(2,1))h(2,2) [c]

=
∑

1⊗ S(h(1))h(2)

= 1⊗ ε(h)1

= (η ⊗ η)(ε(h))

To understand why this chain of equalities holds, we need to revisit Sweedler nota-

tion and the coassociativity of ∆. Recall that we determined the coassociativity to be

expressed by

∑
c(1,1) ⊗ c(1,2) ⊗ c(2) =

∑
c(1) ⊗ c(2,1) ⊗ c(2,2) =

∑
c(1) ⊗ c(2) ⊗ c(3)

Following Figure 3.1, if ∆ is applied again we get that

∑
∆(c(1))⊗ c(2) ⊗ c(3) =

∑
c(1) ⊗∆(c(2))⊗ c(3) =

∑
c(1) ⊗ c(2) ⊗∆(c(3))

We can also write these respectively as

∑
c(1,1)⊗ c(1,2)⊗ c(2)⊗ c(3) =

∑
c(1)⊗ c(2,1)⊗ c(2,2)⊗ c(3) =

∑
c(1)⊗ c(2)⊗ c(3,1)⊗ c(3,2)

and the first one can be alternatively expressed by
∑
c(1,1) ⊗ c(1,2) ⊗ c(2,1) ⊗ c(2,2); all of

these are identified with ∑
c(1) ⊗ c(2) ⊗ c(3) ⊗ c(4)

So, [a] uses the fact that
∑
h(1,1) ⊗ h(1,2) ⊗ h(2,1) ⊗ h(2,2) =

∑
h(1) ⊗ h(2) ⊗ h(3) ⊗ h(4).

[b] uses the fact that
∑
h(1) ⊗ h(2) ⊗ h(3) ⊗ h(4) =

∑
h(1) ⊗ h(2,1) ⊗ h(2,2) ⊗ h(3) and [c]

uses the fact that
∑
h(1) ⊗ h(2) ⊗ h(3) =

∑
h(1) ⊗ h(2,1) ⊗ h(2,2).
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Finally, for (4) we use the fact that
∑
h(1)S(h(2)) = η(ε(h)). Then

ε(η(ε(h))) =
∑

ε(h(1))ε(S(h(2)))

= (ε ? (ε ◦ S))(h)

= ηκ(ε(h)) [by Proposition 4.9]

= ε(h) [since ηκ = idκ]

We use this result to finish the following chain of equalities.

ε(S(h)) = ε
(
S
(∑

ε(h(1))h(2)
))

[by (3.4), the counit condition]

= ε
(∑

ε(h(1))S(h(2))
)

[S is linear]

=
∑

ε(h(1))ε(S(h(2))) [ε is linear]

= ε(h) [using above result]

Therefore, ε(S(h)) = ε(h). This completes the proof.

Proposition 4.14. Let H be a Hopf algebra with antipode S. Then the following state-

ments are equivalent:

(i)
∑
S(h(2))h(1) = 1?(h) for any h ∈ H.

(ii)
∑
h(2)S(h(1)) = 1?(h) for any h ∈ H.

(iii) S ◦ S = id (or S2 = id).

Proof. [(i) =⇒ (iii)] We are given that
∑
S(h(2))h(1) = 1?(h) for all h ∈ H. But we

also know that
∑
h(1)S(h(2)) = 1?(h) and so we may say that

(id ? S)(h) =
∑

S(h(2))h(1)



Chapter 4. Bialgebras and Hopf Algebras 121

The reader may take this as a reminder that id is the left (and right) convolution inverse

of S. We now show that S2 is a right convolution inverse of S. Consider

(S ? S2)(h) =
∑

S(h(1))S2(h(2))

=
∑

S(S(h(2))h(1)) [S an anti-alg. map]

= S
(∑

S(h(2))h(1)
)

= S(1?(h))

= S(η(ε(h)))

= S(ε(h)1)

= ε(h)S(1) [S is linear]

= ε(h)1 [S(1) = 1]

= 1?(h)

Because the inverse is unique in an algebra we have the desired equality, namely

S2 = id

[(iii) =⇒ (ii)] Again, we know that
∑
h(1)S(h(2)) = 1?(h) and therefore

S(1?(h)) = S
(∑

h(1)S(h(2))
)

=
∑

S(h(1)S(h(2)))

=
∑

S2(h(2))S(h(1)) [S anti-alg. morphism]

=
∑

h(2)S(h(1)) [S2 = id]

But S(1?(h)) = 1?(h) as shown above and therefore
∑
h(2)S(h(1)) = 1?(h).

[(ii) =⇒ (iii)] See the case (i) =⇒ (iii), but with S2 shown to be the left convolution

inverse of S.

[(iii) =⇒ (i)] See the case (iii) =⇒ (ii), but with S applied to

∑
S(h(1))h(2) = 1?(h)

Corollary 4.15. Let H be a commutative or cocommutative Hopf algebra. Then

S2 = id
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Proof. If H is commutative, then obviously
∑
S(h(1))h(2) =

∑
h(2)S(h(1)) = 1?(h).

Similarly, if H is cocommutative, then
∑
h(1) ⊗ h(2) =

∑
h(2) ⊗ h(1) and thus, by

applying ∇ ◦ (S ⊗ id) one obtains

∑
S(h(1))h(2) = 1?(h) =⇒

∑
S(h(2))h(1) = 1?(h)

The next result is a useful sufficient condition for determining if a particular algebra

morphism is an antipode for a bialgebra. Essentially, it says that we only need to verify

the antipode axiom on a generating set for the algebra structure of the bialgebra.

Lemma 4.16. Let H be a bialgebra and S : H → Hop be an algebra morphism. Assume

that H is generated as an algebra by a subset X such that

∑
(x)

x(1)S(x(2)) = 1?(x) =
∑
(x)

S(x(1))x(2) (4.3)

for all x ∈ X. Then S is an antipode for H.

Proof. Let x, y ∈ X. Since X generates H as an algebra, it will be sufficient to show

that the defining antipodal property (4.1) holds for the product xy, since the property

will then extend to the rest of H.

∑
(xy)

(xy)(1)S((xy)(2)) =
∑

(x),(y)

x(1)y(1)S(x(2)y(2)) [since ∆ is an algebra morphism]

=
∑

(x),(y)

x(1)y(1)S(y(2))S(x(2)) [S an alg. morphism to Hop]

=
∑
(x)

x(1)
(∑

(y)

y(1)S(y(2))
)
S(x(2))

=
∑
(x)

x(1)1?(y)S(x(2))

=
(∑

(x)

x(1)S(x(2))
)

1?(y) [1?(y) ∈ Z(H)]

= 1?(x)1?(y) = 1?(xy) [since ε is alg. morphism]

That
∑
S((xy)(1))(xy)(2) = 1?(xy), follows by similar reasoning.

Definition 4.17 (Hopf Subalgebra). Let H be a Hopf algebra. A subspace A of H is

called a Hopf subalgebra if

(i) A is a subalgebra of Ha.



Chapter 4. Bialgebras and Hopf Algebras 123

(ii) A is a subcoalgebra of Hc.

(iii) S(A) ⊆ A.

Definition 4.18 (Hopf Ideal). I ⊆ H is called a Hopf Ideal of H if I is an ideal of the

algebra Ha, a coideal of the coalgebra Hc, and S(I) ⊆ I.

Proposition 4.19. Let H be a Hopf algebra, and I a Hopf ideal of H. Then we can

impose a Hopf algebra structure on the quotient space H/I. When this structure is

defined, the canonical projection π : H → H/I is a morphism of Hopf algebras.

Proof. Earlier in this chapter, namely Theorem 4.4, we showed that H/I has a bialgebra

structure. To get a Hopf algebra, however, we need an antipode. By hypothesis, S(I) ⊆ I
and so, the map S : H → H gives rise to the map S : H/I → H/I with

S(h) = S(h)

Since S is the antipode for H, it is reasonable to suspect that S is our desired antipode

for H/I. Indeed, if we check the defining relation for an antipode we find

∑
S(h(1))h(2) =

∑
S(h(1))h(2)

=
∑

S(h(1))h(2)

= η(ε(h))

= ε(h)η(1)

= ε(h)1

= ε(h)1

= 1?(h)

It is similarly shown that
∑
h(1)S(h(2)) = ε(h)1.

Example 4.2 (The Tensor Algebra). Let H = T (V ), the tensor algebra of the vector

space V . Earlier (see Example 4.1) we showed that T (V ) is a bialgebra. We now

show that it is also a Hopf algebra with antipode determined by S(1) = 1, and for all

v1, ..., vn ∈ V by

S(v1 · · · vn) = (−1)nvn · · · v1
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Let us begin by first determining what S would have to do to a single v ∈ V . Since

ε(v) = 0 (all v ∈ V ), we have that 1?(v) = 0 (all v ∈ V ). Thus

0 = (∇ ◦ (S ⊗ id) ◦∆)(v)

= (∇ ◦ (S ⊗ id))(1⊗ v + v ⊗ 1)

= ∇(S(1)⊗ v + S(v)⊗ 1)

= v + S(v)

which shows that S(v) = −v. From here the rest is easy, since S is an anti-algebra

morphism we get

S(v1 · · · vn) = S(vn) · · ·S(v1)

= (−vn) · · · (−v1)

= (−1)nvn · · · v1

for all v1, ..., vn ∈ V .

This shows that the functor T is quite important, because it takes us from V ec to Hopf .

We end this section by again considering duals.

Proposition 4.20. Let H be a finite-dimensional Hopf algebra with antipode S. Then

the bialgebra H∗ is a Hopf algebra with antipode S∗.

Proof. Since H∗ is already known to be a bialgebra, the only thing before us is to

establish S∗, the transpose of S, as the antipode for H∗. Since H is a Hopf algebra, the

antipode diagram (see Figure 4.2) commutes. If we take the dual, we get the commuting

diagram

(H ⊗H)∗ (H ⊗H)∗

H∗ κ H∗

(H ⊗H)∗ (H ⊗H)∗

(S ⊗ id)∗

∇∗

η∗

∇∗

∆∗

ε∗

(id⊗ S)∗

∆∗

But because H is finite-dimensional we may identify (H ⊗ H)∗ with H∗ ⊗ H∗ and

therefore (S ⊗ id)∗ and (id ⊗ S)∗ with S∗ ⊗ id∗ and id∗ ⊗ S∗ respectively. This makes

S∗ an antipode for H∗.
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4.2.1 The Tensor Product of Hopf Algebras

Once more we seek to test the effectiveness of the tensor product to create new structures,

of the same kind, out of old ones. In particular we shall endeavor to establish that the

tensor product of Hopf algebras is also a Hopf algebra. Toward this end, suppose H and

J are Hopf algebras. Building from our previous work, it is immediate that H ⊗ J is a

bialgebra. It remains only to show that H ⊗ J has an antipode.

An obvious candidate for the antipode of H ⊗ J is SH ⊗ SJ .

(
(SH ⊗ SJ) ? id

)
(h⊗ j) =

∑
SH(h(1))h(2) ⊗ SJ(j(1))j(2)

= 1?H (h)⊗ 1?J (j)

= ηH(εH(h))⊗ ηJ(εJ(j))

= (ηH ⊗ ηJ)(εH(h)⊗ εJ(j))

=
(
(ηH ⊗ ηJ) ◦ (εH ⊗ εJ)

)
(h⊗ j)

= 1?H⊗J (h⊗ j)

It can similarly be shown that
(
id ? (SH ⊗ SJ)

)
= 1?H⊗J . Therefore, H ⊗ J is a Hopf

algebra with antipode SH ⊗ SJ .

4.3 Comodules and Hopf Modules

In Chapter 2 we reviewed some of the basics about modules over a ring R. We now

extend this to modules over an algebra, which will open the door to comodules and Hopf

modules. This section will aim only to give a cursory overview of this area of study as

it won’t be directly used later. Nevertheless, it gives an idea of the usefulness of Hopf

algebras and their ability to act on a variety of objects. For proofs, see [10].

Definition 4.21 (A-Module). Let A be a κ-algebra. A left A-module is a pair (V, µV ),

where V is a κ-vector space and µV : A⊗ V → V is a morphism of κ-vector spaces such

that the following diagram commutes:

A⊗A⊗ V A⊗ V

κ⊗ V

A⊗ V V

idA ⊗ µV

∇⊗ idV

µV

µV

ηA ⊗ idV

∼
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This diagram expresses the usual module axioms of distribution and associativity. A

right A-module is defined similarly.

It turns out that the tensor product of A-modules is an A⊗A-module. More specifically,

if U and V are two A-modules, then U ⊗ V is an A⊗A-module where

(a⊗ a′)(u⊗ v) := au⊗ a′v, a, a′ ∈ A, u ∈ U, v ∈ V

This result can be strengthened, however, if A has a bialgebra structure. In this case,

∆ is an algebra morphism and allows for U ⊗ V to be given an A-module structure by

a · (u⊗ v) = ∆(a)(u⊗ v) =
∑
(a)

a(1)u⊗ a(2)v

Definition 4.22 (A-Module Morphism). Let A be a κ-algebra, and (M, µM ), (N, µN )

two left A-modules. The κ-linear map f : M → N is called a morphism of left A-modules

if the following diagram commutes:

A⊗M A⊗N

M N

id⊗ f

µM

f

µN

This depicts, in diagram form, the idea of scalar slide-out. We therefore have that alge-

bras act on modules. Naturally, then, coalgebras will act on objects called comodules.

The idea behind such objects is arrived at in the same way we came to coalgebras. That

is, we reverse arrows to obtain the notion of a comodule over a coalgebra C.

Definition 4.23 (Comodule). Let C be a κ-coalgebra. A right C-comodule is a pair

(M, δ), where M is a κ-vector space and δ : M → M ⊗ C is a morphism of κ-vector

spaces such that the following diagram is commutative:

M M ⊗ C

M ⊗ κ

M ⊗ C M ⊗ C ⊗ C

δ

δ

∼

δ ⊗ idC

idM ⊗ ε

idM ⊗∆
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A left C-comodule is defined similarly.

Definition 4.24 (C-Comodule Morphism). Let C be a κ-coalgebra and (J, δJ), (L, δL)

two right C-comodules. The κ-linear map g : J → L is called a morphism of right

C-comodules if the following diagram commutes:

J L

J ⊗ C L⊗ C

g

δJ

g ⊗ id

δL

Just as Sweedler’s summation notation for coalgebras is the convention of choice, co-

modules enjoy a similar convention. Let M be a right C-comodule. If x ∈ M , then we

write

δ(x) =
∑
(x)

xM ⊗ xC

where each xM ∈ M and each xC ∈ C. Again, these should be taken as formal repre-

sentatives as opposed to specific elements.

Using the above comodule diagram and our summation convention we have that

∑
(xM )M ⊗ (xM )C ⊗ xC =

∑
xM ⊗ x(1)

C ⊗ x
(2)
C (4.4)∑

xM ⊗ ε(xC) = x ⇐⇒
∑

xMε(xC) = x (4.5)

Also, the commutativity of the C-comodule morphism diagram is represented by

∑
g(xL)⊗ xC =

∑
g(x)L ⊗ g(x)C (4.6)

In the language of categories we denote the category of right C-comodules byMC . The

morphisms of this category are the C-comodule morphisms and we write ComC(M,N)

for all the C-comodule morphisms from M to N . Finally, the category of left A-modules

will be represented by AM.

It is natural to ask if comodules possess an analogue to The Fundamental Theorem of

Coalgebras (see theorem 3.26). It turns out that this is indeed the case. It requires the

following definition.

Definition 4.25 (Right C-subcomodule). Let (N, δ) be a right C-comodule. A κ-vector

subspace L of N is called a right C-subcomodule if δ(L) ⊆ L⊗ C.
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With this, The Fundamental Theorem of Comodules reads just like its coalgebra coun-

terpart.

Theorem 4.26 (The Fundamental Theorem of Comodules). Let N be a right C-

comodule. Any element ν ∈ N belongs to a finite dimensional subcomodule.

So far we have only mentioned right comodules. There will be no need to mention

left comodules, since any result concerning right comodules has an analogue for left

comodules. The following proposition from category theory establishes this:

Proposition 4.27. Let C be a coalgebra. Then the categories CM and MCcop are

isomorphic.

Having established the notion of a C-subcomodule one can, per usual, construct a factor

object that, unsurprisingly, is termed a factor comodule. First, suppose that (M, δ) is a

C-comodule and that L is a C-subcomodule of M . Now consider the factor vector space

M/L and the canonical projection map π : M →M/L.

Proposition 4.28. There exists a unique structure of a right C-comodule on M/L for

which π : M →M/L is a morphism of C-comodules.

This is a useful proposition, but it doesn’t say how to find such factor comodules. The

next result gives some direction to this endeavor.

Proposition 4.29. Let M and N be two right C-comodules and f : M → N a morphism

of C-comodules. Then Im(f) and Ker(f) are C-subcomodules of N and M respectively.

This result is an excellent segue into the next theorem, which establishes a fundamental

isomorphism theorem for comodules.

Theorem 4.30 (Fundamental Isomorphism Theorem for Comodules). Let M and N be

two right C-comodules, f : M → N a morphism of right C-comodules, and

π : M → M/Ker(f) the canonical projection. Then there exists a unique isomorphism

f : M/Ker(f)→ Im(f) of C-comodules for which the following diagram commutes

M N

M/Ker(f) Im(f)

π

f

f
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We now bring Hopf algebras back into the picture.

Proposition 4.31. Let H be a Hopf algebra with antipode S. Then the following hold:

(i) If M is a left H-module (with action denoted by hm for h ∈ H, m ∈M), then M

has a structure of a right H-module given by mh = S(h)m for any m ∈M,h ∈ H.

(ii) If M is a right H-comodule, then M has a left H-comodule structure with structure

map δ′ : M → H ⊗M given by

δ′(m) =
∑

S(mH)⊗mM

Bringing together the notions of H-modules and H-comodules, we get the fascinating

structure of a Hopf module.

Definition 4.32 (Hopf Module). A κ-vector space M is called a right H-Hopf module

if H has a right H-module structure and a right H-comodule structure given by the

map δ : M →M ⊗H such that

δ(m) :=
∑

mM ⊗mH

and for any m ∈M , h ∈ H

δ(mh) =
∑

mMh
(1) ⊗mHh

(2)

This last equality is a compatibility condition to ensure that the module and comodule

structures do not conflict. It is similar to the compatibility required in the development

of bialgebras (see beginning of this chapter ). It can be expressed diagrammatically as

M ⊗H M M ⊗H

M ⊗H ⊗H ⊗H M ⊗H ⊗H ⊗H

µM

δM ⊗∆

δM

idM ⊗ τ ⊗ idH

µM ⊗ µH

Definition 4.33 (H-Hopf Module Morphism). A map f is called an H-Hopf module

morphism if it is a morphism of right H-modules and a morphism of right H-comodules.

We now consider an important kind of Hopf module. Suppose that V is a κ-vector space

and define on V ⊗H a right H-module structure given by

µV⊗H = id⊗∇, (v ⊗ h)g = v ⊗ hg for any v ∈ V and h, g ∈ H
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Now define a right H-comodule structure given by the map

δ = id⊗∆ : V ⊗H → V ⊗H ⊗H, δ(v ⊗ h) =
∑

v ⊗ h(1) ⊗ h(2)

for any v ∈ V and h ∈ H. Equipped with these structures, V⊗H becomes a rightH-Hopf

module. That is, provided the compatibility condition is satisfied. Let v ⊗ h ∈ V ⊗H,

g ∈ H and consider

δ
(
(v ⊗ h)g

)
= δ(v ⊗ hg)

=
∑

v ⊗ (hg)(1) ⊗ (hg)(2)

=
∑

v ⊗ h(1)g(1) ⊗ h(2)g(2)

=
∑

(v ⊗ h(1))g(1) ⊗ h(2)g(2)

=
∑

mV⊗Hg
(1) ⊗mHg

(2)

Thus, we can now be sure that the structures are compatible and we have a right H-Hopf

module.

Definition 4.34 (Subspace of Coinvariants). Let M be a right H-comodule, with co-

module structure given by the map δ : M →M ⊗H. The set

M coH := {m ∈M : δ(m) = m⊗ 1}

is a vector subspace of M called the subspace of coinvariants of M .

What is interesting about the H-Hopf modules V ⊗ H is that these are the only H-

Hopf modules (up to isomorphism)! This is expressed as a fundamental theorem of Hopf

modules.

Theorem 4.35 (The Fundamental Theorem of Hopf Modules). Let H be a Hopf algebra

and M a right H-Hopf module. Then the map

f : M coH ⊗H →M, f(m⊗ h) = mh

for any m ∈ M coH and h ∈ H, is an isomorphism of Hopf modules, where M coH ⊗H
has the H-Hopf module structure from above.

4.4 Actions and Coactions

One of the most important features of Hopf algebras is their ability to act on other

objects. We build up to this by first examining what it means for an algebra to act on
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a vector space.

4.4.1 Actions

Definition 4.36 (Left Action). A left action (or representation) of an algebra H is a

pair (α, V ) where V is a vector space and α is a linear map α : H ⊗ V → V , say

α(h⊗ v) = αh(v)

such that

αhg(v) = αh(αg(v)), α(1⊗ v) = v

Right actions are similarly defined. As a matter of notation, it is convenient to write

h . v for the action so that the above becomes

h . v ∈ V, (hg) . v = h . (g . v), 1 . v = v

The attentive reader might object that this is nothing more than a restatement of the

definition of an H-module. While this is true, the focus is different. In the case of

H-modules, the focus is on the vector space V , which is being acted upon. In this case,

the focus is on the action itself, namely α.

Definition 4.37 (Pull Back). Let (α, V ) be a left action of an algebra H. Let A be

another algebra and f : A → H an algebra morphism. We say that the action α pulls

back to an action α′ of A on V given by α′ = α ◦ (f ⊗ id).

The point of this section is not to redo everything from the previous section concerning

modules, but to segue into an even more interesting generalization. That is, more than

just acting on vector spaces, Hopf algebras can act on algebras, coalgebras and even

other Hopf algebras.

Definition 4.38 (H-Module Algebra). Let H be a Hopf algebra. Then an algebra A is

called an H-module algebra if A is a left H-module and

h . (ab) =
∑

(h(1) . a)(h(2) . b), h . 1 = 1?(h)

for any h ∈ H and a, b ∈ A.

This is depicted by the following commuting diagram:
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H ⊗A⊗A H ⊗A

H ⊗H ⊗A⊗A H

H ⊗A⊗H ⊗A A⊗A A

id⊗∇

∆⊗ id⊗ id

id⊗ τ ⊗ id

α⊗ α ∇

α

id⊗ η

1?

where we are identifying H with H ⊗ κ. Similarly, we have

Definition 4.39 (H-Module Coalgebra). A coalgebra C is called a left H-module coal-

gebra if

∆(h . c) =
∑

h(1) . c(1) ⊗ h(2) . c(2), ε(h . c) = ε(h)ε(c)

The corresponding commutative diagram is

H ⊗ C C

H ⊗H ⊗ C ⊗ C κ

H ⊗ C ⊗H ⊗ C C ⊗ C

α

∆H ⊗∆C εH ⊗ εC

id⊗ τ ⊗ id

α⊗ α

∆C

ε

Note that in the diagram we are identifying κ ⊗ κ with κ. Upon inspection we see

that this diagram also reveals . : H ⊗ C → C to be a coalgebra map, where H ⊗ C is

considered as a tensor product of coalgebras.

Example 4.3. Recall from group theory the notion of an inner automorphism. If G is

a group, then an inner automorphism corresponds to the conjugation map αg : G → G

given by

αg(x) = gxg−1

for some fixed g ∈ G. This gives a left action of G on itself and is sometimes called

the left adjoint action. This idea can be generalized to the Hopf algebra case where

“conjugation” becomes

αh(g) =
∑
(h)

h(1)gS(h(1))

for fixed h ∈ H. Recall that in a Hopf algebra the role of S is similar to an inverse.

Here too we call this a left adjoint action and it makes H into an H-module algebra.
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Definition 4.40 (H-Comodule-Algebra). Let (H,∇H , ηH ,∆H , εH) be a bialgebra and

(A,∇A, ηA) an algebra. We say A is an H-comodule-algebra if

(i) the vector space A has an H-comodule structure given by a map

δA : A→ H ⊗A

and

(ii) the structure maps ∇A : A ⊗ A → A and ηA : κ → A are morphisms of H-

comodules with A⊗A and κ being endowed with H-comodule structures.

Proposition 4.41. Let H be a bialgebra and A an algebra. Then A is an H-comodule-

algebra if and only if

(i) the vector space A has an H-comodule structure given by a map

δA : A→ H ⊗A

and

(ii) the map δA : A→ H ⊗A is a morphism of algebras.

For a proof, see [7].

4.5 The Group Algebra

So far, we have focused primarily on the theory of bialgebras and Hopf algebras. For

clarity, we now endeavor to embody the abstract in more concrete form via an in depth

look at some typical, but important examples. The first example we will consider is

known as the group algebra, which is essential in establishing the connection between

groups and quantum groups. We briefly introduced this algebra in Chapter 3, Example

3.5. The others are related and so we consider them together. Specifically, we will

consider the polynomial algebra M(2) := κ[a, b, c, d], which will lead us to the examples

GL(2) and SL(2) which are related to the general linear group and the special linear

group respectively.

As always, let κ denote a field and suppose G is any group with group operation ∗. The

group algebra, κ[G], is the vector space with G as a basis. Thus, a generic element has

the form: ∑
g∈G

λgg
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where λg ∈ κ, g ∈ G and λg = 0 for almost all g ∈ G. In other words, κ[G] is the set

of all finite linear combinations of elements in G with coefficients from κ. Essentially,

we will see, that this is just a polynomial algebra in G. To get an algebra we define

multiplication by (∑
g∈G

λgg
)(∑

g∈G
γgg
)

:=
∑
g,h∈G

(λgγh)g ∗ h

Let us now verify that the relevant diagrams commute:

κ[G]⊗ κ[G]⊗ κ[G] κ[G]⊗ κ[G]

κ[G]⊗ κ[G] κ[G]

∇⊗ id

id⊗∇

∇

∇

Figure 4.4: Algebra diagram for κ[G].

and

κ⊗ κ[G] κ[G]⊗ κ[G] κ[G]⊗ κ

κ[G]

η ⊗ id

∼ µ

id⊗ η

∼

Figure 4.5: Unit diagram for κ[G]

Toward this end, let
∑

g∈G agg,
∑

g∈G bgg,
∑

g∈G cgg ∈ κ[G]. Then for the first diagram(∑
g∈G

agg
)
⊗
(∑
g∈G

bgg
)
⊗
(∑
g∈G

cgg
)
∇⊗id7−−−→

( ∑
g,h∈G

(agbh)g ∗ h
)
⊗
(∑
g∈G

cgg
)

∇7−→
∑

g,h,j∈G

(
(agbh)cj

)
(g ∗ h) ∗ j

Compare this to(∑
g∈G

agg
)
⊗
(∑
g∈G

bgg
)
⊗
(∑
g∈G

cgg
)

id⊗∇7−−−→
(∑
g∈G

(ag)g
)
⊗
( ∑
h,j∈G

(bhcj)h ∗ j
)

∇7−→
∑

g,h,j∈G

(
ag(bhcj)

)
g ∗ (h ∗ j)
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Because the group operation ∗ is associative and multiplication in κ is associative, we

get that ∑
g,h,j∈G

(
(agbh)cj

)
(g ∗ h) ∗ j =

∑
g,h,j∈G

(
ag(bhcj)

)
g ∗ (h ∗ j)

which means that Diagram 4.4 commutes. For Diagram 4.5, recall that η is a linear

morphism, so η(1) := 1G where 1G is the identity element of G. Then, if k ∈ κ we have

k ⊗
(∑
g∈G

agg
)

η⊗id7−−−→ k1G ⊗
(∑
g∈G

agg
)

∇7−→
∑
g∈G

(kag)1G ∗ g =
∑
g∈G

(kag)g

and

k ⊗
(∑
g∈G

agg
)
∼7−→
∑
g∈G

(kag)g

The other half of the diagram is commutative by similar reasoning. So κ[G] is indeed

an algebra. Note, however, that κ[G] will be commutative if and only if G is an abelian

group.

Because κ[G] is an algebra, there is a natural coalgebra structure on κ[G]∗ (use finite

dual if G is infinite). This has dual basis {g∗ : g ∈ G}. Now, the structure constants for

κ[G] can be ascertained as follows: let g, h ∈ κ[G]. Then

gh =
∑
f∈G

cghff

which implies that

cghf =

{
1 if f = gh

0 if f 6= gh

These determine the coalgebra structure since

∆(f∗) =
∑
g,h∈G

cghfg
∗ ⊗ h∗

and hence

∆(f∗) =
∑
g,h
f=gh

g∗ ⊗ h∗ =
∑
g∈G

g∗ ⊗ (g−1f)∗

For the counit, we use ε = ηt where t is used to denote the transpose to avoid confusion

with notation used for dual basis elements. Note again that η(1) = 1G. Now consider
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that

ε(1∗G) = ηt(1∗G)

= 1∗G ◦ η

and for any λ ∈ κ

(1∗G ◦ η)(λ) = 1∗G(λη(1))

= 1∗G(λ1G)

= λ1∗G(1G)

= λ

Thus, ε(1∗G) is the identity map on κ, and since κ∗ ∼= κ, the identity map corresponds

to 1. We therefore say that ε(1∗G) = 1. For g 6= 1G we apply the same reasoning to find

that

(g∗ ◦ η)(λ) = g∗(λη(1))

= λg∗(1G)

= λ0

= 0

and hence, ε(g∗) = 0 for g 6= 1g.

Now recall the algebra κG, which is the space of all functions G → κ with pointwise

addition and multiplication. The standard basis for κG is {ĝ : g ∈ G} where

ĝ(x) = δgx =

{
1 if g = x

0 if g 6= x

Since every linear transformation κ[G] → κ is uniquely determined by its effect on the

basis G, κ[G]∗ := hom(κ[G], κ) can be identified with κG. Under this identification g∗

becomes ĝ.

For a generic element f ∈ κG we have

f =
∑
g∈G

λg ĝ

Evaluating f at h ∈ G yields

f(h) =
∑
g∈G

λg ĝ(h) = λh
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and therefore

f =
∑
g∈G

f(g)ĝ

This generic element corresponds to
∑

g∈G f(g)g∗ in κ[G]∗ and so ∆(f) corresponds to

∆
(∑
g∈G

f(g)g∗
)

=
∑
g∈G

f(g)∆(g∗)

=
∑
g∈G

f(g)
(∑
h∈G

h∗ ⊗ (h−1g)∗
)

=
∑
g,h∈G

f(g)h∗ ⊗ (h−1g)∗

Converting the pieces back to elements of κG yields

∆(f) =
∑
g,h∈G

f(g)ĥ⊗ ĥ−1g

For the counit

ε(f) = ε
(∑
g∈G

f(g)g∗
)

=
∑
g∈G

f(g)ε(g∗)

= f(1G)

Next on the agenda, we want to ascertain an appropriate coalgebra structure on κ[G]

which will be compatible with its algebra structure. To do this, we shall use κG beginning

with determining its structure constants. So, for g, h ∈ G we have

(ĝĥ)(x) = ĝ(x)ĥ(x)

= δgxδhx

=

{
0 if g 6= h

δgx if g = h

and hence

ĝĥ =

{
0 if g 6= h

ĝ if g = h

But we also have

ĝĥ =
∑
f∈G

cghf f̂
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which implies that the structure constants for κG are

cghf =

{
1 if g = h = f

0 if g 6= h or g = h,but f 6= g

If we now move to (κG)∗ (where we use the finite dual if G should be infinite), then the

same structure constants are used. Hence

∆(f̂∗) =
∑
g,h∈G

cghf ĝ
∗ ⊗ ĥ∗

= f̂∗ ⊗ f̂∗

So, under the bijection of sets (κG)∗ ↔ κ[G], with ĝ∗ ↔ g, we get that ∆(g) = g ⊗ g.

To determine the counit for κ[G] we begin with the unit of κG. Since multiplication is

pointwise, it must be that η(1)(g) = 1 for all g ∈ G. In terms of the basis elements, this

implies that

η(1) =
∑
g∈G

ĝ

The counit for (κG)∗, then, is ε = ηt, where we again use t to indicate the transpose to

avoid confusion with the notation used for dual basis elements g∗. So

ε(ĝ∗) = ηt(ĝ∗)

= ĝ∗ ◦ η

But for any λ ∈ κ we have

(ĝ∗ ◦ η)(λ) = ĝ∗(η(λ))

= ĝ∗(λη(1))

= λĝ∗(η(1))

= λ

So, ĝ∗ ◦ η is the identity map on κ. But κ∗ ∼= κ and hence the identity map corresponds

to 1. Thus, under the identification of (κG)∗ with κ[G] we get that ε(g) = 1 for all

g ∈ G.

So, the coproduct and counit maps are now to be defined by

∆(g) := g ⊗ g, ε(g) := 1
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for all g ∈ G. Since we have identified κ[G] with the finite dual of κG we immediately

get that it is a coalgebra and hence the following diagrams commute:

κ[G] κ[G]⊗ κ[G]

κ[G]⊗ κ[G] κ[G]⊗ κ[G]⊗ κ[G]

∆

∆

∆⊗ id

id⊗∆

Figure 4.6: The coalgebra diagram for κ[G].

and

κ⊗ κ[G] κ[G]⊗ κ[G] κ[G]⊗ κ

κ[G]

ε⊗ id

∼
∆

id⊗ ε

∼

Figure 4.7: The counit diagram for κ[G].

What we have found, so far, is that κ[G] can be thought separately as an algebra or a

coalgebra. It is therefore natural to ask if these two structures are compatible so as to

hold simultaneously. In other words, can κ[G] be thought of as a bialgebra? To check

this, Theorem 4.1 says it is sufficient to show that ∆ and ε are algebra morphisms. This

amounts to showing that

∆(gh) = ∆(g)∆(h) = gh⊗ gh, ε(gh) = ε(g)ε(h)

∆(1G) = 1G ⊗ 1G ε(1G) = 1

This is not difficult since three of the conditions hold by definition and ε(gh) = ε(g)ε(h)

is a straightforward consequence of the fact that ε sends everything to 1. Thus, as the

very existence of this section suggests, κ[G] is not just an algebra or coalgebra separately,

but a bialgebra.

It remains only to show that κ[G] has an antipode. Examine End(κ[G]). If there is

S ∈ End(κ[G]) which acts as an antipode for κ[G], then S must be the convolution

inverse of idκ[G]. More precisely, for g ∈ G it is requisite that

S(g)g = ε(g)1G = gS(g)
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since for α, β ∈ End(κ[G]) the convolution product α ?β is given by ∇◦ (α⊗β) ◦∆ and

hence for any g ∈ G

(α ? β)(g) = (∇ ◦ (α⊗ β) ◦∆)(g)

= (∇ ◦ (α⊗ β))(g ⊗ g)

= ∇(α(g)⊗ β(g))

= α(g)β(g)

But ε(g) = 1 for all g ∈ G indicating that S : κ[G] → κ[G] is to be determined by

S(g) = g−1 for all g ∈ G, where g−1 denotes the group inverse of g with respect to ∗.
This, then, is our desired antipode and hence κ[G] is a Hopf algebra.

4.5.1 Grouplike Elements

Our consideration of the group algebra thus far has introduced an important kind of

element of coalgebras in general, and, by inheritance, for Hopf algebras. For our purposes

let H be a Hopf algebra. A nonzero element x ∈ H is called grouplike if ∆(x) = x⊗ x.

The set of all grouplike elements of H is denoted by G(H). Notice, then, that for the

group algebra we obviously have

G ⊆ G(κ[G])

In a moment, however, we will see that this must be an equality.

Proposition 4.42. Let H be a Hopf algebra with antipode S. Then any grouplike

element x has an inverse in G(H) which is S(x). Consequently, G(H) is a group.

Proof. We need to show that S(x) ∈ G(H) whenever x ∈ G(H). Consider that

∆(S(x)) = (S ⊗ S)(∆op(x)) [see Prop. 4.13]

= (S ⊗ S)(x⊗ x)

= S(x)⊗ S(x) [since x(1) = x = x(2)]

Thus, S(x) ∈ G(H). Next, for x ∈ G(H) we shall show that S(x) is the inverse of x in

G(H). To do this, we simply follow the antipode diagram (see Figure 4.2):

x
∆7−→ x⊗ x S⊗id7−−−→ S(x)⊗ x ∇7−→ S(x)x

Taking the other “route” we have

x
∇◦(id⊗S)◦∆7−−−−−−−−→ xS(x)
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Finally, if we take the “direct route” we get that x 7→ η(ε(x)). Since diagram 4.2

commutes we end up with

η(ε(x)) = S(x)x = xS(x)

This just says that S(x)x = xS(x) = 1?(x). All that remains is to show that 1?(x) = 1

when x is grouplike. For this we use the counit diagram for H,

x
∆7−→ x⊗ x ε⊗id7−−−→ ε(x)⊗ x ∼7−→ x

and from ε(x)⊗ x ∼7−→ x, it is necessary that ε(x) = 1. Thus, each x ∈ G(H) is invertible

and hence G(H) is a group.

So, besides the defining property ∆(g) = g ⊗ g for grouplike elements, the last part of

this proof shows that for g ∈ G(H) it must be that ε(g) = 1.

Proposition 4.43. Any set of grouplike elements of H is linearly independent.

Proof. Suppose g1, ..., gn is an independent set of grouplike elements. Let g be another

grouplike element, which is not a member of the aforementioned independent set. Now

consider the expanded set {g1, ..., gn, g}. If the expanded set were not linearly indepen-

dent, then we would have

g =
n∑
i=1

λigi, λi ∈ κ

Taking the coproduct of both sides yields

∑
ij

λiλjgi ⊗ gj =
n∑
i=1

λigi ⊗ gi

Now because g is grouplike there must exist at least one coefficient λk which is non-zero.

Via the matching of terms, which can be done since {gi ⊗ gj}ij will be independent, we

find that λiλj = 0 for all i 6= j. In particular, then, λkλj = 0 for all j 6= k implying that

λj = 0 for all j 6= k. Thus g = λkgk. But

1 = ε(g)

= ε(λkgk)

= λkε(gk)

= λk1

= λk

Note that this result could also have been obtained from the fact that comparing coeffi-

cients would yield λk = λ2
k implying that λk = 1 or 0. But since λk was assumed to be
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non-zero, it must be 1. From this, however, we acquire the contradiction that g = gk.

It therefore follows that the expanded set must be linearly independent and hence, any

set of grouplike elements will be linearly independent.

Since dim(κ[G]) = |G|, this last result implies that there are at most |G| grouplike

elements. We may therefore conclude that

G(κ[G]) = G

Proposition 4.44. If g ∈ G(H), then the one dimensional subspace κg is a sub-coalgebra

of H and hence is a simple coalgebra.

Proof. This is easily established, since

∆(κg) = κ(g ⊗ g) ⊆ κg ⊗ κg

and any one dimensional coalgebra must be simple.

More interesting, however, is the converse.

Proposition 4.45. If κg is a one-dimensional sub-coalgebra of H, then κg is spanned

by a grouplike element.

Proof. Since ∆(κg) ⊆ κg ⊗ κg we have that

∆(g) = λ1g ⊗ λ2g, λ1, λ2 ∈ κ

But λ1g ⊗ λ2g = λ1λ2g ⊗ g and so, letting λ = λ1λ2, we have that ∆(g) = λg ⊗ g.

Now consider the element λg. We have

∆(λg) = λ∆(g) = λλg ⊗ g = λg ⊗ λg

and hence λg is grouplike. Replacing g with this element gives us that κg = κ(λg) is

spanned by a grouplike element.

Proposition 4.46. The subspace spanned by G(H) is a sub-coalgebra and is co-semi-

simple.

Proof. By Proposition 4.43, G(H) is linearly independent. We therefore have that

Span(G(H)) =
⊕
α

κgα, gα ∈ G(H)
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Since each κgα is a sub-coalgebra of H then so is Span(G(H)). Furthermore, since each

κgα is simple, it follows, by definition, that Span(G(H)) is co-semi-simple.

Corollary 4.47. Span(G(H)) is a sub-Hopf algebra of H isomorphic to the group algebra

κG(H).

