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Variational transition state theory~VTST! is used to calculate rate constants for a model proton
transfer reaction in a polar solvent. We start from an explicit description of the reacting solute in a
solvent, and we model the effects of solvation on the reaction dynamics by a generalized Langevin
equation~GLE! for the solute. In this description, the effects of solvation on the reaction energetics
are included in the potential of mean force, and dynamical, or nonequilibrium, solvation is included
by solvent friction. The GLE solvation dynamics are approximated by a collection of harmonic
oscillators that are linearly coupled to the coordinates of the reacting system. This approach is
applied to a model developed by Azzouz and Borgis@J. Chem. Phys.98, 7361~1993!# to represent
proton transfer in a phenol-amine complex in liquid methyl chloride. In particular, semiclassical
VTST, including multidimensional tunneling contributions, is applied to this model with three
explicit solute coordinates and a multioscillator GLE description of solvation to calculate rate
constants. We compare our computed rate constants and H/D kinetic isotope effects to previous
calculations using other approximate dynamical theories, including approaches based on
one-dimensional models, molecular dynamics with quantum transitions, and path integrals. By
examining a systematic sequence of 18 different sets of approximations, we clarify some of the
factors ~such as classical vibrations, harmonic approximations, quantum character of
reaction-coordinate motion, and nonequilibrium solvation! that contribute to the different
predictions of various approximation schemes in the literature. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1409953#

I. INTRODUCTION

Proton transfer reactions are encountered frequently in
chemistry and biochemistry.1,2 Proton transfer reactions in
solution are central to acid and base catalysis in aquatic
environments3 and to enzyme-catalyzed reactions.2 The the-
oretical treatment of proton transfer in solution is especially
difficult for two reasons. First, polar solvent environments
~e.g., aqueous solutions! profoundly affect charge transfer
processes, such as proton transfer, and the explicit treatment
of the important solvent effects, such as orientational polar-
ization, require consideration of collective motions and large
molecular ensembles in computer simulations. Second, pro-
ton motion involves quantum mechanical behavior such as
zero-point energy constraints and tunneling, requiring a
quantum mechanical treatment that is a computational chal-
lenge in many-body systems. Although we explicitly discuss
proton transfer in the present article, similar considerations
apply to hydride transfer.

A variety of theoretical methods have been developed
and applied to proton transfer reactions.4–15 Transition state
theory ~TST!16–19 is one of the most prevalent theoretical
approaches to reaction rates in general and proton transfer in

particular, and many of the approaches cited above incorpo-
rate elements of TST. A particularly successful TST approach
is based on variational transition state theory with multidi-
mensional tunneling~VTST/MT!19,20 in which vibrational
partition functions are quantized and quantum mechanical
effects on reaction coordinate motion are included by semi-
classical multidimensional tunneling approximations. This
approach has been very successful at predicting gas-phase
reaction rate constants,21,22has been extended to reactions in
solution,10,23–27and has been extended to proton and hydride
transfer reactions in enzymes.15,28 Although limited tests of
the VTST/MT approach to reactions in solution have been
presented, these applications have all employed a model for
the reaction in solution based upon a generalized Langevin
equation~GLE!29–31 approach. In the current work we wish
to test the VTST/MT approach by starting from an explicit
molecular model for the reaction system.

Azzouz and Borgis7 presented a model for the proton
transfer reaction

AH2B↔A22H1B ~1!

in a polar solvent. The chemical groups AH and B represent
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a weak acid such as phenol and a weak base such as an
amine, respectively, and the polar solvent is a model for me-
thyl chloride. Azzouz and Borgis7,8,11 calculated rate con-
stants for this model using a semiclassical curve-crossing
approach6 and a path integral quantum TST approach.5,32

Subsequently Hammes-Schiffer and Tully9 used a surface
hopping approach~molecular dynamics with quantum
transitions!33 to calculate rate constants. In the surface hop-
ping approach the continuous motion of the classical sub-
system on an effective potential surface generated by the
quantum subsystem is interrupted by discontinuous hops cor-
responding to quantum transitions. More recently, Antoniou
and Schwartz12–14 performed calculations of rate constants
using an evolution operator technique34 based upon the flux
correlation function formalism,35 which is another method
that is closely related to TST.19,36 Azzouz and Borgis also
presented a ‘‘corrected’’ classical TST approach in which
one-dimensional TST rate constants, including quantization
of the proton motion and tunneling based on a parabolic
barrier approximation,37,38 were averaged over fixed A–B
separations. In the work of Azzouz and Borgis and Hammes-
Schiffer and Tully the proton motion was treated quantum
mechanically, while the other coordinates in the system were
treated classically. The approach taken by Antoniou and
Schwartz treated the solvent using a GLE, in which the ef-
fects of solvent dynamics were included by a harmonic bath
coupled linearly to the reaction coordinate,39 i.e., to the pro-
ton motion between A and B; the one-dimensional solute and
the harmonic bath coordinates were treated quantum me-
chanically in their approach. In the present work we also
reduce the solvent dynamics to a GLE, but the solute is
treated multidimensionally including the proton motion,
heavy-atom A–B motion, and center-of-mass AHB motion.
In the present article we treat the dynamics of all degrees of
freedom of the reduced model on an equal footing by using
semiclassical VTST/MT, and we also present a systematic
series of more approximate calculations.

The organization of the remainder of this paper is as
follows. Section II describes the model of Azzouz and Bor-
gis, and Sec. III presents the VTST/MT approach that we use
for this model, including the development of the GLE and
application of VTST. Section IV provides computational de-
tails, Sec. V presents results and discussion, and Sec. VI
gives conclusions from this study.

II. MODEL SYSTEM

The specific system studied here is a model of a tri-
atomic reactive complex dissolved in a polar solvent. The
parameters of the system are chosen so that the reactive com-
plex represents a proton transfer reaction from a phenol to a
trimethylamine, and the solvent molecules are representative
of methyl chloride. This model is chosen to be essentially
identical to that used by Azzouz and Borgis,7 Hammes-
Schiffer and Tully,9 and Antoniou and Schwartz13,14 in their
respective works.

The model constrains the proton transfer reaction to take
place in one dimension; bending modes are completely dis-
allowed. Further, the ‘‘phenolate’’ (A2) and ‘‘trimethy-
lamine’’ ~B! groups are represented in a united atom sense,

so that the reaction model is a three-atom collinear system as
shown in Eq.~1!. The masses of A and B,mA andmB , are
set to 93 and 59 amu, respectively, while the mass of H,mH ,
is set to 1 amu for proton transfer or 2 amu for deuteron
transfer. An important aspect of this model is that the distri-
bution of charges within the complex depends on the loca-
tion of the proton, much as one would expect. As the proton
shifts from the phenol side to the amine side within the com-
plex, the reactive complex changes from a polar but neutral
complex into an ion pair. This in turn causes a large change
in dipole moment in the course of the reaction and allows for
a strong interaction between the complex and the surround-
ing polar solvent.

The geometry of the AHB complex is described by the
Cartesian vectors for atoms A, H, and B, denoted byrA , rH ,
andrB , respectively, or by the position of its center-of-mass,
RCM , a unit orientation vectorẑ pointing from atom A
toward atom B, and the scalar distancesr 5urA2rHu
and R5urA2rBu. The orientation vector is characterized
by the polar coordinates~u, f!, as ẑ5(sinu cosf,
sinu sinf,cosu). Since the proton is constrained to lie along
the A–B bond, its coordinate can be described by the single
variabler such that

rH5rA1 ẑr . ~2!

The potential energy of the complex is denotedVHB(r ,R). In
this case the Hamiltonian for the complex, in the absence of
the solvent, is described in terms of seven coordinates and
their conjugate momenta

Hgas5
PCM

2

2M
1

1

2I S Pu
21

Pf
2

sin2 u D
1

1

2
~Pr ,PR!m21S Pr

PR
D1VHB~r ,R!, ~3!

where the kinetic energy is expressed in terms of the momen-
tum conjugate tou andf, Pu andPf , the momentum of the
center-of-mass of the complexPCM , and the momentaPr

andPR , which are conjugate tor andR. The effective mass
matrix, m, is explicitly given by

m5
1

M S ~mA1mB!mH 2mHmB

2mHmB ~mA1mH!mB
D , ~4!

whereM5mA1mH1mB is the total mass of the complex.
The scalar moment of inertia along the collinear axis is:

I ~r ,R!5~r ,R!mS r
RD . ~5!

In the limit thatmH!mA andmH!mB ,

m'S mH 0

0 mAB
D , ~6!

wheremAB5mAmB /(mA1mB), and the moment of inertia
in Eq. ~5! is approximated bymABR2. As noted previously,7

with this approximation the proton motion is no longer di-
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rectly coupled to the overall rotation of the complex. In the
approach described below it is not necessary to make this
approximation, and so we retain the coupled expression of
Eq. ~4! in the molecular simulations, although we do useI
>mABR2 to construct the potential of mean force, and this
approximation is excellent for the system studied here.

The gas-phase potential energy function is given by

VHB~r ,R!5b exp~2aR!

1DAH 12expF2nA~r 2dA!2

2r G J
1cDAH 12expF2nB~R2r 2dB!2

2~R2r ! G J . ~7!

The values of the parameters used in this study are taken
directly from Hammes-Schiffer and Tully9 and are given in
Table I for convenience. Note that these parameters are also
very similar to those used for ‘‘Model II’’ by Azzouz and
Borgis.7

The methyl chloride solvent is represented with the
model used by Bigotet al.40 in their Monte Carlo simula-
tions. This is not only the same solvent model as was used in
the aforementioned proton transfer studies; it has also been
used to examine properties of pure methyl chloride. The
Bigot model treats the methyl chloride molecule as a rigid,
polar, diatomic nonpolarizable molecule, with the methyl
group being treated as a united atom at a distance of 1.78 Å
from the chlorine atom. The mass of the methyl united atom
mMe is 15 amu and that of the chlorine atommCl is 35 amu.
The Cartesian vectors for the methyl and chlorine in solvent
moleculek are denotedr k

Me and r k
Cl with conjugate momen-

tum pk
Me andpk

Cl . The Hamiltonian for the entire model sys-
tem ~complex plus solvent! is written as a sum of three dis-
tinct parts:

H5Hgas1Hsolvent1VCS~r ,R,RCM ,ẑ,RS! ~8!

which yields

H5Hgas1(
k

(
b5Me,Cl

~pk
b!2

2mb
1VSS~RS!

1VCS~r ,R,RCM ,ẑ,RS!, ~9!

where RS is the collection of all solvent coordinates,
VSS(RS) is the solvent–solvent potential, and
VCS(r ,R,ẑ,RCM ,RS) is the potential that couples the com-
plex to the solvent molecules.

Interactions between solvent molecules include both
Lennard-Jones and Coulomb potentials between each of the
atomic sites on the interacting molecules. The solvent–
solvent potential energy is given by the TIPS~Transferable
Intermolecular Potential Functions! model,41 following the
description given by Hammes-Schiffer and Tully9

VSS~RS!5
1

2 (
kÞk8

(
b,b85Me,Cl

S qbqb8

ur k
b2r k8

b8u
1

AbAb8

ur k
b2r k8

b8u12

2
CbCb8

ur k
b2r k8

b8u6D . ~10!

Parametersqb , Ab , andCb for b5Me and Cl are given in
Table II. With the charges indicated in this table, the dipole
moment of a solvent molecule is 2.14 D.

The interaction potential energy between the solvent and
the dissolved reactive complex consists of Coulomb poten-
tials between solvent molecules and atoms A, B, and H and
Lennard-Jones potentials between solvent molecules and at-
oms A and B~but not the H atom!

