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Variational transition state theorf¢/ TST) is used to calculate rate constants for a model proton
transfer reaction in a polar solvent. We start from an explicit description of the reacting solute in a
solvent, and we model the effects of solvation on the reaction dynamics by a generalized Langevin
equation(GLE) for the solute. In this description, the effects of solvation on the reaction energetics
are included in the potential of mean force, and dynamical, or nonequilibrium, solvation is included
by solvent friction. The GLE solvation dynamics are approximated by a collection of harmonic
oscillators that are linearly coupled to the coordinates of the reacting system. This approach is
applied to a model developed by Azzouz and BofdisChem. Phys98, 7361(1993] to represent
proton transfer in a phenol-amine complex in liquid methyl chloride. In particular, semiclassical
VTST, including multidimensional tunneling contributions, is applied to this model with three
explicit solute coordinates and a multioscillator GLE description of solvation to calculate rate
constants. We compare our computed rate constants and H/D kinetic isotope effects to previous
calculations using other approximate dynamical theories, including approaches based on
one-dimensional models, molecular dynamics with quantum transitions, and path integrals. By
examining a systematic sequence of 18 different sets of approximations, we clarify some of the
factors (such as classical vibrations, harmonic approximations, quantum character of
reaction-coordinate motion, and nonequilibrium solvatidhat contribute to the different
predictions of various approximation schemes in the literature.2001 American Institute of
Physics. [DOI: 10.1063/1.1409953

I. INTRODUCTION particular, and many of the approaches cited above incorpo-

. _rate elements of TST. A particularly successful TST approach
Proton transfer reactions are encountered frequently it

hemist d biochemisthy? Proton t f i Y% pased on variational transition state theory with multidi-
chemistry and blochemistry. Froton transter reaclions N ansional tunneling VTST/MT)'*? in which vibrational
solution are central to acid and base catalysis in aquati

: Aand t talvzed iGrEhe th Bartition functions are quantized and quantum mechanical
environmentsand to enzyme-catalyzed react € e~ affects on reaction coordinate motion are included by semi-

o.re.tlcal treatment of protoni fransfer in solution is .eSpeC'a”yclassical multidimensional tunneling approximations. This
difficult for two reasons. First, polar solvent environments

Ut toundly affect ch ‘ ¢ approach has been very successful at predicting gas-phase
(.9., aqueous hso u |oht$3rotoun . ya zcthc arg(ﬁ .tr?ns ter reaction rate constant$??has been extended to reactions in
processes, such as proton transfer, and the explicit treatmegly, i,10.23-275nq has been extended to proton and hydride

of the important solvent effects, such as orientational p°|arfransfer reactions in enzym&s?3 Although limited tests of

ization, require consideration of collective motions and Iarge[he VTST/MT approach to reactions in solution have been

[nolequI[_ar e_nserlnbles n ctomputer rsllm_ulaltlobni. S_econd,hpr yresented, these applications have all employed a model for
on motion Involves quantum mechanical benavior SUCh &g, yaaction in solution based upon a generalized Langevin
zero-point energy constraints and tunneling, requiring quation(GLE)?*~3 approach. In the current work we wish

guantum mechanical treatment that is a computational chab test the VTST/MT approach by starting from an explicit

lenge in many-body systems. Although we explicitly d'scussmolecular model for the reaction system.

proton transfer in the present article, similar considerations Azzouz and Borgis presented a model for the proton

apply to hydride transfer. ransfer reaction
A variety of theoretical methods have been developec}

and applied to proton transfer reactiénd® Transition state AH—BwA —H'B 1)
theory (TST)**~'%is one of the most prevalent theoretical
approaches to reaction rates in general and proton transfer in a polar solvent. The chemical groups AH and B represent

0021-9606/2001/115(18)/8460/21/$18.00 8460 © 2001 American Institute of Physics
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a weak acid such as phenol and a weak base such as aa that the reaction model is a three-atom collinear system as
amine, respectively, and the polar solvent is a model for meshown in Eq.(1). The masses of A and Bn, andmg, are

thyl chloride. Azzouz and Borgid!! calculated rate con- setto 93 and 59 amu, respectively, while the mass ohHl,
stants for this model using a semiclassical curve-crossing set to 1 amu for proton transfer or 2 amu for deuteron
approach and a path integral quantum TST approach. transfer. An important aspect of this model is that the distri-
Subsequently Hammes-Schiffer and TBllysed a surface bution of charges within the complex depends on the loca-
hopping approach(molecular dynamics with quantum tion of the proton, much as one would expect. As the proton
transitions® to calculate rate constants. In the surface hop-shifts from the phenol side to the amine side within the com-
ping approach the continuous motion of the classical subplex, the reactive complex changes from a polar but neutral
system on an effective potential surface generated by theomplex into an ion pair. This in turn causes a large change
guantum subsystem is interrupted by discontinuous hops coin dipole moment in the course of the reaction and allows for
responding to quantum transitions. More recently, Antonioua strong interaction between the complex and the surround-
and Schwart?~* performed calculations of rate constantsing polar solvent.