Proof. That Span(G(H)) is a sub-Hopf algebra of H is immediate from the fact that it

is a sub-coalgebra of the Hopf algebra H. Also

Span(G(H)) ∼= κG(H)

follows from the fact that G(H) is a group.

Proposition 4.48. If G is a finite group, then the group algebra κ[G] is a finite-

dimensional co-commutative, co-semi-simple Hopf algebra and the assignment

G→ κ[G]

is functorial.

Proof. If G is a finite group, then it is obvious that κ[G] is finite-dimensional, since

G is a basis for κ[G]. Co-commutativity holds on account of the elements of G being

grouplike. It is co-semi-simple as a consequence of Proposition 4.46 and Corollary 4.47.

Functoriality follows easily from the fact that any group homomorphism φ : G → G′

extends to a linear transformation φ̂ : κ[G] → κ[G′], which will also be a Hopf algebra

morphism. We can see this by first noting that φ and φ̂ will agree on G. Because of this,

φ̂ is an algebra morphism since φ is a group homomorphism and hence φ̂(gh) = φ̂(g)φ̂(h)

for all g, h ∈ G.

To be a coalgebra morphism we need the equality ∆κ[G′] ◦ φ̂ = (φ̂⊗ φ̂)◦∆κ[G]. Let g ∈ G.

Then the right hand side yields

((φ̂⊗ φ̂) ◦∆κ[G])(g) = (φ̂⊗ φ̂)(g ⊗ g)

= φ̂(g)⊗ φ̂(g)

and from the left hand side we get

(∆κ[G′] ◦ φ̂)(g) = ∆κ[G′](φ̂(g))

= φ̂(g)⊗ φ̂(g)
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So far, this only means that φ̂ is a bialgebra morphism. The last step is to verify that

φ̂(Sκ[G](g)) = Sκ[G′](φ̂(g)) all g ∈ κ[G]

which, based on the antipodes, reduces to the statement

φ̂(g−1) = φ̂(g)−1

But this is plainly true, since group homomorphisms preserve inverses. Therefore, φ̂ is

a Hopf morphism.

Proposition 4.49. If α : H1 → H2 is a morphism of Hopf algebras, then α restricts to

a group homomorphism

α : G(H1)→ G(H2)

Proof. Let h ∈ G(H1). Since α is a Hopf algebra morphism, it is, in particular, a

coalgebra morphism which means that

(α⊗ α) ◦∆H1 = ∆H2 ◦ α

Thus ∆H2(α(h)) = α(h)⊗ α(h) and hence α(h) ∈ G(H2).

Now, the group operations for G(H1) and G(H2) are simply the inherited algebra prod-

ucts from H1 and H2 respectively. Since being a Hopf algebra morphism entails be-

ing an algebra morphism, it follows that α respects the group operations. Therefore,

α : G(H1)→ G(H2) is a group homomorphism.

The implication here is that we get a functor from Hopf algebras to groups:

H 7→ G(H), (α : H1 → H2) 7→ (α : G(H1)→ G(H2))

Note further that if H is finite-dimensional, then G(H) must be a finite group. To see

why, suppose that G(H) were an infinite group, then by Proposition 4.46, Span(G(H))

is an infinite-dimensional sub-coalgebra of H. But this is impossible, since H is finite-

dimensional. Thus, G(H) must be a finite group.

Now, if H is any Hopf algebra, then H∗ is also a Hopf algebra, where again, the finite

dual is intended if H is not finite-dimensional. For any f ∈ H∗ it was found (in our

work with duals) that

∆(f)(x⊗ y) = f(xy), since ∆ = ∇∗
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and f is an algebra map if and only if f(xy) = f(x)f(y) in which case we would have

∆(f)(x⊗ y) = f(x)f(y)

= (f ⊗ f)(x⊗ y)

for all x, y. This is equivalent to ∆(f) = f ⊗f and hence that f is grouplike. The result

here is that

G(H∗) = Alg(H,κ)

When H is finite dimensional, however, H ∼= H∗∗ and therefore

G(H) = G(H∗∗) = Alg(H∗, κ) (4.7)

Continuing with finite-dimensional H, the assignment

H 7→ H∗

gives a contravariant duality on the category of finite-dimensional Hopf algebras. More

specifically, we get a contravariant equivalence between finite-dimensional semi-simple

commutative Hopf algebras and finite-dimensional co-semi-simple co-commutative Hopf

algebras.

So, in light of (4.7), the functor G (restricted to finite dimensional Hopf algebras) is the

composition of the contravariant functors

H 7→ H∗ 7→ Alg(H∗, κ)

where the functor L 7→ Alg(L, κ) is the representable functor Alg(−, κ) restricted to the

category of finite-dimensional Hopf algebras. In general, however, this is a functor from

the category of κ-algebras to the category of sets. So, how can we be assured that we

will land in groups?

Consider the natural map H 7→ H∗∗ with x 7→ x̂ where

x̂(f) = f(x) for f ∈ H∗

Note that x̂ is an algebra morphism if and only if x̂(fg) = x̂(f)x̂(g) for all f, g ∈ H∗,
which implies that

fg(x) = f(x)g(x) for all f, g ∈ H∗
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Since the product for H∗ is convolution, we therefore have

(∇ ◦ (f ⊗ g) ◦∆)(x) = f(x)g(x)

Note, in particular, that this will be the case whenever x is grouplike (∆(x) = x⊗ x) so

each grouplike element does give an algebra morphism x̂ ∈ Alg(H∗, κ).

Conversely, Suppose x̂ is an algebra morphism. By Theorem 3.26, x resides in a finite-

dimensional sub-coalgebra (and hence Hopf algebra) H ′ of H. Thus, ∆(x) lies in some

finite-dimensional sub-space of H ⊗H.

Now, from linear algebra we have the following: Span(x) is a sub-space of H ′. Thus,

there exists a sub-space T for which

H ′ = Span(x)⊕ T

We already know that {x} is a basis for Span(x), so suppose B is a basis for T . Then

it follows that {x} ∪B is a basis for H ′. Let us write this basis as

{h1, ..., hn}

where h1 = x. So

∆(x) =
∑
ij

λijhi ⊗ hj

and

fg(x) =
∑
ij

λijf(hi)g(hj)

Let the dual basis for (H ′)∗ be {h∗1, ..., h∗n} and extend each h∗i to be an element of H∗.

Then

h∗rh
∗
s(x) =

∑
ij

λijh
∗
r(hi)h

∗
s(hj)

= λrs

But because x̂ is an algebra morphism, we also have that

h∗rh
∗
s(x) = h∗r(x)h∗s(x)

= δr1δs1

since x = h1. Therefore, when x̂ is an algebra morphism we get that

λrs = δr1δs1
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This allows us to say that

∆(x) =
∑
ij

λijhi ⊗ hj

=
∑
ij

δi1δj1hi ⊗ hj

= h1 ⊗ h1

= x⊗ x

and hence x̂ is an algebra morphism if and only if x is grouplike.

If A is any commutative algebra, then Alg(H,A) is a sub-group of the group of units of

the algebra hom(H,A) where the group operation is convolution. In particular, when

A = κ as in the case above and H is finite-dimensional, then Alg(H,κ) is a finite group.

This is because H being finite-dimensional implies that H∗ is finite-dimensional and

hence that G(H∗) = Alg(H,κ) is a finite group.

Next, let us denote the category of finite groups by FinGp. Then the assignment

G 7→ κ[G]

yields a functor from FinGp to the category of Hopf algebras, Hopf . But when G is

a finite group, κ[G] is finite-dimensional, co-commutative and co-semi-simple. So, let

H represent the subcategory of all Hopf algebras consisting of those which are finite-

dimensional, co-commutative and co-semi-simple. Then our functor is

FinGp→ H

G 7→ κ[G]

Going the other way, we have seen that if H is finite-dimensional, then G(H) is a finite

group. If H is also co-commutative and co-semi-simple, then κ[G(H)] is a sub-Hopf

algebra of H which is finite-dimensional, co-commutative and co-semi-simple, which

means that κ[G(H)] itself is a member of H. Now, since H is co-semi-simple, it is a

direct sum of simple sub-coalgebras. If κ = C, then these simple sub-coalgebras are

one-dimensional and hence are spanned by a grouplike element (see Proposition 4.45) .

This implies that

H = C[G(H)]

If we revise our conception of H to now be the sub-category of all complex finite-

dimensional, co-commutative, co-semi-simple Hopf algebras, one gets an equivalence of
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categories:

FinGp↔ H

G→ C[G]

G(H)← H

By now we are used to the idea of taking a dual. In this case, if we restrict ourselves toH,

then the assignment H 7→ H∗ yields another contravariant equivalence with “inverse”

H∗ 7→ H∗∗ ∼= H. Recall that this was explored in Section (3.2.5). Let H∗ represent

the category of these dual Hopf algebras and note that each H∗ is finite-dimensional,

commutative and semi-simple. The contravariant equivalence

H → H∗

is called a duality.

Now, because FinGp and H are equivalent categories we also have that

H∗ → H→ FinGp

is a duality. Let A be the category of all finite-dimensional, commutative, semi-simple

C-algebras. In Chapter 3 it was established that the functor

FinSet→ A

X → CX

is a duality as well where the “inverse” is A 7→ Alg(A,C). We can summarize everything

in the following diagram:

A FinSet

H∗ H FinGp

Alg(−,C)

C−

∗

Alg(−,C)

G(−)

C[−]

where the “inclusion” arrows should be taken to indicate the forgetful functor.

The above diagram explains a substantial portion of Figure 1.1 and motivates the notion

of a “quantum group”. We have seen that when our (finite-dimensional) Hopf algebras
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are commutative, the corresponding objects are finite groups. But what happens when

the commutativity requirement is dropped? We will see later that the corresponding

objects are no longer groups, but what we have been calling “quantum groups”. In

other words, quantum groups evolve from an attempt to understand AlgC(H,C) for

a finite-dimensional non-commutative Hopf algebra H. Special types of groups (in the

commutative case) and quantum groups (in the non-commutative case) arise when finite-

dimensionality is dropped. A prominent philosophy, espoused by Drinfel’d, was that one

should quantize classical objects like κ[G] by deforming them to non-cocommutative

Hopf algebras. We will explore this concept of deformation in Chapter 6. This is where

the name “quantum group” comes from.

Let us now investigate the Hopf algebras of H∗ in a little more detail. Since H contains

Hopf algebras of the form C[G], H∗ consists of the Hopf algebras C[G]∗. As we already

have seen, C[G]∗ has basis {g∗ : g ∈ G}. If we multiply two basis elements we find that

g∗h∗(x) = g∗(x)h∗(x)

= δgxδhx all x ∈ G

and therefore

g∗h∗ =

{
g∗ if g = h

0 if g 6= h
= δghg

∗

More explicitly we see that g∗g∗ = g∗ meaning that the basis elements are idempotent.

Since g∗h∗ = 0 whenever g 6= h, the basis elements are also orthogonal. Moreover, since

the identity element of C[G]∗ is the sum of all the basis elements:
∑

g∈G g
∗ we say that

the basis forms a complete set.

As for the co-multiplication, we saw above that

∆(g∗) =
∑
h∈G

h∗ ⊗ (h−1g)∗

Thus, if one identifies C[G] with C[G]∗ the resulting Hopf algebra has basis G with

gh = δghg

∆(g) =
∑
h∈G

h⊗ h−1g

The antipode for C[G]∗ is simply St (transpose) where we recall that S(g) = g−1. Hence,

for all g ∈ G, we have

St(g∗) = g∗ ◦ S
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and when applied to any x ∈ G we get

St(g∗)(x) = (g∗ ◦ S)(x)

= g∗(x−1)

=

{
1 if g = x−1

0 if g 6= x−1

= (g−1)∗(x)

So, when G∗ is identified with G we get the same result: S(g) = g−1. Note that as an

algebra C[G] is isomorphic to CG and so the coalgebra structure on (CG)∗ gives C[G].

Let us now switch our focus to the duality

FinSet↔ Â

X → κX

Alg(A, κ)← A

where Â is the category of all finite-dimensional, commutative and semi-simple κ-

algebras. We have already done some work with CX and the situation for κX is similar.

It has basis {δx : x ∈ X} where

δx(z) = δxz

We began this section on grouplike elements by noting that G(κ[G]) = G and prior to

that established an intimate connection between κ[G] and κG. It seems appropriate,

then, to end this section by disclosing one more interesting connection between these

two algebras, namely that

G(κG) = Ĝ

where Ĝ indicates the character group of G. By way of reminder, a group character is

a group homomorphism G→ κ− {0}.

First, let us motivate a natural coalgebra structure on κG. Let us begin by motivating

∆ : κG → κG ⊗ κG.

In the above duality, note that the cartesian product X × Y gets sent to κX×Y .

Proposition 4.50. For finite sets X and Y , we have the following isomorphism of

algebras:

κX×Y ∼= κX ⊗ κY
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Proof. Suppose X = {x1, ..., xn} and Y = {y1, ..., ym}. Then κX and κY have bases

{δxi : 1 ≤ i ≤ n}, {δyj : 1 ≤ j ≤ m}

respectively and therefore κX ⊗ κY has basis {δxi ⊗ δyj}(i,j).

Also, since X × Y = {(xi, yj) : xi ∈ X, yj ∈ Y } we have that {δ(xi,yj)}(i,j) is a basis for

κX×Y . Define α : κX×Y → κX ⊗ κY on the basis elements δ(xi,yj) by

α(δ(xi,yj)) = δxi ⊗ δyj

and extend by linearity. So, if f ∈ κX×Y , then f =
∑

i,j f(xi, yj)δ(xi,yj) and

α(f) = α
(∑

i,j

f(xi, yj)δ(xi,yj)

)
=
∑
i,j

f(xi, yj)α(δ(xi,yj))

=
∑
i,j

f(xi, yj)δxi ⊗ δyj

This is clearly an algebra morphism on account of the basis elements of κX×Y being

idempotent and orthogonal, which is preserved by α. It is clearly surjective and since

dimκX×Y = dimκX ⊗ dimκY = nm

it is also injective. Therefore it is our desired isomorphism of algebras.

Now let G = {g1, ..., gn} be a finite group with operation m : G×G→ G. By functorality,

one obtains

κG → κG×G
∼→ κG ⊗ κG

where

f 7→ f ◦m 7→
∑
i,j

(
f ◦m

)
(gi, gj)ĝi ⊗ ĝj =

∑
g,h∈G

f(gh)ĝ ⊗ ĥ

Note, in particular, that if f = x̂ with x ∈ G, then it gets mapped to the element

∑
g,h∈G

x̂(gh)ĝ ⊗ ĥ =
∑
g,h∈G
gh=x

ĝ ⊗ ĥ

=
∑
g∈G

ĝ ⊗ ĝ−1x

This motivates our coproduct ∆ for κG.



Chapter 4. Bialgebras and Hopf Algebras 152

For the counit, consider the map i : {1} → G where i(1) = 1G. This gives a map

κG → κ{1} = κ

with

f 7→ f ◦ i = f(1G)

So, in particular, ĝ 7→ ĝ(1G) = δg1G . In other words, this tells us that we should define

ε : κG → κ by ε(ĝ) = δg1G , which is the same thing we would get if instead we used the

counit axiom to determine ε.

We can also define an antipode on κG. Consider the map inv : G→ G where

inv(g) = g−1. Then we get the map

κG → κG

with

f 7→ f ◦ inv

and in particular

ĝ 7→ ĝ ◦ inv = ˆg−1

Hence, the antipode is S : G→ G with S(ĝ) = ˆg−1.

To recap, notice that a group is essentially a set that comes with three associated

structure maps: (1) a group operation or “multiplication” m : G × G → G, (2) a unit

map i : {1} → G and (3) an inverse map inv : G → G. Each of these resulted in a

corresponding structure map for κG, namely a co-multiplication, counit, and antipode

respectively, which allows for κG to be considered a Hopf algebra.

Now for our last result. Let f ∈ κG and suppose f is grouplike so that

∆(f) = f ⊗ f

=
(∑
g∈G

f(g)ĝ
)
⊗
(∑
g∈G

f(g)ĝ
)

=
∑
g,h∈G

f(g)f(h)ĝ ⊗ ĥ

But based on the coalgebra structure we determined that

∆(f) =
∑
g,h∈G

f(gh)ĝ ⊗ ĥ
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and therefore f is grouplike if and only if f(gh) = f(g)f(h) (and f 6= 0), which is

equivalent to saying that f is grouplike if and only if f is a group character. Thus

G(κG) = Ĝ

4.6 M(2), GL(2) and SL(2)

Suppose A is a commutative algebra. Let

M2(A) :=

{[
a b

c d

]
: a, b, c, d ∈ A

}

As a set, M2(A) ≡ A4. Now, if M(2) := κ[a, b, c, d], then we know, from Corollary 3.8,

that

homAlg(M(2), A) ≡M2(A) (4.8)

with

f 7→

[
f(a) f(b)

f(c) f(d)

]
Since this holds for any commutative algebra we can represent the matrix multiplication

of M2(A) universally on M(2). Let us unpack what this means in more detail. First,

we get a natural transformation

homAlg(M(2)⊗M(2), A)→ homAlg(M(2), A)

where A is regarded as a “variable”, from the following natural isomorphism of abelian

groups:

homAlg(M(2)⊗M(2), A) ∼= homAlg(M(2), A)× homAlg(M(2), A) [Proposition 3.10]

∼= M2(A)×M2(A) [(4.8)]
∇7−→M2(A)

∼= homAlg(M(2), A) [(4.8)]

By basic results from category theory, this natural transformation must be induced by

a morphism M(2)→M(2)⊗M(2) which will be our coproduct ∆. To find it explicitly,

set A = M(2) ⊗M(2) and follow the distinguished element idM(2)⊗M(2) through the

above isomorphisms with ∇ (this is a standard category technique).
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First, we need to determine what idM(2)⊗M(2) corresponds to in

homAlg(M(2), A)× homAlg(M(2), A)

Let i1 : M(2)→M(2)⊗M(2) be the algebra map i1(a) = a⊗ 1 and

i2 : M(2) → M(2) ⊗M(2) the algebra map i2(a) = 1 ⊗ a. By Theorem 3.10 we get a

unique morphism of algebras i1 ⊗ i2 such that

(i1 ⊗ i2)(a⊗ b) = i1(a)i2(b)

= (a⊗ 1)(1⊗ b)

= a⊗ b

So, i1⊗ i2 is the identity map idM(2)⊗M(2) and, by Theorem 3.10, corresponds to (i1, i2).

We therefore have

idM(2)⊗M(2)
∼7−→ (i1, i2)

∼7−→ (

[
i1(a) i1(b)

i1(c) i1(d)

]
,

[
i2(a) i2(b)

i2(c) i2(d)

]
)

= (

[
a⊗ 1 b⊗ 1

c⊗ 1 d⊗ 1

]
,

[
1⊗ a 1⊗ b
1⊗ c 1⊗ d

]
)

∇7−→

[
a⊗ 1 b⊗ 1

c⊗ 1 d⊗ 1

]
·

[
1⊗ a 1⊗ b
1⊗ c 1⊗ d

]

=

[
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

]
∼7−→ ∆

where

∆(a) = a⊗ a+ b⊗ c ∆(b) = a⊗ b+ b⊗ d
∆(c) = c⊗ a+ d⊗ c ∆(d) = c⊗ b+ d⊗ d

Note that since ∆ ∈ homAlg(M(2),M(2)⊗M(2)) it is an algebra morphism.

If we now let A = κ, then under the isomorphism homAlg(M(2), κ) ∼= M2(κ), the identity

of M2(κ) corresponds to ε so that ε(a) = ε(d) = 1 and ε(b) = ε(c) = 0. Note, then, that

ε is automatically an algebra morphism. Thus, M(2) has a coalgebra structure where

the coproduct and counit are algebra morphisms and therefore M(2) is a bialgebra.
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We can represent ∆ in terms of a kind of matrix product:

∆

[
a b

c d

]
=

[
a b

c d

]
⊗

[
a b

c d

]

This is merely a symbolic matrix product which encodes the above relations of ∆ in one

simple matrix equation.

Example 4.4 (GL2(A) and SL2(A)). For any commutative algebra A we know that a

matrix in M2(A) is invertible if and only if its determinant is invertible in A. Let A×

be the group of all invertible elements of the algebra A. The set of all invertible matrices

of M2(A) forms a group known as the general linear group of 2× 2 matrices:

GL2(A) :=

{[
a b

c d

]
∈M2(A) : ad− bc ∈ A×

}

There is a distinguished subgroup of GL2(A) called the special linear group of 2 × 2

matrices. It is defined as

SL2(A) :=

{[
a b

c d

]
∈ GL2(A) : ad− bc = 1

}

Now define the commutative algebras GL(2) and SL(2) by

GL(2) := M(2)[t]/((ad− bc)t− 1), SL(2) := GL(2)/(t− 1)

Note that factoring out by (ad − bc)t − 1 causes ad − bc to be invertible. For SL(2),

factoring out by t− 1 just says that t = 1 so that SL(2) reduces to M(2)/(ad− bc− 1)

which corresponds to the determinant being 1. Notice that {a, b, c, d, t} is a generating

set for both GL(2) and SL(2).

Now, given a commutative algebra A we know that

homAlg(κ[x1, ..., xn], A) ≡ An

If L is an ideal of κ[x1, ..., xn] and φ : κ[x1, ..., xn]/L→ A is an algebra morphism, then

we can always precompose φ with the projection map π : κ[x1, ..., xn] → κ[x1, ..., xn]/L

to get φ ◦ π ∈ homAlg(κ[x1, ..., xn], A). So, φ ◦ π is a “point” and, therefore, corre-

sponds to an element (a1, ..., an) ∈ An. The set of all such points as φ varies over

homAlg(κ[x1, ..., xn]/L,A) forms a subset VL of An. Such subsets are known as varieties.

Now, an arbitrary point (b1, ..., bn) ∈ An corresponds to an algebra morphism

ψ : κ[x1, ..., xn] → A, where ψ(xi) = bi and induces a morphism κ[x1, ..., xn]/L → A if
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and only if ψ(f) = 0 for all f ∈ L. Equivalently, we get an induced morphism if and only

if ψ(X) = 0, where X is a generating set for L. If f = f(x1, ..., xn) - i.e. a polynomial

in x1, ..., xn, then ψ(f) = f(b1, ..., bn). So, (b1, ..., bn) ∈ VL if and only if f(b1, ..., bn) = 0

for all f ∈ L. Thus,

homAlg(κ[x1, ..., xn]/L,A) ≡ VL

and VL = {(a1, ..., an) : f(a1, ..., an) = 0 for all f ∈ L}.

Proposition 4.51. For any commutative algebra A there are natural equivalences

homAlg(M(2), A) ≡M2(A)

homAlg(GL(2), A) ≡ GL2(A) and ≡ homAlg(SL(2), A) ∼= SL2(A)

sending an algebra morphism f to the matrix[
f(a) f(b)

f(c) f(d)

]

Proof. By definition, M(2) := κ[a, b, c, d] and therefore

homAlg(M(2), A) ≡ A4 ≡M2(A)

Next, homAlg(GL(2), A) = homAlg(κ[a, b, c, d, t]/((ad − bc)t − 1), A) and, by our work

above, this is equivalent to

{

([
a1 a2

a3 a4

]
, a5

)
: (a1a4 − a2a3)a5 − 1 = 0}

But this set is equivalent to GL2(A) under the mapping([
a1 a2

a3 a4

]
, a5

)
→

[
a1 a2

a3 a4

]

and the inverse mapping is obtained since a5 = (a1a4 − a2a3)−1. Thus

homAlg(GL(2), A) ≡ GL2(A)

Similarly, homAlg(SL(2), A) = homAlg(κ[a, b, c, d]/(ad − bc − 1), A), which is therefore

equivalent to the set

{

[
a1 a2

a3 a4

]
: a1a4 − a2a3 − 1 = 0}
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which is equivalent to SL2(A). Therefore

homAlg(SL(2), A) ≡ SL2(A)

Lemma 4.52. The algebra morphism ∆ of M(2) satisfies

∆(ad− bc) = (ad− bc)⊗ (ad− bc)

and hence ad− bc is grouplike.

Proof. By straightforward computation:

∆(ad− bc) = ∆(a)∆(d)−∆(b)∆(c)

= (a⊗ a+ b⊗ c)(c⊗ b+ d⊗ d)− (a⊗ b+ b⊗ d)(c⊗ a+ d⊗ c)

= ac⊗ ab+ ad⊗ ad+ bc⊗ cb+ bd⊗ cd− ac⊗ ba− ad⊗ bc− bc⊗ da− bd⊗ dc

= ad⊗ ad− bc⊗ ad+ bc⊗ bc− ad⊗ bc+ ac⊗ ab− ac⊗ ab+ bd⊗ dc− bd⊗ dc

= (ad− bc)⊗ ad+ (bc− ad)⊗ bc

= (ad− bc)⊗ (ad− bc)

Note how the above computations are crucially dependent on A being commutative.

Now, for any commutative bi-algebra B and grouplike element g

B(1− g) = {b(1− g) : b ∈ B}

is a bi-ideal. It is quite clearly an ideal, since B is commutative. It is less obvious,

however, that B(1− g) is a co-ideal. For this, it is requisite that

∆B(1− g) ⊆ B(1− g)⊗B +B ⊗B(1− g)

and

εB(1− g) = 0
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Observe, then, that

∆(1− g) = ∆(1)−∆(g)

= 1⊗ 1− g ⊗ g

= 1⊗ 1− 1⊗ g + 1⊗ g − g ⊗ g

= 1⊗ (1− g) + (1− g)⊗ g

Therefore,

∆B(1− g) = ∆B∆(1− g)

⊆ (B ⊗B)(1⊗ (1− g) + (1− g)⊗ g)

⊆ B ⊗B(1− g) +B(1− g)⊗Bg

⊆ B ⊗B(1− g) +B(1− g)⊗B

Next, since

ε(1− g) = ε(1)− ε(g) = 1− 1 = 0

we have that

εB(1− g) = εBε(1− g)

= 0

and hence B(1− g) is a co-ideal and thus a bi-ideal. By Theorem 4.4, then, B/B(1− g)

is a commutative bi-algebra.

Taking B = M(2) we see immediately that SL(2) = M(2)/(1− (ad− bc)) is a commu-

tative bialgebra. Also, if we set ∆(t) = t ⊗ t, then (ad − bc)t is grouplike (since ∆ is

an algebra morphism) and therefore GL(2) = M(2)[t]/(1− (ad− bc)t) is a commutative

bialgebra as well.

The remaining question is whether these are Hopf algebras. By definition, the require-

ment is the existence of an antipode. Now, since GL(2) and SL(2) are derived from

M(2), let us begin by considering L(M(2),M(2)), which, we know, is an algebra under

convolution. If there is to be an antipode S ∈ L(M(2),M(2)), then it must commute

with idM(2). Now, for any commutative algebra A, homAlg(M(2), A) ⊆ L(M(2), A).

For α, β ∈ homAlg(M(2), A) we have that α ? β := ∇ ◦ (α ⊗ β) ◦ ∆, which is a

composition of three algebra morphisms, since M(2) and A are commutative. Thus,

α ? β ∈ homAlg(M(2), A) and so corresponds to a matrix. We can determine this as
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follows: [
a b

c d

]
∆7−→

[
a b

c d

]
⊗

[
a b

c d

]

=

[
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

]

α⊗β7−−−→

[
α(a)⊗ β(a) + α(b)⊗ β(c) α(a)⊗ β(b) + α(b)⊗ β(d)

α(c)⊗ β(a) + α(d)⊗ β(c) α(c)⊗ β(b) + α(d)⊗ β(d)

]

∇7−→

[
α(a)β(a) + α(b)β(c) α(a)β(b) + α(b)β(d)

α(c)β(a) + α(d)β(c) α(c)β(b) + α(d)β(d)

]

=

[
α(a) α(b)

α(c) α(d)

]
·

[
β(a) β(b)

β(c) β(d)

]

= α

[
a b

c d

]
β

[
a b

c d

]

It follows that the correspondence α 7→

[
α(a) α(b)

α(c) α(d)

]
preserves the binary structure of

multiplication so that α ? β 7→ αβ and

homAlg(M(2), A) ≡M2(A)

So, to determine whether such an S exists we use that

homAlg(M(2),M(2)) ≡M2(M(2))

via

f 7→

[
f(a) f(b)

f(c) f(d)

]
=: F

so that f ? g 7→ FG where FG is matrix multiplication. Since finding an inverse for

idM(2) requires finding S such that

S ? idM(2) = ε ◦ η = idM(2) ? S

and since ε ◦ η 7→

[
1 0

0 1

]
, this translates to needing

[
S(a) S(b)

S(c) S(d)

][
a b

c d

]
=

[
1 0

0 1

]
=

[
a b

c d

][
S(a) S(b)

S(c) S(d)

]
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But this is equivalent to requiring that

[
a b

c d

]
be invertible in M2(M(2)), which is not,

in general, possible. What this tells us is that M(2) is not a Hopf algebra. However,

this requirement does become possible when we pass to the factor bialgebras GL(2) and

SL(2). Therefore, there is an antipode S for GL(2) and SL(2) thereby making them

both commutative (but not co-commutative) Hopf algebras. For SL(2) we will have

S(a) = d(ad− bc)−1

S(b) = −b(ad− bc)−1

S(c) = −c(ad− bc)−1

S(d) = a(ad− bc)−1

The same will hold for GL(2) with the added assignment S(t) = t−1, since t is grouplike.

There is no doubt that this chapter is pivotal in our study. Hopf algebras are the key

foundational objects required for understanding quantum groups. Again, this is because

quantum groups can be considered as special kinds of Hopf algebras. We also found that

the name “quantum group” itself arises out of the connection between Hopf algebras

and groups. It was briefly mentioned that the general idea is to deform certain Hopf

algebras into non-commuting or non-cocommuting structures. We will investigate this

in Chapter 6 and Chapter 7 when we explore some specific quantum groups. The next

chapter, however, provides another key connection to Hopf algebras and, by extension,

quantum groups. It will also be instrumental in understanding the example presented

in Chapter 7.



Chapter 5

Lie Algebras

5.1 Background and Importance to the Theory of Quan-

tum Groups

The term “Lie Algebra” (pronounced “Lee”) was coined by the German mathematician

Hermann Weyl in the 1930’s in honor of Sophus Lie. Lie was a Norwegian mathemati-

cian famous for pretty well developing the theory of continuous symmetry. Lie algebras

in particular arose as a means of studying Lie groups and infinitesimal transformations.

One can describe a Lie group, rather crudely, as a topological group which is also a dif-

ferential manifold, where the group operations respect the manifold’s smooth structure.

Because of this, one can employ methods of analysis, such as differential calculus, to

study the properties of such objects. In particular, Lie’s insight was to study the local

properties of these structures rather than look at them globally. Due to the smoothness

of the manifold, one can think of the local structure as being linear. Lie called these

linearized spaces “infinitesimal groups”. Today, they are known as the Lie algebra of

the group. In other words, because Lie groups are differential manifolds, there is an

associated tangent space at each point of the manifold. Lie algebras can be thought of

as tangent spaces of Lie groups at the identity element of the Lie group, which arises

from the so called Lie bracket.

In this chapter a broad overview of Lie theory will be given with the aim of highlighting

the features important to the study of quantum groups. While some of the material

will concern Lie algebras in general, the main focus will be on finite-dimensional Lie

algebras over C. This is to prepare the way for a detailed study of the important finite-

dimensional Lie algebra sl(2) with ground field C.

161
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5.2 The Basics

5.2.1 Introducing Lie Algebras

Definition 5.1 (Lie Algebra). A Lie algebra L is a vector space over a field κ with

a bilinear map [, ] : L × L → L, called the Lie bracket, satisfying the following two

conditions for all x, y, z ∈ L:

(i) (Alternating):

[x, x] = 0

(ii) (Jacobi Identity):

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The Lie bracket is also antisymmetric since

[x+ y, x+ y] = 0 [alternating]

=⇒ [x, x] + [x, y] + [y, x] + [y, y] = 0 [bilinearity]

=⇒ [x, y] + [y, x] = 0

which is the definition of antisymmetry. The converse holds provided that κ does not

have characteristic 2.

Notice that the alternating property and bilinearity also imply that [x, 0] = [0, x] = 0

for all x ∈ L. Indeed

0 = [x, x]

= [x+ 0, x]

= [x, x] + [0, x] = [0, x]

By antisymmetry, it immediately follows that [x, 0] = 0 as well.

We define the center of a Lie algebra analogously to the center of an algebra. That is,

Z(L) := {x ∈ L : [x, y] = 0, for all y ∈ L}

The reason for using of the term “center” will become apparent when we introduce a

particular version of the Lie bracket called the commutator. We also say that a Lie

algebra L is abelian if L = Z(L). Again, we’ll see below that this notion of abelian

corresponds to the usual usage of the term under the commutator. Note, then, that any
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vector space V can be viewed as a Lie algebra by taking the Lie bracket to be [u, v] = 0

for all u, v ∈ V , which is the abelian Lie structure on V . Now, it is clearly the case that

Z(L) = L for any one-dimensional L, since, if {x} is a basis of L, then

[λx, γx] = λγ[x, x] = 0

Thus, if Z(L) 6= L, then it must be that dim(L) > 1 and so L must contain at least two

linearly independent elements.

As hinted at above, despite the name “Lie algebra”, one should be careful to note that

this is not an algebra according to the usual definition (see Chapter 3). In particular,

the Lie bracket of a Lie algebra need not be associative. That is,

[x, [y, z]] = [[x, y], z]

need not hold. This naturally raises the question as to when the Lie bracket is associa-

tive. Suppose that L is an associative Lie algebra. Then

[x, [y, z]] + [z, [x, y]] = 0 all x, y, z ∈ L

Along with the Jacobi identity this implies that [y, [z, x]] = 0 or, equivalently, that

[[z, x], y] = 0. Since this will hold for all x, y, z ∈ L we see that [a, b] ∈ Z(L) for all

a, b ∈ L. Conversely, if [a, b] ∈ Z(L) for all a, b ∈ L, then

[x, [y, z]] = [[x, y], z]

since both are zero. So the Lie bracket is associative precisely when the derived algebra

(see below) [L,L] ⊆ Z(L).

Recall that being associative means that the order in which an operation is applied is

irrelevant. The Jacobi identity can be interpreted as “measuring” how much the order

of evaluation matters for the operation in question.

Definition 5.2 (Ideal). Let L be a Lie algebra. A subspace I ⊆ L is called an ideal if

[x, y] ∈ I for any x ∈ L and y ∈ I

We shall soon see that these play the role for Lie algebra theory what normal subgroups

and two-sided ideals play for group theory and ring theory respectively.

Definition 5.3 (Lie Subalgebra). Let L be a Lie algebra. A vector subspace K ⊆ L is

called a Lie subalgebra if

[x, y] ∈ K for all x, y ∈ K
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It is easy to see from these definitions that every ideal is also a Lie subalgebra. Of

course, the converse is not true in general. We shall see quite a few examples of Lie

subalgebras below, especially in Section 5.2.3.

5.2.2 Adjoints and the Commutator

Let L be a Lie algebra and take End(L) to be the set of linear transformations of L.

Define a map

ad : L→ End(L), x 7→ adx : L→ L

such that adx(y) := [x, y] for all y ∈ L. The map ad is called the adjoint representation

of L, while each adx is called an adjoint endomorphism or adjoint action. We can express

the Jacobi identity using this map by

ad[x,y](z) = (adx ◦ ady − ady ◦ adx)(z)

The expression on the right is the commutator of the elements adx, ady ∈ End(L).

Suppose we begin with an arbitrary associative algebra A. Define a product map on A

by

[a, b] := ab− ba for any a, b ∈ A

This is commonly referred to as the commutator of a and b. One can think of it as

“measuring” how “close” an algebra is to being commutative.

Proposition 5.4. Given an associative algebra A and a, b, c ∈ A, then

[a, bc] = [a, b]c+ b[a, c]

Proof. This only requires a bit of algebraic manipulation.

[a, bc] = abc− bca

= abc− bac+ bac− bca

= (ab− ba)c+ b(ac− ca)

= [a, b]c+ b[a, c]

Now, A will be commutative (i.e. abelian) if and only if [a, b] = 0 for all a, b ∈ A.

Another way of saying this is that A is abelian if and only if [A,A] = 0, where [A,A]

denotes the space generated by all elements of the form [a, b] with a, b ∈ A. If g is a
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Lie algebra, then [g, g] is known as the derived Lie algebra of g and is analogous to the

commutator subgroup of a group.

We now turn to a simple, but important result in Lie theory which says that any asso-

ciative algebra can be endowed with a Lie algebra structure.

Proposition 5.5. If A is an associative algebra, then the commutator is a Lie bracket

and hence (A, [, ]) =: L(A) is a Lie algebra.

Proof. It is obvious that [, ] is alternating, since for any a ∈ A we have that

[a, a] = aa− aa = 0

To verify that the Jacobi identity is satisfied, let a, b, c ∈ A. Then

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = a[b, c]− [b, c]a+ b[c, a]− [c, a]b+ c[a, b]− [a, b]c

= a(bc− cb)− (bc− cb)a+ b(ca− ac)− (ca− ac)b+ c(ab− ba)− (ab− ba)c

= a(bc)− a(cb)− (bc)a+ (cb)a+ b(ca)− b(ac)− (ca)b+ (ac)b+ c(ab)− c(ba)− (ab)c+ (ba)c

= a(bc)− (ab)c− a(cb) + (ac)b− (bc)a+ b(ca) + (cb)a− c(ba) + (ba)c− b(ac) + c(ab)− (ca)b

= 0 [by associativity of A]

Finally, let a, b, c ∈ A and λ ∈ κ. We show that [, ] is bilinear:

[λa+ b, c] = (λa+ b)c− c(λa+ b)

= λac+ bc− λca− cb

= λ(ac− ca) + bc− cb

= λ[a, c] + [b, c]

A symmetric argument shows linearity in the second coordinate.

Though nice to see, the bilinearity part is superfluous, since it follows directly from

the bilinearity of multiplication in A. In fact, the entire proof is nearly trivial, but the

result is rather interesting, since it means that any associative algebra can be turned

into a Lie algebra. Even more remarkable, however, is the fact we can go the other

way. That is, given any Lie algebra, there is an associated associative algebra with the

important property that it preserves the representation theory. So, given a Lie algebra

L we want the “most general”κ-algebra A such that L(A) contains L. But before we

elaborate on this any further let us consider some examples as well as supply some

required definitions.
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Example 5.1. Let H be a Hopf algebra. Then, by Proposition 5.5, H becomes a Lie

algebra L(H). For any Hopf algebra, a primitive element is an element h ∈ H such that

∆(h) = h⊗ 1 + 1⊗ h

Denote the set of all such elements for H by Prim(H). If a, b ∈ Prim(H), then

a+ b ∈ Prim(H) since

∆(a+ b) = ∆(a) + ∆(b) [∆ is linear]

= a⊗ 1 + 1⊗ a+ b⊗ 1 + 1⊗ b

= a⊗ 1 + b⊗ 1 + 1⊗ a+ 1⊗ b

= (a+ b)⊗ 1 + 1⊗ (a+ b)

Note, too, that if a ∈ Prim(H) and λ ∈ κ, then λa ∈ Prim(H) since

∆(λa) = λ∆(a)

= λ(a⊗ 1 + 1⊗ a)

= λ(a⊗ 1) + λ(1⊗ a)

= λa⊗ 1 + 1⊗ λa

This establishes that Prim(H) is a subspace of H. Finally, if a, b ∈ Prim(H), then

consider that

∆([a, b]) = ∆(ab− ba)

= ∆(a)∆(b)−∆(b)∆(a) [∆ is an algebra morphism]

= (a⊗ 1 + 1⊗ a)(b⊗ 1 + 1⊗ b)− (b⊗ 1 + 1⊗ b)(a⊗ 1 + 1⊗ a)

= ab⊗ 1− ba⊗ 1 + 1⊗ ab− 1⊗ ba [distribute and simplify]

= (ab− ba)⊗ 1 + 1⊗ (ab− ba)

= [a, b]⊗ 1 + 1⊗ [a, b]

which shows that [a, b] ∈ Prim(H) and hence, Prim(H) is a Lie subalgebra of H.

We should also mention that for a ∈ Prim(H) it is necessarily the case that ε(a) = 0.