VCS~r ,R,RCM ,ẑ,RS!

5 (
a5A,B,H

(
k

(
b5Me,Cl

qa~r !qb

ura2r k
bu

1 (
a5A,B

(
k

(
b5Me,Cl

34eF S s

ura2r k
bu D 12

2S s

ura2r k
bu D 6G , ~11!

where ra is an implicit function ofr, R, RCM , and ẑ. The
charges on the atoms in the complex range from their values
in the ‘‘covalent’’ state,qA

c 520.5e, qH
c 510.5e, qB

c 50, to
their values in the ‘‘ionic’’ state, qA

i 521.0e,qH
i

510.5e,qB
i 510.5e by means of a smooth,r-dependent

switching function:

qa~r !5@12 f ~r !#qa
c 1 f ~r !qa

i , ~12!

where

f ~r !5
1

2 S r 2 l

A~r 2 l !21~D l !2D , ~13!

with l 51.43 Å and D l 50.125 Å. This charge switching
causes the dipole moment of the reactive solute complex to
vary from 2.5 D in the covalent state to 10.5 D in the ionic
state. The Lennard-Jones potentials between atoms A or B
and either of the sites on a methyl chloride molecule are
identical:s53.5 Å ande5200 K. The Coulomb part of the
interaction involves the usual potential between the fixed

TABLE I. Parameters for the gas-phase potential.

Parameter Value

a 11.2 Å21

b 7.131013 kcal/mol
dA 0.95 Å
dB 0.97 Å
DA 110 kcal/mol
nA 9.26 Å21

nB 11.42 Å21

c 0.776

TABLE II. Parameters for the methyl chloride solvent model.

Atom q(e) A2 (kcal mol21 Å 12) C2 ~kcal mol21 Å6!

CH3 10.25 7.953106 2750
Cl 20.25 5.253106 2950
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point charges on the atomic sites of the solvent molecules
and ther-dependent point charges located on each of the
three atoms in the complex.

III. VARIATIONAL TRANSITION STATE APPROACH
FOR REACTIONS IN LIQUID SOLUTION

The approach we use here to calculate the rate of proton
transfer in this model reaction in liquid solution is based on
variational transition state theory. The general approach has
been described previously,25 and the details of the implemen-
tation have been presented elsewhere.23,24,26,27Our approach
to VTST in the gas phase19,20requires locating critical geom-
etries~minima and saddle points! and minimum energy path-
ways on the global potential energy surface. However, we
need to extend this approach for reactions in liquids, like the
present model system, since the full-dimensional potential
energy surface of such reactions will exhibit many local
minima and saddle points corresponding to many possible
equilibrium geometries of the solvent molecules, with little
rearrangement of the atoms in the reactive complex. In this
work we take an approach described earlier,23–27in which we
center attention not on the full-system potential energy sur-
face but rather on the solute potential of mean force and the
friction tensor due to the solvent. Thus the dynamics of the
reactive complex and the equilibrium solvent effects are
treated by a potential of mean force surface, and nonequilib-
rium solvent effects are treated by solvent friction terms that
are approximated by a generalized Langevin equation.

We first discuss the development of the generalized
Langevin equation for this model system, including the cal-
culation of the multidimensional potential of mean force sur-
face and friction tensor. The procedure we use to map the
GLE onto Hamiltonian dynamics, employing a GLE Hamil-
tonian, is then described. Finally we review how VTST/MT
is applied to the GLE Hamiltonian.

III.A. Generalized Langevin equation

As has been discussed in many of the references given in
the introduction, there are a number of ways in which a
solvent can interact with a dissolved reactive system to alter
the reaction rate relative to that for the same reaction in the
gas phase. The influences of the solvent can be classified into
three categories:~i! explicit solvent participation in the reac-
tion, such as bond making or bond breaking in solvent mol-
ecules~as in general acid-base catalysis!, or some types of
explicit solute ‘‘caging’’ interactions;~ii ! equilibrium solva-
tion effects on the potential of mean force experienced by the
reactive system; and~iii ! nonequilibrium solvation effects,
i.e., the frictional effect of the solvent on the reactive system.
Effects of types~i! and ~iii ! involve solvent participation in
the reaction coordinate, whereas effects of type~ii ! do not.
Effects of types ~ii ! and ~iii ! can be treated by either
implicit42 or explicit43 solvation models, whereas effects of
type ~i! always require explicit solvent. The treatment em-
ployed in the present article does not consider any type~i!
effects, although, if important, such effects could be incorpo-
rated within the general framework of this method by includ-
ing solvent molecules explicitly in the ‘‘solute’’ reactive
system—that is, redefining the reactive system to include

certain solvent molecules. The dynamical scheme used here
treats solvent implicitly via collective solvent coordinates.
The method is general enough that input data for the
implicit-solvent dynamical treatment could be obtained from
either implicit solvation models or explicit solvation
models.24,26,44As we will see in Sec. IV, we shall use the
latter approach in the present article. First, however, in this
section and Secs. III B and III C, we shall establish the dy-
namical model for reaction~1!.

We begin by concentrating on a reduced set of coordi-
nates and modeling the solvent effects using a generalized
Langevin equation. The occurrence of a reactive event in this
system is determined by motion of the proton from species A
to B and for the most part this is determined by progress in
the r coordinate. Thus, as in other studies of this model
system,7,9,13,14we treat the proton motion explicitly. In pre-
vious studies,23,26,27 we found that coupling between the
heavy-atom motion~A–B relative motion! and light-atom
transfer can have significant effects on the reaction. In addi-
tion, coupling between the center-of-mass translation and
proton transfer can also be significant when solvent friction
has a high value.27 Therefore in the current study we wish to
retain an explicit treatment ofr, R, and the center-of-mass
motion along the A–B axis. To accomplish this we define a
reduced system consisting of the three coordinates describing
the motion of the three atoms that are constrained to be along
the line connecting A and B. In particular, we define the three
coordinates, (zA ,zH ,zB), where

ra5RCM1 ẑza , a5A,B,H. ~14!

The same transformation matrix,

A5S 21 0 1

21 1 0

mA

M

mB

M

mH

M

D ~15!

that connects the coordinates defined in Sec. II, i.e.,

S r
R

RCM

D 5AS rA

rB

rH

D , ~16!

may be used to define the reduced, transformed coordinates

S r
R

ZCM

D 5AS zA

zB

zH

D . ~17!

Note that a consequence of the transformation, Eq.~17!, is
that ZCM always equals 0.

Similarly to the work of Azzouz and Borgis,7 we define
a collective set of bath coordinatesS that includes the orien-
tational coordinates and the center-of-mass coordinates of
the solute as well as the collectionRS of solvent coordinates,
S5(u,f,RCM ,RS). With this definition of the solvent, we
could construct a GLE in terms of the~r,R! coordinates
alone, or equivalently, in terms of (zA ,zB ,zH) where the con-
straint ZCM50 is imposed. This GLE does not account for
dynamical coupling between ther andR coordinates due to
the solute center-of-mass translational motion in the solvent,
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which was found to be important in a previous study.27 A
simple way to introduce this dynamical coupling is to relax
the constraint thatZCM is equal to 0 and allow dynamical
motion in ZCM . The equations of motion for the three ex-
plicit coordinates in the GLE approach are then written30

maz̈a52
]

]za
W1E

0

t

dt8(
a8

haa8~ t2t8!ża8~ t8!

1dFa~ t !, a5A,B,H, ~18!

where the components of the mean force are defined by

]W

]za
5 K ]H

]za
L

r ,R

, ~19!

whereW is the potential of mean force,H is the Hamiltonian
defined by Eqs.~3! and~8!, and the averages^¯& r ,R are over
bath coordinatesS with the internal coordinates of the solute
fixed. The friction tensorhaa8 is defined by

kBThaa8~ t !5^dFa~ t !dFa8~0!& r ,R , ~20!

wherekB is Boltzmann’s constant,T is the temperature of the
system,Fa is thea component of the force in thez coordi-
nate system, and the fluctuation in the force on solute coor-
dinatea due to the instantaneous bath configuration is given
by

dFa~ t ![Fa~ t !2^Fa& r ,R

52
]H

]za
~ t !1 K ]H

]za
L

r ,R

52
]H

]za
~ t !1

]W

]za
. ~21!

In taking the averages in Eqs.~19! and ~21!, we choose the
values ofr andR that correspond to the saddle point ofW.

Note that the constraints on the averages in Eqs.~19!–
~21! involve the coordinatesr andR, whereas the GLE is for
the three coordinates includingZCM as well as~r,R!. Al-
though the constraints should also includeZCM , the effect on
the GLE from not including it is negligible, as explained
below. First, consider the mean force defined in Eq.~19!. In
the gas phase, the internal motion of the solute is decoupled
from the center-of-mass translation, so]VHB /]ZCM , is zero.
Although ]VCS/]ZCM is in general nonzero because of un-
symmetrical contributions of solvent molecules, the average
of ]VCS/]ZCM over solvent configurations is zero. There-
fore, since]W/]ZCM50, W does not change ifZCM is con-
strained. Next, consider the friction tensor appearing in the
GLE and defined by Eqs.~20! and ~21!. The force fluctua-
tions defined in Eq.~21! depend on instantaneous values of
]VCS/]ZCM , which are not necessarily zero, and may ex-
hibit correlations with values at other times. Therefore the
friction tensor will have an explicit dependence onZCM . We
have tested the sensitivity of the friction tensor to constraints
with numerical simulation. The friction tensor was computed
with just r andR constrained and compared with the friction
tensor compute withr, R, andRCM constrained. No numeri-
cally significant differences were observed for the friction
tensors computed with the two different constraints. Our as-
sumption is that the friction tensor withr, R, andZCM con-
strained would also show no significant differences.

For the present study we approximate the dynamics of
the GLE in Eq.~18! by the dynamics determined by an ef-
fective Hamiltonian given by39,45

HGLE5 (
a5A,B,H

Pza
2

2ma
1W~r ,R!1(

j 51

N H Py j
2

2mb

1
1

2
mbv j

2S yj2 (
a5A,B,H

Cj azaD 2J , ~22!

whereN is the number of effective solvent degrees of free-
dom,Pza is the momentum conjugate toza , andyj andPy j

are effective dynamical solvent coordinates and momentum
providing nonequilibrium solvent effects on the dynamical
motion. The value of the effective solvent massmb is arbi-
trary, while the solvent frequenciesv j and coupling con-
stantsCj a characterize the effective solvent response to the
reduced coordinate motion. The classical dynamics of this
effective Hamiltonian approximates the dynamics generated
by Eq. ~18!, when the friction tensor is given in terms of the
bath parametersv j andCj a by39,45

haa8~ t !5(
j 51

N

mbCj aCj a8v j
2 cos~v j t !. ~23!

The effective GLE Hamiltonian may also be written in terms
of the (r ,R,ZCM) coordinates as

HGLE5
PZCM

2

2M
1

1

2
~Pr ,PR!m21S Pr

PR
D1W~r ,R!

1(
j 51

N H Py j
2

2mb
1

1

2
mbv f

2~yj2C̃j ,r r 2C̃j ,RR

2C̃j ,CMZCM!2J , ~24!

where

C̃5CA21. ~25!

Specific details of the simulation procedure used for the con-
struction of the GLE Hamiltonian are presented in Sec. IV.