using an evolution operator technidfi®ased upon the flux The geometry of the AHB complex is described by the
correlation function formalisms which is another method Cartesian vectors for atoms A, H, and B, denoted byr,

that is closely related to TS¥:*® Azzouz and Borgis also andrg, respectively, or by the position of its center-of-mass,
presented a “corrected” classical TST approach in whichR¢y,, @ unit orientation vectoZ pointing from atom A
one-dimensional TST rate constants, including quantizationoward atom B, and the scalar distances|ry—ry|

of the proton motion and tunneling based on a paraboli@and R=|r,—rg|. The orientation vector is characterized
barrier approximatiori’3® were averaged over fixed A~B by the polar coordinates(d, ¢), as z=(sinfcosd,
separations. In the work of Azzouz and Borgis and Hammessin 6sin ¢,cos6). Since the proton is constrained to lie along
Schiffer and Tully the proton motion was treated quantumthe A—B bond, its coordinate can be described by the single
mechanically, while the other coordinates in the system wergariabler such that

treated classically. The approach taken by Antoniou and

Schwartz treated the solvent using a GLE, in which the ef-  Tp=ra+2r. 2

fects of solvent dynamics were included by a harmonic bath ] ]
coupled linearly to the reaction coordindféd,e., to the pro- | N€ potential energy of the complex is denotggh(r,R). In

ton motion between A and B; the one-dimensional solute andiS case the Hamiltonian for the complex, in the absence of
the harmonic bath coordinates were treated quantum méhe_solve_nt, is described in terms of seven coordinates and
chanically in their approach. In the present work we alsoN€ir conjugate momenta

reduce the solvent dynamics to a GLE, but the solute is

2 2
treated multidimensionally including the proton motion, Ho = PCu n i 2, Py
i i s 2M 21\ 7 sirfe
heavy-atom A—B motion, and center-of-mass AHB motion. Sl
In the present article we treat the dynamics of all degrees of
X i 1 _4( Pr
free(_jom qf the reduced model on an equal footing by using + E(|:>r PRI p +Vue(r,R), (3)
semiclassical VTST/MT, and we also present a systematic R

series of more approximate calculations. L . .
pp where the kinetic energy is expressed in terms of the momen-

The organization of the remainder of this paper is astum conjugate t@ and ¢, P, andP.,, the momentum of the
follows. Section Il describes the model of Azzouz and Bor- 0 ¢
center-of-mass of the comple®X-,,, and the moment#,

gis, and Sec. Il presents the VTST/MT approach that we usée . : .
for this model, including the development of the GLE andandPR’ Wh'Ch alr.eﬁonjygat%to andR. The effective mass
application of VTST. Section IV provides computational de_matrlx, m. 1S expiicitly given by

tails, Sec. V presents results and discussion, and Sec. VI
gives conclusions from this study. = _(

(Ma+mg)my —Mmymg @
FoML —mgme (ma+mpmg)’
II. MODEL SYSTEM .

B . _ ~whereM =mp+my+mg is the total mass of the complex.
The specific system studied here is a model of a tri-The scalar moment of inertia along the collinear axis is:

atomic reactive complex dissolved in a polar solvent. The
parameters of the system are chosen so that the reactive com- r
plex represents a proton transfer reaction from a phenol to a I(r,R)=(r,R)u( R)' ®
trimethylamine, and the solvent molecules are representative
of methyl chloride. This model is chosen to be essentiallyin the limit thatmy<m, andmy<mg,
identical to that used by Azzouz and Borgisdammes-
Schiffer and Tully’ and Antoniou and Schwartz**in their my 0
respective works. =l o uns)
The model constrains the proton transfer reaction to take
place in one dimension; bending modes are completely diswhere wag=mamg/(ma+mg), and the moment of inertia
allowed. Further, the “phenolate” (A) and “trimethy- in Eq.(5) is approximated byu,gR?. As noted previously,
lamine” (B) groups are represented in a united atom sensayith this approximation the proton motion is no longer di-