This follows from the interaction between being primitive and the counit axiom. The

counit axiom entails the commutativity of the diagram
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H ⊗H H ⊗ κ

H

id⊗ ε

∆ ∼

This tells us that

a⊗ 1 = (id⊗ ε)(∆(a))

= (id⊗ ε)(a⊗ 1 + 1⊗ a)

= a⊗ ε(1) + 1⊗ ε(a)

= a⊗ 1 + 1⊗ ε(a)

which implies that 1⊗ ε(a) = 0 and hence that ε(a) = 0. We conclude, then, that

Prim(H) ⊆ Ker(ε)

As always, we are interested in those maps which preserve or respect the pertinent

structure between two objects, in this case the Lie structure.

Definition 5.6 (Morphism of Lie Algebras). Let L and L′ be two Lie algebras over a

field κ. A linear map f : L→ L′ is a morphism of Lie algebras if

f([x, y]) = [f(x), f(y)]

for all x, y ∈ L.

With Lie morphisms defined, we have our category of Lie algebras denoted by Lie (see

Figure 1.1). In light of Proposition 5.5, L is a functor from Alg to Lie where algebra

morphisms double as Lie morphisms given the definition of the commutator bracket.

We have already seen an example of a Lie morphism, namely the adjoint representation

map. That is, when End(L) becomes a Lie algebra with the commutator map, then we

showed above that

ad([x, y]) = ad[x,y] = adx ◦ ady − ady ◦ adx = [adx, ady]

Next, consider the associative algebras Mn(κ) and κ thought of as Lie algebras. Besides

the determinant, one of the more well known features of square matrices is the trace.

We can think of the trace as a map that assigns to each matrix the value of its trace in
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the ground field. That is,

tr : Mn(κ)→ κ,


λ11 λ12 . . . λ1n

λ21 λ22 . . . λ2n

...
...

. . .
...

λn1 λn2 . . . λnn

 7−→
n∑
i=1

λii

This is a morphism of Lie algebras since, if N,M ∈ Mn(κ), then by properties of the

trace

tr([M,N ]) = tr(MN −NM) = tr(MN)− tr(NM) = 0

while [tr(M), tr(N)] = 0, since κ is commutative.

Definition 5.7 (Derivation). Let L be a Lie algebra. A derivation on L is an endomor-

phism of L, d : L→ L such that

d([x, y]) = [d(x), y] + [x, d(y)], for all x, y ∈ L

The condition in this definition is a particular type of Leibniz law, which the calculus

student will recognize is just a generalized version of the so called product rule for

derivatives. Once more, the adjoint action provides a nice example of a derivation. Let

adx be an adjoint action on L and a, b ∈ L. Then by manipulating the Jacobi identity

we get

adx([a, b]) = [x, [a, b]] = [[x, a], b] + [a, [x, b]] = [adx(a), b] + [a, adx(b)]

The last part of this section introduces several more important analogues to algebras.

5.2.3 The General Linear Group and The General Linear Algebra

Let V be a finite-dimensional κ-vector space. Then End(V ) is an associative algebra

under composition. By applying Proposition 5.5, however, we get that End(V ) is a Lie

algebra, namely L(End(V )), which is generally denoted by gl(V ). This is referred to as

the general linear algebra and is closely associated with an important example, which we

shall frequent often: the general linear group GL(V ). This is the group of all invertible

endomorphisms of V . For κ = C or R, this provides the connection between a Lie group

and Lie algebra. In this case, gl(V ) is the tangent space at zero for GL(V ).

There is a very convenient relationship between the general linear algebra and matrices.

Let Mn(κ) be the space of all n × n matrices with entries in κ. Then this forms an
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associative algebra and thus, by Proposition 5.5, Mn(κ) becomes a Lie algebra. From

linear algebra we then get the following nice result.

Proposition 5.8. If deg(V ) = n <∞, then End(V ) ∼= Mn(κ) as algebras.

and the immediate consequence:

Corollary 5.9. If End(V ) and Mn(κ) are as in the previous proposition, then

L(End(V )) ∼= L(Mn(κ))

When we want to think in terms of matrices we shall write gln(κ) in place of gl(V ). The

standard basis for gln(κ) consists of all matrices Eij having 1 in the (i, j) position and

0 elsewhere. Since

EijEk` = δjkEi`

The commutator, relative to this basis, is given by

[Eij , Ek`] = δjkEi` − δ`iEkj

The general linear algebra is important for many reasons. One reason, of current interest,

is that many examples of Lie algebras are born out of gln(κ) as subalgebras.

Example 5.2 (sln(κ)). One of the most important examples is the special linear algebra

sln(κ), which consists of all n×n matrices in gln(κ) having trace zero. In fact, as we will

later see, this example with n = 2 will command almost our exclusive attention. To see

that it is a Lie subalgebra, let X,Y ∈ sln(κ). We require that tr([X,Y ]) = 0, which we

know to be true by properties of the trace map. Thus, sln(κ) is a Lie subalgebra of gln(κ)

and a Lie algebra in its own right with respect to the inherited commutator product.

Example 5.3 (Skew-symmetric Matrices). Let ssn(κ) denote the space of all n × n

skew-symmetric matrices. This means that for any M ∈ ssn(κ), M + M t = 0. Let

A,B ∈ ssn(κ). Then

[A,B] = AB −BA

= (−At)(−Bt)− (−Bt)(−At)

= AtBt −BtAt

= −(BtAt −AtBt)

= −((AB)t − (BA)t)

= −(AB −BA)t

= −[A,B]t
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implying that [A,B] ∈ ssn(κ). Thus, ssn(κ) is a Lie subalgebra of gln(κ).

Notice the implication of the skew-symmetric property. Since (aij) + (aij)t = 0, we see

that aij = −aji. In particular, this means that akk = −akk implying that the diagonal

entries are all zero. It follows that the trace of a skew-symmetric matrix is zero and

hence ssn(κ) is also a Lie subalgebra of sln(κ).

Example 5.4 (Symplectic Algebra). Closely related to the previous example is the sym-

plectic algebra. For reasons unnecessary to the example, this algebra requires even di-

mensionality. It is denoted by sp2n(κ). The matrix elements of the symplectic algebra

have the form

[
m n

p q

]
, where m,n, p, q ∈ gln(κ) are such that nt = n, pt = p and

mt = −q. Let

[
m n

p q

]
,

[
m′ n′

p′ q′

]
∈ sp2n(κ). Then

[

[
m n

p q

]
,

[
m′ n′

p′ q′

]
] =

[
mm′ + np′ −m′m− n′p mn′ + nq′ −m′n− n′q
pm′ + qp′ − p′m− q′p pn′ + qq′ − p′n− q′q

]

Now let

M = mm′ + np′ −m′m− n′p

N = mn′ + nq′ −m′n− n′q

P = pm′ + qp′ − p′m− q′p

Q = pn′ + qq′ − p′n− q′q

we then have that

N t = (mn′ + nq′ −m′n− n′q)t

= n′tmt + q′tnt − ntm′t − qtn′t

= −n′q −m′n+ nq′ +mn′

= mn′ + nq′ −m′n− n′q

= N

P t = (pm′ + qp′ − p′m− q′p)t

= m′tpt + p′tqt −mtp′t − ptq′t

= −q′p− p′m+ qp′ + pm′

= pm′ + qp′ − p′m− q′p

= P



Chapter 5. Lie Algebras 171

M t = (mm′ + np′ −m′m− n′p)t

= m′tmt + p′tnt −mtm′t − ptn′t

= q′q + q′n− qq′ − pn′

= −pn′ − qq′ + p′n+ q′q

= −(pn′ + qq′ − p′n− q′q)

= −Q

This shows that [

[
m n

p q

]
,

[
m′ n′

p′ q′

]
] ∈ sp2n(κ). Thus, sp2n(κ) is a Lie subalgebra of

gl2n(κ). Furthermore, the condition that mt = −q implies that the elements of the

symplectic algebra are trace zero and hence, the symplectic algebra is also a Lie subalgebra

of sl2n(κ).

Example 5.5 (un(C)). Consider the space of all skew-Hermitian matrices denoted

un(C). These have the property that for any M ∈ un(C), M † + M = 0, where M †

represents the conjugate transpose of M . Note that the conjugate transpose satisfies

(A+B)† = A† +B†, (AB)† = B†A†

and, hence, the same argument as in Example 5.3 applies. Thus, un(C) is a Lie subal-

gebra of gln(C).

Example 5.6 (tn(κ), nn(κ) and dn(κ)). The following three examples are closely related.

Let tn(κ) represent the space of all n × n upper-triangular matrices (aij = 0 if i > j),

nn(κ) the space of all n×n strictly upper-triangular matrices (aij = 0 if i ≥ j), and dn(κ)

the space of all n × n diagonal matrices. Since the product and sum of two triangular

matrices is again triangular, it follows that each of these is a Lie subalgebra of gln(κ).

Of the three, however, only nn(κ) is additionally a Lie subalgebra of sln(κ). Notice,

however, that both nn(κ) and dn(κ) are Lie subalgebras of tn(κ).

Together, these examples reveal the remarkable fact that many matrix properties are

preserved by the commutator bracket.

5.2.4 New Lie Algebras

The Opposite Lie Algebra

Probably the easiest way to obtain a new Lie algebra out of an old one is by creating

the opposite Lie algebra. Given a Lie algebra L, the opposite Lie algebra, Lop, is defined
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to be the vector space L with Lie bracket [x, y]op defined by

[x, y]op := [y, x] = −[x, y]

It should be noted that one only obtains a “new” Lie algebra in a superficial way

by taking the opposite Lie algebra since Lop ∼= L under the Lie algebra isomorphism

op : L→ Lop defined by

op(x) := −x

Factor Lie Algebras

Since we have defined the concept of an ideal for a Lie algebra, it is natural to query

as to whether new Lie algebras can be obtained via construction of a quotient space.

Toward this end, let L be a Lie algebra and I an ideal of L. Then we can certainly

create the quotient vector space

L/I := {x+ I : x ∈ L}

We can turn this into a Lie algebra by defining

[v + I, w + I] := [v, w] + I, for all v, w ∈ L

The crucial question, which arises in all cases such as these, is: Is this well-defined?

Proposition 5.10. The correspondence [, ] : L/I × L/I → L/I given above is well-

defined and L/I is a Lie algebra.

Proof. Suppose that v+ I = v′+ I and w+ I = w′+ I. Then v− v′ ∈ I and w−w′ ∈ I
and because we are factoring out by I, these elements act like 0. We therefore have

[v, w] = [v′ + (v − v′), w′ + (w − w′)]

= [v′, w′ + (w − w′)] + [v − v′, w + (w − w′)]

= [v′, w′] + [v′, w − w′] + [v − v′, w] + [v − v′, w − w′]

= [v′, w′] [as elements of L/I]

since the last three terms will be in I. This establishes that the correspondence is

well-defined.

Next, notice that the bracket for the quotient space is defined in terms of the Lie bracket

for L. It follows, then, that our new bracket will be alternating and satisfy the Jacobi

identity. Thus, it is a Lie bracket for L/I thereby bestowing upon L/I a Lie algebra

structure.
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Example 5.7. Let L be a Lie algebra. Then clearly [L,L] is an ideal of L. Let Lab

denote the quotient Lie algebra L/[L,L]. It is clear that any Lie algebra created in this

way is abelian.

Just as one would suspect, we refer to L/I as a factor or quotient Lie algebra. It may

also come as no surprise to the reader that there are isomorphism theorems for factor Lie

algebras. For the sake of brevity we shall merely provide the statement of the theorems

(see [11]).

Theorem 5.11 (Isomorphism Theorems). We state all three theorems together:

(i) Let φ : L → L′ be a morphism of Lie algebras. Then Ker(φ) is an ideal of L,

Im(φ) is a Lie subalgebra of L′ and

L/Ker(φ) ∼= Im(φ)

(ii) If I and J are ideals of a Lie algebra, then

(I + J)/J ∼= I/(I ∩ J)

(iii) If I and J are ideals of a Lie algebra L such that I ⊂ J , then J/I is an ideal of

L/I and

(L/I)/(J/I) ∼= L/J

Direct Sum of Lie Algebras

Another means of creating new Lie algebras out of old ones is to take their direct sum,

so that, if L and L′ are Lie algebras, then so is L⊕L′. Clearly L⊕L′ is a vector space.

Define a Lie bracket on L⊕ L′ by

[(x, x′), (y, y′)] := ([x, y], [x′, y′])

for all x, y ∈ L and x′, y′ ∈ L′. It is alternating since

[(x, x′), (x, x′)] = ([x, x], [x′, x′])

= (0, 0)
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It satisfies the Jacobi identity since

[(x, x′), [(y, y′), (z, z′)]] + [(y, y′), [(z, z′), (x, x′)]] + [(z, z′)[(x, x′), (y, y′)]]

= [(x, x′), ([y, z], [y′, z′])] + [(y, y′), ([z, x], [z′, x′])] + [(z, z′), ([x, y], [x′, y′])]

= ([x, [y, z]], [x′, [y′, z′]]) + ([y, [z, x]], [y′, [z′, x′]]) + ([z, [x, y]], [z′, [x′, y′]])

= (0, 0)

That this bracket it bilinear is clear. Thus L ⊕ L′ with [, ] as defined above is a Lie

algebra.

Example 5.8. Consider again the space tn(κ) having upper-triangular matrix elements.

In Example 5.6 we considered how it becomes a Lie algebra under the inherited operation

of gln(κ). However, this space admits another Lie algebra structure as a direct sum. If

we call upon the other two participants of Example 5.6, then clearly

tn(κ) = dn(κ) + nn(κ) as vector spaces

By their very definitions, it is equally clear that

dn(κ) ∩ nn(κ) = {0}

Thus

tn(κ) = dn(κ)⊕ nn(κ)

The Lie bracket in this case would operate as follows: let T, T ′ ∈ tn(κ). Then each can

be decomposed to T = D+N and T ′ = D′+N ′ where D,D′ ∈ dn(κ) and N,N ′ ∈ nn(κ).

Computing the Lie bracket yields

[T, T ′] = [D +N,D′ +N ′]

= [D,D′] + [N,N ′]

where [D,D′] and [N,N ′] are the usual Lie brackets of dn(κ) and nn(κ) respectively.

Definition 5.12 (Simple Lie Algebra). We say that a Lie algebra L is non-trivially

simple if

1. L has no ideals except 0 and itself.

2. [L,L] 6= 0.

Condition (2) is what prevents a Lie algebra from being trivially simple. These are the

one-dimensional abelian Lie algebras. A Lie algebra is said to be semisimple if it is a

direct sum of simple Lie algebras.
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Having acquired some basic theory, let us proceed to explore how one can obtain an

associative algebra from any Lie algebra. This is a very important part of our study

because it will tie into Hopf algebras and, more importantly, is a “primary” source of

quantum groups.

5.3 Enveloping Algebras

As mentioned above, we can assign to any Lie algebra a corresponding associative alge-

bra. These associative algebras are called Enveloping algebras. The idea is to represent

a Lie algebra L with an associative algebra that captures the important properties of

L. The usefulness of this comes from the fact that it is usually nicer to work in an

associative algebra. The term “enveloping” means “to wrap up in” or “surround en-

tirely”. Hence, enveloping algebras can be thought of as “wrapping up” or “enclosing”

the essential features of a Lie algebra.

The formal definition uses the tensor algebra considered last chapter.

Definition 5.13 (Enveloping Algebra). Let L be a Lie algebra. The enveloping algebra,

U(L), for L is defined to be the quotient space

U(L) :=
T (L)
I(L)

where T (L) is the tensor algebra of L and I(L) is the two sided ideal of T (L) generated

by all elements of the form

x⊗ y − y ⊗ x− [x, y], x, y ∈ L

This allows one to import the commutation relations of L into U(L). Along with as-

signing U(L) to L we also assign a morphism of Lie algebras

iL : L→ L(U(L))

which we define to be the composition of the canonical injection of L into T (L) and the

canonical surjection of T (L) onto U(L). It is immediate, then, that

iL([x, y]) = x⊗ y − y ⊗ x
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where we are “ignoring” the coset, and that iL is a Lie morphism, since the Lie bracket

in L(U(L)) is the commutator. That is,

iL([x, y]) = x⊗ y − y ⊗ x = [iL(x), iL(y)]

An important part of Lie theory is studying the product properties within a particular

representation of a Lie algebra. Enveloping algebras are a key tool in representation

theory. To understand better what this means we take a quick detour into some repre-

sentation theory.

5.3.1 Representations of Lie Algebras

The reader may recall that we introduced a map ad : L → End(L) above called the

adjoint representation. This section will elucidate the reason for this name.

Definition 5.14 (Lie Algebra Representation). Let g be a Lie algebra and V a κ-vector

space. A representation of g is a morphism of Lie algebras

ρ : g→ gl(V ), x 7→ ρx

In particular

ρ([x, y]) = [ρx, ρy] = ρx ◦ ρy − ρy ◦ ρx

for all x, y ∈ g.

An n-dimensional matrix representation, then, is just a linear morphism of g into

L
(
Mn(κ)

)
and, as mentioned above, one can obtain isomorphic representations by choos-

ing a basis in V .

Continuing in this vein, if ρ and ρ′ are two representations of degree n for g, then we say

that these two representations are equivalent if there exists a non-singular n× n matrix

T over κ such that

ρ′ = T−1ρT

The reader may have noticed that there is an essential similarity between the above

description of representations and the notion of a module. In fact, the language of

module theory is perfectly suited to characterizing the representation of a Lie algebra.

In this context we refer to a Lie algebra module, or g-module. This is analogous to

the result that a group representation is equivalent to a module over the corresponding

group algebra. We define a left g-module as follows.
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Definition 5.15 (Left g-Module). A left g-module is a κ-vector space V with a bilinear

scalar multiplication g× V → V with (x, v) 7→ xv such that

[x, y]v = x(yv)− y(xv)

for all x, y ∈ g and v ∈ V .

The dimension of a g-module is identical to that of the underlying vector space V .

Definition 5.16 (g-Module Morphism). Let g be a Lie algebra and let V,W be g-

modules. A g-module morphism from V to W is a linear map θ : V →W such that

θ(g · v) = g · θ(w), for all v ∈ V,w ∈W and g ∈ g

We now show that representations and g-modules are essentially equivalent ways of

studying Lie algebras.

Proposition 5.17. Every g-module gives a representation of g and every representation

gives a g-module.

Proof. Let V be a finite-dimensional g-module. Define a map ρ : g→ gl(V ) by

x 7→ ρx(−)

where ρx(v) := xv. This is a linear map, since if x, y ∈ g and λ ∈ κ, then

λx+ y 7→ ρλx+y(−)

and

ρλx+y(v) = (λx+ y)v

= λxv + yv

= λρx(v) + ρy(v)

We now show that this map is a representation of g. By definition

[x, y] 7→ ρ[x.y](−)
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Now let v ∈ V . Then

ρ[x,y](v) = [x, y]v

= x(yv)− y(xv) [V a g-module]

= xρy(v)− yρx(v)

= (ρx ◦ ρy)(v)− (ρy ◦ ρx)(v)

which satisfies the condition of being a representation.

Conversely, given a representation ρ : g→ gl(V ), the vector space V becomes a g-module

if we define

xv := ρx(v)

Checking bilinearity we see that

(λx+ γy)v = ρλx+γy(v)

= ρλx(v) + ργy(v)

= λρx(v) + γρy(v)

= λ(xv) + γ(yw)

Also,

x(λv + w) = ρx(λv + w)

= ρx(λv) + ρx(w)

= λρx(v) + ρx(w)

= λ(xv) + xw

Finally, we check that [x, y]v = x(yv)− y(xv).

[x, y]v = ρ[x,y](v)

= (ρx ◦ ρy)(v)− (ρy ◦ ρx)(v)

= x(yv)− y(xv)

What this really says is that the category of representations of g is equivalent to the

category of g-modules.

Representations allow one to study products and series within gl(V ), which reveal various

properties of the Lie algebra in question. This is because there is, in general, no defined
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multiplication in a Lie algebra, which is not the case for gl(V ). Unfortunately, certain

properties can be sensitive to the particular representation used. Nevertheless, there

are properties which appear to be “universal” in that they hold simultaneously for all

representations. This leads us to the notion of a universal enveloping algebra which

captures exactly these properties, and only these properties.

5.3.2 The Universal Enveloping Algebra

For any Lie algebra g, the enveloping algebra U(g) enjoys a universal property.

Theorem 5.18. Let g be a Lie algebra. Given any associative algebra A and any

morphism of Lie algebras f : g → L(A), there exists a unique morphism of algebras

φ : U(g)→ A such that φ ◦ ig = f .

This can be summed up as saying there is a natural bijection

homLie(g, L(A)) ∼= homAlg(U(g), A) as sets

So, U is the left adjoint of the inclusion functor L, that is, the inclusion of the category

of associative algebras into the category of Lie algebras.

Proof. By Proposition 3.18, regarding the tensor algebra, we have that the map f ex-

tends to a unique morphism of algebras f ′ : T (g)→ A such that

f ′(x1 . . . xn) = f(x1) . . . f(xn), x1, ..., xn ∈ g

Notice, here, that “⊗” is being suppressed in the input per the convenience mentioned

in Chapter 3 regarding the tensor algebra. So far, this only means that the diagram

g A

T (g)

f

ig
f ′

commutes. We can extend this to get the commuting triangle

g A

T (g)/I(g)

f

ig
f
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by showing that f ′(I(g)) = {0}. It will suffice to show that f ′(xy − yx− [x, y]) = 0 for

x, y ∈ g. Consider that

f ′(xy − yx− [x, y]) = f(xy)− f(yx)− f([x, y])

= f(x)f(y)− f(y)f(x)− f([x, y])

= f(x)f(y)− f(y)f(x)− [f(x), f(y)] [f is Lie morphism on g]

= f(x)f(y)− f(y)f(x)− (f(x)f(y)− f(y)f(x))

= 0

The uniqueness of f also comes from Proposition 3.18. We therefore take f to be our φ

and this completes the proof since L(A) is just (A, [, ]).

Corollary 5.19. (a) For any morphism of Lie algebras f : L → L′, there exists a

unique morphism of algebras U(f) : U(L)→ U(L′) such that

U(f) ◦ iL = iL′ ◦ f

and U(idL) = idU(L).

(b) If f ′ : L′ → L′′ is another morphism of Lie algebras, then

U(f ′ ◦ f) = U(f ′) ◦ U(f)

Proof. (a) Consider the diagram

L L′

U(L) U(L′)

f

iL iL′

φ

Applying Theorem 5.18 to the composition

iL′ ◦ f : L :→ L(U(L′))

there exists a unique morphism of algebras φ : U(L)→ U(L′) making the above diagram

commute - i.e. φ ◦ iL = iL′ ◦ f . Thus, φ = U(f) as desired.

(b) Since the composition of Lie algebra morphisms is again a morphism of Lie algebras

we can use f and f ′ to get

f ′ ◦ f : L→ L′′
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By part (a) there is a unique morphism of algebras U(f ′ ◦ f) : U(L)→ U(L′′) such that

U(f ′ ◦ f) ◦ iL = iL′′ ◦ f ′ ◦ f (5.1)

Now consider that

U(f ′) ◦ U(f) ◦ iL = U(f ′) ◦
(
U(f) ◦ iL

)
[associativity of composition]

= U(f ′) ◦ (iL′ ◦ f) [by (a)]

= (U(f ′) ◦ iL′) ◦ f [associativity]

= (iL′′ ◦ f ′) ◦ f [by (a)]

= U(f ′ ◦ f) ◦ iL [by (5.1)]

Because of uniqueness, this implies that U(f ′ ◦ f) = U(f ′) ◦ U(f).

This corollary allows us to think of U as a functor from the category of Lie algebras to

the category of algebras (see Figure 1.1) with

L 7→ U(L) and f 7→ U(f)

Theorem 5.20. Let L and L′ be Lie algebras and L⊕ L′ their direct sum. Then

U(L⊕ L′) ∼= U(L)⊗ U(L′) as algebras

Proof. We have already shown above that L ⊕ L′ is a Lie algebra so we proceed to

construct a linear map f : L⊕ L′ → U(L)⊗ U(L′) defined by

f(x, x′) := iL(x)⊗ 1 + 1⊗ iL′(x′)

which we will simply write as

f(x, x′) = x⊗ 1 + 1⊗ x′

The reason for defining f in this manner is as follows: If

U(L)→ U(L)⊗ U(L′)

is the embedding map of Lie algebras where x 7→ x⊗ 1 and

U(L′)→ U(L)⊗ U(L′)
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is the embedding map where y 7→ 1 ⊗ y, then for (x, y) ∈ U(L) ⊕ U(L′), we get an

induced map on the direct sum given by

(x, y) = (x, 0) + (0, y) 7→ x⊗ 1 + 1⊗ y

Now, L⊕L′ is the direct sum in the category of Lie algebras. So, if g is any Lie algebra

and f : L → g and f ′ : L′ → g are Lie maps, then there exists a unique Lie map

f ⊕ f ′ : L⊕ L′ → g where

(f ⊕ f ′)(x, x′) = f(x) + f ′(x′)

In our case g = L(U(L)⊗ U(L′)), while f and f ′ are the maps

x 7→ x⊗ 1, y 7→ 1⊗ y

respectively. Therefore, f is a morphism from the Lie algebra L⊕L′ into the Lie algebra

L
(
U(L)⊗ U(L′)

)
Therefore, Theorem 5.18 says that there is a unique morphism of algebras

φ : U(L⊕ L′)→ U(L)⊗ U(L′)

such that φ ◦ iL⊕L′ = f .

Our next goal is to show that φ is an isomorphism. Since our information concerning φ

itself is limited, we shall employ the universal property of the tensor product of algebras

(i.e. Theorem 3.10) to construct an inverse for φ. First, though, let ιL : L→ L⊕L′ and

ιL′ : L′ → L⊕ L′ be the canonical injections

ιL(x) = (x, 0), ιL′(x′) = (0, x′)

These are clearly morphisms of Lie algebras and hence, their respective compositions

with iL⊕L′ are also morphisms of Lie algebras. By Theorem 5.18 there exists

L U(L⊕ L′)

U(L)

iL⊕L′ ◦ ιL

iL
ψL

L′ U(L⊕ L′)

U(L′)

iL⊕L′ ◦ ιL′

iL′
ψL′
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morphisms of algebras ψL : U(L) → U(L ⊕ L′) and ψL′ : U(L′) → U(L ⊕ L′) such that

for each x ∈ L and x′ ∈ L′ we have

ψL(x) = iL⊕L′(x, 0) and ψL′(x′) = iL⊕L′(0, x′)

At this point, we wish to apply Theorem 3.10, which will give us the existence of a

unique morphism of algebras

ψ := ψL ⊗ ψL′ : U(L)⊗ U(L′)→ U(L⊕ L′)

such that ψ(a⊗ a′) = ψL(a)ψL′(a′) for all a ∈ U(L) and a′ ∈ U(L′). First, however, we

must ensure that ψL(a)ψL′(a′) = ψL′(a′)ψL(a) always holds. It is enough to show that

the equation holds when a = x ∈ L and a′ = x′ ∈ L′. In particular, this will be true if

[ψL(x), ψL′(x′)] = 0. We check this now.

[ψL(x), ψL′(x′)] = [iL⊕L′(x, 0), iL⊕L′(0, x′)]

= iL⊕L′([(x, 0), (0, x′)]) [iL⊕L′ a Lie alg. morphism]

= iL⊕L′([x, 0], [0, x′])

= iL⊕L′(0, 0) = 0

Thus, we may apply the universal property for the tensor product of algebras. The map

ψ is our candidate for φ−1. Consider that for all x ∈ L and x′ ∈ L′

ψ(φ(x, x′)) = ψ(f(x, x′))

= ψ(iL(x)⊗ 1 + 1⊗ iL′(x′))

= ψ(iL(x)⊗ 1) + ψ(1⊗ iL′(x′))

= ψ(x⊗ 1) + ψ(1⊗ x′)

= ψL(x)ψL′(1) + ψL(1)ψL′(x′)

= ψL(x) + ψL′(x′)

= iL⊕L′(x, 0) + iL⊕L′(0, x′)

= iL⊕L′((x, 0) + (0, x′))

= iL⊕L′(x, x′)

This implies that ψ ◦ φ = id (see diagram below).
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L⊕ L′ U(L)⊗ U(L′)

U(L⊕ L′)

f

iL⊕L′
φ

We now want to show that φ ◦ ψ = id. Note that the algebra U(L) is generated by L

and hence

{x⊗ 1 : x ∈ L} ∪ {1⊗ x′ : x′ ∈ L′}

is a generating set for U(L)⊗ U(L′) as an algebra. Thus

φ(ψ(x⊗ 1)) = φ(ψL(x)ψL′(1))

= φ(x, 0)

= iL(x)⊗ 1 + 1⊗ iL′(0)

= x⊗ 1 + 1⊗ 0

= x⊗ 1

A symmetric argument shows that the same holds for elements 1⊗x′. We have therefore

shown that ψ = φ−1 and therefore that φ is an isomorphism, which completes the

proof.

It is here that we are now able to connect our work with Lie algebras to the heart

of the thesis. That is, the functor U provides us with the most important type of

cocommutative Hopf algebra.

Theorem 5.21. The enveloping algebra U(L) is a cocommutative Hopf algebra with

∆ := φ ◦ U([�]), ε := U(0), S := U(op)

where [�] : L → L ⊕ L is the diagonal relation [�](x) = (x, x), φ is the isomorphism

U(L⊕L)→ U(L)⊗U(L) from the previous corollary, 0 : L→ {0}, op is the isomorphism

from L onto Lop and U is the functor from Corollary 5.19. Also, for x1, ..., xn ∈ L, we

have

∆(x1 . . . xn) = 1⊗ x1 . . . xn +
n−1∑
p=1

∑
σ

xσ(1) . . . xσ(p) ⊗ xσ(p+1) . . . xσ(n) + x1 . . . xn ⊗ 1

where σ runs over all (p, q)-shuffles of the symmetric group Sn, and

S(x1 . . . xn) = (−1)nxn . . . x1
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Proof. We begin by checking the coassociativity axiom. It is obvious that the following

diagram commutes.

L L⊕ L

L⊕ L L⊕ L⊕ L

[�]

[�] id⊕ [�]

[�]⊕ id

If we now apply the functor U , we get the commuting diagram

U(L) U(L⊕ L)

U(L⊕ L) U(L⊕ L⊕ L)

U([�])

U([�]) U(id⊕ [�])

U([�]⊕ id)

But U(L ⊕ L) ∼= U(L) ⊗ U(L) under φ and U(L ⊕ L ⊕ L) ∼= U(L) ⊗ U(L) ⊗ U(L) by

applying φ twice, so, we get the commuting diagram

U(L) U(L)⊗ U(L)

U(L)⊗ U(L) U(L)⊗ U(L)⊗ U(L)

∆

∆ id⊗∆

∆⊗ id

which establishes coassociativity (recall that ∆ := φ ◦ U([�])). A more precise reason

for U(id⊕ [�]) turning into id⊗∆ is indicated in the following diagram:

L L⊕ L L⊕ L⊕ L

U(L) U(L⊕ L) U(L⊕ L⊕ L)

U(L)⊗ U(L) U(L)⊗ U(L)⊗ U(L)

[�]

iL

U([�])

∆

id⊕ [�]

iL2

U(id⊕ [�])

φ

id⊗∆

iL3

(id⊗ φ) ◦ φ1

2 3

Subdiagram (1) commutes by definition of ∆, while subdiagrams (2) and (3) commute

by Corollary 5.19. The remaining subdiagram is then forced to commute due to the

definitions of the maps involved. In short, U(id ⊕ [�]) becomes id ⊗ ∆ due to the

functorial nature of U in that it essentially changes direct sums into tensor products.
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The counit axiom is verified by a similar application of the functor U to the commuting

diagram

0⊕ L L⊕ L L⊕ 0

L

0⊕ id id⊕ 0

∼ ∼[�]

Cocommutativity also comes from application of U to the commuting diagram

L

L⊕ L L⊕ L

[�] [�]

τL,L

Finally, S is an antipode for U(L) by Lemma 4.16 since U(L) is generated by L and, if

x ∈ L, then

(S ? id)(x) = (∇ ◦ (S ⊗ id) ◦∆)(x)

= ∇
(
(S ⊗ id)(1⊗ x+ x⊗ 1)

)
= ∇(S(1)⊗ x+ S(x)⊗ 1)

= ∇(1⊗ x− x⊗ 1)

= ∇(1⊗ x)−∇(x⊗ 1)

= x− x

= 0

= U(0)(x)

= ε(x)

A similar argument shows we get the same thing for (id ? S)(x).

The result for ∆(x1 . . . xn) follows from the work we did with the tensor algebra so let

us focus on the antipode.

First, since the inclusion map iL : L → U(L) is a Lie algebra morphism, so is the map

iopL : Lop → U(L)op. We therefore get a unique extension of iopL to an algebra morphism

ϕ.
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Lop U(L)op

U(Lop)

iopL

iLop
ϕ

Now replace L with Lop in the above diagram:

L U(Lop)op

U(L)

iL
ψ

Then ψop is an algebra morphism U(L)op → U(Lop) which is inverse to ϕ. Therefore,

U(Lop) ∼= U(L)op as algebras.

Second, we already know that L ∼= Lop via the Lie isomorphism op : L→ Lop defined by

op(x) := −x

which lifts to an algebra isomorphism U(op) : U(L)→ U(Lop). If we string our isomor-

phisms together we see that

U(L) ∼= U(L)op

as algebras. However, regarded as a morphism U(L)→ U(L) it is an anti-automorphism

and since x 7→ −x for x ∈ L, it follows that

x1 . . . xn 7→ (−1)nxn . . . x1

which is our antipode S.

The next and last result of this section is important. However, because it is rather

involved it will merely be stated and henceforth taken for granted.

Theorem 5.22. Let L be a Lie algebra.

(a) (Poincaré-Birkhoff-Witt Theorem) The algebra U(L) is filtered as a quotient of

the tensor algebra T (L) and the corresponding graded algebra is isomorphic to the

symmetric algebra on L:

grU(L) ∼= S(L)

Hence, if {vi}i∈I is a totally ordered basis of L, {vi1 , ..., vin}i1≤...≤in∈I,n∈N is a basis

of U(L).
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(b) When the characteristic of the field κ is zero, the symmetrization map

η : S(L)→ U(L) defined by

η(v1 . . . vn) =
1
n!

∑
σ∈Sn

vσ(1) . . . vσ(n)

for v1, ..., vn ∈ L, is an isomorphism of coalgebras.

For details, see [11].

Let us now move from our general discussion to one of a more particular nature. In the

section that follows we shall endeavor to explore the very significant Lie algebra sl(2) in

some detail.

5.4 The Lie Algebra sl(2)

The Lie algebra sl(2) is of significant importance to the theory of semisimple Lie algebras.

For simplicity, it is common to take the ground field κ to be C. We too shall embrace

this custom. Now, recall that M2(κ) can be viewed as a Lie algebra by taking the

commutator map as a Lie bracket. We denote this particular Lie algebra by gl(2) (i.e.

gl(2) := L(M2(κ))). Choose the following four matrices to serve as a basis:

X :=

[
0 1

0 0

]
, Y :=

[
0 0

1 0

]
, H :=

[
1 0

0 −1

]
, I :=

[
1 0

0 1

]

Simple calculations yield

[X,Y ] = H, [Y,X] = −H (5.2)

[X,H] = −2X, [H,X] = 2X (5.3)

[Y,H] = 2Y, [H,Y ] = −2Y (5.4)

[X, I] = [I,X] = [Y, I] =[I, Y ] = [H, I] = [I,H] = 0 (5.5)

Notice that X,Y and H each share the property of vanishing trace. This indicates that

there is a special subspace of gl(2). This special subspace consists of all the trace zero

matrices and is denoted by sl(2). As a vector space {X,Y,H} forms a basis for sl(2).

Proposition 5.23. sl(2) is an ideal of gl(2) and hence a Lie-subalgebra of gl(2).
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Proof. We already know that sl(2) is a subspace of gl(2). So, take arbitrary x ∈ gl(2)

and y ∈ sl(2). Then, by properties of the trace, we have that

tr([x, y]) = tr(xy − yx)

= tr(xy)− tr(yx)

= 0

and hence [x, y] ∈ sl(2).

Notice that nothing in the proof depended on y being an element of sl(2). The same ar-

gument would work for any two arbitrary elements of gl(2). This leads to the conclusion

that [gl(2), gl(2)] ⊆ sl(2). Another way of saying this is that the derived algebra of gl(2)

is a Lie subalgebra of sl(2). But because H = [X,Y ], X = 1/2[H,X] and Y = 1/2[Y,H],

we can say more than this, namely that [gl(2), gl(2)] = sl(2).

The next proposition shows that sl(2) is “special” in another sense. That is, if one

knows everything about sl(2), then one knows everything about gl(2). Hence, the study

of gl(2) reduces to the study of sl(2).

Proposition 5.24. There is an isomorphism of Lie algebras

gl(2) ∼= sl(2)⊕ κI

Proof. Since gl(2) has basis {X,Y,H, I} and sl(2) has basis {X,Y,H} it is clear that

gl(2) = sl(2) + κI

Moreover, it is clearly the case that

sl(2) ∩ κI = {0}

and thus gl(2) = sl(2) ⊕ κI as a vector space. Now, the Lie bracket in sl(2) ⊕ κI is

defined by (see section “New Lie Algebras”)

[S + λI, S′ + γI] := [S, S′] + [λI, γI]

But [λI, γI] = 0 and so [S + λI, S′ + γI] = [S, S′].

On the other hand, if G,G′ ∈ gl(2), then we can write

G = S + λI and G′ = S′ + γI
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where S, S′ ∈ sl(2). We then have

[G,G′] = [S + λI, S′ + γI]

= (S + λI)(S′ + γI)− (S′ + γI)(S + λI)

= SS′ + γS + λS′ + λγI − S′S − λS′ − γS − γλI

= SS′ − S′S

= [S, S′]

and hence we get that the Lie algebras are isomorphic.

The Lie algebra sl(2) also has important connections to quantum mechanics given its

relationship to the real Lie algebra su(2), which consists of 2×2 trace zero skew-hermitian

matrices. It has basis

U1 :=

[
0 i

i 0

]
, U2 :=

[
0 −1

1 0

]
, U3 :=

[
i 0

0 −i

]

and is used to represent spin of elementary particles. We can express these in terms of

the basis elements of sl(2).

U1 = i(X + Y ), U2 = Y −X, U3 = iH (5.6)

Now, for su(2), the ground field is R and so a generic element has the form

[
ia −α
α −ia

]
where a ∈ R and α ∈ C . If the ground field were C, then su(2) would be identical to

sl(2). This is evident from (5.6) along with the fact that H = −iU3, X = −i/2U1−1/2U2

and Y = 1/2U2 − i/2U1.

The same thing occurs with the Lie algebra sl2(R). Obviously, this would become sl(2)

if the base field were changed to C. However, sl2(R) and su(2) are not isomorphic.

Instead, these two distinct real Lie algebras are called the real forms for sl(2). One

reason for calling these real forms of sl(2) is the following:

Proposition 5.25.

sl2(R)⊕ isl2(R) = sl(2) = su(2)⊕ isu(2)

as vector spaces.

Proof. Beginning with the left equality, it is clearly the case that

sl(2) = sl2(R)⊕ isl(R)
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as vector spaces, since for any M ∈ sl(2) we have

M = z1X + z2Y + z3H, z1, z2, z3 ∈ C

which can be expanded and re-ordered as

M = Re(z1)X + Re(z2)Y + Re(z3)H + i(Im(z1)X + Im(z2)Y + Im(z3)H)

The right equality is a little less obvious, but follows by the same reasoning. First,

sl(2) = su(2) + isu(2)

since for z1X + z2Y + z3H ∈ sl(2) we have

z1X + z2Y + z3H = z1(− i
2
U1 −

1
2
U2) + z2(− i

2
U1 +

1
2
U2) + z3(−iU3)

= − i
2
z1U1 −

1
2
z1U2 −

i

2
z2U1 +

1
2
z2U2 − iz3U3

= − i
2

(z1 + z2)U1 +
1
2

(z2 − z1)U2 − iz3U3

If we now let ζ1 = − i
2(z1 + z2), ζ2 = 1

2(z2 − z1) and ζ3 = −iz3, then the above can be

written as

Re(ζ1)U1 + Re(ζ2)U2 + Re(ζ3)U3 + i(Im(ζ1)U1 + Im(ζ2)U2 + Im(ζ3)U3)

Going the other way is similar.