The form of the GLE in Eq.~18!, which is local in space,
is not the most general form and it represents an approxima-
tion to the dynamical equations. The exact dynamical equa-
tions can be formally recast in terms of a chain of GLE
equations for successive random forces involving nonlocal
memory functions that are correlation functions of appropri-
ate random forces.31,46 The version of the GLE presented
above is obtained by truncating this chain and by replacing
the memory function by an approximate, constant, friction
tensor. This GLE is local in space and the constant friction
tensor is evaluated at a single characteristic configuration of
the system, the configuration at the saddle point. Because we
have chosen a simplified version of a GLE to describe the
dynamics, the effective Hamiltonian in Eq.~22! only in-
volves linear couplings between the system and the bath.
One may consider the same form for the effective Hamil-
tonian with harmonic bath coordinates but allowing for non-
linear coupling between the system and the bath. In this case
a nonlinear GLE equation for the dynamics results.25,39,47
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Even more complicated representations for the dynamics can
be considered by introducing higher order couplings and an-
harmonic terms in the Hamiltonian, Eq.~22!. The construc-
tion of less approximate effective Hamiltonians and the
specification of higher order terms are open research prob-
lems that are beyond the scope of the current work. The
precise conditions under which one can reduce the solvent
dynamics to this simple form of the GLE are not generally
known. The validity of approximating a local friction tensor
by a constant one for the proton transfer reaction studied here
could be investigated by evaluating the friction tensor with
the system fixed at other configurations. The reaction consid-
ered here has a highly peaked barrier, so a local region
around the saddle point determines the fate of a dynamical
trajectory. Because of this feature, the solute dynamics near
the saddle point will be fast compared to the solute response
and approximating the local friction tensor by a constant at
the saddle point will give a good representation of the dy-
namics.

It is well known that solvents are not harmonic, and
solute-solvent coupling is not bilinear and in fact is strongly
nonlinear. However, generalized Langevin theory in the form
given in Eqs.~18! and ~22! may be applied when one can
identify suitable variables associated with the solvent thatact
as effective oscillators, as discussed by Hynes and
co-workers.48,49 Evidence for the validity of the local, linear
approximation to the solvent friction is also offered by the
general success of Grote-Hynes theory50 and more generally
the linear response approximation. The GLE in Eq.~18! is
the basis for the Grote-Hynes friction correction to TST. Fur-
thermore, the Grote-Hynes friction correction can be derived
by applying variational transition state theory~VTST! to the
effective Hamiltonian in Eq.~18! with a locally quadratic
potential.23,51 The validity of the Grote-Hynes method, and
the underlying Hamiltonian, for a variety of model reactions
has been confirmed by comparing results from Grote-Hynes
theory with accurate classical simulations of the reaction
dynamics.49,52 Similar tests of the validity of the effective
GLE Hamiltonian in Eq.~22! for the proton transfer reaction
studied here are planned for future studies.

III.B. Variational transition state theory

The starting point for the VTST/MT calculations is the
GLE Hamiltonian in Eq.~22! from which we identify the
effective potential

Veff
NES~zA ,zB ,zH ,y1 ,...,yN!

5W~r ,R!1(
j 51

N
1

2
mbv j

2S yj2 (
a5A,B,H

Cj azaD 2

, ~26!

where Eq.~17! provides the relationship betweenr, R and
zA ,zB ,zH . The application of variational transition state
theory to this form of potential is described in detail
elsewhere.10,23–27 For convenience, a brief overview of the
approach is provided here.

III.B.1. Equilibrium solvation

An equilibrium solvation~ES! model is recovered from
the GLE Hamiltonian if the potential is minimized with re-

spect to the bath coordinates for each choice of solute coor-
dinates, i.e.,

yj
ES~zA ,zB ,zH!5 (

a5A,B,H
Cj aza , ~27!

and the resulting equilibrium solvation potential is the PMF,
i.e., Veff

ES5W(r ,R). The saddle point on the PMF is defined
by r ‡ and R‡ and the choice ofZCM is arbitrary, so we
choose it to be zero for convenience. The minimum energy
path on the PMF is obtained by following the paths of steep-
est descent from the saddle point toward reactants and prod-
ucts in a mass-scaled coordinate system in which the reduced
mass of each coordinate is the same. We call this the equi-
librium solvation path~ESP!, za

ES(sES), where the reaction
coordinatesES is the signed distance from the saddle point
along the curvilinear ESP through the mass-scaled coordinate
system and is negative on the reactant side. Generalized
transition-state dividing surfaces in the equilibrium solvation
model are defined to be orthogonal to the ESP, and the
transition-state theory approximation to the reaction rate is
obtained from the net flux toward products through the di-
viding surface.18–20 In a classical world this dynamical ap-
proximation causes an overestimate of the rate constant
which is the basis for variationally optimizing the location of
the dividing surface~along the reaction coordinate! to mini-
mize the rate constant.17,20,53 With this approximation the
expression for the generalized transition-state-theory~GT!
rate constant reduces to21,54

kES
GT~T,sES!5

kBT

hQR~T!
QES

GT~T,sES!expF2
VESP~sES!

kBT G ,
~28!

whereh is Planck’s constant,QR(T) is the reactant partition
function for a unimolecular reaction or the reactant partition
function per unit volume for a bimolecular reaction,
QES

GT(T,sES) is the generalized transition-state partition func-
tion for the bound modes orthogonal to the reaction path at
sES, andVESP(sES) is the value of the PMF evaluated on the
ESP atsES

VESP~sES!5Veff
NES@zA

ES~sES!,zB
ES~sES!,zH

ES~sES!,

y1
ES~sES! ¯ ,yN

ES~sES!#

5W@r ~sES!,R~sES!#. ~29!

The present application, Eq.~1!, is a unimolecular reaction
so we will specialize to that case. Conventional transition-
state theory~TST! is recovered by evaluating Eq.~28! at
sES50, which yields

kES
TST~T!5kES

GT~T,sES50! ~30!

and canonical variational theory~CVT! is obtained by mini-
mizing Eq.~28! with respect tosES

kES
CVT~T!5min

sES

kES
GT~T,sES!. ~31!

Partition functions are computed quantum mechanically
within the harmonic approximation:
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QR~T!5 )
m51

N12
1

2 sinh@\vm
R/2kBT#

5 )
m51

2
1

2 sinh@\vm
R,AHB/2kBT#

3)
j 51

N
1

2 sinh@\v j /2kBT#
, ~32!

QES
GT~T,sES!5 )

m51

N11
1

2 sinh@\vm
ES~sES!/2kBT#

5
1

2 sinh@\v1
ES~sES!/2kBT#

3)
j 51

N
1

2 sinh@\v j /2kBT#
, ~33!

where\[h/2p. In the equilibrium solvation model the bath
modes decouple from the solute modes; this decoupling is
explicitly indicated in Eqs.~32! and~33!. Normal modes for
the solute frequencies at reactants and the saddle point are
obtained by diagonalizing the 333 Hessian matrix in the
(zA ,zB ,zH) coordinates. Generalized normal modes~which
are the vibrational modes at locations were the gradient is
not zero! are obtained by first projecting out the gradient
vector from the Hessian matrix, then diagonalizing the pro-
jected Hessian matrix.55 One mode has a zero frequency cor-
responding to the center-of-mass translation. This mode is
omitted from both the reactant and generalized transition-
state partition functions. At reactants there are two bound
frequencies~corresponding approximately to proton vibra-
tion and A–B vibration! while along the reaction path one
mode corresponds to the unbound reaction coordinate mo-
tion. Therefore there are two solute modes in the reactant
partition function and only one in the generalized transition-
state partition function. In the equilibrium solvation mode,
contributions from theN bath modes cancel in the reactant
and transition-state partition functions.

Quantum mechanical effects on reaction coordinate mo-
tion are included by a multiplicative transmission
coefficient54

kES
CVT/t~T!5kES

t ~T!kES
CVT~T!. ~34!

Multidimensional tunneling effects are included by the zero-
order canonical mean shape~CMS-0! approximation.10 Prob-
abilities are computed semiclassically for transmission by the
one-dimensional CMS-0 potential, which in the harmonic
approximation is given by

VES
CMS20~sES!5VESP~sES!1

\

2 (
m51

N11

vm
ES~sES!. ~35!

Although the CMS-0 potential is a one-dimensional function
of the reaction coordinate, multidimensional effects are in-
cluded in two ways. First,VES

CMS-0(sES) depends on the or-
thogonal modes because of the sum in Eq.~35!. Second, we

use an effective reduced mass that corresponds to an effec-
tive tunneling path in the multidimensional space.56 The ef-
fective tunneling path differs from the ESP because the ESP
is curved. In this work we use the centrifugal-dominant
small-curvature tunneling method57,58 ~denoted SCT! that in-
cludes the effects of reaction-path curvature by means of an
effective reduced mass. The effective reduced mass is
smaller than the common reduced mass introduced below
Eq. ~27!, and this accounts for the increased probability of
tunneling along corner-cutting paths on the concave side of
the ESP.57,58 The reaction probabilitiesPES

SCT(E) are ther-
mally averaged and normalized by the thermal average of the
reaction probabilities corresponding to zero-curvature classi-
cal reaction coordinate motion10 on the potential of Eq.~35!
to give the transmission coefficientkES

SCT(T)

kES
SCT~T!5

*0
`dEe2bEPES

SCT~E!

*0
`dEe2bEuFE2max

sES

VES
CMS20~sES!G , ~36!

where u(x) is the Heaviside step function@u(x)50,
x,0;u(x)51,x.0]. We also compute tunneling with the
zero-curvature tunneling~ZCT! approximation in which the
effects of reaction-path curvature are neglected so that the
effective reduced mass57,58 is equal to the common reduced
mass used in the ESP calculations described below Eq.~27!.

III.B.2. Nonequilibrium solvation

The saddle point geometry on the effective potential in
Eq. ~26! is at (zA

‡ ,zB
‡ ,zH

‡ ,y1
‡ , ¯ ,yN

‡ ) where

S zA
‡

zB
‡

zH
‡
D 5A21S r ‡

R‡

ZCM50
D , ~37!

yj
‡5 (

a5A,B,H
Cj aza

‡ , ~38!

so that at the saddle point for the full system, the geometry
corresponds to the saddle point on the equilibrium solvation
path. The minimum energy path on the effective potential is
obtained by following the paths of steepest descent from the
saddle point toward reactants and products in a mass-scaled
coordinate system including both solute and bath coordinates
in which the mass of each coordinate is the same. We call
this the nonequilibrium solvation path ~NESP!,
za

NES(sNES),yj
NES(sNES), where the new reaction coordinate

sNES is the signed distance from the saddle point along the
curvilinear NESP and is negative on the reactant side. Gen-
eralized transition-state dividing surfaces in the nonequilib-
rium solvation model are defined to be orthogonal to the
NESP and the rate constant expression is similar to Eq.~28!;
however, the superscript ES is replaced by NES to indicate
that the potential along the reaction path,WNESP(sNES), and
the partition functions for bound modes orthogonal to the
NESP,QNES

GT (T,sNES), are different than in the equilibrium
solvation model. The potential along the NESP is given by
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VNESP~sNES!5V eff
NES@zA

NES~sNES!,zB
NES~sNES!,

zH
NES~sNES!,y1

NES~sNES!, ¯ ,yN
NES~sNES!#,

~39!

and the generalized transition-state partition function is writ-
ten

QNES
GT ~T,sNES!5 )

m51

N11
1

2 sinh@\vm
NES~sNES!/2kBT#

, ~40!

where the frequencies are obtained by diagonalizing the (N
13)3(N13) mass-weighted Hessian matrix@obtained
from the second derivatives of the potential in Eq.~26!# with
the gradient projected out. The form of Eq.~26! still gives
rise to a zero frequency mode that transforms like the center-
of-mass motion of the solute with

Dyj
05 (

a5A,B,H
Cj amaDZCM . ~41!