(6)
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TABLE |. Parameters for the gas-phase potential. TABLE II. Parameters for the methyl chloride solvent model.
Parameter Value Atom q(e) A? (kcal molt A1?) C? (kcal mol * A®)
a 112 A" CH; +0.25 7.95¢10° 2750
b 7.1x 10" kcal/mol cl -0.25 5.25¢10° 2950
da 0.95 A
dg 097 A
Da 110 kcal/mol
Na 9.26 At
ng 11.42 A1 Interactions between solvent molecules include both
c 0.776 Lennard-Jones and Coulomb potentials between each of the

atomic sites on the interacting molecules. The solvent—
solvent potential energy is given by the TIFBansferable
Intermolecular Potential Functionsnodel*! following the
rectly coupled to the overall rotation of the complex. In thedescription given by Hammes-Schiffer and Tdlly

approach described below it is not necessary to make this

approximation, and so we retain the coupled expression of Ved R = = E Adpdp’ ApAp
Eqg. (4) in the molecular simulations, although we do use sdRs) 2.5 45 e |r5—rﬁ'| Irf— 1|12
= u,sR? to construct the potential of mean force, and this P e ko ko
approximation is excellent for the system studied here. CpsCp
The gas-phase potential energy function is given by - W : (10)
Vyg(r,R)=bexp —aR) “
CnA(r—d)? Parameters|z, Ag, andCg for g=Me and Cl are given in
+DA[ l—exp{# ] Table 1l. With the charges indicated in this table, the dipole
2r moment of a solvent molecule is 2.14 D.

—ng(R—r—dg)? T_he interaction potential energy b_etween the solvent and
+cDA[ 1—ex;{ 2(R=1) ] (7)  the dissolved reactive complex consists of Coulomb poten-
tials between solvent molecules and atoms A, B, and H and
The values of the parameters used in this study are takerennard-Jones potentials between solvent molecules and at-
directly from Hammes-Schiffer and Tuflyand are given in  oms A and B(but not the H atom
Table | for convenience. Note that these parameters are also
very similar to those used for “Model II” by Azzouz and Vcd(r,R,Rcm,2,Rg)

Borgis/
The methyl chloride solvent is represented with the  — Z &)(Zfﬂ_ E
model used by Bigoet al*® in their Monte Carlo simula- «ABH T pWec [Ta=1i]  «SRAe T pWec

tions. This is not only the same solvent model as was used in

the aforementioned proton transfer studies; it has also been X 4e
used to examine properties of pure methyl chloride. The

Bigot model treats the methyl chloride molecule as a rigid,
polar, diatomic nonpolarizable molecule, with the methyl . .
group being treated as a united atom at a distance of 1.78 gharge“s on the ?toms |ncthe comple>c< fange frorrlthew values
from the chlorine atom. The mass of the methyl united aton{" (€ “covalent’ state q,= 0.5, q,= +0.%, qg=0, to

Mye IS 15 amu and that of the chlorine atamy, is 35 amu. their ValliJeS in the “ionic” state, gx=—1.0e,0y

The Cartesian vectors for the methyl and chlorine in solvent_ *+0.%,05= +_0.5§ by means of a smoothi-dependent
moleculek are denoted}'® andr{' with conjugate momen- switching function:
tum p{l"e and pE'. The Hamiltonian for the entire model sys-

, (11

o 12 o 6
|ra_rf|) _(|ra_rfl)

wherer, is an implicit function ofr, R, Rgy, andz. The

_ _ c i
tem (complex plus solventis written as a sum of three dis- Aa(r)=[1=1(1)]q,+1(r)q,, (12
tinct parts: where
H= Hgas+ Hsowvent™ VedrR,Rem» 2,Rg) (8)
which yields Hr)= = ( | ) 13
(pf)? 2WNr=n2+@an?)
k
H=Hgast +VsdR
gas Ek B:%e,cl 2mg sdRs) with 1=1.43A and Al=0.125A. This charge switching
FVed I R Rey 2. RS, ) causes the dipole moment of the reactive solute complex to

vary from 2.5 D in the covalent state to 10.5 D in the ionic
where Rg is the collection of all solvent coordinates, state. The Lennard-Jones potentials between atoms A or B
VsdRg) is the solvent—solvent potential, and and either of the sites on a methyl chloride molecule are
Vedr,R,2,Ren,Rg) is the potential that couples the com- identical:c=3.5A ande=200K. The Coulomb part of the
plex to the solvent molecules. interaction involves the usual potential between the fixed
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point charges on the atomic sites of the solvent moleculesertain solvent molecules. The dynamical scheme used here
and ther-dependent point charges located on each of théreats solvent implicitly via collective solvent coordinates.