Finally, su(2) ∩ isu(2) = {0} based on the form of the generic elements of su(2). Thus,

sl(2) = su(2)⊕ isu(2)

as vector spaces.

Notice that under the usual notion of a direct sum of Lie algebras sl2(R)⊕ isl2(R) and

su(2)⊕ isl(2) are not the same Lie algebras as sl(2). For instance, if U, V ∈ sl(2), then

[U, V ] = UV − V U

If we write U = N + iM and V = N ′ + iM ′, then this becomes

[N + iM,N ′ + iM ′] = [N,N ′] + [N, iM ′] + [iM,N ′] + [iM, iM ′]

= [N,N ′] + i[N,M ′] + i[M,N ′]− [M,M ′]
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However, as elements of sl2(R)⊕ isl2(R) we would have

[N + iM,N ′ + iM ′] = [N,N ′] + [iM, iM ′]

= [N,N ′]− [M,M ′]

We can remedy this by redefining the Lie bracket on sl2(R)⊕ isl2(R) to be the same as

that of sl(2), which makes sense since they are actually equal as vector spaces and

[N + iM,N ′ + iM ′] = [N,N ′]− [M,M ′] + i([N,M ′] + [M,N ′])

has the right form.

Proposition 5.26. sl(2) is a simple Lie algebra.

Proof. A straightforward, albeit pedestrian, proof proceeds as follows. Suppose J is a

non-zero ideal of sl(2). The goal is to show that J must be sl(2). Recall that being a

Lie algebra ideal means that [T, S] ∈ J for all T ∈ sl(2) and S ∈ J .

Let S be a non-zero element of J . Since S ∈ sl(2) too, it must have a vanishing trace,

and hence, must be of the form

[
a b

c −a

]
. If c 6= 0, then compute [X,S].

[X,S] = XS − SX

=

[
c −2a

0 −c

]

Call the resulting matrix S′. Now compute [X,S′].

[X,S′] = XS′ − S′X

=

[
0 −2c

0 0

]

Since [X,S′] ∈ J , so is 1
−2c [X,S

′] = X. But X ∈ J implies that [Y,X] = −H ∈ J and

therefore H ∈ J . Finally, since H ∈ J , then [Y,H] = 2Y ∈ J and therefore Y ∈ J . We

therefore get that J = sl(2).

By similar reasoning we also find that if b 6= 0, then

[Y, [Y, S]] =

[
0 0

−2b 0

]

implies that Y ∈ J . Using the commutator relations, we again get that J = sl(2).
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Finally, if a 6= 0, then computing [H, [X,S]] gives

[H, [X,S]] =

[
0 −4a

0 0

]

which again implies that X ∈ J and hence that J = sl(2). It follows that J contains the

basis of sl(2) and hence must be sl(2).

Above we showed that the derived algebra [gl(2), gl(2)] is a Lie subalgebra of sl(2). But

it is also an ideal of sl(2), since it is an ideal of gl(2). But we have just found that sl(2)

is simple. Thus, because the derived algebra of gl(2) is not zero we have another way of

seeing that

[gl(2), gl(2)] = sl(2)

5.5 Representations of sl(2)

Let us begin with an example using the now familiar adjoint representation. Note that

in this case the adjoint representation of sl(2) will be the map

ad : sl(2)→ gl(3)

We already understand that

ad(X) = adX = [X,−]

ad(Y ) = adY = [Y,−]

ad(H) = adH = [H,−]

so let us now determine each one’s corresponding matrix. To be consistent, let us agree

to order our basis as {X,Y,H}. We start with adX and compute its columns as follows:

adX(X) = 0X + 0Y + 0H, [column one]

adX(Y ) = 0X + 0Y +H, [column two]

adX(H) = −2X + 0Y + 0H, [column three]

Thus we can say that

adX =


0 0 −2

0 0 0

0 1 0


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Doing the same for the other adjoint actions yields

adY =


0 0 0

0 0 2

−1 0 0

 , adH =


2 0 0

0 −2 0

0 0 0


Notice that X,Y and H are eigenvectors for adH with respective eigenvalues 2, -2 and

0.

5.5.1 Weight Space

Definition 5.27 (Weight Vector). Let V be a representation of sl(2) (i.e. an sl(2)-

module). A vector v ∈ V is said to be a vector of weight λ ∈ C if it is an eigenvector

for H with eigenvalue λ:

Hv = λv

If, in addition, v is such that Xv = 0, then we say that v is a highest weight vector of

weight λ. The subspace of V consisting of all vectors of weight λ is denoted by Vλ - i.e.

Vλ := {v ∈ V : Hv = λv}

So, Vλ is actually the corresponding eigenspace of H for the eigenvalue λ and is called

a weight space.

By way of reminder, recall that the above notation Hv,Xv, etc. is technically shorthand

for ρ(H)v, ρ(X)v, where ρ is the representation (homomorphism) associated with the

representation space V . We write these in the form of matrix multiplication, since ρ(H)

and ρ(X) can be thought of as matrices.

Lemma 5.28.

XVλ ⊂ Vλ+2

Y Vλ ⊂ Vλ−2
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Proof. Let v ∈ Vλ. Then Xv ∈ V and we would like to know (a) if it has a weight and

(b) what that weight might be. Consider that

H(Xv) = (HX)v

= (2X +XH)v, [H,X] = 2X

= 2Xv + (XH)v

= 2Xv +X(Hv)

= 2Xv + λXv

= (λ+ 2)Xv

which shows that Xv ∈ Vλ+2. This answers both (a) and (b). The second inclusion is

shown via a similar argument.

This Lemma shows how X and Y act on the weight spaces of V . Note that each Vλ is

invariant under H.

Now that we have introduced weight spaces and know how sl(2) acts on them, our next

task will be to classify irreducible finite-dimensional representations.

Proposition 5.29. Any non-zero finite-dimensional sl(2)-module has a highest weight

vector.

Proof. Since V is finite-dimensional and C is algebraically closed, the operator H must

have at least one eigenvector and hence an eigenvalue. Let w be our eigenvector and let

α be the associated eigenvalue. If Xw = 0, then obviously we are done, so suppose that

Xw 6= 0. Consider, then, the sequence {Xnw}n∈N. It can easily be shown, by induction

on n, that

H(Xnw) = (α+ 2n)Xnw

and hence that this gives a sequence of eigenvectors for H with distinct eigenvalues.

But V is finite-dimensional, which implies that H can have only a finite number of

eigenvalues. It follows that there must exist an n for which Xnw 6= 0, but Xn+1w = 0.

This tells us that Xnw is our desired highest weight vector.

Lemma 5.30. Let V be a finite-dimensional irreducible sl(2)-module. Let w be a highest

weight vector with weight λ. Let k ≥ 0 be such that Y kw 6= 0, but Y k+1w = 0. Then

{w, Y w, ..., Y kw} is a basis of V .

Before giving a proof of this lemma, let’s consider a familiar example. Let V = R2.

Then one possibility is that sl(2) acts on R2 via regular matrix multiplication. If we
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want a highest weight vector we need[
1 0

0 −1

](
a

b

)
= λ

(
a

b

)

and [
0 1

0 0

](
a

b

)
=

(
0

0

)

These equations imply that λ = 1 and that any vector of the form

(
a

0

)
is a highest

weight vector. If we now apply Y to vectors of this form we get

(
0

a

)
and the zero vector

if applied again. Of course, we know that{(
a

0

)
,

(
0

a

)}

forms a basis for R2 for any a ∈ R. In particular, we get the standard basis when a = 1.

Proof of Lemma 5.30. Using the same argument as in Proposition 5.29 it follows that

there is such a k with Y kw 6= 0 and Y k+1w = 0. Let W := Span{w, Y w, ..., Y kw}.
Now, since this spanning set consists of eigenvectors for H with distinct eigenvalues, it

is immediate that they are linearly independent and so form a basis for W . It is clear

that W is invariant under the action of Y and likewise under the action of H since the

spanning set consists of eigenvectors for H. We now check for invariance under X. We

shall use induction. To get an idea of what’s going on, however, let’s do the first three
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cases.

Xw = 0

X(Y w) = (XY )w

= (H + Y X)w

= Hw + Y Xw

= λw

X(Y 2w) = (H + Y X)Y w

= HY w + Y XY w

= HY w + λY w, [using previous case]

= (λ− 2)Y w + λY w, [Lemma 5.28]

= 2(λ− 1)Y w

These first three cases suggest that X sends Y jw to a multiple of Y j−1w. More specifi-

cally,

X(Y jw) = j
(
λ− (j − 1)

)
Y j−1w

Suppose that this last statement is true and consider the j + 1 case. We have

X(Y j+1w) = (XY )Y jw

= (H + Y X)Y jw

= HY jw + Y XY jw

= HY jw + j(λ− j + 1)Y jw, [induction hypothesis]

= (λ− 2j)Y jw + j(λ− j + 1)Y jw, [by Lemma 5.28]

= (λj + λ− j2 − j)Y jw

= (j + 1)(λ− j)Y jw

By induction, we have therefore shown that W is invariant under the action of X. By

definition, this means that W is a non-zero submodule of V . But V is irreducible by

hypothesis, which means that W = V . Therefore, {w, Y w, ..., Y kw} is a basis for V .

Corollary 5.31. If the conditions of Lemma 5.30 hold, then k = λ and hence

dim(V ) = λ + 1 and H has distinct eigenvalues {λ, λ − 2, λ − 4, ...,−λ} implying that

every highest weight of H is a non-negative integer equal to

λ = dim(V )− 1
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Proof. Since Y k+1w = 0 we have that

0 = X(Y k+1w) = (k + 1)(λ− k)Y kw

But Y kw 6= 0 and k + 1 6= 0. Thus, it must be that λ− k = 0 and therefore, λ = k.

Now, since {w, Y w, ..., Y λw} will be a basis of distinct eigenvectors for V with distinct

eigenvalues {λ, λ− 2, λ− 4, ...,−λ}, the matrix representation of H with respect to this

basis is the diagonal matrix 
λ

λ− 2
. . .

−λ


and so has characteristic polynomial

(x− λ)(x− (λ− 2)) · · · (x− (−λ))

Thus, {λ, λ− 2, λ− 4, ...,−λ} is the complete set of eigenvalues of H.

Corollary 5.32. Let V be a finite-dimensional irreducible sl(2)-module. Suppose γ is a

weight with respect to H with corresponding weight space Vγ. Then, as a vector space,

Vγ is of dimension one.

Proof. From the previous corollary γ = λ− 2j for some j ∈ {0, 1, ..., λ} and any vector

in Vγ is a scalar multiple of Y jw.

We can now deduce the following theorem, which says that any finite-dimensional rep-

resentation V of sl(2) is decomposable in terms of its weight spaces. This is called the

weight decomposition of V .

Theorem 5.33. Every finite-dimensional representation V of sl(2) can be expressed in

the form

V =
⊕
λ

Vλ

Proof. First, V can be expressed as a direct sum of indecomposable sl(2)-modules:

V =
n⊕
i=1

Vi
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By Lemma 5.30, we can reorder the sum and collect all (Vi)λ having the same weight

and then

V =
⊕
λ

Vλ

Note that our work above implies that if V is an irreducible sl(2)-module of dimension

k, then V has basis {w, Y w, ..., Y λw} where λ = k − 1 so that

V =
⊕
λ

Vλ

where each Vλ is one-dimensional. This is called the irreducible representation of highest

weight λ and is denoted by V [λ]. Furthermore, we have that there is at most one

irreducible sl(2)-module up to isomorphism for each of the λ + 1 dimensions (λ ≥ 0).

Next, we’ll see that given k there does, in fact, exist an irreducible sl(2)-module of that

dimension.

5.5.1.1 Constructing Irreducible sl(2)-modules

At the moment, this is all very general. But there is a nice way to construct these

irreducible sl(2)-modules. Let V = C[x, y] and for each λ ≥ 0 take V [λ] to be the vector

subspace of all homogeneous polynomials of degree λ. For each λ, the vector space V [λ]

has basis {xλ, xλ−1y, ..., xyλ−1, yλ}. Our claim is that this V [λ] is a model for the V [λ]

just considered above. Now, define a map ρ : sl(2)→ gl(V [λ]) by

ρ(X) := x
∂

∂y
, ρ(Y ) := y

∂

∂x

ρ(H) := x
∂

∂x
− y ∂

∂y

By construction, ρ will be a linear map, so we need only show that it preserves the Lie

bracket. First, we establish that

ρ([X,Y ]) = ρ(H) = [ρ(X), ρ(Y )] (5.7)
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The first equality is trivial, since [X,Y ] = H. Now let xayb be such that a, b ≥ 0 and

a+ b = λ. Then

ρ(H)(xayb) =
(
x
∂

∂x
− y ∂

∂y

)
xayb

= x
∂

∂x
(xayb)− y ∂

∂y
(xayb)

= axayb − bxayb

= (a− b)xayb

Notice that this means each xayb is an eigenvector for ρ(H) with eigenvalue a− b. Let

us now see what [ρ(X), ρ(Y )] does to xayb.

[ρ(X), ρ(Y )](xayb) = x
∂

∂y

(
y
∂

∂x
(xayb)

)
− y ∂

∂x

(
x
∂

∂y
(xayb)

)
= x

∂

∂y
(axa−1yb+1)− y ∂

∂x
(bxa+1yb−1)

= a(b+ 1)xayb − b(a+ 1)xayb

= (ab+ a− ba− b)xayb

= (a− b)xayb

Thus (5.7) is established.

Next, we show

ρ([H,X]) = 2ρ(X) = [ρ(H), ρ(X)] (5.8)

Again, the first equality is trivial since [H,X] = 2X. Once more, if a, b ≥ 0 and a+b = λ

we have

2ρ(X)(xayb) = 2x
∂

∂y
(xayb)

= 2bxa+1yb−1

and

[ρ(H), ρ(X)] =
(
x
∂

∂x
− y ∂

∂y

)(
x
∂

∂y
(xayb)

)
− x ∂

∂y

(
x
∂

∂x
− y ∂

∂y

)
(xayb)

=
(
x
∂

∂x
− y ∂

∂y

)
(bxa+1yb−1)− x ∂

∂y

(
(a− b)xayb

)
= (ab+ 2b− b2)xa+1yb−1 − (ab− b2)xa+1yb−1

= 2bxa+1yb−1
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A similar argument to this last case shows that ρ([H,Y ]) = [ρ(H), ρ(Y )]. It follows

that ρ is a Lie algebra morphism and hence is a representation of sl(2). The matrices

corresponding to ρ(X), ρ(Y ) and ρ(H) can be ascertained in a manner similar to the

adjoint representation above.

ρ(X)xλ = 0xλ + 0xλ−1y + . . .+ 0xyλ−1 + 0yλ, [column one]

ρ(X)xλ−1y = xλ + 0xλ−1y + . . .+ 0xyλ−1 + 0yλ, [column two]

ρ(X)xλ−2y2 = 0xλ + 2xλ−1y + . . .+ 0xyλ−1 + 0yλ, [column three]
...

ρ(X)xyλ−1 = 0xλ + . . .+ (λ− 1)x2yλ−2 + 0xyλ−1 + 0yλ, [column λ]

ρ(X)yλ = 0xλ + . . .+ λxyλ−1 + 0yλ, [column λ+ 1]

The associated matrix for ρ(X) is therefore

ρ(X) =



0 1 0 . . . 0

0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ

0 0 0 . . . 0


(5.9)

Via similar computations one will find that

ρ(Y ) =



0 0 . . . 0 0

λ 0 . . . 0 0

0 λ− 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


, ρ(H) =



λ 0 . . . 0 0

0 λ− 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2− λ 0

0 0 . . . 0 −λ


(5.10)

Notice that ρ(X) is superdiagonal and ρ(Y ) is subdiagonal, while ρ(H) is a diagonal

matrix. Furthermore, from computing these matrices we have also discovered that xλ is

a highest weight vector, since ρ(X)xλ = 0.

Now, because {xλ, xλ−1y, ..., xyλ−1, yλ} is a basis of homogeneous polynomials for V [λ],

which are also eigenvectors for ρ(H) with corresponding eigenvalues found on the di-

agonal of ρ(H), we may conclude that V [λ] is an irreducible representation of highest

weight λ. Thus, any finite-dimensional irreducible sl(2)-module is isomorphic to a space

of homogeneous polynomials of some fixed degree. But not only have we given a concrete

realization of the V [λ], we have also specified an action of sl(2) on the affine plane (see

next chapter) C[x, y]. We will revisit this in the next chapter where C is replaced by an
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arbitrary field κ.

5.5.2 The Universal Enveloping Algebra of sl(2)

Since the universal enveloping algebra is defined in terms of the tensor algebra, let’s

start there. Of course, V = sl(2) and so we have

T 0(sl(2)) = C, T 1(sl(2)) = sl(2), T 2(sl(2)) = sl(2)⊗ sl(2)

and in general

Tn(sl(2)) = sl(2)⊗ sl(2)⊗ . . .⊗ sl(2) [n times]

The tensor algebra of sl(2), then, is

T (sl(2)) =
∞⊕
n=0

Tn(sl(2))

Obviously, {1} is basis for T 0(sl(2)) and {X,Y,H} is a basis for T 1(sl(2)). From our

work with tensor products we find that

{X ⊗X,X ⊗ Y,X ⊗H,Y ⊗X,Y ⊗ Y, Y ⊗H,H ⊗X,H ⊗ Y,H ⊗H}

is a basis for T 2(sl(2)). To condense this notation we can suppress the “⊗” per the

convention described in Chapter 3 concerning the tensor algebra. So doing, the above

becomes

{XX,XY,XH, Y X, Y Y, Y H,HX,HY,HH}

Recall that the product in the tensor algebra is:

(v1 ⊗ . . .⊗ vn)(vn+1 ⊗ . . .⊗ vn+m) = v1 ⊗ . . .⊗ vn ⊗ vn+1 ⊗ . . .⊗ vn+m

where, in this case, v1, ..., vn, vn+1, ..., vn+m ∈ sl(2). In our more concise notation, this

becomes

(v1 · · · vn)(vn+1 · · · vn+m) = v1 · · · vnvn+1 · · · vn+m

So written, it is easy to see that

T (sl(2)) ∼= κ{X,Y,H} [as algebras]

which follows from Proposition 3.18.

Proposition 5.34. The set {XiY jHk}i,j,k∈N is a basis of U(sl(2)).
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Proof. This follows from the Poincaré-Birkhoff-Witt Theorem (see Theorem 5.22).

Using Theorem 5.22 is handy, but it doesn’t give us a feel for why this is true, so let

us embark on a brief, albeit indicative, exploration. Recall from Section 5.3 that the

universal enveloping algebra of a Lie algebra L is defined to be the quotient space

U(L) := T (L)/I(L)

where I(L) is the two-sided ideal generated by all elements

x⊗ y − y ⊗ x− [x, y]

with x, y ∈ L. For L = sl(2) we can use the quotient relation, along with the commu-

tator relations of sl(2), to order the basis of U(sl(2)) in the manner given in the above

proposition. For instance, take the basis of T 2(sl(2)) given above. The only elements of

the basis that don’t fit the required ordering are Y X,HX and HY . But in U(sl(2)) we

have

Y X = XY + [Y,X] = XY −H (5.11)

HX = XH + [H,X] = XH + 2X (5.12)

HY = Y H + [H,Y ] = Y H − 2Y (5.13)

So, each improperly ordered element can be written as a linear combination of properly

ordered elements. These results can then be used to show that the same holds for all

Tn(sl(2)). For instance, in the basis of T 3(sl(2)) one will find the element XHX, which

is improperly ordered in U(sl(2)). However, using (5.11), in U(sl(2)) we have that

XHX = X(HX) = X(XH + 2X) = X2H + 2X2

Another consequence of the Poincaré-Birkhoff-Witt Theorem (Theorem 5.22) is the fol-

lowing:

Proposition 5.35. The canonical map isl(2) : sl(2)→ U(sl(2)) is injective.

This means that sl(2) can be considered as a subspace of U(sl(2)). It is important to

note, however, that in U(sl(2)) we are not thinking of X,Y,H as matrices anymore.

For instance, as a matrix, X2 = 0, but in U(sl(2)), X2 6= 0 (since we are actually

taking the tensor product). This is essential, since there are numerous representations

of sl(2) in which ρ(X)2 6= 0. Besides this, the commutation relations for X,Y,H remain

unchanged. We can also establish some other relations in U(sl(2)).
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Proposition 5.36. The following relations hold in U(sl(2)) for all p, q ≥ 0:

XpHq = (H − 2p)qXp (5.14)

Y pHq = (H + 2p)qY p (5.15)

[X,Y p] = pY p−1(H − p+ 1) = p(H + p− 1)Y p−1 (5.16)

[Xp, Y ] = pXp−1(H + p− 1) = p(H − p+ 1)Xp−1 (5.17)

Proof. For brevity we’ll show (5.13) and (5.15), since the other two will be similar.

Beginning with (5.13), we first note that

XH = HX + [X,H]

= HX − 2X

= (H − 2)X

which establishes a base case. Suppose, then, that

Xp−1H = (H − 2(p− 1))Xp−1

Now consider

XpH = XXp−1H

= X(H − 2(p− 1))Xp−1

= XHXp−1 − 2(p− 1)Xp

= (HX − 2X)Xp−1 − 2(p− 1)Xp

= HXp − 2Xp − 2(p− 1)Xp

= (H − 2− 2(p− 1))Xp

= (H − 2p)Xp

So, by induction

XpH = (H − 2p)Xp for all p

This provides the base case for our next induction. Suppose now that

XpHq−1 = (H − 2p)q−1Xp
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and consider

XpHq = XpHq−1H

= (H − 2p)q−1XpH

= (H − 2p)q−1(H − 2p)Xp

= (H − 2p)qXp

Thus, by induction (5.13) holds.

For (5.15) we have the base case

[X,Y ] = H = 1Y 0(H − 1 + 1) = 1(H + 1− 1)Y 0

so suppose that

[X,Y p−1] = (p− 1)Y p−2(H − (p− 1) + 1) = (p− 1)(H + (p− 1)− 1)Y p−2

We’ll show that the first equality holds, since, again, the right will follow by similar

reasoning. For practical purposes, we’ll express this as

XY p−1 − Y p−1X = (p− 1)Y p−2(H − p+ 2)

We then see that

XY p − Y pX = XY Y p−1 − Y pX (5.18)

= (H + Y X)Y p−1 − Y pX (5.19)

= HY p−1 + Y XY p−1 − Y pX (5.20)

HY p−1 + Y ((p− 1)Y p−2(H − p+ 2) + Y p−1X)− Y pX (5.21)

= HY p−1 + (p− 1)Y p−1(H − p+ 2) + Y pX − Y pX (5.22)

= Y p−1H − 2(p− 1)Y p−1 + (p− 1)Y p−1(H − p+ 2) (5.23)

= Y p−1(H − 2p+ 2 + pH − p2 + 2p−H + p− 2) (5.24)

= pY p−1(H − p+ 1) (5.25)

Step (5.18) makes use of the fact that XY − Y X = H. Step (5.20) uses the induction

hypothesis and step (5.22) uses (5.14). Thus, the desired result holds by induction.

Notice that the equations of Proposition 5.36 are reminiscent of derivatives. Indeed,

these equations hold for C[x, y] when X,Y and H are replaced by (or act by) x ∂
∂y , y

∂
∂x
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and x ∂
∂x − y

∂
∂y respectively. In fact, we will see this again in Chapter 6 in the slightly

more general setting of κ[x, y].

5.5.3 Duality

If H is a finite-dimensional Hopf algebra, then we have essentially seen (especially in

Chapter 4) that there is a corresponding dual Hopf algebra H∗. We can think of H and

H∗ as being “symmetric” in the sense that H ∼= H∗∗ in a natural way and the algebra

structure of H determines a coalgebra structure on H∗ while the coalgebra structure of

H determines an algebra structure on H∗. Because of this symmetry, we can express

the dual Hopf structure of H∗ in terms of a pairing. That is, instead of writing f(x) for

evaluation of a map f ∈ H∗ at x ∈ H we express it as 〈f, x〉. So, since ∇ = ∆∗ for H∗

we get the relation

〈∇(f ⊗ g), x〉 = 〈f ⊗ g,∆(x)〉

Also, since ∆ = ∇∗ for H∗ we get

〈∆(f), x⊗ y〉 = 〈f,∇(x⊗ y)〉

Now, since η(1) is the unit in H∗ we also get

〈1, x〉 = ε(x)

and ε = η∗ for H∗ so

ε(f) = 〈f, 1〉

Finally, the antipode for H∗ is S∗ and therefore

〈S(f), x〉 = 〈f, S(x)〉

We now generalize from H and H∗ to an arbitrary pair of bialgebras (or Hopf algebras)

U and W , where we will require that these same relations be satisfied in order to define

a more general kind of duality.

Firstly, given a bilinear form 〈, 〉 : U ×W → κ we get an induced bilinear form

〈, 〉 : U ⊗ U ×W ⊗W → κ defined by

〈u⊗ v, w ⊗ x〉 := 〈u,w〉〈v, x〉

With this, we proceed to investigate a key duality relationship between U(sl(2)) and

SL(2) considered as Hopf algebras. We start with a definition of our more general

duality.
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Definition 5.37. Given bialgebras (U,∇, η,∆, ε) and (W,∇, η,∆, ε) and a non-degenerate

bilinear form 〈, 〉 : U ×W → κ, we say that the bilinear form realizes a duality between

U and W if we have

〈uv, x〉 =
∑
(x)

〈u, x(1)〉〈v, x(2)〉 = 〈u⊗ v,∆(x)〉 (5.26)

〈u, xy〉 =
∑
(u)

〈u(1), x〉〈u(2), y〉 = 〈∆(u), x⊗ y〉 (5.27)

〈1, x〉 = ε(x) (5.28)

〈u, 1〉 = ε(u) (5.29)

for all u, v ∈ U and x, y ∈ W and where we are using Sweedler’s convention in (5.26)

and (5.27). This bilinear form can be turned into a linear functional 〈〉 : U ⊗ V → κ

where all the same relations hold, but we are now using the tensor product.

If it happens that U and W are also Hopf algebras with antipode S, then, additionally,

the bilinear form must satisfy

〈S(u), x〉 = 〈u, S(x)〉 (5.30)

for all u ∈ U and x ∈W .

By way of reminder, we can understand this bilinear form in terms of certain linear

maps. If U∗ and W ∗ are the dual spaces of U and W respectively, then let φ : U →W ∗

be the linear map such that φ(u) = 〈u,−〉. Similarly, let ψ : W → U∗ be the linear map

such that ψ(x) = 〈−, x〉. In other words, 〈u,−〉 is a linear functional on U and 〈−, x〉
is a linear functional on W . If it should happen that both φ and ψ are injective, then

we shall say that the duality between U and W is perfect. Furthermore, if U and W are

finite-dimensional, then a perfect duality between U and W entails that

U ∼= W ∗ and W ∼= U∗ as bialgebras

We characterize these ideas in the following proposition.

Proposition 5.38. Given bialgebras U and W and a bilinear form 〈, 〉 on U ×W , the

bilinear form realizes a duality between U and W if and only if the linear maps φ and ψ

are morphisms of algebras. In case W is finite-dimensional, the bilinear form realizes a

duality if and only if φ is a morphism of bialgebras.
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Proof. Suppose that φ and ψ are algebra morphisms. This makes sense since U∗ and

W ∗ carry natural algebra structures. By way of reminder, this is expressed in the form

of commuting diagrams by

U ⊗ U W ∗ ⊗W ∗

κ

U W ∗

φ⊗ φ

µU

φ

µW∗

ηU ηW∗

W ⊗W U∗ ⊗ U∗

κ

W U∗

ψ ⊗ ψ

µW

ψ

µU∗

ηW ηU∗

Using this property we find that

〈uv, x〉 = φ(uv)(x)

=
(
φ(u)φ(v)

)
(x) [φ is algebra morphism]

=
∑
(x)

φ(u)(x(1))φ(v)(x(2)) [product in H∗]

=
∑
(x)

〈u, x(1)〉〈v, x(2)〉

showing that (5.26) holds. Also, 〈1, x〉 = φ(1)(x) = 1(x) = ε(x), since the unit of

W ∗ is the counit of W , so (5.28) holds. A symmetric argument shows that (5.27) and

(5.29) hold. Thus 〈, 〉 realizes a duality between U and W . Notice, too, that the above

argument is exactly reversible so that the converse is immediately verified.

Now suppose that W is finite-dimensional. Then, by Proposition 4.5, W ∗ is a bialgebra

as well. Let us assume that φ is a morphism of bialgebras. By definition, this means that

φ is simultaneously a morphism of algebras and a morphism of coalgebras. It suffices to

show that the property of being a coalgebra morphism gives (5.27) and (5.29), since we

have already shown that being an algebra morphism gives (5.26) and (5.28). Again, we

make use of the commuting diagram for a coalgebra morphism (see Definition 3.23).

U ⊗ U W ∗ ⊗W ∗

κ

U W ∗

φ⊗ φ

∆U

φ

∆W∗

εU εW∗
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Following the diagram yields

〈u, xy〉 = φ(u)(xy)

= ∆
(
φ(u)

)
(x⊗ y)

=
∑

(φ(u))

φ(u)(1)(x)φ(u)(2)(y)

=
∑
(u)

φ(u(1))(x)φ(u(2))(y) [φ is coalgebra morphism]

=
∑
(u)

〈u(1), x〉〈u(2), y〉

which is (5.27). For (5.29) we see that

εU (u) = εW ∗(φ(u)) = (εW ∗ ◦ φ)(u) = φ(u)(1) = 〈u, 1〉

Again, this argument is directly reversible so that the converse holds. This finishes the

proof.

We showed, in Proposition 5.21, that the enveloping algebra U(L) is a cocommutative

Hopf algebra. From this it follows that U(sl(2)) is a Hopf algebra which entails being a

bialgebra. We now invite the polynomial algebra M(2) := κ[a, b, c, d] back to the scene.

This is the bialgebra we used to derive the bialgebra structures of GL(2) and SL(2).

Recall that we were able to represent ∆ for M(2) symbolically by the matrix relation

∆

[
a b

c d

]
=

[
a b

c d

]
⊗

[
a b

c d

]

which encodes the relations

∆(a) = a⊗ a+ b⊗ c

∆(b) = a⊗ b+ b⊗ d

∆(c) = c⊗ a+ d⊗ c

∆(d) = c⊗ b+ d⊗ d

So, for f ∈M(2), f is a polynomial in a, b, c, d, where we shall write

f

[
a b

c d

]
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in place of f(a, b, c, d). With ∆ as an algebra morphism we then have

∆f = f(∆(a),∆(b),∆(c),∆(d)) = f

[
∆(a) ∆(b)

∆(c) ∆(d)

]

In order to obtain the desired duality between U(sl(2)) and SL(2) we shall endeavor to

devise an algebra morphism ψ : M(2)→ U(sl(2))∗ from which will be deduced a bilinear

form on U(sl(2))×M(2) defined by 〈u, f〉 := ψ(f)(u) satisfying (5.27) and (5.29).

Because U(sl(2)) is cocommutative, U(sl(2))∗ is commutative and so, from Chapter 3

homAlg(M(2), U(sl(2))∗) ≡
(
U(sl(2))∗

)4 ≡M2

(
U(sl(2))∗

)
Each ψ ∈ homAlg

(
M(2), U(sl(2))∗

)
is equivalent to giving a “point” (A,B,C,D) where

A,B,C,D ∈ U(sl(2))∗. Alternatively, we have that ψ corresponds to the matrix[
ψ(a) ψ(b)

ψ(c) ψ(d)

]
=

[
A B

C D

]

The goal, then, is to find appropriate A,B,C,D so that the associated ψ gives the

desired bilinear form. In other words, for f ∈ M(2) we will have ψ(f) ∈ U(sl(2))∗ so

that ψ(f)(u) ∈ κ allowing us to set 〈u, f〉 := ψ(f)(u).

To aid us in defining A,B,C,D we make use of the representations given in (5.9) and

(5.10). More specifically, we are interested in ρ(1) which is just the natural embedding

of sl(2) into gl(2). Hence

ρ(1)(X) = X, ρ(1)(Y ) = Y and ρ(1)(H) = H

This embedding has a unique extension to an algebra morphism ρ(1) : U(sl(2))→ gl(2):

sl(2) gl(2)

U(sl(2))

ρ(1)

ρ(1)

So, ρ(1) sends u ∈ U(sl(2)) to a matrix ρ(1)(u) ∈ gl(2) called[
A(u) B(u)

C(u) D(u)

]
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This defines four linear forms A,B,C and D on U(sl(2)) and so we get a corresponding

algebra morphism which assigns

a 7→ A b 7→ B

c 7→ C d 7→ D

This will be our ψ, and hence, for f ∈M(2) we have

f(a, b, c, d) 7→ f
(
A(u), B(u), C(u), D(u)

)
= ψ(f)(u) =: 〈u, f〉

Now, since ψ is an algebra morphism, it is also linear, and because ψ sends elements of

M(2) to linear functionals, we see that the result is indeed a bilinear form.

Proposition 5.39. The bilinear form 〈u, f〉 = ψ(f)(u) realizes an imperfect duality

between the bialgebras U(sl(2)) and M(2).

Proof. Our first task is to show that

〈uv, f〉 = 〈u⊗ v,∆f〉

For the left hand side we have

〈uv, f〉 = ψ(f)(uv)

= f

[
A(uv) B(uv)

C(uv) D(uv)

]

Now, [
A(uv) B(uv)

C(uv) D(uv)

]
= ρ(1)(uv)

= ρ(1)(u)ρ(1)(v) [ρ(1) an alg. morphism]

=

[
A(u) B(u)

C(u) D(u)

]
·

[
A(v) B(v)

C(v) D(v)

]

So

〈uv, f〉 = f

[
A(u) B(u)

C(u) D(u)

]
·

[
A(v) B(v)

C(v) D(v)

]
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On the right hand side we get

〈u⊗ v,∆f〉 = 〈u⊗ v,∆f

[
a b

c d

]
〉

= 〈u⊗ v, f

[
∆(a) ∆(b)

∆(c) ∆(d)

]
〉

= f

[
〈u⊗ v,∆(a)〉 〈u⊗ v,∆(b)〉
〈u⊗ v,∆(c)〉 〈u⊗ v,∆(d)〉

]

This last equality holds because f(∆(a),∆(b),∆(c),∆(d)) is a polynomial in ∆(a),∆(b),∆(c)

and ∆(d) and 〈, 〉 is bilinear.

Let us now examine the entries. For instance,

〈u⊗ v,∆(a)〉 = 〈u⊗ v, a⊗ a+ b⊗ c〉

= 〈u⊗ v, a⊗ a〉+ 〈u⊗ v, b⊗ c〉

= 〈u, a〉〈v, a〉+ 〈u, b〉〈v, c〉

= ψ(a)(u)ψ(a)(v) + ψ(b)(u)ψ(c)(v)

= A(u)A(v) +B(u)C(v)

Similar computations yield

〈u⊗ v,∆f〉 = f

[
A(u)A(v) +B(u)C(v) A(u)B(v) +B(u)D(v)

C(u)A(v) +D(u)C(v) C(u)B(v) +D(u)D(v)

]

= f

[
A(u) B(u)

C(u) D(u)

]
·

[
A(v) B(v)

C(v) D(v)

]

thereby establishing that 〈uv, f〉 = 〈u⊗ v,∆f〉.

Now, because ρ(1)(1) = 1 we have

〈1, f〉 = ψ(f)(1)

= f

[
A(1) B(1)

C(1) D(1)

]

= f

[
1 0

0 1

]
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But also

ε(f) = εf

[
a b

c d

]

= f

[
ε(a) ε(b)

ε(c) ε(d)

]

= f

[
1 0

0 1

]

So we also have 〈1, f〉 = ε(f).

The other required duality relations: 〈u, fg〉 = 〈∆(u), f ⊗ g〉 and 〈u, 1〉 = ε(u) follow

from Proposition 5.38, since 〈, 〉 was defined using the algebra morphism ψ.

The reason the duality established above is not perfect is because ψ is not injective. This

is not immediately obvious, but we will show that ψ(ad−bc) = 1 in addition to ψ(1) = 1.

This isn’t so bad because it means that ψ factors through SL(2) = M(2)/(ad− bc− 1).

On our way to establishing this, let us begin with some more general considerations.

Let x be a grouplike element. Then

〈uv, x〉 = 〈u⊗ v,∆(x)〉

= 〈u⊗ v, x⊗ x〉

= 〈u, x〉〈v, x〉

But also, 〈1, x〉 = ε(x) = 1, since x is grouplike, and therefore, 〈−, x〉 is an algebra

morphism whenever x is grouplike. Likewise, 〈u,−〉 is an algebra morphism whenever u

is grouplike.

Now, to say that ψ(x) = 1 really means that ψ is the unit of the algebra U(sl(2))∗,

namely ε, since the algebra structure comes from the coalgebra structure on U(sl(2)).

Therefore, ψ(x) = 1 is equivalent to 〈u, x〉 = ε(u) for all u ∈ U(sl(2)). When x is

grouplike it suffices to verify this for the generating set 1, X, Y and H of the algebra

U(sl(2)).

In this particular case we have that x = ad− bc, which we know to be grouplike. Thus,

because ε is the unique algebra morphism extending the zero map - i.e.
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sl(2) κ

U(sl(2))

0

ε

we need

〈1, ad− bc〉 = ε(1) = 1

〈X, ad− bc〉 = ε(X) = 0

〈Y, ad− bc〉 = ε(Y ) = 0

〈H, ad− bc〉 = ε(H) = 0

For computational purposes, recall that

ρ(1)(X) = X =

[
0 1

0 0

]
=

[
A(X) B(X)

C(X) D(X)

]

ρ(1)(Y ) = Y =

[
0 0

1 0

]
=

[
A(Y ) B(Y )

C(Y ) D(Y )

]

ρ(1)(H) = H =

[
1 0

0 −1

]
=

[
A(H) B(H)

C(H) D(H)

]

Then

ψ(ad− bc)(X) = 〈X, ad− bc〉

= 〈X, ad〉 − 〈X, bc〉

= 〈∆(X), a⊗ d〉 − 〈∆(X), b⊗ c〉

= 〈X ⊗ 1 + 1⊗X, a⊗ d〉 − 〈X ⊗ 1 + 1⊗X, b⊗ c〉

= 〈X ⊗ 1, a⊗ d〉+ 〈1⊗X, a⊗ d〉 − 〈X ⊗ 1, b⊗ c〉 − 〈1⊗X, b⊗ c〉

= 〈X, a〉〈1, d〉+ 〈1, a〉〈X, d〉 − 〈X, b〉〈1, c〉 − 〈1, b〉〈X, c〉

= A(X)D(1) +A(1)D(X)−B(X)C(1)−B(1)C(X)

= 0 · 1 + 1 · 0− 1 · 0− 0 · 0

= 0 = ε(X)1
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Via similar calculations we also have

ψ(ad− bc)(Y ) = A(Y )D(1) +A(1)D(Y )−B(Y )C(1)−B(1)C(Y )

= 0 · 1 + 1 · 0− 0 · 0− 0 · 1

= 0 = ε(Y )1

and

ψ(ad− bc)(H) = A(H)D(1) +A(1)D(H)−B(H)C(1)−B(1)C(H)

= 1 · 1 + 1 · (−1)− 0 · 0− 0 · 0

= 0 = ε(H)1

Finally,

ψ(ad− bc)(1) = A(1)D(1)−B(1)C(1)

= 1 · 1− 0 · 0

= 1 = ε(1)1

The last one we could simply have stated, since ad−bc is grouplike, but the computation

is interesting to see.

So, we have succeeded in showing that ψ(ad−bc) = 1 and therefore it cannot be injective.

Nevertheless, we can use this fact to establish a duality between U(sl(2)) and SL(2). As

a reminder, the antipode S for SL(2) is

S

[
a b

c d

]
=

[
d −b
−c a

]

and the antipode S for U(sl(2)) is given by Proposition 5.21.

Theorem 5.40. The bilinear form 〈u, x〉 = ψ(x)(u) realizes a duality between the Hopf

algebras U(sl(2)) and SL(2).