This mode is omitted from Eq.~40! as well as the mode that
corresponds to motion along the reaction coordinate. Since
the bath modes represent nonequilibrium solvation effects
near the saddle point, the coupling between the bath and
solute should not be included in the~equilibrium! reactant
partition function. Therefore, Eq.~32! gives the expression
for the reactant partition function in both the equilibrium and
nonequilibrium solvation models.

Since the effective potential at the saddle point in the
nonequilibrium solvation model is the same as that in the
equilibrium solvation model, the nonequilibrium conven-
tional TST rate constant is related to the equilibrium one by

kNES
‡ ~T!5

QNES
‡ ~T!

QES
‡ ~T!

kES
‡ ~T!, ~42!

where the transition-state partition functions are given by
Eqs. ~33! and ~40! with the reaction coordinate set to zero.
Note that even though the saddle point geometry and effec-
tive potential are the same in the two models, the harmonic
frequencies are not in general, since the nonequilibrium sol-
vation model includes coupling between the bath and solute
modes that is neglected in the equilibrium solvation model.
~However, this coupling is not included in the reactant parti-
tion functions since by definition the reactant is at equilib-
rium.! The GLE in Eq. ~18! is the basis for the
Grote-Hynes50 friction correction to TST, which results from
nonequilibrium solvation. In the Grote-Hynes approach the
reaction dynamics are treated classically and the PMF is ap-
proximated by a quadratic expansion about the saddle point.
With these approximations the ratio of partition functions in
Eq. ~42! can be written

QNES
‡ ~T!

QES
‡ ~T!

——→
classical limit

)
m51

N11
vm

NES~sES50!

vm
NES~sNES50!

, ~43!

and this expression is recognized as the Grote-Hynes correc-
tion factor.50,51 In the approach used in this paper we do not
constrain the transition-state dividing surface to be located at
the saddle point; furthermore, we treat the partition functions
quantum mechanically. In addition, quantum mechanical ef-

fects on reaction coordinate motion are also treated by using
the SCT method as described above. The CMS-0 potential in
the nonequilibrium solvation model is similar to Eq.~35!, but
the bound frequencies along the nonequilibrium solvation
path are different from those in the equilibrium solvation
model. Furthermore, the nonequilibrium solvation path can
include curvature coupling from the bath modes that are not
included in the equilibrium solvation model.

IV. CALCULATION DETAILS

All calculations in this study were carried out at 249 K.
Molecular dynamics simulation calculations were performed
on this model system in order to acquire the data necessary
as input for the VTST/MT rate calculation, namely, the po-
tential of mean forceW(r ,R) and the force–force time cor-
relation functions used to define the friction tensorh(t). For
the purposes of this study, the values of the internal coordi-
natesr and R in the reactive complex were kept constant
throughout each MD simulation. This allows the calculation
of average forces on definite ‘‘clamped’’ values of the inter-
nal coordinates.

The molecular dynamics calculations were performed
under very similar conditions to those reported by Azzouz
and Borgis7 and Hammes-Schiffer and Tully.9 The simula-
tions were performed using periodic boundary conditions on
250 methyl chloride molecules and one reactive complex in a
truncated octahedron with a number density ofr
50.012 Å23 at T5249 K, a temperature enforced by the use
of a Nosé thermostat.59 The Lennard-Jones potentials be-
tween the sites~Cl atoms or CH3 groups! of one solvent
molecule and those of another and between sites of solvent
molecules and sites of the solute were spherically truncated
at Rc513.8 Å, and shifted to make them continuous. The
Coulombic interactions between all molecules were also
smoothly and spherically truncated atRc513.8 Å with the
same Steinhauser truncation function,T(Ri j ), used by
Hammes-Schiffer and Tully,9 reproduced here for conve-
nience:

T~Ri j !

5H 1 Ri j <RT

12
~Ri j 2RT!2~3Rc2RT22Ri j !

~Rc2RT!3 RT<Ri j <Rc ,

0 Ri j >Rc

~44!

whereRi j is the distance between the centers of two inter-
acting molecules andRT50.95Rc . The equations of motion
were integrated using a velocity-Verlet algorithm for the
translations and a leapfrog algorithm with Lagrange multi-
plier for the rotations.60 The integration time step was 0.1 fs,
which kept total energy fluctuations to within a relative stan-
dard deviation of approximately 0.01% during the course of
a typical 50 ps run.

Hammes-Schiffer and Tully provided us with their own
calculations of the potential of mean force, and the two sets
of results are in excellent agreement.
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IV.A. Potential of mean force

Using the Hamiltonian in Eq.~9! and the transformation
in Eq. ~17!, the potential of mean force,W(r ,R), which is
defined by Eq.~19!, can be expressed in ther,R coordinates
by

]W

]r
5 K ]H

]r L
r ,R

5
]VHB

]r
1

]WS

]r

1K ]

]r F 1

2I ~r ,R!
S Pu

21
Pf

2

sin2 u D G L
r ,R

5
]VHB

]r
1

]WS

]r
2kBT

] ln I ~r ,R!

]r
~45!

and

]W

]R
5 K ]H

]RL
r ,R

5
]VHB

]R
1

]WS

]R

1K ]

]R
F 1

2I ~r ,R!
S Pu

21
Pf

2

sin2 u D G L
r ,R

5
]VHB

]R
1

]WS

]R
2kBT

] ln I ~r ,R!

]R
, ~46!

where the averaging is done over all variables in the Hamil-
tonian other thanr, R, andZCM . A brief derivation of the last
terms in the second lines of Eqs.~45! and~46! is provided in
Appendix A. If the moment of inertia is approximated by
mABR2, then the last term in Eq.~45! vanishes and the last
term in Eq.~46! reduces to the usual expression 2kBT/R.61

The partial derivatives of the potential of mean force due to
the direct solvent interactions,WS, are given by

]WS

]r
[ K ]VCS

]r L
r ,R

~47!

and

]WS

]R
[ K ]VCS

]R L
r ,R

. ~48!

Integrating Eqs.~45! and ~46!, the potential of mean
force can be written

W~r ,R!5W01VHB~r ,R!1WS~r ,R!

2kBT lnF I ~r ,R!

I ~r 0 ,R0!G , ~49!

whereW0 , r 0 , andR0 are arbitrary constants of integration.
We setR0 equal to 2.70 Å, and we setW0 such thatW(r ,R)
equals 0 at the minimum of the reactant well. The calcula-
tions presented below do not depend explicitly on the con-
stantr 0 , so it is left arbitrary. Operationally, the solvent free
energy,WS, can be calculated from numerical integration of
its derivatives in Eqs.~47! and~48!. In practice, Azzouz and
Borgis7 have found that]VCS/]R is nearly constant in the
range 2.5 Å,R,3.0 Å, so that the solvent free energy in
this range ofR can be accurately approximated by

W~r ,R!5W01VHB~r ,R!1A~r !2B~r !~R2R0!

22kBT ln~R/R0!, ~50!

where we have used the approximationI >mABR2,

A~r !5E
r 0

r

dr8K ]VCS

]r L
r 5r 8,R5R0

~51!

and

B~r !52 K ]VCS

]R L
r ,R5R0

. ~52!

The averages in Eqs.~51! and ~52! were calculated as func-
tions of r by performing individual MD simulations for val-
ues ofr in regularly spaced 0.05 Å intervals ranging from 0.8
to 1.3 Å and from 1.6 to 2.0 Å, all for a fixed value ofR0

52.7 Å. A finer grid of averages, spaced at 0.02–0.03 Å
intervals, was calculated fromr 51.3 to 1.6 Å since the av-
erage force on ther coordinate is sharply peaked in this
interval. The total simulation time at each value ofr was at
least 50 ps; in the ranger 51.30 to 1.50 Å, several indepen-
dent 50 ps calculations were averaged. Figure 1 shows these
average external forces as a function ofr for a fixedR equal
to 2.70 Å.

After these average external forces were calculated,
A(r ) was calculated by evaluating the integral in Eq.~51!
with a trapezoid rule, usingr 050.8 Å andR052.7 Å. Then
smooth functionsf A(r ) and f B(r ) were fitted to the numeri-
cally determined values ofA(r ) andB(r ), where each of the
smooth functions is of the form

f ~r !5a1S ea3~r 2a2!2e2a4~r 2a2!

ea5~r 2a2!1e2a6~r 2a2!D 1a7 , ~53!

FIG. 1. Average external forces~a! 2^]VCS/]r & r ,R and ~b!
2^]VCS/]R& r ,R , as a function ofr for fixed R52.70 Å @see Eqs.~43! and
~44!#. Solid circles are the data obtained from molecular dynamics simula-
tions, and error bars indicate statistical uncertainty at representative points.
The curve in part~b! is a fit to the functional form in Eq.~53!.
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which is chosen solely for its numerical flexibility. The best-
fit parameters for this functional form were found via a
quasi-Newton nonlinear fitting algorithm, and are given in
Table III. Figure 2 shows these functions along with the data
points to which the fit was performed. A contour plot of the
resulting potential and plots of the potential along cuts with
R52.6265 Å ~the value ofR at the saddle point! and R
52.70 Å ~the value of R near the reactant and product
minima! are shown in Fig. 3.

IV.B. Force–force correlation function

The other simulation-produced information needed as in-
put for the rate constant calculation is the friction kernel of
the generalized Langevin equation. This kernel is obtained
from calculations of force–force time correlation functions
as shown in Eq.~20!. Rather than calculate the correlation
functions for the fluctuations in force for the coordinatesz
5(zA ,zB ,zH), as indicated in Eq.~21!, we calculate the cor-
relation functions in the Cartesian coordinates (rA , rB , rH)
then transform back to thez coordinates. To accomplish this,
we first define force vectors in the Cartesian coordinates by
gradients ofH:

Fa52
]H

]ra
52

]VHB

]ra
2

]VCS

]ra
, a5A,B,H, ~54!

where]/]ra is a gradient vector, and the fluctuations in force
are given by

dFa~ t ![Fa~ t !2^Fa& r ,R52
]VCS

]ra
~ t !1 K ]VCS

]ra
L

r ,R

,

a5A,B,H. ~55!

~Note thatVHB is a function of onlyz so that the difference
of the instantaneous and averaged values of its gradients van-
ishes.! The force component fluctuations in thez coordinates,
as shown in Eq.~21!, are then given in terms of the force
vector fluctuations in the Cartesian coordinates by

dFa~ t !5 ẑ"d Fa~ t !, a5A,B,H. ~56!

The 333 block haa8
(r ) (t) of the 939 friction tensor in

the Cartesian coordinates (rA ,rB ,rH) for ra andra8 is given
in terms of the correlation functions between force fluctua-
tions on Cartesian coordinatesra and ra8 by

kBThaa8
~r !

~ t !5^dFa~ t !dFa8~0!& r ,R

5^@Fa~ t !2^Fa&z#@Fa8~0!2^Fa8&z#& r ,R

5^Fa~ t !Fa8~0!& r ,R2^Fa& r ,R^Fa8& r ,R . ~57!

When calculating the correlation functions from a finite, dis-
crete set of force data, the averages in Eq.~57! are carried
out over a slightly different set of data for each value oft.
For a run withNt total time steps of sizeDt, one estimate of
the nth discrete value of the friction tensor is given by

TABLE III. Nonlinear fit parameters.a

A(r ) B(r )

a1 26.250 827 1.929 821
a2 1.452 337 1.465 449 5
a3 9.150 984 6.003 337
a4 9.148 94 10.318 115
a5 8.143 5.663 757
a6 8.799 735 10.561 206
a7 27.814 075 0.903 583

aUnits are such that coordinates in Å yieldA(r ) in units of kcal/mol and
B(r ) in units of kcal mol21 Å21.