three atoms in the complex. The method is general enough that input data for the
implicit-solvent dynamical treatment could be obtained from

IIl. VARIATIONAL TRANSITION STATE APPROACH either implicit solvation models or explicit solvation

FOR REACTIONS IN LIQUID SOLUTION models?*?4*As we will see in Sec. IV, we shall use the

The approach we use here to calculate the rate of protolr?tter approach in the present article. First, however, in this

AR ST L section and Secs. llIB and Il C, we shall establish the dy-
transfer in this model reaction in liquid solution is based on . .
variational transition state theory. The general approach hansamlcal model for reactiodt).
: We begin by concentrating on a reduced set of coordi-

been described previouslyand the details of the implemen- . ) .
) 26.27 nates and modeling the solvent effects using a generalized
tation have been presented elsewHéréd:2%2’Our approach ) . : e
Langevin equation. The occurrence of a reactive event in this

tec;r\i/e-g(sr:i'r:r;geagn%ssgzzél'e g?&g;%srﬁﬁ?rﬂﬂgncéﬂgfl gegtmh_ system is determined by motion of the proton from species A
P gy p to B and for the most part this is determined by progress in

ways on the global potential energy surface. However, "WShe r coordinate. Thus, as in other studies of this model
need to extend this approach for reactions in liquids, like the m7'9’13'14we.treat t,he proton motion explicitly. In pre-

present model system, since the full-dimensional potentia?ySte . 232627 .
’ vious studie€®?®?” we found that coupling between the
heavy-atom motionfA—B relative motion and light-atom

?ransfer can have significant effects on the reaction. In addi-

equilibrium geometries of the solvent molecules, with little ,. . .
. ) .tion, coupling between the center-of-mass translation and
rearrangement of the atoms in the reactive complex. In this

work we take an approach described eafie?’in which we proton transfer can also be significant when solvent friction

. . has a high valué’ Therefore in the current study we wish to
center attention not on the full-system potential energy sur- .~ . o
) retain an explicit treatment of R, and the center-of-mass
face but rather on the solute potential of mean force and the” . . : : .
o . motion along the A—B axis. To accomplish this we define a
friction tensor due to the solvent. Thus the dynamics of the i : -
. S reduced system consisting of the three coordinates describing
reactive complex and the equilibrium solvent effects are . )
. .. the motion of the three atoms that are constrained to be along
treated by a potential of mean force surface, and nonequilib;_~ . . . i
. - he line connecting A and B. In particular, we define the three
rium solvent effects are treated by solvent friction terms thai .
coordinates, 45 ,2,,2g), Where

are approximated by a generalized Langevin equation.

We first discuss the development of the generalized r,=Rcy+2z,, a=AB,H. (14
Langevin equation for this model system, including the caI—_I_he same transformation matrix
culation of the multidimensional potential of mean force sur- ’

face and friction tensor. The procedure we use to map the -1 0 1

GLE onto Hamiltonian dynamics, employing a GLE Hamil- -1 1 o0

tonian, is then described. Finally we review how VTST/MT A= (15)
is applied to the GLE Hamiltonian. My Mg My

III.A. Generalized Langevin equation MM M

As has been discussed in many of the references given ﬁl?at connects the coordinates defined in Sec. Il, i.e.,

the introduction, there are a number of ways in which a r ra

solvent can interact with a dissolved reactive system to alter R |=Alrs], (16)
the reaction rate relative to that for the same reaction in the Rem My

gas phase. The influences of the solvent can be classified into

three categoriegi) explicit solvent participation in the reac- May be used to define the reduced, transformed coordinates
tion, such as bond making or bond breaking in solvent mol- r Za

ecules(as in general acid-base catalysisr some types of R |=al z 17
explicit solute “caging” interactions(ii) equilibrium solva- 7 7 '

tion effects on the potential of mean force experienced by the cM H
reactive system; andii) nonequilibrium solvation effects, Note that a consequence of the transformation, (E@), is

i.e., the frictional effect of the solvent on the reactive systemthat Z¢), always equals 0.