Proof. We use ψ here as the induced morphism of algebras SL(2)→ U(sl(2))∗ from the

previous proposition. Being a morphism of algebras means that conditions (5.27) and

(5.29) already hold. Also, from the previous proposition we get that

φ : U(sl(2))→M(2)∗

defined by φ(u)(f) = 〈u, f〉, is an algebra morphism. Now, the dual of the natural

projection π : M(2) → SL(2) is the natural injection ι : SL(2)∗ → M(2)∗, which is a
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morphism of algebras. We therefore get an induced algebra morphism

φ′ : U(sl(2))→ SL(2)∗

such that φ = ι ◦ φ′. We therefore have a duality of bialgebras.

Because we want a duality between Hopf algebras, we need the extra condition expressed

in (5.30). We begin by showing that (5.30) holds for the generators 1, X, Y,H of U(sl(2)).

Since the reasoning for X,Y and H is essentially the same, we will concern our selves

with 1 and X only.

〈S(1), f〉 = 〈1, f〉

= ε(f)

and

〈1, S(f)〉 = ε(S(f))

= ε(f) [by Proposition 4.13]

Now, for X we have (and similarly for Y and H)

〈S(X), f〉 = 〈−X, f〉

= −〈X, f〉

= −f

[
A(X) B(X)

C(X) D(X)

]

= −f

[
0 1

0 0

]
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and

〈X,S(f)〉 = 〈X,Sf

[
a b

c d

]
〉

= 〈X, f

[
S(a) S(b)

S(c) S(d)

]
〉

= 〈X, f

[
d −b
−c a

]
〉

= f

[
D(X) −B(X)

−C(X) A(X)

]

= f

[
0 −1

0 0

]

= −f

[
0 1

0 0

]

Next, suppose u, v ∈ U(sl(2)) are such that (5.30) holds for all f ∈ SL(2). Then

〈S(uv), f〉 = 〈S(v)S(u), f〉

= 〈S(v)⊗ S(u),∆f

[
a b

c d

]
〉

= 〈S(v)⊗ S(u), f

[
∆(a) ∆(b)

∆(c) ∆(d)

]
〉

= f

[
〈S(v)⊗ S(u),∆(a)〉 〈S(v)⊗ S(u),∆(b)〉
〈S(v)⊗ S(u),∆(c)〉 〈S(v)⊗ S(u),∆(d)〉

]

Consider, for instance, 〈S(v)⊗ S(u),∆(a)〉. We have

〈S(v)⊗ S(u),∆(a)〉 = 〈S(v)⊗ S(u), a⊗ a+ b⊗ c〉

= 〈S(v)⊗ S(u), a⊗ a〉+ 〈S(v)⊗ S(u), b⊗ c〉

= 〈S(v), a〉〈S(u), a〉+ 〈S(v), b〉〈S(u), c〉

= 〈v, S(a)〉〈u, S(a)〉+ 〈v, S(b)〉〈u, S(c)〉

= 〈v, d〉〈u, d〉+ 〈v,−b〉〈u,−c〉

= D(v)D(u) +B(v)C(u)

Thus, via similar computations we get

〈S(uv), f〉 = f

[
D(v)D(u) +B(v)C(u) −D(v)B(u)−B(v)A(u)

−C(v)D(u)−A(v)C(u) C(v)B(u) +A(v)A(u)

]
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Compare this to

〈uv, S(f)〉 = 〈uv, f

[
d −b
−c a

]
〉

= 〈u⊗ v, f

[
∆(d) −∆(b)

−∆(c) ∆(a)

]
〉

= f

[
〈u⊗ v,∆(d)〉 −〈u⊗ v,∆(b)〉
−〈u⊗ v,∆(c)〉 〈u⊗ v,∆(a)〉

]

= f

[
C(u)B(v) +D(u)D(v) −A(u)B(v)−B(u)D(v)

−C(u)A(v)−D(u)C(v) A(u)A(v) +B(u)C(v)

]

and hence

〈S(uv), f〉 = 〈uv, S(f)〉

Therefore, since we have shown that (5.30) holds for the generators of U(sl(2)) we now

have that (5.30) holds for all products of these generators as well, implying that (5.30)

holds in general and we therefore have our Hopf algebra duality.

Most of what we have here done is fairly abstract, even the computations. Let us,

therefore, consider an easy example. For instance,

〈XY,

[
a b

c d

]
〉 =

[
〈XY, a〉 〈XY, b〉
〈XY, c〉 〈XY, d〉

]

=

[
〈X ⊗ Y,∆(a)〉 〈X ⊗ Y,∆(b)〉
〈X ⊗ Y,∆(c)〉 〈X ⊗ Y,∆(d)〉

]

= 〈X ⊗ Y,

[
∆(a) ∆(b)

∆(c) ∆(d)

]
〉

= 〈X ⊗ Y,

[
a b

c d

]
⊗

[
a b

c d

]
〉

= 〈X,

[
a b

c d

]
〉〈Y,

[
a b

c d

]
〉

=

[
0 1

0 0

][
0 0

1 0

]

=

[
1 0

0 0

]
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This is the same result we get computing the entries manually. For instance, we have

〈X ⊗ Y,∆(a)〉 = 〈X ⊗ Y, a⊗ a+ b⊗ c〉

= 〈X ⊗ Y, a⊗ a〉+ 〈X ⊗ Y, b⊗ c〉

= 〈X, a〉〈Y, a〉+ 〈X, b〉〈Y, c〉

= A(X)A(Y ) +B(X)C(Y )

= 0 · 0 + 1 · 1 = 1

One performs the other computations similarly.

This concludes our brief tour of the theory of Lie algebras, a rich and deep subject with

important connections to the topic at hand. We have here highlighted one the most

important connections, namely to Hopf algebras. One cannot overstate the importance

of the universal enveloping algebra, since this provides a functor from the category of

Lie algebras into the category of Hopf algebras. Not only this, but the most important

Hopf algebras arise in this way. Furthermore, we also explored an interesting duality

between U(sl(2)) and SL(2), which will be relevant to Chapter 7. At this point, we now

proceed to enter the “rabbit hole” of the quantum realm as we next study deformations

of classical objects, which will lead us to our first examples of quantum groups.



Chapter 6

Deformation Quantization: The

Quantum Plane and Other

Deformed Spaces

6.1 Introduction

The first five chapters of this thesis have laid the groundwork for understanding what

we shall do here and in the next chapter. This gives an idea of just how much back-

ground is needed to really engage the topic of quantum groups. The present chapter

will ease us into the subject by first considering an important example of deformation

quantization of a classical object into a quantum one, namely the quantum plane. More

than just an illustration, however, the quantum plane is important in its own right. It

is heavily studied in physics and is acted upon by certain interesting quantum groups.

The remainder of the chapter will be devoted to two examples of such quantum groups.

6.2 The Affine Line and Plane

Perhaps the two most familiar notions in Euclidean geometry and calculus, as far as

spaces go, are the line and the plane. At least part of their familiarity is due to the ease

for which they can be visualized. Of course, almost nothing in mathematics is safe from

generalization and in this chapter we begin with an interesting generalization of the line

and plane called the affine line and affine plane. The adjective “affine” refers to a more

general connection to affine spaces. In short, an affine space is an abstract structure

which generalizes certain (“affine”) geometric properties of Euclidean space. To get an

220
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idea of what this means, an affine geometry is one involving no notions of length, angle

or an origin. In other words, there are no “preferred” points in an affine space. Note,

then, that a general affine space, unlike its Euclidean counterpart, ceases to be a metric

space.

6.2.1 The Affine Line

It is now time that we revisit the material introduced in the section on free algebras

in Chapter 3. Specifically, we wish to utilize the notion of “points” in the context of

two key examples. This section is devoted to the affine line, a name highlighting the

duality between algebra and geomtry. We begin with a proposition connecting back to

the universal property of free algebras.

Proposition 6.1. Let A be a commutative algebra and f a function from the finite set

{x1, ..., xn} to A. Then there exists a unique morphism of algebras f : κ[x1, ..., xn]→ A

such that f(xi) = f(xi) for all i.

Proof. From the universal property of free algebras (see Theorem 3.6) there is a unique

algebra morphism f : κ{x1, ..., xn} → A such that f(xi) = f(xi) for all i. Recall that

κ[x1, ..., xn] ∼= κ{x1, ..., xn}/I

where I is the two-sided ideal of κ{x1, ..., xn} generated by all elements of the form

xixj − xjxi. Observe that

f(xixj − xjxi) = f(xi)f(xj)− f(xj)f(xi)

= 0 [since A is commutative]

Therefore I ⊆ Ker(f) and hence f induces an algebra morphism f : κ[x1, ..., xn] → A

with f(xi) = f(xi) for all i, which is clearly unique.

In Chapter 3, the universal property allowed us to say that

homAlg(κ[x1, ..., xn], A) ≡ {(a1, ..., an) ∈ An : aiaj − ajai for all (i, j)}

for any algebra A. The above proposition, then, implies that

homAlg(κ[x1, ..., xn], A) ≡ An

where A is commutative. What this means is that giving a morphism of algebras from

the polynomial algebra κ[x1, ..., xn] to the commutative algebra A is equivalent to giving
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an n-point (a1, ..., an) of An. In particular, if n = 1, then we have

homAlg(κ[x], A) ≡ A

In general, the functor homAlg(κ[x1, ..., xn],−) is from the category of commutative al-

gebras to the category of sets, where A 7→ An and a morphism of algebras, f : A→ B,

gets sent to a componentwise function An → Bn. This functor is said to be repre-

sented by the algebra κ[x1, ..., xn] or that κ[x1, ..., xn] is the representing object for

homAlg(κ[x1, ..., xn],−). When n = 1, the functor is called a forgetful functor because,

for an algebra A, it “forgets” the algebra structure of A and simply treats it as a set.

Likewise, algebra morphisms are considered only as functions. The representing object

in this case is κ[x] and we refer to it as the affine line.

The morphisms of homAlg(κ[x], A) are called A-points of the affine line. They are points

“of the line” in the sense that each morphism is out of κ[x] and the designation “A-

point” is due to the bijective correspondence between the morphisms of homAlg(κ[x], A)

and the elements (or points) of A.

6.2.2 The Affine Plane

As the reader may have guessed, the affine plane comes from the case where n = 2 - i.e.

homAlg(κ[x, y], A) ≡ A2

Here, each algebra morphism out of κ[x, y] corresponds to a point (a, b) ∈ A2. Like

before, we call κ[x, y] the affine plane and the algebra morphisms A-points of the affine

plane. Making use of the affine plane we can turn the affine line into a cocommutative

Hopf algebra.

By Theorem 3.11, the affine plane, κ[x1, x2], is isomorphic to κ[x] ⊗ κ[x]. Under this

isomorphism we get the same coalgebra structure as before, namely

∆(xk) =
∑
i+j=k

xi ⊗ xj , ε(xk) = δk0
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As is, however, this coalgebra structure will not be compatible with the algebra structure,

since ∆ needs to be an algebra morphism, which means

∆(xk) = ∆(x)k

= (x⊗ 1 + 1⊗ x)k

=
k∑

n=0

(
k

n

)
xk−n ⊗ xn

Setting i = k − n and j = n we get our modified ∆:

∆(xk) =
∑
i+j=k

(
i+ j

j

)
xi ⊗ xj

and now we have a bialgebra with modified product xixj =
(
i+j
j

)
xi+j . In fact, this par-

ticular coalgebra structure is the same one introduced in Example 3.11 and, as promised,

it is now apparent why this particular structure is favored, namely because it allows for

a fairly “natural” bialgebra structure. As we will see, however, it also allows for an

antipode, which will give our desired Hopf algebra structure.

Per usual, we verify this by determining an anti-algebra morphism S ∈ End(κ[x]) which

satisfies

S ? id = ε ◦ η = id ? S

Remember that S ? id := ∇ ◦ (S ⊗ id) ◦∆. We need

0 = ε(x)1

= (S ? id)(x)

= ∇
(
(S ⊗ id)(x⊗ 1 + 1⊗ x)

)
= ∇(S(x)⊗ 1 + S(1)⊗ x)

= S(x) + x

So, we must have S(x) := −x and the resulting anti-algebra morphism is the sought

after antipode. Thus, the affine line is shown to be a Hopf algebra. But we also said

that it is cocommutative, which requires the commutativity of the following diagram:

κ[x]

κ[x]⊗ κ[x] κ[x]⊗ κ[x]

∆ ∆

τ
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where τ is the transposition map. This is clearly the case, since

x⊗ 1 + 1⊗ x 7→ τ(x⊗ 1 + 1⊗ x)

= τ(x⊗ 1) + τ(1⊗ x)

= 1⊗ x+ x⊗ 1

= x⊗ 1 + 1⊗ x

While we are working with commutative A, recall the matrix algebra M2(A). In par-

ticular, we are interested in the general linear group GL2(A) and special linear group

SL2(A). These act on the affine plane in the usual linear algebra fashion. That is, if

(p, q) ∈ A2 and

[
α β

γ δ

]
∈ GL2(A) (resp. SL2(A)), then

[
α β

γ δ

](
p

q

)
=

(
αp+ βq

γp+ δq

)

In Proposition 4.51 we determined that

homAlg(GL(2), A) ∼= GL2(A) and homAlg(SL(2), A) ∼= SL2(A)

Thus if

F ↔

[
α β

γ δ

]
=

[
F (a) F (b)

F (c) F (d)

]
and f ↔

(
p

q

)
=

(
f(x)

f(y)

)
then we find that F acts on f by F . f = g where

g(x) = F (a)f(x) + F (b)f(y) = αp+ βq

g(y) = F (c)f(x) + F (d)f(y) = γp+ δq

We shall now see that the affine plane is related to sl(2) in that it becomes a module-

algebra over U(sl(2)) (see Definition 4.38). We begin by establishing a more convenient

means of determining if an algebra is a module-algebra over some bialgebra.

Lemma 6.2. Let H be a bialgebra and A be an algebra with a structure of H-module

such that h · 1 = ε(h)1. Assume that H is generated as an algebra by a subset X whose

elements satisfy the relation

h(ab) =
∑
(h)

(h(1)a)(h(2)b) (6.1)

for all a, b ∈ A. Then A is a module-algebra over H (see Definition 4.38).
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Proof. Since H is generated by X as an algebra, then for h, g ∈ X it is enough to show

that hg satisfies relation (6.1), since every element of H will then inherit this property.

Let’s begin by understanding, more fully, the relation (6.1). Since A is an H-module,

every h ∈ H gives an action h. : A→ A where h . a = ha. This extends to an action of

H ⊗H on A⊗A where for h, g ∈ H we have (h⊗ g). : A⊗A→ A⊗A defined by

(h⊗ g) . a⊗ b = h . a⊗ g . b = ha⊗ gb

Relation (6.1), then, means that the following diagram commutes:

A⊗A A

A⊗A A

∇

∆(h).

∇

h.

Now because H is a bialgebra, ∆ is an algebra morphism and so if h, g ∈ X we have

that

∆(hg). = (∆(h)∆(g)).

= (∆(h).) ◦ (∆(g).)

and, hence, the following diagram commutes:

A⊗A A

A⊗A A

A⊗A A

∇

∆(g).

∇

∆(h).

g.

∇

h.

∆(hg).

Therefore, the product hg satisfies (6.1) and the result is proved.

Definition 6.3 (Derivation). Let A be a κ-algebra. A κ-derivation on A is a κ-linear

map D : A→ A satisfying the Leibniz law:

D(ab) = aD(b) +D(a)b
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Derivations generalize the idea of the derivative operator. In fact, the astute reader may

have already noticed a resemblance to the so called “product rule” of calculus, which

happens to be a special case since

d

dx
(fg) = f

d

dx
(g) +

d

dx
(f)g

where f, g are differentiable functions of x.

The alert reader will also recall that a definition of derivation was given in Chapter 5 in

the setting of Lie algebras. The definition given here is more general, the Lie derivation

being a specific example. For the sake of comparison, recall that a Lie derivation on a

Lie algebra L is an endomorphism d of L such that d([x, y]) = [x, d(y)] + [d(x), y] for all

x, y ∈ L.

Notice, too, that for a derivation D, one has

D(1) = D(1 · 1)

= D(1)1 + 1D(1)

= D(1) +D(1)

which can only hold if D(1) = 0. We’ll make use of this fact in the following Lemma.

Lemma 6.4. Let L be a Lie algebra. An algebra A is a module-algebra over U(L) if and

only if A has an L-module structure such that the elements of L act on A as derivations.

Proof. Suppose that A is an algebra which is a module-algebra over U(L). Then, by

definition, A (as a vector space) is a U(L)-module and for all u ∈ U(L) and a, b ∈ A

u(ab) =
∑
(u)

(u(1)a)(u(2)b) (6.2)

u1 = ε(u)1 (6.3)

Now, being a U(L)-module is equivalent to there being an algebra morphism

ρ : U(L) → End(A). By the universal property of U there is a unique corresponding

Lie morphism ρ : L→ gl(A) thereby making A an L-module.

If x ∈ L, then ∆(x) = x⊗ 1 + 1⊗ x, and (6.2) becomes

ρ(x)(ab) = (xa)b+ a(xb)

= ρ(x)(a)b+ aρ(x)(b)

which says that x acts as a derivation.
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Conversely, suppose that A is an L-module such that the elements of L act on A as

derivations. Again, being an L-module is equivalent to there being a representation

ρ : L → gl(A) and by the universal property of U , this extends to a unique morphism

of algebras ρ : U(L)→ End(A), which makes A a U(L)-module.

Because U(L) is generated, as an algebra, by L (technically 1 and L, but we really get 1

for free), then by Lemma 6.2 we need only show that the result holds on L. So, if x ∈ L,

then ∆(x) = x⊗ 1 + 1⊗ x and since x acts on A as a derivation we have

x(ab) = (xa)b+ a(xb)

and therefore relation (6.1) is again satisfied for all a, b ∈ A.

Finally, for x ∈ L, since x acts as a derivation on A we must have that x · 1 = 0. But we

also know that ε(x) = 0, since ε is the algebra morphism extension of the zero morphism

L→ κ. Furthermore, because ε is an algebra morphism we get that u · 1 = ε(u)1 for all

u ∈ U(L). Therefore, by Lemma 6.2, A is a module-algebra over U(L).

In Chapter 5 we provided a convenient way to construct irreducible sl(2)-modules. We

will use the same idea here to show that sl(2) acts on the (general) affine plane and that

the affine plane is actually a module-algebra over U(sl(2)).

Theorem 6.5. Define an action of the Lie algebra sl(2) on the affine plane by

XP = x
∂P

∂y
, Y P = y

∂P

∂x
,HP = x

∂P

∂x
− y∂P

∂y

where P denotes any polynomial of κ[x, y] and X, Y and H are the basis elements for

sl(2). Then

(i) κ[x, y] becomes a module-algebra over U(sl(2)).

(ii) The subspace κ[x, y]n of homogeneous polynomials of degree n is a submodule of

κ[x, y] isomorphic to the simple sl(2)-module V [n].

Proof. (i) Per definition, we need that κ[x, y], as a vector space, is a sl(2)-module.

Thankfully, we already know that it is from our previous work (see Section 5.5.1.1).
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Nevertheless, let’s show that the action is well-defined as a matter of review. For in-

stance, since [X,Y ] = H it better be that [X,Y ]P = HP . Indeed,

[X,Y ]P = (XY − Y X)P

= (XY )P − (Y X)P

= X(Y P )− Y (XP )

= x
∂

∂y
(y
∂P

∂x
)− y ∂

∂x
(x
∂P

∂y
)

= x
∂P

∂x
+ xy

∂2P

∂y∂x
− y∂P

∂y
− yx ∂

2P

∂x∂y

= x
∂P

∂x
− y∂P

∂y

= HP

That [H,X]P = 2XP and [H,Y ]P = −2Y P are similarly verified.

If we can now show that the elements of sl(2) act as derivations on κ[x, y], then we may

deduce that the affine plane really is a module-algebra over U(sl(2)). Now,

X(PQ) = x
∂PQ

∂y

= x(P
∂Q

∂y
+
∂P

∂y
Q)

= Px
∂Q

∂y
+ x

∂P

∂y
Q

= PX(Q) +X(P )Q

Similarly, Y (PQ) = PY (Q) + Y (P )Q. Lastly,

H(PQ) = x
∂PQ

∂x
− y∂PQ

∂y

= Px
∂Q

∂x
+ x

∂P

∂x
Q− Py∂Q

∂y
− y∂P

∂y
Q

= P

(
x
∂Q

∂x
− y∂Q

∂y

)
+
(
x
∂P

∂x
− y∂P

∂y

)
Q

= PH(Q) +H(P )Q

Since X,Y and H act as derivations and respect the defining relations of sl(2), this can

be extended so that all actions by sl(2) are derivations. Therefore, by Lemma 6.4, κ[x, y]

is a module-algebra over U(sl(2)).
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(ii) Again, this follows from our previous work, but let’s give a quick review. Let n be

a non-negative integer and consider the monomial xn ∈ κ[x, y]n. Since

Hxn = x
∂xn

∂x
− y∂x

n

∂y

= xnxn−1 − 0

= nxn

it is of weight n. Furthermore, since Xxn = x∂x
n

∂y = 0, it is a highest weight vector. For

the sake of ease, set v := xn. Also, for all p ≥ 0 set

vp :=
1
p!
Y pv

Then, if p ≤ n we get

vp =
(
n

p

)
xn−pyp

and if p > n, then vp = 0. As a vector space, these vp generate κ[x, y]n and therefore

this subspace is a submodule of κ[x, y] generated by a highest weight vector of weight

n. Since the vp are eigenvectors for H, it is clear that

κ[x, y]n ∼= V [n]

In addition to there being an action on the affine plane we define next a coaction of SL(2)

(and GL(2)) on the affine plane. The following theorem establishes that the affine plane

possesses a comodule-algebra structure over the bialgebras M(2) and SL(2).

Here we obtain a natural transformation in similar fashion to our work in Section 4.6.

In this case we have

homAlg(M(2)⊗ κ[x, y], A)

≡ homAlg(M(2), A)× homAlg(κ[x, y], A)

≡M2(A)× (A)2

∇7−→ (A)2

≡ homAlg(κ[x, y], A)

where again A is a “variable” representing some commutative algebra. This natural

transformation is then induced by some algebra morphism

κ[x, y]→M(2)⊗ κ[x, y]
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As we did before, let us follow idM(2)⊗κ[x,y] where A = M(2)⊗ κ[x, y]. We have

idM(2)⊗κ[x,y]
∼7−→ (iM(2), iκ[x,y])

∼7−→ (

[
iM(2)(a) iM(2)(b)

iM(2)(c) iM(2)(d)

]
,

(
iκ[x,y](x)

iκ[x,y](y)

)
)

= (

[
a⊗ 1 b⊗ 1

c⊗ 1 d⊗ 1

]
,

(
1⊗ x
1⊗ y

)
)

∇7−→

[
a⊗ 1 b⊗ 1

c⊗ 1 d⊗ 1

]
·

(
1⊗ x
1⊗ y

)

=

(
a⊗ x+ b⊗ y
c⊗ x+ d⊗ y

)
∼7−→ δκ[x,y]

where

δκ[x,y](x) = a⊗ x+ b⊗ y and δκ[x,y](y) = c⊗ x+ d⊗ y (6.4)

Symbolically, we represent this as the matrix product:

δκ[x,y]

(
x

y

)
=

[
a b

c d

]
⊗

(
x

y

)

Theorem 6.6. There exists a unique M(2)-comodule-algebra structure and a unique

SL(2)-comodule-algebra structure on κ[x, y] such that

δκ[x,y]

(
x

y

)
=

[
a b

c d

]
⊗

(
x

y

)

Proof. From our motivating work above δκ[x,y] : κ[x, y]→M(2)⊗ κ[x, y] is a morphism

of algebras. Note, too, that the projection of M(2) onto SL(2) is an algebra morphism

and therefore the composite map κ[x, y] → SL(2)⊗ κ[x, y] is an algebra morphism. So

δκ[x,y] satisfies condition (ii) of Proposition 4.41. To satisfy the remaining condition of

Proposition 4.41 requires showing that

(id⊗ δκ[x,y]) ◦ δκ[x,y](z) = (∆⊗ id) ◦ δκ[x,y](z) and (ε⊗ id) ◦ δκ[x,y](z) = 1⊗ z

where ∆ and ε are the respective coproduct and counit maps for M(2) and SL(2). These

are the conditions for being a left H-comodule.
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To check the above equations it is sufficient to verify that they hold for x and y. This

is due to the fact that x and y generate κ[x, y] as an algebra and the only maps we are

working with are algebra morphisms. Here too the convenience of our matrix notation

is especially useful, since it allows us to check x and y simultaneously.

(
(id⊗ δκ[x,y]) ◦ δκ[x,y]

)(x
y

)
= (id⊗ δκ[x,y])

[
a b

c d

]
⊗

(
x

y

)

= id

[
a b

c d

]
⊗ δκ[x,y]

(
x

y

)

=

[
a b

c d

]
⊗

([
a b

c d

]
⊗

(
x

y

))

Also,

(
(∆⊗ id) ◦ δκ[x,y]

)(x
y

)
= (∆⊗ id)

[
a b

c d

]
⊗

(
x

y

)

=

([
a b

c d

]
⊗

[
a b

c d

])
⊗

(
x

y

)

Since the two results are the same, this establishes the first equation. For the second

equation, consider that

(
(ε⊗ id) ◦ δκ[x,y]

)(x
y

)
= (ε⊗ id)

[
a b

c d

]
⊗

(
x

y

)

= ε

[
a b

c d

]
⊗ id

(
x

y

)

=

[
1 0

0 1

]
⊗

(
x

y

)

We have now established that κ[x, y] has a comodule structure whence it follows, by

Proposition 4.41, that κ[x, y] has the desired comodule-algebra structures.
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Lemma 6.7. For all i, j ≥ 0 we have

δκ[x,y](x
iyj) =

i∑
r=0

j∑
s=0

(
i

r

)(
j

s

)
arbi−rcsdj−s ⊗ xr+syi+j−r−s

Proof. Since δκ[x,y] is an algebra morphism we have

δκ[x,y](x
iyj) = δκ[x,y](x

i)δκ[x,y](y
j)

= δκ[x,y](x)iδκ[x,y](y)j

= (a⊗ x+ b⊗ y)i(c⊗ x+ d⊗ y)j

The desired result now follows from applying the binomial formula.

As a consequence of this lemma, κ[x, y]n is a sub-comodule of the affine plane, since

δκ[x,y](κ[x, y]n) ⊂M(2)⊗ κ[x, y]n

and, in fact,

κ[x, y] =
⊕
n

κ[x, y]n

as comodules.

Now that we have a coaction of M(2), SL(2) and GL(2) on the affine plane we can

actually obtain a coaction of the affine plane on itself. This is done by realizing that a

copy of the affine plane is “sitting” inside M(2) in the form of affine transformations of

the line. These transformations have the form

[
a 0

c 1

]
. Note, then, that each point of

the affine plane can be identified with an affine transformation by specializing to

[
x 0

y 1

]
.

In this case, the matrix formula for the coaction becomes[
x 0

y 1

]
⊗

(
x

y

)
=

(
x⊗ x

y ⊗ x+ 1⊗ y

)

More precisely, one can embed κ[x, y] into M(2) = κ[a, b, c, d]. There is more than one

way to do this, but to be consistent with what has been said already one can assign



Chapter 6. Deformation Quantization: The Quantum Plane and Other Deformed
Spaces 233

x 7→ a and y 7→ c. By then “factoring out” from κ[a, b, c, d] one can recover κ[x, y] with

a 7→ x

b 7→ 0

c 7→ y

d 7→ 1

Now, if one treats

(
x

y

)
as

[
x 0

y 1

]
then

[
x 0

y 1

]
⊗

[
x 0

y 1

]
=

[
x⊗ x 0

y ⊗ x+ 1⊗ y 1⊗ 1

]

and the coaction actually turns into a colagebra structure for κ[x, y] where

∆(x) = x⊗ x

∆(y) = y ⊗ x+ 1⊗ y

ε(x) = 1

ε(y) = 0

This is a special coalgebra structure that, as we will see below, passes to the quantum

plane and, by extending ∆ and ε to algebra morphisms, allows for a bialgebra structure

on both the affine and quantum plane.

6.3 The Quantum Plane

The quantum plane is a well known example in quantum group theory; however, it is

not a quantum group. One could say that it is “close”, but, as we will see, it fails to be

a Hopf algebra. It is obtained from the affine plane via a method known as deforma-

tion quantization. This is a term well known in algebraic and differential geometry and

the quantum plane will be an important illustration for understanding quantum groups.

Recall that the affine plane is a more intuitive object retaining that familiar Euclidean

property of being commutative which allows for easy visualization. The quantum plane,

by contrast, is a more bizarre object having the peculiar property of not being commu-

tative. Because of this, it is perhaps best to forego any attempts to picture this “plane”.

The term “plane” is more of a formal title based upon its construction.
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Roughly speaking, a deformation of a mathematical object is a family of “similar” ob-

jects, which depend on some parameter or parameters such that the original object

corresponds to a particular chosen initial value for the parameter (see [12]). In our case,

the quantum plane is a one-parameter deformation of the affine plane. To understand

what this means, recall that the affine plane is freely generated by the two variables x, y

subject to the trivial commutation relation

yx = xy

Using the commutator, this is equivalent to [y, x] = 0. Suppose we modify or deform

this relation so that we obtain a new (deformed) commutation relation

yx = qxy

where q is a non-zero element from the ground field κ. The element q serves as our

parameter giving us a family of similar objects. Note, then, that the affine plane corre-

sponds to an initial value of q = 1. So, in this context one can think of a deformation as

“deforming” the commuting relations of an algebra. In this case, we are taking an al-

gebra that was originally commutative and “deforming” it into similar structures which

no longer commute. As an analogue to the commutator [y, x] we can define a deformed

commutator by

[y, x]q := yx− qxy

which allows us to express the new commuting relation by [y, x]q = 0.

More formally, the quantum plane is defined to be the algebra

κq[x, y] := κ{x, y}/Iq

where Iq is the two-sided ideal of the free algebra κ{x, y} generated by the element

yx− qxy.

Let us now show that the coaction of the affine plane on itself, discovered above, allows

for a bialgebra structure on the quantum plane.

Proposition 6.8. Define a coproduct ∆ and counit ε for the quantum plane by

∆(x) := x⊗ x, ∆(y) := y ⊗ x+ 1⊗ y ε(x) := 1, ε(y) := 0

These equip κq[x, y] with a bialgebra structure.
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Proof. Let us begin by showing that the coproduct respects the algebra structure of the

quantum plane.

∆(y)∆(x) = (y ⊗ x+ 1⊗ y)(x⊗ x)

= yx⊗ x2 + x⊗ yx

= qxy ⊗ x2 + qx⊗ xy

= q(xy ⊗ x2 + x⊗ xy

= q(x⊗ x)(y ⊗ x+ 1⊗ y)

= q∆(x)∆(y)

Thus, ∆ can be extended to an algebra morphism. Clearly ε can be so extended as well

based on its definition. We therefore need only verify the coproduct and counit axioms

using the generating elements x and y. But because x is grouplike, it clearly satisfies

the coproduct axiom. Let us therefore check y.

(∆⊗ id)(∆(y)) = (∆⊗ id)(y ⊗ x+ 1⊗ y)

= ∆(y)⊗ x+ ∆(1)⊗ y

= (y ⊗ x+ 1⊗ y)⊗ x+ 1⊗ 1⊗ y

= y ⊗ x⊗ x+ 1⊗ y ⊗ x+ 1⊗ 1⊗ y

and

(id⊗∆)(∆(y)) = (id⊗∆)(y ⊗ x+ 1⊗ y)

= y ⊗∆(x) + 1⊗∆(y)

= y ⊗ x⊗ x+ 1⊗ (y ⊗ x+ 1⊗ y)

= y ⊗ x⊗ x+ 1⊗ y ⊗ x+ 1⊗ 1⊗ y

So the coproduct axiom is satisfied.

For the counit, it is certainly satisfied for x, since it is grouplike and ε(x) = 1. Let us

therefore verify it for y.

(ε⊗ id)(∆(y)) = (ε⊗ id)(y ⊗ x+ 1⊗ y)

= ε(y)⊗ x+ ε(1)⊗ y

= 0⊗ x+ 1⊗ y

= 1⊗ y
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Also,

(id⊗ ε)(∆(y)) = (id⊗ ε)(y ⊗ x+ 1⊗ y)

= y ⊗ ε(x) + 1⊗ ε(y)

= y ⊗ 1 + 1⊗ 0

= y ⊗ 1

So, because ∆ and ε are algebra morphisms, which satisfy the coproduct and counit

axioms, it follows that the quantum plane is indeed a bialgebra.

As mentioned before, the quantum plane is not a quantum group. This is because it

fails to be a Hopf algebra. Since it is a bialgebra, the failure must be with regards to

having an antipode. Suppose that κq[x, y] did have an antipode. Then we would have

an anti-algebra morphism S : κq[x, y] → κq[x, y] such that S ? id = 1? = id ? S. In

particular, since x is grouplike, S(x) = x−1. But x−1 is not a member of κq[x, y]; so,

there cannot be an antipode after all.

6.3.1 Ore Extensions

We begin with a generalization of a derivation.

Definition 6.9 (α-derivation). Let A be an algebra and α an algebra endomorphism of

A. An α-derivation of A is a linear endomorphism D of A such that

D(ab) = α(a)D(b) + D(a)b

for all a, b ∈ A.

Notice how Defintion 6.3 is the special case where α = id.

From this definition we see again that D has the property that D(1) = 0 since

D(1) = D(1 · 1)

= α(1)D(1) + D(1)

= D(1) + D(1)

Definition 6.10 (Ore Extension). Let A be an algebra, α an algebra endomorphism of

A and D an α-derivation of A. Then the Ore extension A[λ;α,D ] is the algebra obtained

by giving the polynomial algebra A[λ] a new multiplication, subject to the identity

λa = α(a)λ+ D(a)
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Now take A[t] to be the free (left) A-module containing all polynomials of the form

P = ant
n + an−1t

n−1 + . . .+ a0t
0

where ai ∈ A for all i. We say that the degree of P is deg(P ) = n whenever an 6= 0.

Note that it is a typical convention to set deg(0) := −∞. We will use Ore extensions to

find all algebra structures on A[t] which are compatible with the algebra structure of A

and the degree.

Theorem 6.11. (i) Assume that A[t] has an algebra structure such that the natural

inclusion of A into A[t] is a morphism of algebras, and we have

deg(PQ) = deg(P ) + deg(Q)

for any pair (P,Q) of elements of A[t]. Then A has no zero-divisors and there

exist a unique injective algebra endomorphism α of A and a unique α-derivation

D of A such that

ta = α(a)t+ D(a)

for all a ∈ A.

(ii) Conversely, let A be an algebra having no zero-divisors. Given an injective algebra

endomorphism α of A and an α-derivation D of A, there exists a unique algebra

structure on A[t] such that the inclusion of A into A[t] is an algebra morphism

and ta = α(a)t+ D(a) for all a ∈ A.

Proof. (i) That A has no zero-divisors is a direct consequence of the degree of elements

of A considered as embedded in A[t]. That is, for non-zero a, b ∈ A we have that

deg(a) = deg(b) = 0 in A[t] and hence deg(ab) = 0 6= −∞ thereby implying that ab 6= 0.

Thus, A has no zero-divisors.

For the next part, let a any non-zero element of A. Then a ∈ A[t] as well. Now

consider left multiplication by t, which gives the product ta ∈ A[t]. By hypothesis we

have deg(ta) = deg(t) + det(a) = 1. Thus, the product ta corresponds to a first degree

polynomial in A[t]. Specifically, there are uniquely determined elements α(a) 6= 0 and

D(a) in A such that ta = α(a)t + D(a). By letting a vary we get uniquely defined

maps α and D on A. We now need to show that α is an algebra endomorphism and D

is a linear endomorphism that satisfies the relation in Definition 6.9. Since A[t] is an

associative algebra, we have

(ta)b = t(ab)
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for a, b ∈ A. This equality will give us a way to explore some of the properties of α and

D when applied to a product. We find that

(ta)b = t(ab)

(α(a)t+ D(a))b = α(ab)t+ D(ab)

α(a)tb+ D(a)b = α(ab)t+ D(ab)

α(a)(α(b)t+ D(b)) + D(a)b = α(ab)t+ D(ab)

α(a)α(b)t+ α(a)D(b) + D(a)b = α(ab)t+ D(ab)

Since the coefficients are unique, this implies that

α(ab) = α(a)α(b) and D(ab) = α(a)D(b) + D(a)b (6.5)

Furthermore, left multiplication by t is a linear operation which means that

t(a+ b) = ta+ tb

α(a+ b)t+ D(a+ b) = α(a)t+ D(a) + α(b)t+ D(b)

= (α(a) + α(b))t+ D(a) + D(b)

and hence

α(a+ b) = α(a) + α(b) and D(a+ b) = D(a) + D(b) (6.6)

Finally, we have that

t1 = t

= α(1)t+ D(1)

implying that

α(1) = 1 and D(1) = 0 (6.7)

Together, (6.5), (6.6) and (6.7) imply that α and D have the desired properties.

(ii) Firstly, we need to obtain an appropriate algebra structure. Since A[t] is infinite

dimensional, the basic strategy for proving (ii) is to embed A[t] into the associative

algebra of all infinite matrices (fij)i,j≥1 with fij ∈ End(A) (linear endomorphisms) such

that each column has only finitely many non-zero entries. We’ll denote this algebra by

M∞(End(A)). More specifically, the reason for doing this is because given an algebra
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A, then, as a vector space

A[t] =
∞⊕
i=0

Ati =
∞⊕
i=0

Ai

where each Ai is an isomorphic copy of A (Ai = Ati). What we get is that

homκ(A[t], A[t]) ∼= M∞(End(A))

Now, for any algebra A there is a left representation A→ homκ(A,A) given by

a 7→ â

where â represent the endomorphism of A that is left multiplication by a for any a ∈ A.

So, when A[t] is endowed with its algebra structure we get

A[t]→ homκ(A[t], A[t])→M∞(End(A))

Once we successfully embed A[t] into M∞(End(A)) we will show that the image of the

embedding is a subalgebra of M∞(End(A)) thereby allowing us to lift this structure to

A[t]. Note, too, that once we show the product ta to be α(a)t + D(a) for any a ∈ A,

then the lifted algebra structure must be unique.

Let us now construct our embedding map. Using the left multiplication, we can express

the property of α that α(ab) = α(a)α(b) by

α ◦ â = α̂(a) ◦ α (6.8)

in End(A). Likewise, we can express the condition for being an α-derivation by

D ◦ â = α̂(a) ◦D + D̂(a) (6.9)

Next, based on the algebra structure of A[t], we need to determine T ∈ M∞(End(A))

for which t 7→ T . To do this, we use the fact that A[t] =
⊕∞

i=0Ai. Since A[t] has basis

1, t, t2, t3, ... we have that

a↔ (a, 0, 0, ...)

at↔ (0, a, 0, ...)

at2 ↔ (0, 0, a, ...)
...
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Let us now see what left multiplication by t achieves. For example, consider at2. If we

multiply on the left by t we get

tat2 = (α(a)t+ D(a))t2

= α(a)t3 + D(a)t2

So, under left multiplication by t, one gets that

(0, 0, a, 0, ...)→ (0, 0,D(a), α(a), 0, ...)

and in general tatn = α(a)tn+1 + D(a)tn so that

(0, 0, ..., 0, a, 0, ...)→ (0, 0, ..., 0,D(a), α(a), 0, ...)

Using these as columns we can construct the desired matrix, namely

T =



D 0 0 0 . . .

α D 0 0 . . .

0 α D 0 . . .

0 0 α D . . .

0 0 0 α
. . .

...
...

...
...

. . .


So, t 7→ T and from this we get a linear map ϕ : A[t]→M∞(End(A)) with

ϕ
( n∑
i=0

ait
i
)

=
n∑
i=0

(âiI)T i

The claim is that ϕ is an injective map. To see why, let ei be the infinite column vector

with 1A in the i-th entry and zeros for the rest. If we apply T to such a vector we find

that Tei = ei+1 on account of the fact that α(1) = 1 and D(1) = 0. Now, suppose

P =
∑n

i=0 ait
i ∈ A[t] is such that ϕ(P ) = 0. In other words, P ∈ Ker(ϕ). The goal will

be to demonstrate that P = 0, which entails showing that the coefficients a0, ..., an are

all zero. Applying ϕ(P ) to e1 we find that

0 = ϕ(P )e1

=
n∑
i=0

(âiI)T ie1

=
n∑
i=0

âiei+1
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But because {ei}i≥0 is a linearly independent set, it must be that the âi are all zero.