FIG. 2. FunctionA(r ) used to fit the potential of mean forceW(r ,R) @see
Eq. ~50!# and obtained by integratinĝ]VCS/]r & r ,R from 0.8 Å to r. Solid
circles are the data obtained from numerical integration of the data points
shown in Fig. 1. The curve is a fit to the functional form in Eq.~53!.

FIG. 3. ~a! Equipotential contours of the potential of mean forceW(r ,R).
Contours~solid curves! are plotted for energies of 0, 4, 8, 12, 16, 20, 24, and
28 kcal/mol. The zero of energy is taken as the minimum of the reactant
well at r 51.01 Å, R52.70 Å. The solid diamonds indicate the locations of
the reactant and product minimum and the saddle point. The dashed curve
depicts the minimum energy path.~b! PotentialW(r ,R) as a function ofr
for R fixed at 2.6265 Å~solid curve!, for R fixed at 2.7 Å~chain curve!, and
along the minimum energy path~dotted curve!.
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where

^Fa& r ,R5
1

Nt
(
n51

Nt

Fa~nDt !. ~59!

A second estimate of this value of the friction tensor is ob-
tained using the last expression in Eq.~57! to give

kBThaa8
~r !

~nDt !5
1

~Nt2n! (
n851

Nt2n

Fa~~n1n8!Dt !Fa8~n8Dt !

2^Fa& r ,R^Fa8& r ,R . ~60!

Comparison of results using Eqs.~58! and ~60! provides a
self-consistency check of the numerical uncertainty in the
computed friction tensors. We found that they agree to within
the numerical errors. The 333 friction tensor in thez coor-
dinates is obtained by transforming each 333 block of the
939 friction tensor in Cartesian coordinates by using Eq.
~56! to get the single component along the A–B bond for
each atom, A, B, and H.

The friction kernel at the saddle point in thez coordi-
nates is fitted with a finite sum of cosines in the same manner
as in our previous work.23,27Each elementhaa8 is expanded
in a finite cosine series:

haa8~ t !' (
L50

NC

hLaa8 cos~vLt !, ~61!

whereNC11 is the number of cosines used in the fit, the
expansion coefficientshLaa8 are given by

hLaa85
2

tC
E

0

tC
cos~vLt !haa8~ t !dt, ~62!

andtC is the cutoff time for the cosine expansion fit. Several
of the components of the friction tensor have significant
long-time decays. Since the cosine expansion method de-
scribed here works best when the function being fitted goes
to zero att5tC , these long time, ‘‘static friction’’ parts of
the friction components are included approximately by in-
cluding the very low frequencyv0 . The final results of the
calculation are not particularly sensitive to the value ofv0 ,
so we have set it equal to 1/8 the value ofv1 in Eq. ~63!.
With this choice forv0 , the frequencies are given by

v05
p

16tC
,

vL5
p

tC
S L2

1

2D , L51,...,NC . ~63!

Sinceh is a symmetric matrix, eachL block of hLaa8 is
also symmetric and thus can be diagonalized

hLaa85 (
a95A,B,H

ULaa9lLa9ULa8a9 , ~64!

wherelLa are the eigenvalues and the corresponding eigen-
vectorsUL are orthonormal. Equation~61! then becomes

haa8~ t !' (
L50

NC

(
a95A,B,H

ULaa9lLa9ULa8a9 cos~vLt !.

~65!

This can be rearranged into a single summation by associat-
ing a single indexj with the dual index (La) and changing
the summation limits appropriately

haa8~ t !' (
j 51

3~NC11!

U j al jU j a8 cos~v j t !. ~66!

Equating this result with Eq.~23! with N53(NC11) deter-
mines coupling constants of the GLE Hamiltonian, Eq.~22!,
on which the VTST calculations are based, namely,

Cj aa85
ULaa8

vL
AlLa8

mb
. ~67!

By using this procedure, each of theNC11 frequencies in
Eq. ~61! is coupled separately to each degree of freedom in
the reactive complex in Eq.~18!.

The cutoff time for the fit,tC , is chosen so that all of the
elements of the friction function matrix are close to zero at
tC . The results are not overly sensitive totC , varying by
only 4% whentC is varied from 1.5 to 2.5 ps. For the final
calculations we settC52.25 ps. As was the case in our pre-
vious work,27 usingNC55 provides a fit of adequate quality
over the short time scale relevant to the reaction dynamics. A
comparison between the elements of the friction matrix and
the fits with NC55 ~i.e., with six cosine terms! is given in
Fig. 4. The recurrences seen in Fig. 4 are a consequence of
the periodicity inherent in Eq.~61!. The recurrence time is
determined by the choice oftC . With our choice oftC , the
nonphysical recurrence in the fit occurs on a time scale too
long to significantly influence the calculated rate constants

IV.C. VTSTÕMT calculation

Once the simulation calculations have been completed,
the processed data are used as input for the semiclassical
VTST/MT calculations. Specifically, the minimum energy
path~MEP! is determined by following the negative gradient
of the potential surface~in mass-scaled coordinates!, and
the signed reaction-path distance,s, is calculated by integrat-
ing the arc length along this path in both the reactant~nega-
tive s! and product~positives! directions. The former is done
using an Euler integrator62 with a step size of 2.5
31024 a0 . Data needed for subsequent calculations~e.g.,
potential, normal mode frequencies, etc.! were stored at in-
tervals of 2.531023 a0 along the path. Unlike the model
system used previously,27 the potential energy surface used
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here has a minimum in each of the reactant and product
channels. As the reaction path approaches either of these
wells, the magnitude of the gradient gets smaller, leading to
instability in the Euler integration method. To avoid this, an
arbitrarily chosen cutoff in the magnitude of the gradient is
used to switch from an Euler integration method to a multi-
dimensional Newton–Raphson search for the location of the
nearby well minimum. The MEP is then connected to the
well bottom. Normal modes and harmonic frequencies were
calculated in directions orthogonal to the MEP at each stor-
age interval along the MEP.

The potential, frequencies, and CMS-0 potential along
the MEP are shown in Fig. 5 as a function of the reaction
coordinates. The CMS-0 potential for the ES model is de-
fined by Eq.~35!, and that for the NES model is defined by
the same equation, except thatVESPis replaced byVNESPand
the coupled vibrational frequencies along the NESP are used
instead of the uncoupled ones along the ESP. Note that the
CMS-0 potential is the effective potential for tunneling in
liquid-phase reactions,10 and it is generalization of the vibra-
tionally adiabatic ground-state potential20,54 that is used for
gas-phase reactions. Although the frequencies along the ESP

and NESP are generally different, in this case we see that
they are approximately equal, indicating small coupling be-
tween the solute and solvent. In addition to the real frequen-
cies shown in Fig. 5, it is interesting to note the imaginary
frequencies at the saddle point. These are 2248i cm21 for the
ES model and 2246i cm21 for the NES model. Replacing the
proton by a deuteron changes these values to 1597i and
1594i cm21, respectively. These are rather large imaginary
frequencies, which indicates a narrow barrier.

V. RESULTS AND DISCUSSION

Computed rate constants for transfer of a proton and
deuteron are reported in Table IV. In addition to the
VTST/MT results, we present calculations from approximate
TST approaches that treat the two dimensions in the equilib-
rium solvation model at different levels of theory: harmonic
versus anharmonic and classical versus quantum mechanical.
These latter calculations allow us to assess the importance of
anharmonicity and the validity of a mixed quantum-classical
treatment. Expressions forkCACA

TST , kCACH
TST , kCHCH

TST , kCAQH
TST ,

kCHQH
TST , kQHQH

TST , kCAQH
TST/PT, kCHQH

TST/PT, kQHQH
TST/PT, kCAQH

TST/UST, kCHQH
TST/UST,

and kQHQH
TST/UST are presented in Appendix B. The notation

kwxyz
TST/t indicates the treatment of theR coordinate~wx! and r

coordinate~yz! and tunneling correction factor~t!. Subscripts
w and y can be C or Q to indicate classical or quantum
treatment, andx and z can be A or H to indicate an anhar-
monic or harmonic treatment. The superscriptt can be blank
to indicate no tunneling contribution, PT to indicate tunnel-
ing is approximated through 1-D barriers for eachR using a
parabolic approximation to the barrier, or UST to indicate
that tunneling is treated by a uniform semiclassical tunneling
approximation based on a 1-D cut throughW(r ,R). The first
12 rows in Table IV are the results of these TST approxima-
tions as defined in Appendix B. The next three rows are
results of the semiclassical VTST and VTST/MT calcula-
tions for the equilibrium solvation~ES! model, and the final
three rows are results of the semiclassical VTST and
VTST/MT calculations for the nonequilibrium solvation
~NES! model. The bottom row is our most complete calcu-
lations, and all the other rows show the effects of various
further approximations.

Comparison of the rate constants in the first 12 rows of
Table IV allows us to assess the importance of quantization
and anharmonicity on the computed rate constants. The
purely classical rate constants~rows 1–3! all agree to within
a few percent indicating that a harmonic treatment of the
classical rate constant is adequate. Rows 4 and 5 show that
quantization of ther degree of freedom~corresponding to the
light H-atom motion! increases the rate constant by a factor
of 200, whereas comparisons of rows 5 and 6 show that
quantization of theR degree of freedom~corresponding to
the heavier AB relative motion! has a much smaller effect on
the rate constant. The reasonably good agreement between
the mixed classical-quantum rate constant,kCAQH

TST , and the
quantum harmonic one,kQHQH

TST , validates~within 35%–40%!
the mixed treatment of the rate constant when tunneling is
excluded. For the system studied here the quantum harmonic
rate constantkQHQH

TST is essentially equivalent to the conven-

FIG. 4. Elements of the friction tensor in thez coordinate system as a
function of timet: ~a! hAA , ~b! hBB , ~c! hHH , ~d! hAB , ~e! hAH , ~f! hBH .
Solid curves are the results of molecular dynamics simulations of the force–
force correlation functions, and dashed curves are the fits of the friction
tensors to the cosine expansion in Eq.~61!. Note that the scale of part~b! is
a factor of 5 smaller than that for parts~a!, ~c!, and~e!, and that the scale of
parts~d! and ~f! is a factor of 10 smaller than that for part~b!.
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tional quantized harmonic TST expression~see Appendix B!,
and comparison of rows 6 and 13 shows it agrees quite well
with the quantized CVT rate constant for the equilibrium
solvation model,kES

CVT.
Next consider the inclusion of tunneling. Tunneling of

the light H-atom is quite important for this system, and in
fact the parabolic tunneling result,kCAQH

TST/PT, in row 7 is 80

times larger than the rate constant neglecting tunneling,
kCAQH

TST in row 4. The rate constantkCAQH
TST/PT in Eq. ~A23! is the

closest expression to the ‘‘corrected’’ TST expression of
Azzouz and Borgis.7 The large difference in computed rate
constants, 7.73107 for Azzouz and Borgis compared to 1.2
31011 computed here~row 7!, is a consequence of different
expressions for the probability densitiesg(R). The close

FIG. 5. Frequencies and energies as a function of dis-
tances along the minimum energy path. Parts~a! and
~b! are for the reaction with no coupling to the solvent
friction ~equilibrium solvation!, and parts~c! and ~d!
are for the reaction with friction~nonequilibrium solva-
tion!. The frequencies displayed in parts~a! and~c! are
for the normal modes orthogonal to the minimum en-
ergy path. The top most frequency is for the mode that
corresponds to AB vibration in the solute. The lower
frequencies are six sets of three frequencies, as dis-
cussed below Eq.~63!, which are degenerate in the
equilibrium solvation model. The solid and dashed
curves in parts~b! and~d! are for the potential of mean
force W(r ,R) and CMS-0 potential, respectively. The
zero of energy for these curves is taken to be the energy
at the reactant minimum.

TABLE IV. Approximate transition state theory and semiclassical VTST rate constantskb
a ~units of 1010 s21!

and H/D kinetic isotope effect~H/D! for the proton and deuteron transfer reactions in the equilibrium and
nonequilibrium solvation approximations.a T5249 K.

Row a b H D H/D KIE

1 TST CACA 7.531024 5.331024 1.431024

2 TST CACH 7.631024 5.431024 1.431024

3 TST CHCH 7.831024 5.531024 1.431024

4 TST CAQH 0.15 0.015 10.
5 TST CHQH 0.16 0.015 10.
6 TST QHQH 0.11 0.010 10.
7 TST/PT CAQH 12 0.10 120
8 TST/PT CHQH 7.6 0.096 80.
9 TST/PT QHQH 5.1 0.064 80.
10 TST/UST CAQH 240 1.8 130
11 TST/UST CHQH 82 1.1 74
12 TST/UST QHQH 55 0.74 74
13 CVT ES 0.11 0.010 10.
14b CVT/ZCT ES 11 0.53 21
15b CVT/SCT ES 16 1.0 16
16 CVT NES 0.10 0.010 10.
17b CVT/ZCT NES 8.3 0.41 20.
18b CVT/SCT NES 13 0.85 15

aThe first 12 rows are TST results for equilibrium solvation~ES! and use the notationkwxyz
TST/t explained in the first

paragraph of Sec. V. The last six rows are CVT and CVT/t results in the equilibrium solvation and nonequi-
librium solvation approximations and havewxyz5QHQH, with t being ZCT or SCT.

bVTST/MT calculations.
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agreement of our results for the mixed classical-quantum rate
constantkCAQH

TST with the quantized CVT results~i.e., kES
CVT!

provides evidence that we have used a consistent probability
density in the mixed expression, Eq.~A23!, since the same
probability density is appropriate for bothkCAQH

TST andkCAQH
TST/PT.

Next we consider the effect of going beyond the parabolic
approximation but retaining a one-dimensional model of tun-
neling; this yieldskCAQH

TST/UST in row 10, which is based on a
semiclassical procedure employing the conservation-of-
vibrational-energy~see Appendix B! approximation. This
method greatly enhances the tunneling and gives a rate con-
stant about a factor of 20 larger thankCAQH

TST/PT; this result il-
lustrates the danger of parabolic approximations.

ComparingkCAQH
TST ~row 4! andkCHQH

TST ~row 5! shows that
making the harmonic approximation on theR motion when
the R coordinate is treated classically andr is quantized but
tunneling is neglected has little effect on the computed rate
constant. However, the effects are larger when tunneling is
included. For example, comparekCAQH

TST/PT with kCHQH
TST/PT ~row 7

vs row 8! or kCAQH
TST/UST with kCHQH

TST/UST ~row 10 vs row 11!. The
CAQH method averages the tunneling correction factors
over R and the shape of the effective potential inr changes
for different values ofR. The narrower potentials inr at
largerR values enhance the tunneling over the value of the
tunneling factor at the saddle point. In the CHQH methods
the effective quadratic potential results in the effectiver po-
tential being the same for allR values and equal to its value
at the saddle point.

Next we compare the approximate QHQH methods with
tunneling to the CVT/MT results for the equilibrium solva-
tion model. The CVT/MT method includes multidimensional
tunneling effects in that they are based on the zero-order
canonical mean shape approximation and the SCT method
includes a further multidimensional effect, namely corner-
cutting tunneling, because it employs the small-curvature ap-
proximation to the effective mass. The best approximation to
the equilibrium solvation rate constant is given bykES

CVT/SCT

~row 15!, which includes the effect of reaction-path curva-
ture on the tunneling; in particular, multidimensional tunnel-
ing is treated by the small-curvature tunneling approximation
by using Eq.~36!. Comparison with the rate constant that
neglects reaction-path curvature,kES

CVT/ZCT ~row 14!, indicates
that the multidimensional ‘‘corner-cutting’’ effect enhances
the rate constant by about 50%. The CVT/SCT results for the
equilibrium solvation model are about 33% higher than the
kCAQH

TST/PT results and a factor of 15 smaller than thekCAQH
TST/UST

results. The better agreement withkCAQH
TST/PTfor the H isotope is

fortuitous sincekCAQH
TST/PT neglects reaction-path curvature and

tunnels through the bare potential of mean force, whereas the
CVT/SCT results include the effects of reaction-path curva-
ture and tunneling through the zero-order canonical mean-
shape barrier. Furthermore,kCAQH

TST/PT and kES
CVT/SCT differ by

over a factor of 5 for the D isotope. Comparison of the mul-
tidimensional VTST results and those from ‘‘corrected’’ TST
based on one-dimensional cuts for fixedR show that the
latter approach is not adequate for treating the dynamics of
this type of reaction for which tunneling is important.

The large-curvature ground-state tunneling~LCT!
method57,63 is often the most appropriate tunneling method

for systems that display large reaction-path curvature such as
a light-atom transfer reaction between two heavy moieties,
which is studied here. In this method, the tunneling path for
a given tunneling energy is taken to be a straight-line path
between turning points along the MEP of the CMS-0 poten-
tial. For reactions with large reaction-path curvature, these
paths may exhibit much greater corner cutting than the im-
plicit paths of the SCT approximation and thus greatly re-
duce the tunneling distance, and thereby enhance tunneling.
In the present case, the region of the potential where tunnel-
ing is important does not have large reaction-path curvature,
even though the system does exhibit large curvature for some
parts of the MEP. Reaction-path curvature is defined by
k(s)5u]2x/]s2u, wherex(s) is the vector of mass-weighted
coordinates along the MEP. For straight-line paths,k(s) is
zero. First note in Fig. 3~a! that the minimum energy path is
a nearly straight line that is parallel to ther axis from about
r 51.05 to 1.55 Å. In Fig. 6 we have plottedk(s) for the
proton transfer reaction in the equilibrium solvation model.
The curvature is quite large nears560.2– 0.3 Å, which cor-
responds to values ofr in Fig. 3~a! near the potential minima.
The zero-order canonical mean shape potential for proton
transfer is also plotted in Fig. 6, and its peak and most of the
barrier inVCMS-0 lies between the peaks ink(s). The hori-
zontal line in Fig. 6 is the value of the energy for the zero-
point motion in the reactant well, which is the lowest energy
for which tunneling occurs. Although we have not performed
LCT calculations in the present study, it would be interesting
to do so.

Comparison of the rate constants calculated for the non-
equilibrium solvation model with those for the equilibrium
solvation model indicates that the effects of nonequilibrium
solvation are small. In the classical limit the ratio of the
nonequilibrium solvation and equilibrium solvation conven-
tional TST rate constants is the classical Grote-Hynes factor.

FIG. 6. Reaction path curvaturek(s) ~solid line! and CMS-0 potential
~dashed line! as a function of distances along the minimum energy path for
the proton transfer reaction in the equilibrium solvation approximation. The
horizontal line segment indicates the zero-point energy level in reactants,
which is the lowest energy for which tunneling can occur.
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For the friction model computed here, this factor is 0.99. The
size of the Grote-Hynes factor is influenced by the magni-
tude and time scale of the friction and also by the size of the
imaginary frequency at the saddle point. For the system stud-
ied here the largest components of the friction tensor, AA,
HH, and AH in Fig. 4, can be fit to the Gaussian functional
form

h~ t !'h~1!~0!expF2
1

2 S t

s~1!D 2G
1h~2!~0!expF2

1

2 S t

s~2!D 2G , ~68!

where the time scaless (1) ands (2) are about 100 and 700 fs.
The time scale for barrier crossing, which is determined by
the imaginary frequencyvb ~2248i cm21 for H! at the saddle
point, is about 2 fs and is therefore much faster than the
frictional time scale. In a one-dimensional classical barrier-
crossing model the Grote-Hynes correction factor is given
by50

~kGH!21
kGH

vb
E

0

`

dt exp~2kGHuvbut !
h~ t !

m
2150, ~69!

wherem is the effective mass for the one-dimensional mo-
tion. For a single Gaussian form forh(t), values ofs (1)

5100 fs andh (1)512 kcal/mol Å22 reproduce the Grote-
Hynes factor in the multidimensional model. Using this
model for the friction in Eq.~69!, the exponential function in
the integral damps out much more quickly than the friction,
except for very small values ofkGH. For the magnitude of
the friction and imaginary frequency used in the model,kGH

is close to unity. In this case,h(t) is a weakly varying func-
tion of time over the time period for which the exponential in
Eq. ~69! damps out, and therefore the time scale of the fric-
tion is not an important factor in determiningkGH. In fact,
kGH is a monotonically decreasing function of the time scale
s, and the time scale is so large that further increase ofs (1)

has negligible effect onkGH. We have computed sensitivities
of kGH to changes in the barrier frequency, time scale, and
magnitude of the friction for this model ~e.g.,
] ln kGH/] ln s(1)!. The sensitivity ofkGH to s (1) is about
2231025, while the sensitivities tovb and h (1) are 0.03
and20.01, respectively. Thus, changing the time scale of the
friction has little affect onkGH. On the other hand, the
Grote-Hynes factor is decreased to a value below 0.6 when
the barrier frequency is lowered by a factor of 5~from
2228i cm21 to 450i cm21!. The effect of increasing the mag-
nitude of the friction is less; increasingh (1) by a factor of 5
decreaseskGH to only 0.92. The fact that a Grote-Hynes
factor near one-half can be obtained by decreasingvb , but
with no change to the friction, indicates that it is not a small
magnitude of the friction that is responsible for the value of
the Grote-Hynes factor being near unity. Instead, it is the
large imaginary frequency that reduces the effect of nonequi-
librium solvation in the classical rate constants. The effect of
quantizing the bound degrees of freedom does not quantita-
tively change the effects of nonequilibrium solvation, as the
ratio of the quantized CVT resultskNES

CVT/kES
CVT is also 0.99. In

our previous work we found that friction can have a larger

effect on quantum mechanical tunneling.24,26This is also true
in the present case, where the ratiokNES

CVT/SCT/kES
CVT/SCT is 0.81.

Our best estimate of the rate constant for this system is
obtained by the CVT/SCT method for the nonequilibrium
solvation model~row 18 of Table IV!. The H/D kinetic iso-
tope effect ~KIE! from the semiclassical VTST and
VTST/MT calculations ranges from 10 to 21, with our most
complete calculation yielding 15. As noted above, tunneling
contributes significantly to the rate constant for this light
atom transfer reaction, and the tunneling correction factor is
smaller for the heavier D atom; as a consequence the KIE
increases from a value of 10 when tunneling is neglected to
a value of 15 or more when it is included. The effect of
reaction-path curvature~included in the SCT tunneling
method but not the ZCT method! increases the rate constant
for deuteron transfer more than for proton transfer~even
though the SCT tunneling factor is still larger for the proton
transfer!, so that the KIE for the CVT/SCT method is about
15 while the KIE for the CVT/ZCT method is about 20. The
KIEs obtained from the mixed classical-quantum methods
including tunneling, i.e.,kCAQH

TST/PT and kCAQH
TST/UST overestimate

the kinetic isotope effect by factors of 8.0 and 8.7, respec-
tively.

Table V compares rate constants computed previously by
other methods7–9,13,14 to those by the CVT/SCT method in
the nonequilibrium solvation approximation. First note that
the rate constants vary by over two orders of magnitude for
the different methods. The systematic comparison of 18 com-
binations of approximations in Table IV, as discussed above,
will help us to place these differences in perspective.