This means that left multiplication by ai (all i) is always zero for any a ∈ A. But A has

no zero divisors and specifically âi(1) = 0, which implies that ai = 0 for all i. Therefore,

P = 0 and so ϕ is injective.

Let S be the subalgebra of M∞(End(A)) generated by the elements T and âI. Now,

ϕ(α(a)t+ D(a)) = (α̂(a)I)T + (D̂(a)I), which is the matrix
α̂(a)D + D̂(a)

α̂(a)α α̂(a)D + D̂(a)

α̂(a)α
. . .


By (6.8) and (6.9) we can rewrite this matrix as

D â

αâ D â

αâ D â

αâ
. . .


= T (âI)

From this it follows that Im(ϕ) = S and since ϕ is injective we get an induced linear

isomorphism from A[t] to the algebra S thereby allowing us to lift the algebra structure

of S to A[t]. Specifically, since

ϕ(α(a)t+ D(a)) = (α̂(a)I)T + (D̂(a)I)

= T (âI)

we get the assignment ϕ(ta) = T (âI) and therefore ta = α(a)t+ D(a) for all a ∈ A.

Corollary 6.12. Let A be an algebra without zero-divisors, α an injective algebra en-

domorphism of A and D an α-derivation of A. Then the algebra A[t;α,D ] has no

zero-divisors. As a left A-module, it is free with basis {ti}i∈N. Furthermore, if α is an

automorphism, then A[t;α,D ] is also a right free A-module with the same basis {ti}i∈N.

Proof. Since A has no zero-divisors and all elements of A[t;α,D ] are finite polynomials

in t, we get a well defined concept of degree. Now,

deg(PQ) = deg(P ) + deg(Q)
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hence, if P,Q 6= 0, then deg(P ) = n and deg(Q) = m (n,m ∈ N) implying that

deg(PQ) = n+m and therefore PQ cannot be 0. Thus, A[t;α,D ] has no zero divisors.

Now, A[t] is a free left A-module, since it consists of all polynomials of the form

P = ant
n + an−1t

n−1 + . . .+ a0t
0

and so {ti}i∈N is a basis. As a left A-module A[t;α,D ] is the same as A[t] and therefore

has the same basis.

But we can also express every element of A[t;α,D ] in the form P =
∑n

i=0 t
iai when α

is an automorphism. To see this, note that since ta = α(a)t+ D(a) and α is invertible,

we have

tα−1(a) = α(α−1(a))t+ D(α−1(a))

= at+ D(α−1(a))

so at = tα−1(a)−D(α−1(a)). It is also clearly the case that at0 = t0α−0(a), so suppose

that

atn = tnα−n(a) + lower-degree terms (6.10)

up to some n ∈ N. Then

atn+1 = (atn)t

= (tnα−n(a) + L.D.T)t [induction hypothesis]

= tnα−n(a)t+ (L.D.T)t

= tn(tα−1(α−n(a))− (α−1(α−n(a)))) + L.D.T [induction hypothesis]

= tn+1α−(n+1)(a) + L.D.T

It can similarly be shown that

tna = αn(a)tn + lower-degree terms (6.11)

so that we are able to go back and forth from the right side to the left side.

So, when α is an automorphism, the set {ti}i∈N generates A[t;α,D ] as a right A-module.

We now need to show that, in this context, {ti}i∈N is independent. Suppose, however,

that it is not. Then there exists a relation of the form

tnan + tn−1an−1 + . . .+ ta1 + a0 = 0
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where at least an 6= 0. But then we would also have that

αn(an)tn + lower-degree terms = 0

by (6.11). In this form, however, {ti}i∈N is a basis and hence αn(an) = 0. But α is an

isomorphism and so it must be that an = 0, which is a contradiction. Therefore, {ti}i∈N
must also be independent when the multiplication is on the right. Hence, A[t;α,D ] is

also a free right A-module with basis {ti}i∈N.

Theorem 6.13. Let R be an algebra, α an algebra automorphism and δ an α-derivation

of R. If R is left-(resp. right) Noetherian, then so is the Ore extension R[t;α, δ].

This is an extension of the Hilbert Basis Theorem (see [8]), which states:

If R is a left-(resp. right) Noetherian ring, then the polynomial ring R[x] is

also a left-(resp. right) Noetherian ring.

Proposition 6.14. (i) If α is the automorphism of the polynomial ring κ[x] deter-

mined by α(x) = qx, then the algebra κq[x, y] is isomorphic to the Ore extension

κ[x][y;α, 0]. Thus, κq[x, y] is Noetherian, has no zero-divisors and the set of mono-

mials {xiyj}i,j≥0 is a basis of the underlying vector space.

(ii) For any pair (i, j) of nonnegative integers, we have

yjxi = qijxiyj

(iii) Given any κ-algebra A, there is a natural bijection

homAlg(κq[x, y], A) ≡ {(X,Y ) ∈ A×A : Y X = qXY }

Proof. (i) Note, firstly, that it is clear that κq[x, y] and κ[x][y;α, 0] are the same vector

space with basis {xiyj}i,j∈N. All that is now required is that they possess the same

algebra structure. For the quantum plane we already know that the defining algebra

relation is: yx = qxy. Indeed, for the Ore extension κ[x][y;α, 0] we also have

yx = α(x)y + 0(x)

= qxy

Thus, κq[x, y] ∼= κ[x][y;α, 0] as algebras.

Now, it is a well known fact that any field is Noetherian; hence, so is κ[x]. By Theorem

6.13, the Ore extension κ[x][y;α, 0] is therefore Noetherian and, by isomorphism, so
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must be the quantum plane κq[x, y]. Finally, since κ[x] has no zero-divisors, it follows

by Corollary 6.12 that κ[x][y;α, 0], and therefore κq[x, y], has no zero-divisors.

(ii) Since yx = qxy, suppose that ynx = qnxyn up to some n ∈ N. Now consider that

yn+1x = yynx

= yqnxyn [induction hypothesis]

= qnyxyn

= qnqxyyn [base case]

= qn+1xyn+1

So, by mathematical induction, we have that ykx = qkxyk for any k ∈ N. Next, suppose

that

ykx` = qk`x`yk

up to some ` ∈ N and for all k. Consider now that

ykx`+1 = ykx`x

= qk`x`ykx [induction hypothesis]

= qk`x`qkxyk

= qk(`+1)x`+1yk

and so, by induction, we also get that yjxi = qijxiyj for all i, j ∈ N.

(iii) By Proposition 3.7 we have the natural bijection

homAlg(κ{X}/I,A) ≡ {f ∈ homSet(X,A) : f(I) = 0}

where f is the unique algebra morphism from κ{X} to A induced by f . In particular,

then, we have

homAlg(κ{x, y}/Iq, A) ≡ {f ∈ homSet({x, y}, A) : f(Iq) = 0}

which implies the result

homAlg(κ{x, y}/Iq, A) ≡ {(X,Y ) ∈ A2 : Y X = qXY }
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6.3.2 q-Analysis

Suppose we now wish to see what kind of algebra can be done in the quantum plane. This

section will give a glimpse into what it is like to calculate within a deformed structure

and will ease us into, as well as motivate, the types of computations done within quantum

groups. The quantum plane is a nice place to start because it is fairly simple to work

with, since it only has one deformed relation. As an interesting example, we’ll do a little

quantum pre-calculus and consider an analogue of the Binomial Theorem.

For the affine plane the Binomial Theorem says,

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk ∈ κ[x, y]

where (
n

k

)
=

n!
k!(n− k)!

=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
=

k∏
m=1

n−m+ 1
m

We want to be able to compute powers of x + y in the quantum plane too. It would

even be nice if we could produce something similar to the result of the normal Binomial

Theorem. Indeed, this can be done, but we need to first procure some basic tools of

q-analysis. We begin with the notion of a q-deformation of a positive integer.

Definition 6.15. For any n ∈ Z+ set

(n)q := 1 + q + q2 + . . .+ qn−1 =
qn − 1
q − 1

Being a deformation we expect to recover the original integer in the limit q → 1. Let’s

make sure this is the case.

lim
q→1

(n)q = lim
q→1

qn − 1
q − 1

= lim
q→1

d
dq (qn − 1)
d
dq (q − 1)

[L’Hospital’s Rule]

= lim
q→1

nqn−1 = n

Note that we can actually do all integers, where (0)q = 0 and for n ∈ Z+

(−n)q =
q−n − 1
q − 1

=
1− qn

qn(q − 1)
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We still recover −n in the limit q → 1 since

lim
q→1

(−n)q = lim
q→1

1− qn

qn(q − 1)

= lim
q→1

−nqn−1

nqn−1(q − 1) + qn

= −n

Now, although n and −n are additive inverses, it is not the case that (n)q and (−n)q
are additive inverses. Instead,

−(n)q = −q
n − 1
q − 1

=
1− qn

q − 1

= qn
1− qn

qn(q − 1)

= qn(−n)q

So that

(n)q + qn(−n)q = 0

Let’s also consider how to understand the deformation of a sum. For integers n and m,

(n+m)q =
qn+m − 1
q − 1

=
qnqm − 1
q − 1

=
qnqm − qn + qn − 1

q − 1

=
qn(qm − 1) + qn − 1

q − 1

= qn
qm − 1
q − 1

+
qn − 1
q − 1

= qn(m)q + (n)q

By similar reasoning, we also get the alternative: (n+m)q = (m)q + qm(n)q.

From the idea of a deformed integer we can construct the idea of a q-factorial.

Definition 6.16 (q-factorial).

(0)!q := 1 and (n)!q := (1)q(2)q · · · (n)q =
(q − 1)(q2 − 1) · · · (qn − 1)

(q − 1)n
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Since limq→1(n)q = n, it is easy to see that the usual factorial is also recovered in the

limit q → 1.

Next we construct the q-analogue of the binomial coefficient, which is called a Gauss

polynomial.

Definition 6.17 (Gauss Polynomial). The Gauss polynomials for 0 ≤ k ≤ n are given

by (
n

k

)
q

:=
(n)!q

(k)!q(n− k)!q

For k > n we take
(
n
k

)
q

= 0.

Again, via basic calculus, we see that the usual binomial coefficient is recovered in the

limit q → 1. Note, too, that we always have(
n

n

)
q

=
(
n

0

)
q

= 1 all n

just like the normal binomial coefficient. The next result will justify the name Gauss

polynomial.

Proposition 6.18. Let 0 ≤ k ≤ n. Then

(i)
(
n
k

)
q

is a polynomial in q with integral coefficients such that

(
n

k

)
1

=
(
n

k

)

(ii) We have (
n

k

)
q

=
(

n

n− k

)
q

(iii) We have (
n

k

)
q

=
(
n− 1
k − 1

)
q

+ qk
(
n− 1
k

)
q

=
(
n− 1
k

)
q

+ qn−k
(
n− 1
k − 1

)
q
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Proof. Let’s start with (ii) since it is the easiest. By definition we have that(
n

n− k

)
q

=
(n)!q

(n− k)!q(n− (n− k))!q

=
(n)!q

(n− k)!q(k)!q

=
(n)!q

(k)!q(n− k)!q

=
(
n

k

)
q

Next, let’s tackle (iii).(
n− 1
k − 1

)
q

+ qk
(
n− 1
k

)
q

=
(n− 1)!q

(k − 1)!q(n− k)!q
+ qk

(n− 1)!q
(k)!q(n− k − 1)!q

= (n− 1)!q

(
1

(k − 1)!q(n− k)!q
+

qk

(k)!q(n− k − 1)!q

)
= (n− 1)!q

(k)q + qk(n− k)q
(k)!q(n− k)!q

Examine (n− 1)!q((k)q + qk(n− k)q). By definition, this expression is equal to

(n− 1)!q

(
qk − 1
q − 1

+ qk
qn−k − 1
q − 1

)
= (n− 1)!q

qk − 1 + qn − qk

q − 1

= (n− 1)!q
qn − 1
q − 1

= (n− 1)!q(n)q

= (n)!q

We therefore see that (
n− 1
k − 1

)
q

+ qk
(
n− 1
k

)
q

=
(n)!q

(k)!q(n− k)!q

=
(
n

k

)
q
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as desired. For the other equality we use (ii) along with the result we just established.(
n

k

)
q

=
(

n

n− k

)
q

[by (ii)]

=
(

n− 1
n− k − 1

)
q

+ qn−k
(
n− 1
n− k

)
q

=
(

n− 1
(n− 1)− k

)
q

+ qn−k
(
n− 1
n− k

)
q

=
(
n− 1
k

)
q

+ qn−k
(

n− 1
n− 1− n+ k

)
q

[by (ii)]

=
(
n− 1
k

)
q

+ qn−k
(
n− 1
k − 1

)
q

As for (i), we have already mentioned, and it is not hard to see, that
(
n
k

)
1

=
(
n
k

)
. To

prove the rest, we shall use induction on n. Clearly(
1
0

)
q

=
(

1
1

)
q

= 1

For n = 2 we can use result (iii).(
2
k

)
q

=
(

1
k − 1

)
q

+ qk
(

1
k

)
q

But we only need to worry about k = 1; so, we get(
2
1

)
q

=
(

1
0

)
q

+ q

(
1
1

)
q

= 1 + q

Now, suppose
(
n
k

)
q

is a polynomial in q with integral coefficients up to some n. Then

(
n+ 1
k

)
q

=
(

n

k − 1

)
q

+ qk
(
n

k

)
q

[by (iii)]

By our induction hypothesis both
(
n
k−1

)
q

and
(
n
k

)
q

are polynomials in q with integral

coefficients. Therefore
(
n+1
k

)
q

is a polynomial in q with integral coefficients. Thus, by

induction (i) is proved.

Proposition 6.19. Let x and y be variables subject to the quantum plane relation

[y, x]q = 0. Then for all n > 0 we have

(x+ y)n =
∑

0≤k≤n

(
n

k

)
q

xkyn−k
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Proof. To get a feel for what is going on, let us compute the first few powers.

(x+ y)1 = x+ y

(x+ y)2 = x2 + xy + yx+ y2

= x2 + xy + qxy + y2

= x2 + (1 + q)xy + y2

(x+ y)3 = (x+ y)(x2 + (1 + q)xy + y2)

= x3 + (1 + q)x2y + xy2 + yx2 + (1 + q)yxy + y3

= x3 + (1 + q)x2y + xy2 + q2x2y + q(1 + q)xy2 + y3

= x3 + (1 + q + q2)x2y + (1 + q + q2)xy2 + y3

So, each of the above powers of x+ y satisfy the desired equation, where the polynomial

coefficients are the appropriate Gauss polynomials of Proposition 6.18, (i). Suppose,

then, that

(x+ y)n =
∑

0≤k≤n

(
n

k

)
q

xkyn−k

up to some n and consider the case for n+ 1.

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
( ∑

0≤k≤n

(
n

k

)
q

xkyn−k
)

[induction hypothesis]

= x
∑

0≤k≤n

(
n

k

)
q

xkyn−k + y
∑

0≤k≤n

(
n

k

)
q

xkyn−k

=
∑

0≤k≤n

(
n

k

)
q

xk+1yn−k +
∑

0≤k≤n

(
n

k

)
q

yxkyn−k

=
∑

1≤k≤n+1

(
n

k − 1

)
q

xkyn−k+1 +
∑

0≤k≤n
qk
(
n

k

)
q

xkyn−k+1 [yjxi = qijxiyj ]

=

 ∑
1≤k≤n

((
n

k − 1

)
q

+ qk
(
n

k

)
q

)
xkyn+1−k

+ xn+1 + yn+1

=
∑

0≤k≤n+1

(
n+ 1
k

)
q

xkyn+1−k [by (iii) of prev. prop.]

Therefore, by induction, the result is proved.

Having had our appetizer, let us now proceed to consider some actual quantum groups.
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6.4 The Quantum Groups GLq(2) and SLq(2)

6.4.1 Mq(2)

The quantum plane is a very well known example of a deformed space. It is also a

natural segue to the idea of a quantum matrix algebra which we now explore. This

section directly paves the way for two of the three quantum groups we will examine in

this thesis. We have already spent a bit of time studying the bialgebra M(2) and so we

here introduce its family of deformations Mq(2).

For reasons that will hopefully become clear, we assume that q2 6= −1. Let x, y be

elements of an algebra subject to the quantum plane relation and let a, b, c, d be four

variables which commute with x and y. Now consider the following matrix equations:

[
a b

c d

](
x

y

)
=

(
x′

y′

)
,

[
a b

c d

]T (
x

y

)
=

(
x′′

y′′

)
(6.12)

Given that y′x′ = qx′y′ and y′′x′′ = qx′′y′′, we get six equivalent relations describing how

a, b, c, d must relate to each other in order to be consistent with matrix multiplication.

In fact, if we proceed with normal matrix multiplication we get

ax+ by = x′, cx+ dy = y′, ax+ cy = x′′, bx+ dy = y′′

Substituting these into the quantum plane relations yields

(cx+ dy)(ax+ by) = q(ax+ by)(cx+ dy) (6.13)

(bx+ dy)(ax+ cy) = q(ax+ cy)(bx+ dy) (6.14)

Expanding these equations and identifying coefficients (assuming x2, xy and y2 are in-

dependent) gives

ca = qac, cb+ qda = qad+ q2bc, db = qbd [from (6.13)]

ba = qab, bc+ qda = qad+ q2cb, dc = qcd [from (6.14)]

Using the equations in the middle column allows us to deduce the further relations

bc− cb = q2(cb− bc), ad− da = q−1cb− qbc and ad− da = q−1bc− qcb

If we examine the first equation we see that it is equivalent to (1 + q2)(bc− cb) = 0 and

since q2 6= −1 this entails that cb = bc. So, the six relations become
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1. ba = qab

2. db = qbd

3. ca = qac

4. dc = qcd

5. bc = cb

6. ad− da = (q−1 − q)bc

Conversely, it can be shown that these six relations imply that y′x′ = qx′y′ and

y′′x′′ = qx′′y′′ so we have an equivalence. This is our motivation for the definition of

Mq(2).

Definition 6.20. Let Jq be the two-sided ideal of the free algebra κ{a, b, c, d} generated

by the six relations above. Then the algebra Mq(2) is the quotient of κ{a, b, c, d} by Jq
- i.e.

Mq(2) :=
κ{a, b, c, d}

Jq

This rigorous definition of Mq(2) is consistent with the intuitive idea of a deformation

given at the start of this chapter. It has five deformed commuting relations (since

bc = cb) as opposed to just one. Also, just as the affine plane was recovered when q = 1

so we see that M(2) is recovered when q = 1. Remember, too, that given a commutative

algebra A we have the bijection

homAlg(M(2),A) ≡M2(A)

where either set is referred to as the space of A-points of M(2). Denote the set of

A-points for Mq(2) by M q
2 (A), which consists of all 2× 2 matrices[

A B

C D

]
with A,B,C,D ∈ A subject to the designated six relations above.

Then we still have that

homAlg(Mq(2),A) ≡M q
2 (A)

Proposition 6.21. Let

A′ := A⊗ κq[x, y] = A{x, y}/(yx− qxy)

then

[
A B

C D

]
, with entries in A, is an A-point of Mq(2) if and only if

[
A B

C D

](
x

y

)
=

(
X ′

Y ′

)
and

[
A B

C D

]T (
x

y

)
=

(
X ′′

Y ′′

)

where (X ′, Y ′) and (X ′′, Y ′′) are A′-points of the quantum plane.



Chapter 6. Deformation Quantization: The Quantum Plane and Other Deformed
Spaces 253

Proof. Begin by supposing that

[
A B

C D

]
is an A-point of Mq(2). By Proposition 6.14

homAlg(κq[x, y],A′) ≡ {(X,Y ) ∈ A′2 : Y X = qXY }

So, to be A′-points of the quantum plane, (X ′, Y ′) and (X ′′, Y ′′) must be members of

the set on the right. To check this, let us first determine what X ′, Y ′, X ′′ and Y ′′ are

specifically. First, X ′ and Y ′:[
A B

C D

](
x

y

)
=

(
A⊗ x+B ⊗ y
C ⊗ x+D ⊗ y

)

So, X ′ = A⊗ x+B ⊗ y and Y ′ = C ⊗ x+D⊗ y are elements of A′. Now we see if they

satisfy the appropriate commutation relation.

Y ′X ′ = (C ⊗ x+D ⊗ y)(A⊗ x+B ⊗ y)

= CA⊗ x2 + CB ⊗ xy +DA⊗ yx+DB ⊗ y2

= qAC ⊗ x2 + q−1BC ⊗ yx+ (qAD − (1− q2)BC)⊗ xy + qBD ⊗ y2

= qAC ⊗ x2 + q−1BC ⊗ yx+ qAD ⊗ xy − (1− q2)BC ⊗ xy + qBD ⊗ y2

= qAC ⊗ x2 + q−1BC ⊗ yx− (q−1 − q)BC ⊗ yx+ qAD ⊗ xy + qBD ⊗ y2

= qAC ⊗ x2 + qBC ⊗ yx+ qAD ⊗ xy + qBD ⊗ y2

= q(AC ⊗ x2 +AD ⊗ xy +BC ⊗ yx+BD ⊗ y2)

= q(A⊗ x+B ⊗ y)(C ⊗ x+D ⊗ y)

= qX ′Y ′

Therefore, (X ′, Y ′) is shown to be an A′-point of the quantum plane.

We proceed similarly for X ′′ and Y ′′.[
A C

B D

](
x

y

)
=

(
A⊗ x+ C ⊗ y
B ⊗ x+D ⊗ y

)
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So X ′′ = A⊗ x+ C ⊗ y ∈ A′ and Y ′′ = B ⊗ x+D ⊗ y ∈ A′. Now

Y ′′X ′′ = (B ⊗ x+D ⊗ y)(A⊗ x+ C ⊗ y)

= BA⊗ x2 +BC ⊗ xy +DA⊗ yx+DC ⊗ y2

= qAB ⊗ x2 + q−1CB ⊗ yx+ (AD − (q−1 − q)BC)⊗ yx+ qCD ⊗ y2

= qAB ⊗ x2 + q−1CB ⊗ yx+AD ⊗ yx− (q−1 − q)BC ⊗ yx+ qCD ⊗ y2

= qAB ⊗ x2 + qCB ⊗ yx+ qAD ⊗ xy + qCD ⊗ y2

= q(AB ⊗ x2 +AD ⊗ xy + CB ⊗ yx+ CD ⊗ y2)

= q(A⊗ x+ C ⊗ y)(B ⊗ x+D ⊗ y)

= qX ′′Y ′′

Therefore, (X ′′, Y ′′) is also an A′-point of the quantum plane.

Now let us suppose that we have A′-points of the quantum plane (X ′, Y ′) and (X ′′, Y ′′)

and a matrix

[
A B

C D

]
with entries in A such that

[
A B

C D

](
x

y

)
=

(
X ′

Y ′

)
and

[
A B

C D

]T (
x

y

)
=

(
X ′′

Y ′′

)

The goal is to show that

[
A B

C D

]
∈M q

2 (A), which amounts to showing that A,B,C and

D obey the six relations given above. Since we have Y ′X ′ = qX ′Y ′ and Y ′′X ′′ = qX ′′Y ′′

along with the above matrix equations, this is done using the same argument that we

used above to arrive at the six relations in the first place.

Note that this proposition is just another way of understanding the equivalence we

explored in the motivation of Mq(2) above.

6.4.2 Quantum Determinant

Because of the important role of the determinant in ordinary matrix theory, we take a

moment to explore the quantum version. Let’s begin by looking at the determinant in

its usual form: ad− bc. Using relations 5 and 6 we find that

ad− bc = (q−1 − q)bc+ da− bc

= q−1bc− qbc+ da− bc
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which implies that

ad = q−1bc− qbc+ da ⇐⇒ ad− q−1bc = da− qbc

The latter resulting equation is what we take to be the quantum determinant. That is,

we define

detq := ad− q−1bc = da− qbc ∈Mq(2)

Once more we note that the usual determinant is recovered if q = 1. It can also be

shown that detq is in the center of Mq(2) due to the fact that it commutes with the

generators a, b, c, d. For example,

adetq = a(da− qbc)

= ada− qabc

= ada− bac

= ada− q−1bca

= (ad− q−1bc)a

= detqa

When referring to an A-point of Mq(2), say M =

[
A B

C D

]
, we shall denote its determi-

nant by

Detq(M) = AD − q−1BC

Proposition 6.22. The matrix product of

[
A B

C D

]
,

[
A′ B′

C ′ D′

]
∈M q

2 (A), where A,B,C,D

commute with A′, B′, C ′, D′, is also a member of M q
2 (A).

Proof. Here we make use of Proposition 6.21. Let us agree to write

A⊗ κq[X,Y ] = A{X,Y }/(Y X − qXY )

as Aq[X,Y ]. Let M and M ′ respectively denote the hypothesized A-points of Mq(2) and

take v =

(
X

Y

)
. Since M is an A-point of Mq(2) we have that Mv = u and M tv = u′,

where u, u′ are Aq[X,Y ]-points of the quantum plane. Likewise, since M ′ is an A-point

of Mq(2), we have that M ′v = w and M ′tv = w′, where w,w′ are Aq[X,Y ]-points of the
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quantum plane. Thus

(MM ′)v = M(M ′v)

= Mw

Now, w is an Aq[X,Y ]-point of the quantum plane since M ′ ∈ M q
2 (A). By hypothesis,

the entries in w will commute with the entries of M ; so, Mw is an Aq[X,Y ]-point of the

quantum plane. Also,

(MM ′)tv = (M ′tM t)v

= M ′t(M tv)

= M ′tu′

Again, the entries of u′ will commute with the entries of M ′t and so M ′tu′ is an Aq[X,Y ]-

point of the quantum plane. Therefore, MM ′ ∈M q
2 (A).

Proposition 6.23. If M and M ′ are as in the previous proposition, then

Detq(MM ′) = Detq(M)Detq(M ′)

Proof. Since

MM ′ =

[
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

]
we have

Detq(MM ′) = (AA′ +BC ′)(CB′ +DD′)− q−1(AB′ +BD′)(CA′ +DC ′)

Expanding the right hand side yields

AA′CB′+AA′DD′+BC ′CB′+BC ′DD′−q−1AB′CA′−q−1AB′DC ′−q−1BD′CA′−q−1BD′DC ′

Now rearrange the terms to get

AA′CB′−q−1AB′CA′+BC ′DD′−q−1BD′DC ′+AA′DD′−q−1AB′DC ′−q−1BD′CA′+BC ′CB′
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Consider the first two terms

AA′CB′ − q−1AB′CA′ = ACA′B′ − q−1AB′CA′ [A′, C commute]

= q−1ACB′A′ − q−1AB′CA′ [A′B′ = q−1B′A′]

= q−1AB′CA′ − q−1AB′CA′ [B′, C commute]

= 0

We get the same result for the next two terms. That is,

BC ′DD′ − q−1BD′DC ′ = 0

and so Detq(MM ′) reduces to

AA′DD′ − q−1AB′DC ′ − q−1BD′CA′ +BC ′CB′

=ADA′D′ − q−1ADB′C ′ − q−1BCD′A′ +BCB′C ′

=ADA′D′ − q−1ADB′C ′ − q−1BC(A′D′ − (q−1 − q)B′C ′) +BCB′C ′

=ADA′D′ − q−1ADB′C ′ − q−1BCA′D′ + q−2BCB′C ′ −BCB′C ′ +BCB′C ′

=ADA′D′ − q−1ADB′C ′ − q−1BCA′D′ + q−2BCB′C ′

=(AD − q−1BC)(A′D′ − q−1B′C ′)

=Detq(M)Detq(M ′)

Proposition 6.24. Let

[
A B

C D

]
be an A-point of Mq(2). Then the matrix

[
D −qB

−q−1C A

]

is an A-point of Mq−1(2) (i.e. in M q−1

2 (A)).



Chapter 6. Deformation Quantization: The Quantum Plane and Other Deformed
Spaces 258

Proof. Define A′ := D,B′ := −qB,C ′ := −q−1C and D′ := A. Then using the six

relations which hold for A,B,C and D we see that

B′A′ = −qBD

= −DB

= q−1A′B′

C ′A′ = −q−1CD

= −q−2DC

= q−1A′C ′

B′C ′ = −q(−q−1)BC

= CB

= −q(−q−1)C ′B′

= C ′B′

D′B′ = −qAB

= −BA

= q−1B′D′

D′C ′ = −q−1AC

= −q−2CA

= q−1C ′D′

A′D′ −D′A′ = DA−AD

= (q − q−1)BC

= (q − q−1)(−q−1)(−q)B′C ′

= (q − q−1)B′C ′

By definition, these six relations mean that (A′, B′, C ′, D′) is an A-point of Mq−1(2).

Interestingly, being an A-point of Mq−1(2) is equivalent to being an Aop-point of Mq(2),

since if (A,B,C,D) is an A-point of Mq−1(2), then the six relations obtained in the
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previous proof can be rewritten as

AB = qBA

AC = qCA

CB = BC

BD = qDB

CD = qDC

DA−AD = (q−1 − 1)BC

Note that these are the usual six relations for a point of Mq(2), but with multiplication

reversed, that is, the multiplication given in Aop. Thus, (A,B,C,D) is an Aop-point of

Mq(2).

Although Mq(2) is a deformed version of M(2) and is no longer commutative, it never-

theless retains some key properties of M(2). For instance, M(2) is Noetherian and has

no zero-divisors. This holds true for Mq(2) as well. The common means of showing this

is via iterated Ore extensions. In other words, one builds a tower of algebras

A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4

where each Ai is an Ore extension of Ai−1. One then applies Theorem 6.13.

To make this work for Mq(2) one starts with A0 := κ, since all fields are Noetherian.

The goal, then, is to construct Ore extensions so that one ends up with A4 = Mq(2).

This is accomplished by defining the intermediate algebras by

A1 := κ[a], A2 :=
κ{a, b}

(ba− qab)

A3 :=
κ{a, b, c}

(ba− qab, ca− qac, cb− bc)

It is trivial that A1 is an Ore extension of A0. Further, note that A2 is just the quantum

plane in the variables a, b, which we already know is isomorphic to the Ore extension

A1[b, α1, 0] where α1 is defined by α1(a) = qa. We therefore get that {aibj}i,j≥0 is a

basis for A2.

For the next case, one defines α2(a) := qa and α2(b) := b, which is easily seen to be

an automorphism of A2, since α2(b)α2(a) = qα2(a)α2(b). Now in A2[c, α2, 0], ba = qab
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from the product in A2, but we also have

ca = α2(a)c+ 0(a)

= qac

cb = α2(b)c+ 0(b)

= bc

With this we get that A3
∼= A2[c, α2, 0] as algebras, since they are the same vector space

and have the same defining multiplication relations. The set {aibjck}i,j,k≥0 is a basis of

A3.

We now pass to the last and most interesting case. That is, we want to show that Mq(2)

is isomorphic to the Ore extension A4 = A3[d, α3,D ], where α3 is defined by

α3(a) := a, α3(b) := qb, α3(c) := qc

and D is defined on the generators of A3 by

D(a) := (q − q−1)bc, D(b) := 0, D(c) := 0

Note that α3 is an algebra morphism since it preserves the relations of A3.

α3(b)α3(a) = qba

= q2ab

= qα3(a)α3(b)

The other two are similarly verified.

Now, D can certainly be extended by linearity. But we can also extend D by the

derivation relation, since it will depend uniquely on α and what D does to the generating

elements. It only remains to show that if we do extend D in this way, that it preserves

the defining relations of A3. Consider first the case ba = qab.

D(ba) = α3(b)D(a) + D(b)a

= qb(q − q−1)bc+ 0 · a

= (q2 − 1)b2c
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and also

D(qab) = q(α3(a)D(b) + D(a)b)

= q(a · 0 + (q − q−1)bcb)

= (q2 − 1)b2c

For ca = qac we have:

D(ca) = α3(c)D(a) + D(c)a

= qc(q − q−1)bc+ 0 · a

= (q2 − 1)bc2

and

D(qac) = q(α3(a)D(c) + D(a)c)

= q(a · 0 + (q − q−1)bcc)

= (q2 − 1)bc2

Finally, it is obvious that D(bc) = D(cb), since both will be zero.

We can now proceed to see how this α3-derivation will act on any basis element. From

the definition of D one can easily deduce that D(bj) = 0 and D(ck) = 0 for all j, k ∈ N.

For example,

D(b2) = α3(b)D(b) + D(b)b

= α3(b) · 0 + 0 · b

= 0

Therefore,

D(bjck) = α3(bj)D(ck) + D(bj)ck

= α3(bj) · 0 + 0 · ck

= 0

Now let’s do the more difficult one, namely D(ai). We use induction on i to show that

D(ai) = (q − q−1)
1− q2i

1− q2
ai−1bc (6.15)
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Let’s do the first two base cases for insight

D(a) = (q − q−1)bc

= (q − q−1)
1− q2

1− q2
a0bc

D(a2) = α3(a)D(a) + D(a)a

= a(q − q−1)bc+ (q − q−1)bca

= (q − q−1)(abc+ bca)

= (q − q−1)(abc+ q2abc)

= (q − q−1)(1 + q2)abc

= (q − q−1)
1− q4

1− q2
abc

Assume that the result holds up to some m ∈ N and consider the case for m+ 1.

D(am+1) = α3(a)D(am) + D(a)am

= a(q − q−1)
1− q2m

1− q2
am−1bc+ (q − q−1)bcam

= (q − q−1)
(

1− q2m

1− q2
ambc+ bcam

)
= (q − q−1)

(
1− q2m

1− q2
ambc+ q2mambc

)
= (q − q−1)

(
1− q2m

1− q2
+ q2m

)
ambc

= (q − q−1)
(

1− q2m + q2m(1− q2)
1− q2

)
ambc

= (q − q−1)
1− q2(m+1)

1− q2
ambc

Therefore, by mathematical induction (6.15) is established for all i. Putting this all

together yields

D(aibjck) = α3(ai)D(bjck) + D(ai)bjck

= D(ai)bjck

= (q − q−1)
1− q2i

1− q2
ai−1bcbjck

= (q − q−1)
1− q2i

1− q2
ai−1bj+1ck+1

We can express this more succinctly as D(aibjck) = (q − q−1)(i)q2ai−1bj+1ck+1.
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Let us now show that Mq(2) ∼= A3[d, α3,D ]. Since they are the same vector space, we

need only show that they have the same algebra structure. Observe that three of the

relations hold by definition of A3. Let us show that the other three hold as well.

db = α3(b)d+ D(b)

= qbd

dc = α3(c)d+ D(c)

= qcd

da = α3(a)d+ D(a)

= ad+ (q − q−1)bc

The last one implies that ad − da = (q−1 − q)bc. Therefore, all six defining relations

for Mq(2) are also the defining relations for A3[d, α3,D ]; hence, they must be the same

algebra. By now applying the extended Hilbert Basis Theorem (Theorem 6.13) one gets

a Noetherian Mq(2).

But we also claimed that Mq(2) has no zero divisors and this follows directly from

Corollary 6.12.

Another property of M(2) not lost in deformation is its bialgebra structure. In fact, we

can endow Mq(2) with a bialgebra structure without having to change the coproduct or

counit maps defined on M(2). Recall that these were defined according to the matrix

relations

∆

[
a b

c d

]
=

[
a b

c d

]
⊗

[
a b

c d

]

ε

[
a b

c d

]
=

[
1 0

0 1

]

Of course, while the bialgebra structure is retained, it is nevertheless “deformed” in that

it is no longer commutative or cocommutative.

To verify this, the maps ∆ and ε must still be morphisms of algebras. So we need

∆ ∈ homAlg(Mq(2),Mq(2)⊗Mq(2)) ≡M q
2 (Mq(2)⊗Mq(2))

and

ε ∈ homAlg(Mq(2), κ) ≡M q
2 (κ)
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which means that ∆

[
a b

c d

]
is an Mq(2)⊗Mq(2)-point of Mq(2) and ε

[
a b

c d

]
is a κ-point

of Mq(2). The case for the counit is clear due to its definition. The coproduct case is

a consequence of Proposition 6.22, since

[
a⊗ 1 b⊗ 1

c⊗ 1 d⊗ 1

]
and

[
1⊗ a 1⊗ b
1⊗ c 1⊗ d

]
are clearly

Mq(2) ⊗ Mq(2)-points and so therefore their product,

[
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

]
,

must be also. Thus, both the coproduct and the counit are algebra morphisms.

It remains to show that the coassociativity and counit axioms are still satisfied. Once

more, the counit axioms are clear from the matrix relation for ε. Coassociativity is

nearly just as transparent. The matrix form commends itself here too, since it allows

one to simply use the associativity of the matrix product. That is,

(
(∆⊗ id) ◦∆

) [a b

c d

]
=

([
a b

c d

]
⊗

[
a b

c d

])
⊗

[
a b

c d

]

=

[
a b

c d

]
⊗

([
a b

c d

]
⊗

[
a b

c d

])

=
(
(id⊗∆) ◦∆

) [a b

c d

]

The result is a non-commuting and non-cocommuting bialgebra. We should also take

note of what happens to detq under ∆ and ε. It can computationally be shown that

∆(detq) = detq ⊗ detq and ε(detq) = 1

So, detq remains grouplike for q 6= 1. Finally, just as the affine plane κ[x, y] is a comodule-

algebra over M(2), there is a unique Mq(2)-comodule-algebra structure on the quantum

plane κq[x, y] where we write

δκq [x,y]

(
x

y

)
:=

[
a b

c d

]
⊗

(
x

y

)

Now recall Proposition 4.41 which specifies two conditions that need to be satisfied: (1)

δκq [x,y] needs to define an Mq(2)-comodule structure on the quantum plane; (2) the map

δκq [x,y] must be a morphism of algebras. Let’s start with condition (2). It suffices to

show that

δκq [x,y](y)δκq [x,y](x) = qδκq [x,y](x)δκq [x,y](y)
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since then (δκq [x,y](x), δκq [x,y](y)) will be a Mq(2)⊗ κq[x, y]-point of the quantum plane.

Begin with the left hand side.

δκq [x,y](y)δκq [x,y](x) = (c⊗ x+ d⊗ y)(a⊗ x+ b⊗ y)

= ca⊗ x2 + cb⊗ xy + da⊗ yx+ db⊗ y2

= qac⊗ x2 + (bc+ qda)⊗ xy + qbd⊗ y2

= q(ac⊗ x2 + (q−1bc+ da)⊗ xy + bd⊗ y2)

= q(ac⊗ x2 + (ad+ qbc)⊗ xy + bd⊗ y2)

= q(ac⊗ x2 + ad⊗ xy + bc⊗ yx+ bd⊗ y2)

= q(a⊗ x+ b⊗ y)(c⊗ x+ d⊗ y)

= qδκq [x,y](x)δκq [x,y](y)

So, δκq [x,y] is a morphism of algebras.

Next, by Definition 4.23, (1) holds provided

(id⊗ δκq [x,y]) ◦ δκq [x,y](z) = (∆⊗ id) ◦ δκq [x,y](z)

(ε⊗ id) ◦ δκq [x,y](z) = 1⊗ z

for all z ∈ κq[x, y]. Thankfully, because the quantum plane is generated by x and y and

all maps involved are algebra morphisms we can restrict our considerations to z = x and

z = y. Thanks again to matrix notation, we check these simultaneously.

(id⊗ δκq [x,y]) ◦ δκq [x,y]

(
x

y

)
= (id⊗ δκq [x,y])

[
a b

c d

]
⊗

(
x

y

)

=

[
a b

c d

]
⊗

[
a b

c d

]
⊗

(
x

y

)

But also

(∆⊗ id) ◦ δκq [x,y]

(
x

y

)
= (∆⊗ id)

[
a b

c d

]
⊗

(
x

y

)

=

[
a b

c d

]
⊗

[
a b

c d

]
⊗

(
x

y

)
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Next

(ε⊗ id) ◦∆κq [x,y]

(
x

y

)
= (ε⊗ id)

[
a b

c d

]
⊗

(
x

y

)

=

[
1 0

0 1

]
⊗

(
x

y

)

While Mq(2) is a quantum algebra it fails to be a quantum group. This is because it

is not a Hopf algebra, which, in this case means that it lacks an antipode. Even so we

now have a good framework for introducing the two quantum groups promised at the

beginning of this section, namely GLq(2) and SLq(2).

6.4.3 The Quantum Groups GLq(2) and SLq(2)

Both are defined analogously to their non-deformed counterparts, the former being

GLq(2) :=
Mq(2)[t]

(tdetq − 1)

and the latter

SLq(2) :=
Mq(2)

(detq − 1)

For any algebra A, then, an A-point for GLq(2) is simply an A-point of Mq(2), say

M =

[
A B

C D

]
, but with the added condition that

Detq(M) = AD − q−1BC

be invertible in A. The same holds for SLq(2) except Detq(M) must be 1.

Theorem 6.25. The coproduct and counit of Mq(2) equip the algebras GLq(2) and

SLq(2) with Hopf algebra structures such that the antipode S is given in matrix form by

S

[
a b

c d

]
:= det−1

q

[
d −qb

−q−1c a

]
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Proof. Because GLq(2) and SLq(2) are quotient spaces, it is necessary to ensure that ∆

and ε are still well-defined. Consider that

∆(detq − 1) = detq ⊗ detq − 1⊗ 1

= detq ⊗ detq − 1⊗ detq + 1⊗ detq − 1⊗ 1

= (detq − 1)⊗ detq + 1⊗ (detq − 1)

= 0 [as an element of SLq(2)⊗ SLq(2)]

and

ε(detq − 1) = ε(detq)− 1

= 1− 1 = 0

This implies that ∆ and ε are well-defined for SLq(2) and the same will be true of

GLq(2) provided we set ∆(t) := t ⊗ t and ε(t) := 1. The computations are essentially

the same:

∆(tdetq − 1) = (t⊗ t)(detq ⊗ detq)− 1⊗ 1

= tdetq ⊗ tdetq − 1⊗ 1

= tdetq ⊗ tdetq − 1⊗ tdetq + 1⊗ tdetq − 1⊗ 1

= (tdetq − 1)⊗ tdetq + 1⊗ (tdetq − 1)

= 0 [as an element of GLq(2)⊗GLq(2)]

and

ε(tdetq − 1) = ε(t)ε(detq)− ε(1)

= 1 · 1− 1

= 0

Given that the coproduct and counit are well-defined, we immediately get that the coas-

sociativity and counit axioms hold on account of their holding for Mq(2). We therefore

get to skip straight to showing that GLq(2) and SLq(2) have an antipode.

Begin by setting

S′

[
a b

c d

]
:=

[
d −qb

−q−1c a

]

This is just the q-analogue of the 2× 2 adjoint matrix. By Proposition 6.24, S′
[
a b

c d

]
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is an Mq(2)op-point of Mq(2) thereby implying that S′ is a morphism of algebras from

Mq(2) to Mq(2)op. If we now set S′(t) = t, then S′ extends to GLq(2) and SLq(2). It is

well-defined for GLq(2) because

S′(tdetq − 1) = S′(t)S′(detq)− 1

= t
(
S′(d)S′(a)− q−1S′(c)S′(b)

)
− 1

= t(ad− q−1bc)− 1

= tdetq − 1 = 0

This reasoning also shows that S′(detq − 1) = detq − 1 and therefore S′ is well-defined

for SLq(2) as well. Now, since detq is invertible and is in the center of both GLq(2) and

SLq(2) we are able to define a morphism of algebras

S : GLq(2)(resp.SLq(2))→ GLq(2)op(resp.SLq(2)op)

by S(t) := t−1 and

S

[
a b

c d

]
:= det−1

q S′

[
a b

c d

]
By Lemma 4.16, S is an antipode provided

∑
(x)

x(1)S(x(2)) = 1?(x) =
∑
(x)

S(x(1))x(2)

for all x ∈ {a, b, c, d}. In matrix form[
a b

c d

][
d −qb

−q−1c a

]
=

[
ad− q−1bc −qab+ ba

cd− q−1dc −qcb+ da

]

=

[
detq 0

0 detq

]
= detqε

[
a b

c d

]

But also [
d −qb

−q−1c a

][
a b

c d

]
=

[
da− qbc db− qbd
−q−1ca+ ac −q−1cb+ ad

]

=

[
detq 0

0 detq

]
= detqε

[
a b

c d

]

Therefore, S is an antipode for GLq(2) and SLq(2) thereby making them Hopf algebras

and hence quantum groups.

Given that GLq(2) := Mq(2)[t]/(tdetq − 1) and SLq(2) := Mq(2)/(detq − 1), it is not
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hard to see that the classical objects GL(2) and SL(2) are recovered when q = 1. Since

Mq(2) is the quotient of the free algebra κ{a, b, c, d} by the ideal Jq generated by the

relations ba = qab, db = qbd, ca = qac, dc = qcd, bc = cb and ad− da = (q − q−1)bc, we

see that when q = 1, these respectively become

ba = ab, db = bd, ca = ac, dc = cd, bc = cb, ad− da = 0

which are the usual commutation relations yielding M(2) = κ[a, b, c, d]. Also,

det1 = ad− 1−1bc = ad− bc

which is the usual determinant. Thus, GL1(2) and SL1(2) are the desired classical

objects.

So, deformations can give us non-commutative, non-cocommutative Hopf algebras, as

is the case here, which correspond to quantum groups. In other words, these were the

sort of Hopf algebras alluded to in Chapter 4, which led to the concept of a quantum

group by studying AlgC(H,C). So, in this case one tries to understand AlgC(GLq(2),C)

and AlgC(SLq(2),C), but we simply identify the quantum groups with the representing

objects, namely GLq(2) and SLq(2).

It turns out that SLq(2) is the “simplest” of quantum groups, but unless one is thor-

oughly acquainted with the subject, this fact does not appear very meaningful. There

is still much that could be said about SLq(2) (and GLq(2)) and one should not mistake

this to mean that these are not important quantum groups. For our purposes, these

have served as a sample, which is why we have treated them with brevity. Now that

the reader has a taste, we shall proceed to consider, in depth, one of the most impor-

tant quantum groups, namely Uq(sl(2)), which is one of those special types arising from

dropping finite-dimensionality of the Hopf algebra.



Chapter 7

The Quantum Enveloping

Algebra Uq(sl(2))

7.1 Introduction

This chapter is concerned with familiarizing the reader with perhaps the most well

known quantum group, namely Uq(sl(2)), which is a one parameter deformation of the

universal enveloping algebra of the simple Lie algebra sl(2). This quantum group is

actually but one in a family of quantum groups said to be of enveloping algebra type.

These are denoted by Uq(g), where g is a general complex simple Lie algebra and were

essentially developed in the mid-1980’s by Drinfeld and Jimbo. The specific case of

Uq(sl(2)), however, is of primary importance because much of the theory for the general

case is an extension from Uq(sl(2)).

7.2 Some Basic Properties of Uq(sl(2))

7.2.1 q-Analysis Revisited

We set the stage for this section by developing some notation, which should elicit fond

memories of basic combinatorics. Let κ be a fixed field. To simplify matters, it is

common to work with κ = C. This will be our assumption throughout this chapter.

Suppose q is an invertible element of κ. For any n ∈ Z we define a new deformation

(compare to previous chapter) [n] by

[n] :=
qn − q−n

q − q−1
= qn−1 + qn−3 + . . .+ q3−n + q1−n

270
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which is an example of what is called a Laurent polynomial. The algebra of Laurent

polynomials in one variable, in this case q, is denoted by κ[q, q−1] and is isomorphic to

κ[q, r]/I, where I is the ideal of κ[q, r] generated by qr− 1. This provides an alternative

way of defining a q-deformation of an integer from that seen in the previous chapter.

Again, one can show via limits that n is reacquired in the limit q → 1.

An advantage of this version is that it is more symmetric. For instance, the additive

inverse of [n] is

−[n] = −q
n − q−n

q − q−1

=
q−n − qn

q − q−1

= [−n]

So, the additive inverse of the deformation of n is the deformation of the additive inverse

of n. We also find that

[n+m] =
qn+m − q−(n+m)

q − q−1

=
qnqm − q−nq−m

q − q−1

=
qnqm − qnq−m + qnq−m − q−nq−m

q − q−1

=
qn(qm − q−m) + q−m(qn − q−n)

q − q−1

= qn
qm − q−m

q − q−1
+ q−m

qn − q−n

q − q−1

= qn[m] + q−m[n]

For 0 ≤ k ≤ n we define another analogue to the usual factorial by

[0]! := 1, [k]! := [1][2] · · · [k] (k > 0)

Again, this allows us to construct another analogue to the binomial coefficient.[
n

k

]
:=

[n]!
[k]![n− k]!
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Comparing this to the version defined in the previous chapter we find the following

connections:

[n] :=
qn − q−n

q − q−1

= q1−n (q2)n − 1
q2 − 1

= q1−n(n)q2

and

[n]! := [1][2] · · · [n]

= (1)q2q
−1(2)q2 · · · q1−n(n)q2

= q−(1+2+...+n−1)(n)!q2

= q(n−n2)/2(n)!q2

Together these entail that[
n

k

]
:=

[n]!
[k]![n− k]!

=
q(n−n2)/2(n)!q2

q(k−k2)/2(k)!q2 · q(n−k−(n−k)2)/2(n− k)!q2

= qk
2−nk (n)!q2

(k)!q2(n− k)!q2

= qk
2−nk

(
n

k

)
q2

Thus, if x and y are variables subject to the relation yx = q2xy, then the deformed

binomial theorem becomes

(x+ y)n =
n∑
k=0

qk(n−k)

[
n

k

]
xkyn−k
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7.3 Motivating Uq(sl(2))

Having developed this particular sort of deformation suggests a means of deforming

U(sl(2)). Recall that the generators of this algebra are X,Y and H with relations

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y

Suppose, then, that we deform this structure by setting

[X,Y ] = XY − Y X

= [H]

=
qH − q−H

q − q−1

To make this work, however, we need to assign some meaning to the symbols qH and

q−H . The easiest thing to do is to make them formal generators. To make things easier,

let us set K := qH and K−1 := q−H . Thus, we get

XY − Y X =
K −K−1

q − q−1

and, as is suggested by the notation, we set KK−1 = K−1K = 1.

We now want to see how this K (i.e. qH) should interact with X and Y . If we interpret

qH formally as having the usual meaning (working over power series instead of the base

field), then we write

qH =
∞∑
n=0

Hn(ln(q))n

n!

Now consider the other relations of U(sl(2)), for instance, HX − XH = 2X. We can

rewrite this equation as

HX = X(2 +H)

An easy induction shows that HnX = X(2 +H)n for any integer n ≥ 0. For example,

H2X = H(HX)

= H(X(2 +H))

= (HX)(2 +H)

= X(2 +H)(2 +H)

= X(2 +H)2
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From this we have

KX = qHX

=
∞∑
n=0

Hn(ln(q))n

n!
X

=
∞∑
n=0

HnX(ln(q))n

n!

=
∞∑
n=0

X(2 +H)n(ln(q))n

n!

= X
∞∑
n=0

(2 +H)n(ln(q))n

n!

= Xq(2+H)

= q2XqH

= q2XK

Similarly, we find that KY = q−2Y K; hence, our other generating relations are

KX = q2XK, KY = q−2Y K

This is the motivation for our definition.

Definition 7.1 (Uq(sl(2))). The quantum group Uq(sl(2)) is defined to be the algebra

generated by the four variables E,F,K,K−1 obeying the relations

KK−1 = K−1K = 1 (7.1)

KEK−1 = q2E, KFK−1 = q−2F (7.2)

[E,F ] =
K −K−1

q − q−1
(7.3)

Notice that we cannot directly set q = 1. However, formally we can still take it that

U(sl(2)) is recovered in the limit q → 1, since

lim
q→1

K −K−1

q − q−1
= lim

q→1

qH − q−H

q − q−1
= H

The relations qHE = q2EqH and qHF = q−2FqH also degenerate into the usual relations

HE − EH = 2E and HF − FH = 2F respectively if we consider a formal derivative
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with respect to q. For instance

d

dq
qHE =

d

dq
q2EqH

Hq−1qHE = 2qEqH + q2q−1EHqH

If we now set q = 1 we get HE = 2E+EH or HE−EH = 2E as desired. We’ll discuss

another way of constructing Uq(sl(2)) below that allows for directly setting q = 1.

At this point, to call Uq(sl(2)) a quantum group is a bit premature since we have not

established that it possesses a Hopf algebra structure. We remedy the situation in the

following manner.

First, we would like an algebra morphism ∆ that will be our coproduct. Since KK−1 =

K−1K = 1 we need

∆(KK−1) = ∆(K)∆(K−1)

= 1⊗ 1

and likewise for ∆(K−1K). This seems to naturally suggest the assignments

∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1

Thus, it must be that

∆(EF − FE) = ∆
(
K −K−1

q − q−1

)
=
K ⊗K −K−1 ⊗K−1

q − q−1

Now,

K ⊗K −K−1 ⊗K−1

q − q−1
=
K ⊗K −K−1 ⊗K +K−1 ⊗K −K−1 ⊗K−1

q − q−1

=
(K −K−1)⊗K +K−1 ⊗ (K −K−1)

q − q−1

=
K −K−1

q − q−1
⊗K +K−1 ⊗ K −K−1

q − q−1

= (EF − FE)⊗K +K−1 ⊗ (EF − FE)

= EF ⊗K − FE ⊗K +K−1 ⊗ EF −K−1 ⊗ FE
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If we now add and substract F ⊗ E we have

EF ⊗K − FE ⊗K − F ⊗ E +K−1 ⊗ EF + F ⊗ E −K−1 ⊗ FE

=EF ⊗K − (F ⊗ 1)(E ⊗K + 1⊗ E) + (1⊗ E)(K−1 ⊗ F + F ⊗ 1)−K−1 ⊗ FE

=(E ⊗K)(F ⊗ 1)− (F ⊗ 1)(E ⊗K + 1⊗ E) + (1⊗ E)(K−1 ⊗ F + F ⊗ 1)− (K−1 ⊗ F )(1⊗ E)

At this point, we can begin to see some interesting form emerging. If we finally add and

subtract EK−1 ⊗KF = (E ⊗K)(K−1 ⊗ F ) we end up with

(E ⊗K + 1⊗ E)(F ⊗ 1 +K−1 ⊗ F )− (F ⊗ 1 +K−1 ⊗ F )(E ⊗K + 1⊗ E)

and this suggests that we set

∆(E) = E ⊗K + 1⊗ E ∆(F ) = F ⊗ 1 +K−1 ⊗ F

which, one can see, is very similar to E and F being primitive as they would be in

U(sl(2)). Indeed, if q = 1, then K = 1 and we get the usual coproduct for U(sl(2)). In

fact, E and F , in this context, are called skew -primitive. In general, an element c of a

coalgebra is called skew-primitive if ∆(c) = c ⊗ g + h ⊗ c where h and g are grouplike

elements.

Define linear maps ∆, ε and S by

∆(E) := 1⊗ E + E ⊗K, ∆(F ) := K−1 ⊗ F + F ⊗ 1 (7.4)

∆(K) := K ⊗K, ∆(K−1) := K−1 ⊗K−1 (7.5)

ε(E) := ε(F ) := 0, ε(K) := ε(K−1) := 1 (7.6)

S(E) := −EK−1, S(F ) := −KF, S(K) := K−1, S(K−1) := K (7.7)

Proposition 7.2. The algebra Uq(sl(2)) is a Hopf algebra under the relations (7.4-7.7).
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Proof. Our first goal is to show that ∆ is an algebra morphism, which entails showing

that it respects the defining relations (7.1-7.3). Beginning with (7.1) we have

∆(K)∆(K−1) = (K ⊗K)(K−1 ⊗K−1)

= KK−1 ⊗KK−1

= 1⊗ 1

The same result is obtained for K−1K.

Now (7.2):

∆(K)∆(E)∆(K−1) = (K ⊗K)(1⊗ E + E ⊗K)(K−1 ⊗K−1)

= (K ⊗KE +KE ⊗K2)(K−1 ⊗K−1)

= KK−1 ⊗KEK−1 +KEK−1 ⊗K2K−1

= 1⊗ q2E + q2E ⊗K

= q2(1⊗ E + E ⊗K)

= q2∆(E)

The second relation of (7.2) is proved similarly. Finally, we check (7.3).

[∆(E),∆(F )] = (1⊗ E + E ⊗K)(K−1 ⊗ F + F ⊗ 1)− (K−1 ⊗ F + F ⊗ 1)(1⊗ E + E ⊗K)

= K−1 ⊗ EF −K−1 ⊗ FE + EF ⊗K − FE ⊗K + EK−1 ⊗KF −K−1E ⊗ FK

= K−1 ⊗ (EF − FE) + (EF − FE)⊗K + q2K−1E ⊗ q−2FK −K−1E ⊗ FK

= K−1 ⊗ [E,F ] + [E,F ]⊗K

= K−1 ⊗ K −K−1

q − q−1
+
K −K−1

q − q−1
⊗K

=
K−1 ⊗K −K−1 ⊗K−1 +K ⊗K −K−1 ⊗K

q − q−1

=
K ⊗K −K−1 ⊗K−1

q − q−1

=
∆(K)−∆(K−1)

q − q−1
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So ∆ is a morphism of algebras. But we also need ∆ to satisfy the coassociativity axiom,

which will be satisfied if it holds on the generators. Consider for instance

(∆⊗ id)∆(E) = (∆⊗ id)(1⊗ E + E ⊗K)

= 1⊗ 1⊗ E + ∆(E)⊗K

= 1⊗ 1⊗ E + (1⊗ E + E ⊗K)⊗K

= 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K

= 1⊗ (1⊗ E + E ⊗K) + E ⊗∆(K)

= 1⊗∆(E) + E ⊗∆(K)

= (id⊗∆)(1⊗ E + E ⊗K)

= (id⊗∆)∆(E)

The case for F follows similarly. Since K and K−1 are also similar, we’ll finish by

verifying the result for K.

(∆⊗ id)∆(K) = (∆⊗ id)(K ⊗K)

= ∆(K)⊗K

= K ⊗K ⊗K

= K ⊗∆(K)

= (id⊗∆)(K ⊗K)

= (id⊗∆)∆(K)

Second, we need to show that ε is also a morphism of algebras and that the counit axiom

is satisfied. Again, we start with (7.1).

ε(K)ε(K−1) = 1 · 1 = 1

(7.2):

ε(K)ε(E)ε(K−1) = 1 · 0 · 1

= 0

= q2ε(E)
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Again, the second relation is similar so we move on to (7.3).

[ε(E), ε(F )] = 0

=
1− 1
q − q−1

=
ε(K)− ε(K−1)

q − q−1

Finally, we check that the counit axiom is satisfied. As before, this is done on the

generators. For brevity, we will again consider only E and K.

(ε⊗ id)∆(E) = (ε⊗ id)(1⊗ E + E ⊗K)

= 1⊗ E + ε(E)⊗K

= 1⊗ E + 0⊗K

= 1⊗ E

and

(ε⊗ id)∆(K) = (ε⊗ id)(K ⊗K)

= ε(K)⊗K

= 1⊗K

Our last objective is to verify that S is an antipode for Uq(sl(2)). Note that S is an

antimorphism of algebras since:

S(K−1)S(K) = KK−1 = 1

S(K−1)S(E)S(K) = K(−EK−1)K−1

= −(KEK−1)K−1

= −q2EK−1

= q2(−EK−1)

= q2S(E)



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 280

That S(K−1)S(F )S(K) = q−2S(F ) is similarly verified. Finally we have

[S(F ), S(E)] = S(F )S(E)− S(E)S(F )

= −KF (−EK−1)− (−EK−1)(−KF )

= KFEK−1 − EK−1KF

= KFEK−1 − EF

= (q−2FK)(q2K−1E)− EF

= FE − EF

=
K−1 −K
q − q−1

=
S(K)− S(K−1)

q − q−1

This shows that S is an antimorphism of algebras on Uq(sl(2)), but we must now make

sure that

S ? id = id ? S = 1?

if it is to be an antipode. Once more, since verification of this is largely computational,

we’ll show that it holds with E and K. For E:

(
∇ ◦ (S ⊗ id) ◦∆

)
(E) = (∇ ◦ (S ⊗ id))(1⊗ E + E ⊗K)

= ∇(1⊗ E − EK−1 ⊗K)

= E − EK−1K = 0

Also

1?(E) = η(ε(E))

= η(0) = 0

and finally

(
∇ ◦ (id⊗ S) ◦∆

)
(E) = (∇ ◦ (id⊗ S))(1⊗ E + E ⊗K)

= ∇(1⊗ (−EK−1) + E ⊗K−1)

= −EK−1 + EK−1 = 0
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Now for K:

(∇ ◦ (S ⊗ id) ◦∆)(K) = (∇ ◦ (S ⊗ id))(K ⊗K)

= ∇(S(K)⊗K)

= S(K)K

= K−1K = 1

and

(∇ ◦ (id⊗ S) ◦∆)(K) = (∇ ◦ (id⊗ S))(K ⊗K)

= ∇(K ⊗ S(K))

= KS(K)

= KK−1 = 1

and lastly

1?(K) = η(ε(K))

= η(1) = 1

Since the other cases hold on account of similar reasoning, we have that S is an antipode

for Uq(sl(2)) as desired. Therefore, Uq(sl(2)) is a Hopf algebra and hence a quantum

group.

This quantum group is one of the most well-known examples of a noncommutative/non-

cocommutative Hopf algebra. In this example the antipode is not an involution, though,

S2 is an inner automorphism. For reference, an inner automorphism of an algebra A is

a map fx : A→ A defined by fx(y) := xyx−1 for some unit x.

Proposition 7.3. For any u ∈ Uq(sl(2)) we have S2(u) = KuK−1.
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Proof. Since S2 is a morphism of algebras we need only establish that this holds on the

generators.

S2(E) = S(−EK−1)

= −S(K−1)S(E) = KEK−1

S2(F ) = S(−KF )

= −S(F )S(K) = KFK−1

S2(K) = S(K−1)

= K = KKK−1

Lemma 7.4. (i) There is a unique automorphism ω of Uq(sl(2)) with

ω(E) = F, ω(F ) = E, ω(K) = K−1, furthermore ω2 = id

(ii) There is a unique antiautomorphism τ of Uq(sl(2)) with

τ(E) = E, τ(F ) = F, τ(K) = K−1, furthermore τ2 = id

Proof. (i) We must show that ω preserves the defining relations of Uq(sl(2)). If we

consider them in the order shown above we have

ω(K)ω(K−1) = K−1K = 1

ω(K)ω(E)ω(K−1) = K−1FK

= q2F

= q2ω(E)



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 283

ω(K)ω(F )ω(K−1) = K−1EK

= q−2E

= q−2ω(F )

[ω(E), ω(F )] = [F,E]

=
K−1 −K
q − q−1

=
ω(K)− ω(K−1)

q − q−1

So, ω preserves the defining relations. But it is also clearly unique given that E,F,K,K−1

generate Uq(sl(2)). By definition, it is equally clear that each of the generators is fixed

under ω2 and hence ω2 = id.

(ii) We proceed similarly, but in this case require that τ(ab) = τ(b)τ(a) for all

a, b ∈ Uq(sl(2)). First, KK−1 = K−1K = 1 and

τ(K−1)τ(K) = KK−1

= 1

= K−1K

= τ(K)τ(K−1)

Next, KEK−1 = q2E and

τ(K−1)τ(E)τ(K) = KEK−1

= q2E

= q2τ(E)

Finally, [E,F ] = K−K−1

q−q−1 and

τ(F )τ(E)− τ(E)τ(F ) = FE − EF

=
K−1 −K
q − q−1

=
τ(K)− τ(K−1)

q − q−1

As before the uniqueness is obvious, as is the fact that τ2 = id.

Note that ω is an involution while τ is an anti-involution.



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 284

Lemma 7.5. Let m ≥ 0 and n ∈ Z. The following relations hold in Uq(sl(2)):

EmKn = q−2mnKnEm, FmKn = q2mnKnFm

[E,Fm] = [m]Fm−1 q
1−mK − qm−1K−1

q − q−1

= [m]
qm−1K − q1−mK−1

q − q−1
Fm−1

[Em, F ] = [m]
q1−mK − qm−1K−1

q − q−1
Em−1

= [m]Em−1 q
m−1K − q1−mK−1

q − q−1

Proof. Relation (7.2) implies that EK = q−2KE. Suppose

EnK = q−2nKEn for some n

and now consider the next case.

En+1K = EEnK

= Eq−2nKEn [induction hypothesis]

= q−2nEKEn

= q−2nq−2KEEn [base case]

= q−2(n+1)KEn+1

Thus, by mathematical induction, EnK = q−2nKEn for all n ∈ Z+. We now have our

base case for the next induction. Suppose

EnKm = q−2nmKmEn

for all n and some m ∈ Z. Now consider the next case.

EnKm+1 = EnKmK

= q−2nmKmEnK [induction hypothesis]

= q−2nmq−2nKmKEn [base case]

= q−2n(m+1)Km+1En

Therefore, the first relation holds via mathematical induction.



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 285

For the second relation we can apply ω from the previous lemma. Since

EnK−m = q2nmK−mEn

we have

ω(EnK−m) = ω(q2nmK−mEn)

ω(En)ω(K−m) = q2nmω(K−m)ω(En)

ω(E)nω(K)−m = q2nmω(K)−mω(E)n

Fn(K−1)−m = q2nm(K−1)−mFn

FnKm = q2nmKmFn

For the third relation, note that

[E,F ] =
K −K−1

q − q−1

= [1]F 0 q
0K − q0K−1

q − q−1

Now suppose

[E,Fm] = [m]Fm−1 q
1−mK − qm−1K−1

q − q−1

and consider the case of [E,Fm+1]. We have

[E,Fm+1] = [E,FmF ]

= [E,Fm]F + Fm[E,F ] [by Proposition 5.4]

= [m]Fm−1 q
1−mK − qm−1K−1

q − q−1
F + Fm

K −K−1

q − q−1

=
[m]q1−mFm−1KF − [m]qm−1Fm−1K−1F + FmK − FmK−1

q − q−1

=
[m]q−(m+1)FmK − [m]qm+1FmK−1 + FmK − FmK−1

q − q−1
[using 7.2]

= Fm
([m]q−(m+1) + 1)K − ([m]qm+1 + 1)K−1

q − q−1
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At this point, examine [m]q−(m+1) + 1 and [m]qm+1 + 1.

[m]q−(m+1) + 1 =
qm − q−m

q − q−1
q−(m+1) + 1

=
q−1 − q−2m−1

q − q−1
+ 1

=
q−1 − q−2m−1 + q − q−1

q − q−1

=
q − q−2m−1

q − q−1

and

[m]qm+1 + 1 =
qm − q−m

q − q−1
qm+1 + 1

=
q2m+1 − q
q − q−1

+ 1

=
q2m+1 − q + q − q−1

q − q−1

=
q2m+1 − q−1

q − q−1

Using these results we get

Fm
q−q−2m−1

q−q−1 K − q2m+1−q−1

q−q−1 K−1

q − q−1
=
qm+1 − q−(m+1)

q − q−1
Fm

q−mK − qmK−1

q − q−1

= [m+ 1]Fm
q−mK − qmK−1

q − q−1

So, by induction

[E,Fm] = [m]Fm−1 q
1−mK − qm−1K−1

q − q−1

for all m ∈ Z+. As for the second part of this relation, note that

[m]Fm−1 q
1−mK − qm−1K−1

q − q−1
= [m]

q1−mFm−1K − qm−1Fm−1K−1

q − q−1

= [m]
q1−mq2(m−1)KFm−1 − qm−1q−2(m−1)K−1Fm−1

q − q−1

= [m]
qm−1K − q1−mK−1

q − q−1
Fm−1

Finally, to get the fourth relation, simply apply the involution ω from Lemma 7.4 to the

third relation we just considered.

Proposition 7.6. The algebra Uq(sl(2)) is Noetherian and has no zero-divisors. The

set {EiF jK`}i,j∈N;`∈Z is a basis of Uq(sl(2)).



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 287

Proof. Our procedure will be to show that Uq(sl(2)) is an iterated Ore extension (see

Chapter 6). We will build a “three-story” tower

A0 ⊂ A1 ⊂ A2

such that A2
∼= Uq(sl(2)). Starting at the base, define

A0 := κ[K,K−1]

This is the algebra of Laurent polynomials in one variable. Formally, κ[K,K−1] is the

quotient algebra κ[K,J ]/I, where I is the ideal of κ[K,J ] generated by KJ−1. As such,

it is Noetherian, has no zero divisors and has basis {K`}`∈Z. Now let α0 : A0 → A0 be

the automorphism given by α0(K) := q2K. We then take A1 to be the Ore extension

A0[F, α0, 0], which has basis {F jK`}j∈N;`∈Z. Then

A1
∼=

κ{F,K,K−1}
(FK − q2KF )

Finally, we construct an Ore extension A2 = A1[E,α1,D ] which we want to be isomor-

phic to Uq(sl(2)). First, define

α1(F ) := F, α1(K) := q−2K

This extends to a unique algebra morphism since

α1(F )α1(K) = q−2FK

= KF

= q2q−2KF

= q2α(K)α(F )

Next, let D be defined on the generators by

D(F ) :=
K −K−1

q − q−1
and D(K) := 0
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We now need to extend D to a uniquely determined α1-derivation. First, we check that,

under this extension, the defining relation for A1 is satisfied.

D(FK) = α1(F )D(K) + D(F )K

= F · 0 +
K −K−1

q − q−1
K

=
K2 − 1
q − q−1

and

D(q2KF ) = q2(α1(K)D(F ) + D(K)F )

= q2(q−2K
K −K−1

q − q−1
+ 0 · F )

=
K2 − 1
q − q−1

So, D preserves the defining relation FK = q2KF . Let us now consider how D acts on

an arbitrary basis element. By induction it can easily be shown that

D(K`) = 0

For example,

D(K2) = D(KK)

= α1(K)D(K) + D(K)K

= α1(K) · 0 + 0 ·K

= 0

Thus,

D(FmK`) = α1(Fm)D(K`) + D(Fm)K`

= α1 · 0 + D(Fm)K`

= D(Fm)K`

To go any further we need a formula for D(Fm). Observe that

D(Fm+1) = D(FmF )

= α1(Fm)D(F ) + D(Fm)F

= FmD(F ) + D(Fm)F
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which, by induction, implies that

D(Fm+1) =
m∑
i=o

Fm−iD(F )F i

But

Fm−iD(F )F i = Fm−i
K −K−1

q − q−1
F i

= Fm−i
KF i −K−1F i

q − q−1

= Fm−i
q−2iF iK − q2iF iK−1

q − q−1

= Fm
q−2iK − q2iK−1

q − q−1

and so

D(Fm+1) =
m∑
i=0

Fm
q−2iK − q2iK−1

q − q−1

Therefore

D(FmK`) = D(Fm)K`

=
m−1∑
i=0

Fm−1 q
−2iK − q2iK−1

q − q−1
K`

Now, according to Definition 6.10, E interacts with the other generators by

EF = α1(F )E + D(F ) (7.8)

EK = α1(K)E + D(K) (7.9)

EK−1 = α1(K−1)E + D(K−1) (7.10)

Relation (7.8) yields EF = FE + K−K−1

q−q−1 or

[E,F ] =
K −K−1

q − q−1

Relation (7.9) yields EK = q−2KE and (7.10) that EK−1 = q2KE, which implies the

same relation. Thus

KE = q2EK

and since we already have the relation KF = q−2FK from A1, it follows that A2 has

generators E,F,K,K−1 satisfying the same relations as Uq(sl(2)) and hence

A2
∼= Uq(sl(2))
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7.4 An Alternative Presentation of Uq(sl(2))

Although the way we have defined Uq(sl(2)) is typical, it has the disadvantage of not

reflecting deformation in the way in which it was described in Chapter 6. That is, one

cannot simply set q = 1. Instead, one must take a sort of “limit” to recover U(sl(2)). To

remedy this, we can give a slightly modified presentation of Uq(sl(2)) which is equivalent

to the original version.

Notice that the problem in the first presentation lies with [E,F ] = K−K−1

q−q−1 . But this is

easily circumvented via basic algebra. Simply write

(q − q−1)[E,F ] = K −K−1

We can then introduce a “new” generator L, setting [E,F ] = L. So, this modified

presentation can be thought of as having five generators: E,F,K,K−1, L. We still have

the relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK

but immediately obtain the two “new” relations

[E,F ] = L, (q − q−1)L = K −K−1

From these we can also establish that

[L,E] = LE − EL

=
K −K−1

q − q−1
E − EK −K

−1

q − q−1

=
KE −K−1E

q − q−1
− EK − EK−1

q − q−1

=
q2EK −K−1E

q − q−1
− EK − q2K−1E

q − q−1

=
q2EK − EK + q2K−1E −K−1E

q − q−1

=
(q2 − 1)EK + (q2 − 1)K−1E

q − q−1

=
(q2 − 1)(EK +K−1E)

q − q−1

= q(EK +K−1E)
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and similarly that

[L,F ] = −q−1(FK +K−1F )

With these relations at hand, we can present Uq(sl(2)) as follows.

Definition 7.7 (Alternative Presentation for Uq(sl(2))). The algebra Uq(sl(2)) can be

thought of as the algebra generated by the five variables E,F,K,K−1, L subject to the

relations

KK−1 = K−1K = 1 (7.11)

KEK−1 = q2E, KFK−1 = q−2F (7.12)

[E,F ] = L, (q − q−1)L = K −K−1 (7.13)

[L,E] = q(EK +K−1E), [L,F ] = −q−1(FK +K−1F ) (7.14)

In this form, the parameter q is allowed to take on any value. In particular, when q = 1

relations (7.11) and (7.13) imply that K = K−1 and hence, K2 = 1. We are then

left with the generators E,F, L having relations identical to X,Y,H in U(sl(2)). We

therefore recover U(sl(2)) in case q = 1 thereby legitimizing the deformation originally

used.

This can be made more rigorous as follows.

Proposition 7.8. If q = 1, then

U1(sl(2)) ∼=
U(sl(2))[K]

(K2 − 1)
and U(sl(2)) ∼=

U1(sl(2))
(K − 1)

as algebras.

Proof. The presentation of U1(sl(2)) is characterized as the algebra generated by E,F,K,K−1, L

subject to the relations

KK−1 = K−1K = 1

KEK−1 = E, KFK−1 = F

[E,F ] = L, K −K−1 = 0

[L,E] = EK +K−1E, [L,F ] = −(FK +K−1F )
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Notice that these imply that K is in the center of U(sl(2)) and that K2 = 1. We can

therefore rewrite the last two relations as

[L,E] = 2EK, [L,F ] = −2FK

If we now define a map φ : U1(sl(2))→ U(sl(2))[K]/(K2 − 1) by

φ(E) := XK, φ(F ) := Y, φ(K) := K, φ(L) := HK

then φ extends to an algebra morphism so long as the defining relations of U1(sl(2)) are

preserved in U(sl(2))[K]/(K2 − 1) under φ. First,

φ(K)φ(E)φ(K−1) = KXKK

= KX

= XK = φ(E)

Second,

φ(K)φ(F )φ(K−1) = KYK

= KKY

= Y = φ(F )

Third,

[φ(E), φ(F )] = φ(E)φ(F )− φ(F )φ(E)

= XKY − Y XK

= XYK − Y XK

= (XY − Y X)K

= HK = φ(L)

Fourth,

[φ(L), φ(E)] = φ(L)φ(E)− φ(E)φ(L)

= HKXK −XKHK

= HXKK −XHKK

= HX −XH

= 2X

= 2XKK = 2φ(E)φ(K)
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Fifth,

[φ(L), φ(F )] = φ(L)φ(F )− φ(F )φ(L)

= HKY − Y HK

= HYK − Y HK

= (HY − Y H)K

= −2Y K = −2φ(F )φ(K)

The relations involving K are obviously satisfied. Thus, φ is a well-defined algebra

morphism.

Now define ψ : U(sl(2))[K]/(K2 − 1)→ U1(sl(2)) by

ψ(X) := EK, ψ(Y ) := F, ψ(H) := LK, ψ(K) := K

Again, this extends to an algebra morphism provided the defining relations are respected.

In this case, there are four relations to check. First,

[ψ(X), ψ(Y )] = ψ(X)ψ(Y )− ψ(Y )ψ(X)

= EKF − FEK

= (EF − FE)K

= LK = ψ(H)

Second,

[ψ(H), ψ(X)] = ψ(H)ψ(X)− ψ(X)ψ(H)

= LKEK − EKLK

= LE − EL

= 2EK = 2ψ(X)

Third,

[ψ(H), ψ(Y )] = ψ(H)ψ(Y )− ψ(Y )ψ(H)

= LKF − FLK

= (LF − FL)K

= −2FKK

= −2F = −2ψ(Y )
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Finally,

ψ(K)2 = ψ(K)ψ(K)

= KK

= 1 = ψ(1)

Thus, it is a well-defined algebra morphism.

It remains to show that φ and ψ are inverses. This is again checked on the generators.

(ψ ◦ φ)(E) = ψ(φ(E))

= ψ(XK)

= ψ(X)ψ(K)

= EKK = E

Next

(ψ ◦ φ)(F ) = ψ(φ(F ))

= ψ(Y ) = F

Since K is obvious, we’ll skip to L.

(ψ ◦ φ)(L) = ψ(φ(L))

= ψ(HK)

= ψ(H)ψ(K)

= LKK = L

Showing that φ ◦ ψ = id is similarly verified. Thus, ψ = φ−1 and we have our isomor-

phism.

Note, then, that the projection of U1(sl(2)) onto U(sl(2)) is obtained by

E 7→ X, F 7→ Y, L 7→ H, K 7→ 1

But we can actually say more than this, namely, that U(sl(2)) ∼= U1(sl(2))/(K − 1) as

Hopf algebras. To see why, we first need to know what ∆(L), ε(L) and S(L) are. Since
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L = [E,F ] we find that

∆(L) = ∆(EF − FE)

= (E ⊗K + 1⊗ E)(F ⊗ 1 +K−1 ⊗ F )− (F ⊗ 1 +K−1 ⊗ F )(E ⊗K + 1⊗ E)

= EF ⊗K + EK−1 ⊗KF + F ⊗ E +K−1 ⊗ EF

− FE ⊗K − F ⊗ E −K−1E ⊗ FK −K−1 ⊗ FE

= EF ⊗K − FE ⊗K +K−1 ⊗ EF −K−1 ⊗ FE + EK−1 ⊗KF −K−1E ⊗ FK

= (EF − FE)⊗K +K−1 ⊗ (EF − FE) + q2K−1E ⊗ q−2FK −K−1E ⊗ FK

= L⊗K +K−1 ⊗ L

and

ε(L) = ε(E)ε(F )− ε(F )ε(E) = 0

Finally

S(L) = S(EF − FE)

= S(EF )− S(FE)

= S(F )S(E)− S(E)S(F )

= −KF (−EK−1) + EK−1(−KF )

= KFEK−1 − EK−1KF

= q2q−2KK−1FE − EF

= FE − EF = −L

Now, for U1(sl(2))/(K − 1) the coalgebra structure becomes

∆1(E) = E ⊗ 1 + 1⊗ E

∆1(F ) = F ⊗ 1 + 1⊗ F

∆1(L) = L⊗ 1 + 1⊗ L

To see that φ : U1(sl(2))/(K − 1)→ U(sl(2)), as defined at the end of the above proof,

will be a morphism of coalgebras in addition to being a morphism of algebras, it must

be shown that

U1(sl(2))
(K−1) U(sl(2))

U1(sl(2))
(K−1)

⊗2
U(sl(2))⊗2

φ

∆1 ∆

φ⊗ φ
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commutes for each generator. Let’s do E:

(∆ ◦ φ)(E) = ∆(φ(E))

= ∆(X)

= X ⊗ 1 + 1⊗X

and

((φ⊗ φ) ◦∆1)(E) = (φ⊗ φ)(E ⊗ 1 + 1⊗ E)

= φ(E)⊗ φ(1) + φ(1)⊗ φ(E)

= X ⊗ 1 + 1⊗X

The rest hold similarly. So, since φ is a coalgebra morphism, so is its inverse. Finally,

we show that φ respects the antipodes, which requires that

U1(sl(2))
(K−1)

U1(sl(2))
(K−1)

U(sl(2)) U(sl(2))

S1

φ φ

S

commute for the generators. Again, let us check E. First, S(φ(E)) = S(X) = −X. But

also, φ(S1(E)) = φ(−E) = −φ(E) = −X. The rest are similarly shown. This shows φ

to be a Hopf morphism and thus, we have our isomorphism of Hopf algebras.