First consider the ‘‘corrected’’ classical TST results,7

which are a factor of 1700 lower than the NES-CVT/SCT
results. As discussed above, this appears to result from an
incorrect treatment of the probability densityg(R) in Eq.
~A5!.

Next consider rows 2, 3, and 7 of Table V. The surface
hopping ~MDQT! results of Hammes-Schiffer and Tully9

agree with our CVT/SCT results within 31% for H transfer,
but this good agreement is most likely fortuitous because
agreement is much worse~more than a factor of 4 deviation!
for D. The curve-crossing TST7 and path-integral TST7,8 re-
sults differ even more from the NES-CVT/SCT curve results,
in particular by factors ranging from 12 to 50. The curve-
crossing TST, path-integral TST, and surface-hopping
method all treat the proton quantum mechanically and the
other coordinates classically. Our analysis above of mixed
~CAQH! classical-quantum models of the rate constant for
the equilibrium solvation model shows that this type of
mixed approach~i.e., treatingr quantum mechanically andR
classically! is not appropriate for reactions in which tunnel-
ing is important. In particular, the mixed classical-quantum
approach with tunneling included by a semiclassical ap-
proach for the actual potential of mean force~row 10 of
Table IV! is over an order of magnitude larger than our more
accurate CVT/SCT method, whereas introducing further ap-
proximations for the tunneling~as in rows 7–9 of Table IV!
can convert this to an underestimate. Previous comparisons
of VTST/MT and PI-QTST results for a model reaction in a
liquid showed that they agreed well.24 Thus the severe un-
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derestimate afforded by PI-QTST in Table V is surprising.
The surface hopping approach agrees better with the

CVT/SCT method, and the results may be understood in part
from the results in Table IV. Table IV show that
kCAQH

TST /kQHQH
TST is 1.4 for H and 1.5 for D. Thus we expect that

if the only approximation is to use classical mechanics for
the heavy-particle solute coordinate, one might see a devia-
tion from a QHQH result like the NES-CVT/SCT one of
about this magnitude. Table V show thatkMDQT /kNES

CVT/SCT is
0.6 for H and 2.4 for D, within about a factor of 2 of the
expected deviation. This comparison is complicated by the
lack of an explicit reactant partition function in the surface
hopping approach. The source of the disagreement might,
however, be due to tentative quantum transitions in the sur-
face hopping method that are ‘‘frustrated’’~and therefore do
not occur! because the surface hops that are required for
self-consistency in this method are sometimes forbidden by
the conservation of total energy or the requirement that the
momentum change be in the nonadiabatic coupling
direction.64

The quantum Kramers approach13,14 ~rows 4–6 of Table
IV ! treats all coordinates in an effective GLE Hamiltonian on
an equal footing and in this regard is similar to our approach.
However, the GLE Hamiltonian used by Antoniou and
Schwartz is different than the one we use. Our Hamiltonian
includes three coordinates for the solute system plus bath
modes representing the solvent friction. The potential in the
absence of friction is the potential of mean force, which we
calculate explicitly from molecular dynamics simulations.
Antoniou and Schwartz treat the solute system as a single
reaction coordinate that is coupled to bath modes represent-
ing the solvent friction. They have used two different func-
tions for the potential in the absence of friction: the bare
gas-phase potential and the gas-phase potential plus the di-
agonal terms arising from the friction@e.g., the terms that go
like (Cj aza)2 in Eq. ~22!#. Their computed rate constants
using the bare gas-phase potential agree better with the re-

sults of Azzouz and Borgis, when the coupling between the
solute and bath is linear. Interestingly, they find that replac-
ing the linear coupling with nonlinear coupling significantly
changes the rate constant. This is contrary to our finding that
solvent friction has a small effect on the computed rate con-
stant.

The H/D kinetic isotope effects also show a large varia-
tion with the different methods of calculation ranging from
3.9 to 83. The largest values of the KIEs~40–83! are remi-
niscent of the large KIEs seen in the ‘‘corrected’’ TST calcu-
lations in which tunneling is inconsistently applied~e.g.,
rows 7–12 of Table IV!. The relatively low value of the KIE
predict by the MDQT method, 3.9, is the lowest and it is
inconsistent with the VTST calculations, even those without
tunneling corrections, which predict a value of 10. Our best
estimate of the KIE with the NES-CVT/SCT method is 15.
Kinetic isotope effects this large are generally cited as an
indication of quantum mechanical tunneling.65 In our previ-
ous studies of gas-phase reactions with barriers comparable
to the one in the current model and for light-atom transfer,
we found that VTST/MT gives good estimates of accurate
H/D KIEs.22,66,67 For one system with a comparable mass
combination and barrier height~collinear Cl1HCl! the accu-
rate H/D KIE was only 8 at 250 K.66

VI. CONCLUSIONS

We have presented a systematic approach to applying
semiclassical variational transition state theory with multidi-
mensional tunneling~VTST/MT! to proton transfer reactions
in polar solution, and we have illustrated the approach by
applying it to a model system that is of especially high in-
terest because it has been widely studied by previous work-
ers. In the VTST/MT approach as implemented here, the
effects of the solvent on the proton transfer reaction are in-
cluded using a generalized Langevin equation~GLE!. The
potential of mean force and solvent friction, which enter into

TABLE V. Previously calculated rate constants (1010 s21) and KIEs compared tokNES
CVT/SCT from the present

work for the proton and deuteron transfer reactions.

H D H/D KIE

‘‘Corrected’’ classical TSTa 0.0077
Curve-crossing TSTb 0.78 0.017 46
PI-QTSTc 1.1 0.026 40
QK ~MFP!d 0.065
QK ~gas-phaseV, linear coupling!e 0.99 0.012 83
QK ~gas-phaseV, nonlinear coupling!f 8.6 0.23 37
MDQTg 7.8 2.0 3.9
kNES

CVT/SCT 13 0.85 15

aAverage of one-dimensional TST rate constants for fixedR values~Azzouz and Borgis, Ref. 7!.
bLandau–Zener curve-crossing TST method~Azzouz and Borgis, Ref. 7!.
cCalculation by Azzouz and Borgis~Refs. 7 and 8! using the centroid path-integral quantum TST method of
Voth and co-workers~Refs. 5 and 32!.

dQuantum Kramers approach using effective ‘‘mean-field’’ potential and linear coupling to bath~Antoniou and
Schwartz, Ref. 13!.

eQuantum Kramers approach using gas-phase potential and linear coupling to bath~Antoniou and Schwartz,
Ref. 13!.

fQuantum Kramers approach using gas-phase potential and nonlinear coupling to bath~Antoniou and Schwartz,
Ref. 14!.

gTrajectory surface hopping approach~molecular dynamics with quantum transitions, Hammes-Schiffer and
Tully, Ref. 9!.
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the GLE, are obtained from molecular dynamics simulations
of the explicit solvent molecules interacting with the reactive
solute system. The GLE dynamics are approximated by an
effective Hamiltonian, which includes explicit bath modes
that are treated as harmonic oscillators coupled to the solute
coordinates. Then the VTST/MT method, including quanti-
zation of bound vibrational modes and multidimensional
semiclassical tunneling corrections, is applied to the effective
GLE Hamiltonian.

Rate constants calculated with and without solvent fric-
tion and with and without inclusion of tunneling allow us to
assess the importance of these effects. It is not surprising that
quantum mechanical tunneling is important for this light-
atom transfer reaction. The rate constants are enhanced by as
much as two orders of magnitude by including tunneling
effects. It is somewhat surprising that the effect of solvent
friction is very small for this reaction that involves charge
transfer in a polar solvent. An analysis of the effect of non-
equilibrium solvation indicates that the narrowness~reflected
in the large imaginary frequency, 2248i cm21 for H! of the
potential barrier at the saddle point leads to poor coupling
between the dynamics of the solvent bath and the proton
transfer.

Previous calculations on the model problem studied here
have exhibited a wide variation in the rate constants calcu-
lated by different theoretical approaches. Also, the previous
methods have predicted an H/D kinetic isotope effect~KIE!
that ranges from about 4 to 83. Our most reliable estimate of
the H/D KIE is 15. The wide variation of computed rate
constants and KIEs with different methods is an indication of
the difficulty of accurately computing rate constants for re-
actions in condensed phases when quantum mechanical ef-
fects are important. Accurate benchmark calculations are
more difficult to perform in this case, so we rely on compari-
sons of the results of approximate methods to gain insight
into the reaction dynamics and applicability of different ap-
proximation to the system. By calculating the rate constant
with a systematic sequence of approximations, we have clari-
fied a number of the factors that help explain the differences
between the various approximations in the literature. Never-
theless, there is opportunity for further studies to understand
even better the sources of the differences between the calcu-
lated results for different methods.
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APPENDIX A: DERIVATION OF MEAN FORCE
EXPRESSIONS †EQS. „45… AND „46…‡

We define the rotational kinetic energy operatorTrot by

Trot5
1

2I ~r ,R!
S pu

21
pf

2

sin2 u D . ~A1!

Then the third term on the right hand side of the first line of
Eq. ~45! is just

K ]

]r F 1

2I ~r ,R!
S Pu

21
Pf

2

sin2 u D G L
r ,R

5 K ]

]r
TrotL

r ,R

. ~A2!

The onlyr andR dependence inTrot is due toI (r ,R), so that
the derivative ofTrot with respect tor can be rewritten

]

]r
Trot5S pu

21
pf

2

sin2 u D S ]

]r F 1

2I ~r ,R!G D5S 2
] ln I

]r DTrot .

~A3!

Substituting Eq.~A3! into ~A2! we obtain

K ]

]r F 1

2I ~r ,R!
S Pu

21
Pf

2

sin2 u D G L
r ,R

52
] ln I

]r
^Trot& r ,R

52kBT
] ln I

]r
, ~A4!

where] ln I/]r is just a constant in the averages in Eq.~A2!
sinceI (r ,R) depends only on the coordinatesr andR and not
on any other coordinates in the system. We have used the
equipartition of energy to givêTrot&52kBT in this expres-
sion. Similar arguments can be made to evaluate the third
term on the right hand side of the first line of Eq.~46!:

K ]

]R F 1

2I ~r ,R!
S Pu

21
Pf

2

sin2 u D G L
r ,R

52
] ln I

]R
^Trot& r ,R

52kBT
] ln I

]R
. ~A5!

APPENDIX B: APPROXIMATE TWO-DIMENSIONAL
TRANSITION-STATE THEORY APPROACHES

In the equilibrium solvation approximation the classical
TST rate constantkC

TST is given by68

QC
R~T!kC

TST~T!5
1

~2p\!2 E dPRE dPrE dRE dr

3exp~2HES/kBT!d~Z!Żu~ Ż!, ~B1!

where the equilibrium solvation Hamiltonian is given by

HES5
1

2
~Pr ,PR!m21S Pr

PR
D1W~r ,R! ~B2!

in which d(x) is the Dirac delta function,u(x) is the Heavi-
side function,Z is a function of coordinatesr andR such that

8476 J. Chem. Phys., Vol. 115, No. 18, 8 November 2001 McRae et al.



Z(r ,R)50 defines the transition-state dividing surface, and
QC

R(T) is the classical reactant partition function, which is
discussed below. We choose the dividing surface by

Z~r ,R!5r 2r b~R! ~B3!

and r b(R) is the location of the maximum inW(r ,R) for
fixed value ofR. Note that the choice of dividing surface in
Eq. ~B3! is different than that assumed in conventional TST.
In conventional TST the dividing surface is chosen to be
perpendicular to the minimum-energy isoinertial reaction
path at the saddle point, and for the two-dimensional system
studied here, the conventional dividing surface corresponds
to the bound normal mode coordinate at the saddle point.
The normal mode will depend on the masses of the system,
whereas the definition in Eq.~B3! does not depend upon the
masses, so they will not be the same in general. However, the
normal modes at the saddle point are almost purer and R
motion for the system studied here, so for the present ex-
ample, TST based on the conventional dividing surface and
TST based on Eq.~B3! agree to within a couple of percent
for all cases where we compared them.