7.5 Representations of Uq(sl(2))

When talking about representations of Uq(sl(2)) it matters whether or not q is a root of

unity. In case q is not a root of unity, then Uq(sl(2)) behaves like U(sl(2)) over a field

of characteristic 0. However, if q is a root of unity, then Uq(sl(2)) behaves like U(sl(2))

over a field of prime characteristic. In fact, when the field is the complex numbers and

q is a prime pth root of unity bigger or equal to 3, then the representation theory looks

like that of sl(2) over an algebraically closed field of characteristic p. We shall consider

both options for q starting with q as not a root of unity.
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7.5.1 When q is not a Root of Unity

What we will do is determine all finite-dimensional simple Uq(sl(2))-modules when q is

not a root of unity. In case V is such a Uq(sl(2))-module, this time denote by V λ (λ 6= 0)

the weight space of weight λ of V . That is, the space of all v ∈ V such that Kv = λv.

Definition 7.9. Let V be a Uq(sl(2))-module and λ a scalar. An element v 6= 0 of V

is a highest weight vector of weight λ if Ev = 0 and Kv = λv. A Uq(sl(2))-module is a

highest weight module of highest weight λ if it is generated (as a module) by a highest

weight vector of weight λ.

Lemma 7.10.

EV λ ⊂ V q2λ and FV λ ⊂ V q−2λ

Proof. Let v ∈ V λ and consider the vector Ev. We have

K(Ev) = (KE)v

= (q2EK)v

= q2E(Kv)

= q2E(λv)

= q2λEv

Thus, by definition, Ev ∈ V q2λ. Similar calculations show that Fv ∈ V q−2λ.

Proposition 7.11. Any non-zero finite-dimensional Uq(sl(2))-module V contains a

highest weight vector. Also, the endomorphisms induced by E and F on V are nilpotent.

Proof. The proof of the first part proceeds identically to the proof of Proposition 5.29.

The second part we can show by contradiction. First, we note that E and F will

be nilpotent in case their only eigenvalue is 0. Suppose, then, that v is a non-zero

eigenvector for E with λ 6= 0 as its eigenvalue. Then

E(Kv) = (EK)v

= (q−2KE)v

= q−2K(Ev)

= q−2Kλv

= q−2λKv

which shows that Kv is also an eigenvector of E. By induction, Knv is likewise an

eigenvector of E for every n ∈ N with eigenvalue q−2nλ. This implies that E has
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infinitely many distinct eigenvalues, which is not possible since V is finite-dimensional.

Thus, our assumption that λ 6= 0 is false implying that E is nilpotent. The same

reasoning holds for F .

Lemma 7.12. Let v be a highest weight vector of weight λ. Set v0 = v and for p > 0

let vp := 1
[p]!F

pv. Then

Kvp = λq−2pvp, Evp =
q−(p−1)λ− qp−1λ−1

q − q−1
vp−1, Fvp−1 = [p]vp

Proof. Take each in turn.

Kvp =
1

[p]!
KF pv

= q−2p 1
[p]!

F pKv [using Lemma 7.5]

= λq−2p 1
[p]!

F pv

= λq−2pvp

Evp =
1

[p]!
EF pv

=
1

[p]!

(
[p]F p−1 q

1−pK − qp−1K−1

q − q−1
+ F pE

)
v [by Lemma 7.5]

=
1

[p− 1]!
F p−1 q

1−pK − qp−1K−1

q − q−1
v +

1
[p]!

F pEv

=
1

[p− 1]!
F p−1 q

1−pKv − qp−1K−1v

q − q−1
+ 0 [v is highest weight]

=
1

[p− 1]!
F p−1 q

1−pλq0v − qp−1λ−1q0v

q − q−1
[by previous case with v0 = v]

=
q1−pλ− qp−1λ−1

q − q−1
· 1

[p− 1]!
F p−1v

=
q1−pλ− qp−1λ−1

q − q−1
vp−1

Fvp−1 = F
( 1

[p− 1]!
F p−1v

)
=

1
[p− 1]!

F pv

=
[p]
[p]!

F pv

= [p]vp
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Theorem 7.13. (a) Let V be a finite-dimensional Uq(sl(2))-module generated (as a

module) by a highest weight vector v of weight λ. Then

(i) The scalar λ is of the form λ = ±qn where n := dim(V )− 1.

(ii) The set {v0, v1, ..., vn} is a basis of V and vp = 0 for p > n.

(iii) The operator K acting on V is diagonalizable with the (n+ 1) distinct eigen-

values

{±qn,±qn−2, ...,±q2−n,±q−n}

(iv) Any other highest weight vector in V is a scalar multiple of v and is of weight

λ.

(v) The module V is simple.

(b) Any simple finite-dimensional Uq(sl(2))-module is generated by a highest weight

vector. Any two such finite-dimensional modules generated by highest weight vec-

tors of the same weight are isomorphic.

Proof. By Lemma 7.12 we know that Kvp = λq−2pvp, which implies that {vp}p≥0 is

a sequence of eigenvectors for K with distinct eigenvalues. But this sequence cannot

be infinite on account of V being finite-dimensional. It follows that there must be an

integer n such that vn 6= 0, but vn+1 = 0. But if vn 6= 0, then the fact that Fvp−1 = [p]vp
implies that vm 6= 0 for 0 ≤ m ≤ n. Similarly, if vn+1 = 0, then vm = 0 for m > n. We

therefore have

Evn+1 =
q−nλ− qnλ−1

q − q−1
vn = 0

which implies that q−nλ = qnλ−1 and, in turn, that λ = ±qn.

Now, since {v0, ..., vn} consists of non-zero eigenvectors with distinct eigenvalues, this

set must be linearly independent. It is also the case that Span(v0, ..., vn) = V . This

follows from the fact that v generates V as a Uq(sl(2))-module along with the equations

of Lemma 7.12. Thus, dim(V ) = n+ 1. With respect to this basis, the relation

Kvp = λq−2pvp

together with the fact that λ = ±qn implies that K, acting on V , has n + 1 distinct

eigenvalue, namely

±qn,±qn−2, ...,±q2−n,±q−n

And because dim(V ) = n+ 1, it follows that K is diagonalizable. We have thus estab-

lished (i)-(iii).
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For (iv), suppose v′ is another highest weight vector. It must therefore be an eigenvector

for the action of K and hence a scalar multiple of one of the vi. By Lemma 7.12, E

annihilates vi if and only if i = 0. But v0 = v; thus, v′ is a scalar multiple of v and

therefore has the same weight.

Suppose V ′ is a non-zero Uq(sl(2))-sub-module of V and v′ is a highest weight vector of

V ′. Then v′ is also a highest weight vector of V . By (iv) v′ must be a non-zero scalar

multiple of v and hence v ∈ V ′. But v generates V and therefore V ⊂ V ′ implying that

V = V ′. This establishes (v), that V is simple.

Finally, for (b), let v be a highest weight vector of V . From what we just established, if V

is simple, then the submodule generated by v is necessarily identical to V and hence V is

generated by a highest weight vector. It is now easy to see that given finite-dimensional

simple Uq(sl(2))-modules V and V ′, respectively generated by highest weight vectors v

and v′ of weight λ, the map vi 7→ v′i for all i is an isomorphism of modules.

Note in particular that the above theorem implies that V =
⊕

λ V
λ. It also implies that

there is a unique (up to isomorphism) simple Uq(sl(2))-module of dimension n+1 which

is generated by a highest weight vector of weight ±qn. Let’s denote this module by Vε,n,

where ε = ±1. Denote the corresponding algebra morphism by

ρε,n : Uq(sl(2))→ End(Vε,n)

With respect to the basis {v0, ..., vn}, we now give the representations for the action of

generators E,F and K on Vε,n. Since K is diagonalizable we have

ρε,n(K) = ±



qn 0 . . . 0 0

0 qn−2 . . . 0 0
...

. . . . . .
...

...

0 0 . . . q2−n 0

0 0 . . . 0 q−n


For E and F we have

ρε,n(E) = ±



0 [n] 0 . . . 0

0 0 [n− 1] . . . 0
...

. . . . . . . . .
...

0 0
. . . . . . [1]

0 0 . . . 0 0


, ρε,n(F ) =



0 0 . . . 0 0

[1] 0 . . . 0 0

0 [2]
. . . 0 0

...
. . . . . . . . .

...

0 0 . . . [n] 0


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7.5.1.1 Verma Modules

Suppose we now fix an arbitrary non-zero value for λ. Let V (λ) be the infinite-

dimensional vector space having denumerable basis {vi}i∈N. For p ≥ 0, set

Kvp := λq−2pvp, K−1vp := λ−1q2pvp, (7.15)

Evp+1 :=
q−pλ− qpλ−1

q − q−1
vp, Fvp := [p+ 1]vp+1, Ev0 := 0 (7.16)

Lemma 7.14. The infinite-dimensional vector space V (λ) is a Uq(sl(2))-module under

the relations (7.15) and (7.16). Furthermore, V (λ), as a module, is generated by v0

which is a highest weight vector of weight λ.

Proof. First, note that

KK−1vp = K(λ−1q2pvp)

= λ−1q2pKvp

= λ−1q2pλq−2pvp

= vp

Similar reasoning results in K−1Kvp = vp. Next, we have

KEK−1vp = KE(λ−1q2pvp)

= λ−1q2pK
(q1−pλ− qp−1λ−1

q − q−1
vp−1

)
= λ−1q2p q

1−pλ− qp−1λ−1

q − q−1
Kvp−1

= λ−1q2p q
1−pλ− qp−1λ−1

q − q−1
λq2−2pvp−1

= q2 q
1−pλ− qp−1λ−1

q − q−1
vp−1

= q2Evp
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Similar reasoning produces KFK−1 = q−2Fvp. Finally, consider that

[E,F ]vp = EFvp − FEvp

= E([p+ 1]vp+1)− F
(q1−pλ− qp−1λ−1

q − q−1
vp−1

)
= [p+ 1]

q−pλ− qpλ−1

q − q−1
vp − [p]

q1−pλ− qp−1λ−1

q − q−1
vp

=
qp+1 − q−(p+1)

q − q−1
· q
−pλ− qpλ−1

q − q−1
vp −

qp − q−p

q − q−1
· q

1−pλ− qp−1λ−1

q − q−1
vp

=
q1−2pλ− q−(2p+1)λ+ q2p−1λ−1 − q2p+1λ−1

(q − q−1)2
vp

=
(q − q−1)(q−2pλ− q2pλ−1)

(q − q−1)2
vp

=
K −K−1

q − q−1
vp

This shows that V (λ) is a Uq(sl(2))-module. Now, it is easily seen that Kv0 = λv0 and,

by definition, Ev0 = 0, so v0 is a highest weight vector of weight λ. To show that v0

generates V (λ), note that Fvp = [p + 1]vp+1 implies that vp+1 = 1
[p+1]Fvp and hence

that vp = 1
[p]Fvp−1. Applying F to both sides yields Fvp = 1

[p]F
2vp−1. By substitution,

this turns into [p + 1]vp+1 = 1
[p]F

2vp−1, which then becomes vp+1 = 1
[p+1][p]F

2vp−1. In

turn, this implies that vp = 1
[p][p−1]F

2vp−2. Iterating this procedure eventually yields

that vp = 1
[p]!F

pv0 for all p. But v0 = v, so it generates all of V (λ).

This infinite-dimensional Uq(sl(2))-module is what we call a Verma module of highest

weight λ. The technical definition of a Verma module need not concern us here, but one

may consult [13] for a more thorough treatment of the topic.

Verma modules are important because they generate highest weight modules.

Proposition 7.15. Any highest weight Uq(sl(2))-module of highest weight λ is a quotient

of the Verma module V (λ).

Proof. Let V be an arbitrary highest weight Uq(sl(2))-module generated by highest

weight vector v. Let f : V (λ)→ V be the linear map defined by

f(vp) :=
1

[p]!
F pv
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By Lemma 7.12, f is a Uq(sl(2)) - morphism, since

f(Kvp) = f(λq−2pvp)

= λq−2pf(vp)

= λq−2p 1
[p]!

F pv

= λq−2p 1
[p]!

F pλ−1Kv

= q−2p 1
[p]!

F pKv

and

Kf(vp) = K
1

[p]!
F pv

=
1

[p]!
KF pv

= q−2p 1
[p]!

F pKv

Also

f(Evp) = f

(
q1−pλ− qp−1λ−1

q − q−1
vp−1

)
=
q1−pλ− qp−1λ−1

q − q−1
f(vp−1)

=
q1−pλ− qp−1λ−1

q − q−1
· 1

[p− 1]!
F p−1v

and

Ef(vp) = E
1

[p]!
F pv

=
1

[p]!
EF pv

=
1

[p]!

(
[p]F p−1 q

1−pK − qp−1K−1

q − q−1
+ F pE

)
v [by Lemma 7.5]

=
1

[p− 1]!
F p−1 q

1−pKv − qp−1K−1v

q − q−1
[Ev = 0]

=
q1−pλ− qp−1λ−1

q − q−1
· 1

[p− 1]!
F p−1v
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Finally,

f(Fvp) = f([p+ 1]vp+1)

= [p+ 1]f(vp+1)

= [p+ 1]
1

[p+ 1]!
F p+1v

=
1

[p]!
F p+1v

and

Ff(vp) = F
1

[p]!
F pv

=
1

[p]!
F p+1v

Furthermore, f is surjective since f(v0) = v generates V . The First Isomorphism The-

orem therefore yields

V (λ) V

V (λ)
Ker(f)

f

∼

As an example we have that the simple finite-dimensional module Vε,n is a quotient of

the Verma module V (±qn).

7.5.2 When q is a Root of Unity

When q happens to be a root of unity, the resulting theory becomes less tame. In

other words, matters become more convoluted. Nevertheless, let us dive in and see what

becomes of it. Suppose q is a root of unity, though not ±1 so that q2 6= 1. Let d > 2

represent the order of q. Next, define

de,o :=

{
d/2, if d is even

d, if d is odd
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Note that [de,o] = 0, since

[de,o] =
qde,o − q−de,o
q − q−1

If d is odd, then we have

qde,o − q−de,o
q − q−1

=
qd − q−d

q − q−1
= 0

and if d is even we get

qde,o − q−de,o
q − q−1

=
qd/2 − q−d/2

q − q−1

=
qd/2

qd/2
· q

d/2 − q−d/2

q − q−1

=
qd − q0

qd/2(q − q−1)

=
1− 1

qd/2(q − q−1)
= 0

Things aren’t so bad if the dimension of a simple Uq(sl(2))-module is sufficiently low.

When this is the case, we get essentially the same modules as when q is not a root of

unity. But how low is sufficiently low?

Proposition 7.16. Any simple non-zero Uq(sl(2))-module of dimension < de,o is iso-

morphic to a module of the form Vε,n where 0 ≤ n < de,o.

Proof. Observe that when n < de,o we get distinct scalars 1, q2, ..., q2n. The rest of the

proof proceeds as in Theorem 7.13.

Things are quite different when the dimension of the module exceeds de,o. We unveil

this difference after establishing a few lemmas.

Lemma 7.17. The elements Ede,o , F de,o and Kde,o are members of Zq (i.e. the center

of Uq(sl(2))).

Proof. Because each follows a similar line of reasoning using the results of Lemma 7.5,

we’ll consider it sufficient to demonstrate the centrality of Ede,o . We have

Ede,oK = q−2de,oKEde.o

= 1KEde,o

= KEde,o
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The result holds similarly for K−1 and E is obvious. We therefore proceed to check F .

Ede,oF = [de,o]Ede,o−1 q
de,o−1K − q1−de,oK−1

q − q−1
+ FEde,o

= 0 + FEde,o [[de,o] = 0]

= FEde,o

Lemma 7.18. If z ∈ Zq, then z acts on any finite-dimensional simple Uq(sl(2))-module

V by scalar multiplication.

Proof. Let ρz be the endomorphism of V induced by the action of z. Note that this will

be a Uq(s(2))-morphism, since z is central. That is, for any u ∈ Uq(sl(2)) and v ∈ V

ρz(uv) = zuv = uzv = uρz(v)

Now, because V is finite-dimensional and we are working over C, the endomorphism ρz

has an eigenvalue λ. This means that Ker(ρz − λidV ) is a non-trivial submodule of V .

But V is simple. Therefore, Ker(ρz − λidV ) = V . It follows that z acts on V by scalar

multiplication.

Proposition 7.19. There is no simple finite-dimensional Uq(sl(2))-module of dimension

greater than de,o.

Proof. Let’s suppose that there does exist a simple finite-dimensional Uq(sl(2))-module

V of dimension > de,o.

Case 1

Suppose there exists a non-zero eigenvector v ∈ V for the action of K such that Fv = 0.

Consider, then, the subspace V ′ of V generated by v,Ev, ..., Ede,o−1v. As a subspace it

has dimension at most de,o and if we can show that it is also a sub-module of V , then we

will have a contradiction. To show that V ′ is indeed a submodule we will demonstrate

that it is stable under the actions of the generators K,E and F . Clearly, V ′ is stable

under the action of K, since

K(Epv) = KEpv

= q2pEpKv [by Lemma 7.5]

= q2pλEpv
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For E we have E(Epv) = Ep+1v, which is clearly in V ′ if p + 1 < de,o. If, however,

p + 1 = de,o, then we will have Ede,ov, which, by the previous two lemmas, is equal to

cv for some constant c. Thus, V ′ is stable under E.

Finally, for F we have

F (Epv) = FEpv

=
(
EpF − [p]Ep−1 q

p−1K − q1−pK−1

q − q−1

)
v [Lemma 7.5]

= EpFv − [p]Ep−1 q
p−1Kv − q1−pK−1v

q − q−1

= 0− [p]Ep−1 q
p−1λv − q1−pλ−1v

q − q−1

= −[p]
qp−1λ− q1−pλ−1

q − q−1
Ep−1v

So, V ′ is also stable under F . This shows that V ′ is a non-zero submodule of V of

dimension ≤ de,o, which contradicts the fact that V is simple. Thus, we cannot suppose

that there is a non-zero eigenvector v ∈ V for the action of K such that Fv = 0.

Case 2

Despite there being no non-zero eigenvector v ∈ V for the action of K such Fv = 0,

there is still a non-zero eigenvector v ∈ V for the action of K (but Fv 6= 0). Let V ′′ be

the subspace of V generated by v, Fv, ..., F de,o−1v. As in the case above, V ′′ is stable

under the action of K. It is also stable under F by similar reasoning to the previous case

with stability under E. The more interesting case is stability under E in this context.

First, if p > 0, then

E(F pv) = EF (F p−1v)

=
(
FE − K−1 −K

q − q−1

)
F p−1v

=
(
FE +

qK + q−1K−1

(q − q−1)2
−
(
qK + q−1K−1

(q − q−1)2
+
K−1 −K
q − q−1

))
F p−1v

Let Cq = FE + qK+q−1K−1

(q−q−1)2
. The reason for introducing this Cq is that it is actually

a very important element called the quantum Casimir element. While interesting, the

only thing we need to know about Cq is that it belongs to the center of Uq(sl(2)) (see
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[7]). Thus, by Lemma 7.18, Cq acts by scalar multiplication on V . We therefore have

E(F pv) =
(
Cq −

qK + q−1K−1 + (q − q−1)(K−1 −K)
(q − q−1)2

)
F p−1v

=
(
Cq −

qK−1 + q−1K

(q − q−1)2

)
F p−1v

= CqF
p−1v − qK−1 + q−1K

(q − q−1)2
F p−1v

= cF p−1v − qK−1 + q−1K

(q − q−1)2
F p−1v [c a scalar]

and this is an element of V ′′, since K stabilizes V ′′. Now, if p = 0, then we may employ

the same argument, but with the substitution v = c′−1F de,ov for some scalar c′. This

holds by Lemma 7.17 and Lemma 7.18. In other words, F de,o is central and so acts by

scalar multiplication.

Therefore, V ′′ is a non-zero submodule of V , which again is a contradiction. It must

therefore be that there are no simple finite-dimensional Uq(sl(2))-modules of dimension

greater than de,o.

So, for sufficiently low dimension (less that de,o) we recover the modules obtained when

q is not a root of unity. On the other hand, there is a point (greater than de,o) at which

no such modules exist. But what about the dividing line itself? In other words, what

happens if the dimension is de,o? In this case, it turns out that there are only three

“kinds” of modules up to isomorphism. These are given in the following list:

1. V (λ, a, b) with b 6= 0

2. V (λ, a, 0) where λ is not of the form ±qj−1 for any 1 ≤ j ≤ de,o − 1

3. Ṽ (±q1−j , c) with c 6= 0 and 1 ≤ j ≤ de,o − 1

The notation V (λ, a, b) is meant to indicate that modules of this kind depend on the

three complex numbers λ, a and b, where λ is assumed non-zero. These modules have

basis {v0, ..., vde,o−1} and for 0 ≤ p < de,o − 1

Kvp := λq−2pvp

Evp+1 :=
(
q−pλ− qpλ−1

q − q−1
[p+ 1] + ab

)
vp

Fvp := vp+1

and Ev0 := avde,o−1, Fvde,o−1 := bv0 and Kvde,o−1 := λq−2(de,o−1)vde,o−1 otherwise.
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The modules denoted by Ṽ (µ, c) depend on two scalars µ and c where µ 6= 0. These too

have basis {v0, ..., vde,o−1}, but E,F and K, in this case, act by

Kvp := µq2pvp

Fvp+1 :=
q−pµ−1 − qpµ

q − q−1
[p+ 1]vp

Evp = vp+1

if 0 ≤ p < de,o− 1 and Fv0 := 0, Evde,o−1 := cv0 and Kvde,o−1 := µq−2vde,o−1 otherwise.

These modules are all indecomposable (see [7]).

7.5.3 Action on the Quantum Plane

Enter once more the quantum plane. We now describe how Uq(sl(2)) acts on this mys-

terious object.

Let A be an algebra. For any a ∈ A, let ar represent right multiplication by a. Similarly,

let a` represent left multiplication by a. Now, if α is an automorphism of A, then we

have

α ◦ a` = α(a)` ◦ α and α ◦ ar = α(a)r ◦ α

We now define an even more generalized kind of derivation as follows:

Definition 7.20. Given any two automorphisms α and σ of an algebra A, we say that

a linear endomorphism Dα,σ is a (α, σ)-derivation if

Dα,σ(ab) = α(a)Dα,σ(b) + Dα,σ(a)σ(b)

for all a, b ∈ A.

Note that Dα,σ ◦ a`(b) = Dα,σ(ab), which allows us to write

Dα,σ ◦ a` = α(a)` ◦Dα,σ + Dα,σ(a)` ◦ σ

Using right multiplication we also have

Dα,σ ◦ ar = σ(b)r ◦Dα,σ + Dα,σ(b)r ◦ α

Lemma 7.21. Let Dα,σ be a (α, σ)-derivation of A and a ∈ A. If there exist algebra

automorphisms α′ and σ′ such that

ar ◦ α′ = a` ◦ α and a` ◦ σ′ = ar ◦ σ
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then the linear endomorphism a` ◦Dα,σ is a (α′, σ)-derivation and ar ◦Dα,σ is a (α, σ′)-

derivation.

Proof. For the first,

(a` ◦Dα,σ)(ab) = a`(α(a)Dα,σ(b) + Dα,σ(a)σ(b))

= a(α(a)Dα,σ(b) + Dα,σ(a)σ(b))

= aα(a)Dα,σ(b) + aDα,σ(a)σ(b)

= (a` ◦ α)(a)Dα,σ(b) + (a` ◦Dα,σ)(a)σ(b)

= (ar ◦ α′)(a)Dα,σ(b) + (a` ◦Dα,σ)(a)σ(b)

= α′(a)aDα,σ(b) + (a` ◦Dα,σ)(a)σ(b)

= α′(a)(a` ◦Dα,σ)(b) + (a` ◦Dα,σ)(a)σ(b)

For the second,

(ar ◦Dα,σ)(ab) = ar(α(a)Dα,σ(b) + Dα,σ(a)σ(b))

= α(a)Dα,σ(b)a+ Dα,σ(a)σ(b)a

= α(a)(ar ◦Dα,σ)(b) + Dα,σ(a)(ar ◦ σ)(b)

= α(a)(ar ◦Dα,σ)(b) + Dα,σ(a)(a` ◦ σ′)(b)

= α(a)(ar ◦Dα,σ)(b) + Dα,σ(a)aσ′(b)

= α(a)(ar ◦Dα,σ)(b) + (ar ◦Dα,σ)(a)σ′(b)

From here on, let us assume that the algebra A is the quantum plane κq[x, y]. Define

algebra automorphisms σx, σy of κq[x, y] by

σx(x) := qx, σx(y) := y σy(y) := qy, σy(x) := x

Clearly these automorphisms reduce to the identity morphism when q = 1. Now just as

there are partial derivatives in the classical case, we also get q-analogues for the quantum

plane, which, according to our pattern thus far, we denote by ∂q/∂x and ∂q/∂y. Define

these as follows: For all m,n ≥ 0 set

∂q(xmyn)
∂x

:= [m]xm−1yn and
∂q(xmyn)

∂y
:= [n]xmyn−1
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That this is an analogue should be stressed, since one might find it troubling that the

classical partial derivative is not recovered when q = 1. Nevertheless, the imitation of

the power rule keeps things rather tame or well behaved as in the classical case.

Through patient calculation it can be shown that the following commutation relations

hold amongst the maps x`, xr, y`, yr, σx, σy, ∂q/∂x and ∂q/∂y (see [7]):

y`x` = qx`y`, xryr = qyrxr

σxx`,r = qx`,rσx, σyy`,r = qy`,rσy

∂q
∂x
σx = qσx

∂q
∂x
,

∂q
∂y
σy = qσy

∂q
∂y

∂q
∂x
y` = qy`

∂q
∂x
,

∂q
∂y
xr = qxr

∂q
∂y

∂q
∂x
x` = q−1x`

∂q
∂x

+ σx = qx`
∂q
∂x

+ σ−1
x

∂q
∂y
yr = q−1yr

∂q
∂y

+ σy = qyr
∂q
∂y

+ σ−1
y

Besides this, one can also show that

x`
∂q
∂x

=
σx − σ−1

x

q − q−1
and yr

∂q
∂y

=
σy − σ−1

y

q − q−1

All other commutations between these are trivial in the sense that they commute per-

fectly. We now connect these q-partial derivatives to the modified derivations we defined

above.

Proposition 7.22. The endomorphism ∂q/∂x is a (σ−1
x ◦σy, σx)-derivation, while ∂q/∂y

is a (σy, σx ◦ σ−1
y )-derivation.

Proof. Let a, b ∈ A and D a linear endomorphism of A be such that

D ◦ a` = α(a)` ◦D +D(a)` ◦ σ

and

D ◦ b` = α(b)` ◦D +D(b)` ◦ σ
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Then we have

D ◦ (ab)`(c) = D((ab)c)

= D(a` ◦ b`(c))

= (D ◦ a` ◦ b`)(c)

=
(
(α(a)` ◦D +D(a)` ◦ σ) ◦ b`

)
(c)

= (α(a)` ◦D ◦ b`)(c) + (D(a)` ◦ σ ◦ b`)(c)

=
(
α(a)` ◦ (α(b)` ◦D +D(b)` ◦ σ)

)
(c) + (D(a)` ◦ σ ◦ b`)(c)

= (α(a)` ◦ α(b)` ◦D)(c) + (α(a)` ◦D(b)` ◦ σ)(c) + (D(a)` ◦ σ ◦ b`)(c)

= (α(ab)` ◦D)(c) + α(a)D(b)σ(c) +D(a)σ(b)σ(c)

= (α(ab)` ◦D)(c) + (α(a)D(b) +D(a)σ(b))σ(c)

= (α(ab)` ◦D)(c) + (D(ab)` ◦ σ)(c)

Since c was arbitrary we get the same relation for the product ab. Because of this,

we now check to see if the (α, σ)-derivation relations hold for our q-partial derivatives

when a = x and b = y. If so, then it will hold for the product xy and since x and y

generate the quantum plane, it will follow that the q-partial derivatives are the desired

derivations. Consider ∂q/∂x. Using the commutation relations above we find that

(σ−1
x σy)(x)`

∂q
∂x

+
(∂qx
∂x

)
`
σx = q−1x`

∂q
∂x

+ σx =
∂q
∂x
x`

and

(σ−1
x σy)(y)`

∂q
∂x

+
(∂qy
∂x

)
`
σx = qy`

∂q
∂x

=
∂q
∂x
y`

The case for ∂q/∂y holds similarly.

Theorem 7.23. For any P ∈ κq[x, y], set

EP := x
∂qP

∂y
, FP :=

∂qP

∂x
y (7.17)

KP := (σx ◦ σ−1
y )(P ), K−1P := (σy ◦ σ−1

x )(P ) (7.18)

(i) Under the above formulas κq[x, y] is a Uq(sl(2))-module-algebra.

(ii) The subspace κq[x, y]n of homogeneous elements of degree n is a Uq(sl(2))-submodule

of the quantum plane. It is generated by the highest weight vector xn and is iso-

morphic to the simple module V1,n.

Proof. (i) First we need to check that the action is well-defined. For computational

purposes, we shall suppress the “◦” symbol. Now, clearly (KK−1)P = (K−1K)P = P .
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Next, using the commuting relations listed above we have

(KEK−1)P = (σxσ−1
y )(x

∂q
∂y

)(σyσ−1
x )P

= (σxσ−1
y x`

∂q
∂y
σyσ

−1
x )P

= (σxσ−1
y x`σ

−1
x

∂q
∂y
σy)P

= (qσxσ−1
y σ−1

x x`
∂q
∂y
σy)P

= (qσ−1
y x`

∂q
∂y
σy)P

= (q2x`
∂q
∂y

)P

= q2EP

That (KFK−1)P = q−2FP is similarly proved.

Finally, we again use the above relations to show that

[E,F ]P =
(
x`
∂q
∂y
yr
∂q
∂x
− yr

∂q
∂x
x`
∂q
∂y

)
P

=
(
x`

(
q−1yr

∂q
∂y

+ σy

) ∂q
∂x
− yr

(
q−1x`

∂q
∂x

+ σx

) ∂q
∂y

)
P

=
(
q−1x`yr

∂q
∂y

∂q
∂x

+ x`σy
∂q
∂x
− q−1yrx`

∂q
∂x

∂q
∂y
− yrσx

∂q
∂y

)
P

=
(
x`σy

∂q
∂x
− yrσx

∂q
∂y

)
P

=
(
σyx`

∂q
∂x
− σxyr

∂q
∂y

)
P

=

(
σy
σx − σ−1

x

q − q−1
− σx

σy − σ−1
y

q − q−1

)
P

=
σyσx − σyσ−1

x − σxσy + σxσ
−1
y

q − q−1
P

=
σxσ

−1
y − σyσ−1

x

q − q−1
P

=
K −K−1

q − q−1
P

So κq[x, y] is a Uq(sl(2))-module. To show that it is a Uq(sl(2))-module-algebra we shall

make use of Lemma 6.2, which requires that for any u ∈ Uq(sl(2))

u1 = ε(u)1 (7.19)
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as well as

K(PQ) = K(P )K(Q) (7.20)

E(PQ) = PE(Q) + E(P )K(Q) (7.21)

F (PQ) = K−1(P )F (Q) + F (P )Q (7.22)

for any P,Q ∈ κq[x, y].

For (7.19), since {EiF jK`}i,j∈N;`∈Z is a basis for Uq(sl(2)) and ε is an algebra morphism,

ε(u) = 0 for all u ∈ Uq(sl(2)) involving non-zero powers of E and/or F given that

ε(E) = ε(F ) = 0. Now K · 1 = (σxσ−1
y )(1) = 1 and likewise K−1 · 1 = 1. For E we have

E · 1 = x
∂q1
∂y

= x[0]y−1 = 0

and likewise F · 1 = 0. From these it follows that, for u containing non-zero powers of

E and/or F , u · 1 = 0 and hence u · 1 = ε(u) · 1.

If, however, u is in terms of powers of K only, then because ε(K) = ε(K−1) = 1 and

K · 1 = K−1 · 1 = 1, we again have that u · 1 = ε(u) · 1. Thus, (7.19) holds.

Relation (7.20) is obvious since K acts as an algebra automorphism. The remaining

cases of (7.21) and (7.22) follow from Lemma 7.21 and Proposition 7.22.

(ii) First note that Exn = x
∂qxn

∂y = 0. Next,

Kxn = (σxσ−1
y )(xn)

= σx(σ−1
y (x)n) [σ−1

y an algebra automorphism]

= σx(xn)

= σx(x)n [σx an algebra automorphism]

= (qx)n

= qnxn

So, xn is a highest weight vector of weight qn. Finally, note that

Fxn =
∂qx

n

∂x
y

= [n]xn−1y
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and then

F 2xn = F ([n]xn−1y)

= [n]F (xn−1y)

= [n]
∂qx

n−1y

∂x
y

= [n][n− 1]xn−2y2

Iterating this process yields F pxn = [n][n−1] · · · [n−(p−1)]xn−pyp. From this it follows

that
1

[p]!
F pxn =

[
n

p

]
xn−pyp

Thus, κq[x, y]n is a submodule of the quantum plane generated by the highest weight

vector xn and is therefore isomorphic to V1,n.

7.5.4 Duality between Uq(sl(2)) and SLq(2)

In this section we explore the quantum analogue of the duality between U(sl(2)) and

SL(2) established in Chapter 5. Again, our goal is to construct an appropriate algebra

automorphism ψ, first from Mq(2) into U∗q (sl(2)). Having such a morphism would be

equivalent to possessing a matrix

[
A B

C D

]
, with A,B,C,D ∈ U∗q (sl(2)).

In this case we shall make use of the simple Uq(sl(2))-module V1,1 of highest weight q,

with basis {v0, v1} and representation ρ1,1. Computing the matrix representations of

the generators yields

ρ1,1(E) =

[
0 1

0 0

]
, ρ1,1(F ) =

[
0 0

1 0

]
, ρ1,1(K) =

[
q 0

0 q−1

]

For an arbitrary element u ∈ Uq(sl(2)) we have that ρ1,1(u) is some 2 × 2 matrix and,

as before, we shall write this as

ρ1,1(u) =

[
A(u) B(u)

C(u) D(u)

]

We shall now start from the above matrix with entries A,B,C,D and work backwards

to see if we get the desired morphism ψ that will give us the duality inducing bilinear

form 〈u, x〉 = ψ(x)(u).

Lemma 7.24.

[
A B

C D

]
is a U∗q (sl(2))-point of Mq(2).



Chapter 7. The Quantum Enveloping Algebra Uq(sl(2)) 316

Proof. The proof of this is direct, albeit tedious. So, to obviate unnecessary length to

an already lengthy thesis, the reader is directed to [7] for a complete proof.

Proposition 7.25. The bilinear form 〈u, x〉 = ψ(x)(u) realizes an imperfect duality

between the bialgebras Uq(sl(2)) and Mq(2).

Proof. The proof follows the same line of reasoning used in the classical case.

Lemma 7.26. For the quantum determinant detq of Mq(2), we have that ψ(detq) = 1.

Proof. As in the classical case, detq is a grouplike element. Thus, 〈−, detq〉 is an algebra

morphism. Our task, again, is to show that for u ∈ Uq(sl(2)), 〈u,detq〉 = ε(u), which is

true if it holds for the generators of Uq(sl(2)). For our purposes, however, we’ll content

ourselves with showing that it holds for E and K.

ψ(detq)(E) = 〈E, ad− q−1bc〉

= 〈E, ad〉 − q−1〈E, bc〉

= 〈∆(E), a⊗ d〉 − q−1〈∆(E), b⊗ c〉

= 〈E ⊗K + 1⊗ E, a⊗ d〉 − q−1〈E ⊗K + 1⊗ E, b⊗ c〉

= 〈E ⊗K, a⊗ d〉+ 〈1⊗ E, a⊗ d〉 − q−1〈E ⊗K, b⊗ c〉 − q−1〈1⊗ E, b⊗ c〉

= 〈E, a〉〈K, d〉+ 〈1, a〉〈E, d〉 − q−1〈E, b〉〈K, c〉 − q−1〈1, b〉〈E, c〉

= A(E)D(K) +A(1)D(E)− q−1B(E)C(K)− q−1B(1)C(E)

= 0 · q−1 + 1 · 0− q−1 · 1 · 0− q−1 · 0 · 0

= 0 = ε(E)

For K we have

ψ(detq)(K) = 〈K, ad− q−1bc〉

= 〈K, ad〉 − q−1〈K, bc〉

= 〈∆(K), a⊗ d〉 − q−1〈∆(K), b⊗ c〉

= 〈K ⊗K, a⊗ d〉 − q−1〈K ⊗K, b⊗ c〉

= 〈K, a〉〈K, d〉 − q−1〈K, b〉〈K, c〉

= A(K)D(K)− q−1B(K)C(K)

= qq−1 − q−1 · 0 · 0

= 1 = ε(K)
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Now, because ψ(detq) = 1, it factors through SLq(2) = Mq(2)/(detq − 1) and so we get

an induced morphism of algebras ψ : SLq(2)→ U∗q (sl(2)).

Theorem 7.27. The bilinear form 〈u, x〉 = ψ(x)(u) realizes a duality between the Hopf

algebras Uq(sl(2)) and SLq(2).

Proof. Again, the proof here is nearly the same as in the classical case. There is, however,

some novelty concerning the antipodes.

〈S(E), f〉 = 〈−EK−1, f〉

= −〈EK−1, f

[
a b

c d

]
〉

− f

[
〈EK−1, a〉 〈EK−1, b〉
〈EK−1, c〉 〈EK−1, d〉

]

= −f

[
A(EK−1) B(EK−1)

C(EK−1) D(EK−1)

]

Now, ρ1,1(−EK−1) = −

[
A(EK−1) B(EK−1)

C(EK−1) D(EK−1)

]
. But also

ρ1,1(−EK−1) = −ρ1,1(E)ρ1,1(K−1)

= −

[
0 1

0 0

]
·

[
q−1 0

0 q

]

=

[
0 −q
0 0

]

So, we end up with

〈S(E), f〉 = f

[
0 −q
0 0

]
Consider now that

〈E, f

[
S(a) S(b)

S(c) S(d)

]
〉 = 〈E, f

[
d −qb

−q−1c a

]
〉

= f

[
〈E, a〉 〈E,−qb〉

〈E,−q−1c〉 〈E, a〉

]

= f

[
D(E) −qB(E)

−q−1C(E) D(E)

]

= f

[
0 −q
0 0

]
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Thus, 〈S(E), f〉 = 〈E,S(f)〉. The result for F is checked similarly. Also, since K and

K−1 are sufficiently similar, we’ll finish by checking K.

On the one hand we have

〈S(K), f〉 = 〈K−1, f〉

= f

[
A(K−1) B(K−1)

C(K−1) D(K−1)

]

= f

[
q−1 0

0 q

]

and on the other hand

〈K,S(f)〉 = 〈K,

[
d −qb

−q−1c a

]
〉

= f

[
D(K) −qB(K)

−q−1C(K) A(K)

]

= f

[
q−1 0

0 q

]

Thus, 〈S(K), f〉 = 〈K,S(f)〉.

The above theorem is a nice symmetric way to finish off our discussion, given our work

in Chapter 5. There is a great deal more that could be said and explored, but as we

have seen, it takes a lot of work and it only gets more difficult and abstract. Hopefully

the reader has gained some understanding from playing around in the shallow end of the

quantum group “pool”. As stated at the beginning of this chapter, the quantum group

explored here is a significant one. However, there are other very interesting kinds of

quantum groups as well. For instance, there are bicrossproduct quantum groups, which

are directly relevant to quantum mechanics and Planck-scale physics.

With the basis we have established in this thesis, one can now proceed to study the

famous Yang-Baxter equation. This involves notions of universal R-matrices, braided

and cobraided bialgebras as well as braided categories. In fact, we have barely scratched

the surface. Nevertheless, I hope this thesis was enlightening and spurs the reader on to

study this exciting and fascinating world in greater and greater detail.
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