For the choice of dividing surface in Eq.~B3!, the ex-
pression forkC

TST(T) in Eq. ~B1! can be reduced to a one-
dimensional integral overR

kC
TST~T!5E dRg~R!kC

TST,1D~R,T!. ~B4!

The classical one-dimensional TST rate constant for a fixed
value ofR is given by

kC
TST,1D~R,T!5

kBT

hQr~R,T!
exp@2Wb~R!/kBT#, ~B5!

where the functionQr(R,T) is the reactant partition function
in the one-dimensional potential~as a function ofr! at
fixed R,

Wb~R!5W@r b~R!,R# ~B6!

is the value of the potential of mean force at its local maxi-
mum for fixedR, and the equilibrium probability density inR
is defined by

g~R!5
Qr~R,T!

hQC
R~T!

@2pkBT det~m!#1/2

3Um21/2"S 1
2drb /dRDU. ~B7!

Expression of the TST rate constant as an integral of
one-dimensional rate constants as expressed in Eq.~B4! is
similar to the ‘‘corrected’’ classical theory presented by
Azzouz and Borgis.7 In the previous work the weighting fac-
tor was defined as the ‘‘probability distribution function for
R in the reactant region,r ,r b(R), ’’ but no explicit expres-
sion was provided. The ratioQr(R,T)/QC

R(T) in our expres-
sion for the probability density is the probability density inR
in the reactant region. The remaining terms in Eq.~B7! result
from the integration over the momentum integrals in Eq.
~B1! and combined with the ratioQr(R,T)/QC

R(T) give the
correct weighting of the one-dimensional rate constants for
eachR in the classical TST expression.

Azzouz and Borgis modify the one-dimensional classical
TST rate constant to account for quantization of the bound
vibration in the r coordinates for reactants and to include
tunneling through the one-dimensional barriers. This leads to
a mixed quantum-classical expression in which ther degree
of freedom is treated quantum mechanically whileR is
treated by a classical average. This previous approach is one
motivation for us to examine the effects of quantization on
the computed rate constants and the validity of mixed
quantum-classical expressions for the rate constants. In addi-
tion, we wish to examine the importance of anharmonicity,
which we can study explicitly in the classical calculations.
The remainder of this appendix presents different approxi-
mate TST rate constants based upon the TST expression in
Eq. ~B4!.

A consistent treatment of quantum mechanical effects in
the TST rate constant requires including effects of quantiza-
tion in the probability densityg(R) as well as the one-
dimensional rates constants. For consistency, if effects of
quantization are included ing(R), they should also be in-
cluded in the reactant partition function. The classical reac-
tant partition function for the dividing surface in Eq.~B3! is
given by

QC
R~T!5

1

~2p\!2 E dPRE dPrE dRE dr

3exp~2HES/kBT!u~2Z!

5QCACA
R 5

kBT~detm!1/2

2p\2 E dRE dr

3exp@2W~r ,R!/kBT#u@r b~R!2r #, ~B8!

where we have introduced the notationQCACA
R to denote that

both ther andR coordinates are being treated classically~C!
and anharmonically~A!. If the r potential for each fixedR is
treated as a harmonic oscillator we approximateQCACA

R by

QCACH
R ~T!5FkBTmB~mA1mH!

2p\2M G1/2E dR

3exp@2W0~R!/kBT#QCH
r ~R,T!, ~B9!

whereW0(R)[W@r 0(R),R#, r 0(R) is the reactant minimum
in W(r ,R) for fixed value ofR, the reactantR-dependent
frequency is defined by

v r~R!5F 1

mAH

]2W~r ,R!

]r 2 U
r 5r 0~R!

G ~B10!

with mAH5mAmH /(mA1mH), and

QCH
r ~R,T!5

kBT

\v r~R!
. ~B11!

Replacing the classical partition given by Eq.~B11! by the
quantized one in Eq.~B9! results in

QCAQH
R ~T!5FkBTmB~mA1mH!

2p\2M G1/2E dR

3exp@2W0~R!/kBT#QQH~R,T!
r , ~B12!
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where

QQH
r ~R,T!5

1

2 sinh@\v r~R!/2kBT#
. ~B13!

Treating both ther and R degrees of freedom as harmonic
oscillators, the classical partition function is approximated
by

QCHCH
R ~T!5

kBT

\v1
R

kBT

\v2
R , ~B14!

wherev1
R andv2

R are the harmonic frequencies of the reac-
tant well; mode 1 is of low frequency and consists largely of
R motion, and mode 2 is of high frequency and consists
largely of r motion. The mixed classical-quantum and quan-
tum partition functions in the harmonic approximation are
given by

QCHQH
R ~T!5

kBT

\v1
R

1

2 sinh~\v2
R/2kBT!

~B15!

and

QQHQH
R ~T!5

1

2 sinh~\v1
R/2kBT!

1

2 sinh~\v2
R/2kBT!

, ~B16!

The different approximations to the reactant partition func-
tion are used in Eq.~B7! along with the appropriate expres-
sion for Qr(R,T) to define the appropriate probability den-
sity. SinceQr(R,T) cancels out in the product ofg(R) and
kC

TST,1D(R,T), its definition does not change the value of
kC

TST(T), so we do not specify the explicit expression for
Qr(R,T).

We now define approximate TST rate constants that are
consistent with the definitions of the reactant partition func-
tion given in Eqs.~B8!, ~B9!, ~B14!, ~B15!, and ~B16!. A
purely classical expression is given by

kCxCz
TST ~T!5E dRgCxCz~R!kC

TST,1D~R,T!, ~B17!

wherex and z may be H or A, andgCxCz(R) indicates that
QCxCz

R is used for the reactant partition function in Eq.~B7!.
Mixed quantum-classical expressions,kCAQH

TST (T) and
kCHQH

TST (T), excluding tunneling, are given by similar expres-
sions, but with gCxCz(R) is replaced bygCAQH(R) and
gCHQH(R), respectively. If the potential is treated harmoni-
cally about the saddle point and reactant, the classical rate
constant reduces to

kCHCH
TST ~T!5

kBT

hQCHCH
R ~T!

kBT

\vR
‡ exp~2W‡/kBT!, ~B18!

whereW‡ is the value of the potential of mean force at the
saddle point, and the frequency inR is given by

vR
‡5F S ]2W

]r 2

]2W

]R2 2
]2W

]r ]R

]2W

]r ]RD

3S det~m!Um21/2"S ]2W

]r 2

]2W

]r ]R

D U D 21G
r 5r ‡,R5R‡

.

~B19!

Although this expression is not equivalent to the bound nor-
mal mode frequency at the saddle point, it is closely approxi-
mated by the normal mode frequency for the system studied
here. The mixed classical-quantum harmonic expression,
kCHQH

TST (T), is obtained by replacingQCHCH
R by QCHQH

R . The
quantum harmonic expression,kQHQH

TST (T), is obtained by re-
placingQCHCH

R by QQHQH
R and by replacing the classical par-

tition function for R at the saddle point by its quantum har-
monic analogue to give

kQHQH
TST ~T!5

kBT

hQQHQH
R ~T!

1

2 sinh~\vR
‡/2kBT!

3exp~2W‡/kBt !. ~B20!

Tunneling is important for this light-atom transfer reac-
tion and we consider including tunneling contributions in the
mixed classical-quantum rate expression in a manner similar
to that used by Azzouz and Borgis.7 In their approach an
effective parabolic barrier is fitted to the barrier height and
width for each value ofR and the parabolic tunneling prob-
abilities are integrated to obtain the parabolic tunneling~PT!
transmission coefficient:

kPT~R,T!5
*W0~R!

` dE exp~2E/kT!PPT~R,E!

*Wb~R!
` dE exp~2E/kT!

. ~B21!

In this expressionPPT(R,E) is the probability for tunneling
through the parabolic barrier37 in r for fixed R at energyE.
The mixed classical-quantum expression,kCAQH

TST/PT(T), based
on the parabolic approximation for tunneling contributions,
is given by

kCAQH
TST/PT~T!5E dRgCAQH~R!kPT~R,T!kC

TST,1D~R,T!.

~B22!

To assess the sensitivity of the calculated tunneling con-
tributions to approximations that affect the barrier shape, we
also compute the tunneling probabilities by a uniform semi-
classical tunneling~UST! expression on the actual potential
of mean force along the reaction path. Note that this UST
approach and the PT approximation to it are based on the
potential of mean force rather than the canonical mean
shape10 potential; thus these approximations are liquid-phase
analogs of the conservation-of-vibrational-energy~CVE!
approach21 rather than the more physical vibrationally
adiabatic20,69 approach. As such, these approximations are
true one-dimensional tunneling approximations, in contrast
to the multidimensional ZCT, SCT, and LCT approaches that
include the effects of vibrational energy in modes transverse
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to the reaction coordinate. The uniform semiclassical ap-
proximation based on the one-dimensional potential of mean
force yields kCAQH

TST/UST(T) where kPT(R,T) in Eq. ~B22! is
replaced bykUST(R,T), which is given by Eq.~B21! with
PPT(R,E) replaced byPUST(R,E), andPUST(R,E) is a uni-
form semiclassical tunneling probability70 for the actual po-
tential of mean forceW(r ,R) as a function ofr for fixed R.
With the harmonic approximation for theR coordinate, Eq.
~B22! reduces to

kCHQH
TST/PT~T!5kPT~R‡,T!

kBT

hQCHQH
R ~T!

kBT

\vR
‡

3exp~2W‡/kBT! ~B23!

and the quantum harmonic expression including tunneling,
kQHQH

TST/PT(T), is given by Eq.~B20! multiplied by the parabolic
correction factorkPT(R‡,T) for tunneling through the 1-D
potential in r for R5R‡, i.e., W(r ,R‡). Analogous expres-
sions forkCHQH

TST/UST(T) andkQHQH
TST/UST(T) are obtained by replac-

ing kPT(R‡,T) by kUST(R‡,T).

1R. P. Bell, in The Proton in Chemistry~Chapman and Hall, London,
1973!; Proton Transfer Reactions, edited by E. F. Caldin and V. Gold
~Chapman and Hall, London, 1975!; F. Hibbert, Adv. Phys. Org. Chem.
22, 113 ~1986!; 26, 255 ~1990!; Electron and Ion Transfer in Condensed
Media, edited by A. A. Kornyshev, M. Tosi, and J. Ulstrup~World Scien-
tific, Singapore, 1997!.

2C. Walsh, Enzymatic Reaction Mechanisms~Freeman, San Francisco,
1979!.

3M. R. Hoffman, in Aquatic Chemical Kinetics, edited by W. Stumm
~Wiley-Interscience, New York, 1990!, p. 71.

4R. A. Marcus, Faraday Symp. Chem. Soc.10, 60 ~1975!; A. Warshel, J.
Phys. Chem.86, 2218~1982!; D. Borgis, S. Lee, and J. T. Hynes, Chem.
Phys. Lett.162, 19 ~1989!; M. Morillo and R. I. Cukier, J. Chem. Phys.
92, 4833 ~1990!; A. Warshel and Z. T. Chu,ibid. 93, 4003 ~1990!; J. K.
Hwang, Z. T. Chu, A. Yadav, and A. Warshel, J. Phys. Chem.95, 8445
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