Effects of types(i) and (iii) involve solvent participation in Similarly to the work of Azzouz and Borgisye define

the reaction coordinate, whereas effects of tyipedo not.  a collective set of bath coordinat&shat includes the orien-
Effects of types(ii) and (iii) can be treated by either tational coordinates and the center-of-mass coordinates of
implicit*? or explicit*® solvation models, whereas effects of the solute as well as the collecti® of solvent coordinates,
type (i) always require explicit solvent. The treatment em-S= (6, ®,Rcu,Rg). With this definition of the solvent, we
ployed in the present article does not consider any {ype could construct a GLE in terms of th@R) coordinates
effects, although, if important, such effects could be incorpo-alone, or equivalently, in terms 0£f ,zg,zy) where the con-
rated within the general framework of this method by includ-straint Z-,=0 is imposed. This GLE does not account for
ing solvent molecules explicitly in the “solute” reactive dynamical coupling between thheand R coordinates due to
system—that is, redefining the reactive system to includéhe solute center-of-mass translational motion in the solvent,
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which was found to be important in a previous stdty For the present study we approximate the dynamics of
simple way to introduce this dynamical coupling is to relaxthe GLE in Eq.(18) by the dynamics determined by an ef-
the constraint thaZcy, is equal to 0 and allow dynamical fective Hamiltonian given b{**

motion in Zgy . The equations of motion for the three ex- 2 N 2
plicit coordinates in the GLE approach are then written T— 2
p . GLE H 2m Zmb
maza=—5w+f dt’ D) 9 (t—t)z,(t") L ,
@ 0 o'
+ 5 Mo (y, _;BH Cjaza) ] (22)
+6F (1), a=AB,H, (18 B,
where the components of the mean force are defined by whereN is the number of effective solvent degrees of free-
W | oH dom,P,, i.s the mom_entum conjugate tq andy; andPy;
— , (190  are effective dynamical solvent coordinates and momentum
92, aza rR providing nonequilibrium solvent effects on the dynamical

whereW is the potential of mean forcé] is the Hamiltonian ~ motion. The value of the effective solvent masg is arbi-
defined by Eqs(3) and(8), and the averagds:-), g are over trary, while the solvent frequencies; and coupling con-
bath coordinate$ with the internal coordinates of the solute stantsC;, characterize the effective solvent response to the
fixed. The friction tensomw, is defined by reduced coordinate motion. The classical dynamics of this
KeT 770 (1) = ( 5F (0 m, (20) effective Hamiltonian approximates the dynamics generated

hereka is Bol Tis th  th by Eq.(18), when the friction tensor is given in terms of the
wherekg is Boltzmann'’s constant, is the temperature of the 51, parameters; andC;,, by394

system,F , is the @« component of the force in the coordi- \
nate system, and the fluctuation in the force on solute coor- _ E 2
dinatea due to the instantaneous bath configuration is given ”aa’(t)_j:1 MpC;oCjar @j COLwjt). (23
by

The effective GLE Hamiltonian may also be written in terms
SF f()=F () —(F o) Y

of the (r,R,Zcy) coordinates as

JH Pz
=~ —( )+ o Z | P
al v R Hgle= M — (Pr,P )y’ Pr +W(r,R)
&H &W N 2
=——(t)+—. 21 Pyj
ﬁza( ) (920’ ( ) + E 2[:]] + 2 mbwf(yj CJ rr CJ RR
. : ~
In taking the averages in Eg€l9) and (21), we choose the . b
values ofr andR that correspond to the saddle point\of - 5
Note that the constraints on the averages in Eb@— —Cj.emZem) (s (24)
(21) involve the coordinates andR, whereas the GLE is for
the three coordinates includingcy as well as(r;,R). Al-  where

though the constraints should also inclutig,, the effect on B=Cca-1 25
the GLE from not including it is negligible, as explained '

below. First, consider the mean force defined in 8§). In  Specific details of the simulation procedure used for the con-
the gas phase, the internal motion of the solute is decouplegtruction of the GLE Hamiltonian are presented in Sec. IV.
from the center-of-mass translation, 86,5/ JZcy, is zero. The form of the GLE in Eq(18), which is local in space,
Although dV s/ dZcy is in general nonzero because of un-is not the most general form and it represents an approxima-
symmetrical contributions of solvent molecules, the averag&on to the dynamical equations. The exact dynamical equa-
of dVcs/dZcy over solvent configurations is zero. There- tions can be formally recast in terms of a chain of GLE
fore, sincedW/9Z-y=0, W does not change &y is con-  equations for successive random forces involving nonlocal
strained. Next, consider the friction tensor appearing in thenemory functions that are correlation functions of appropri-
GLE and defined by Eq420) and (21). The force fluctua- ate random force¥:*® The version of the GLE presented
tions defined in Eq(21) depend on instantaneous values ofabove is obtained by truncating this chain and by replacing
INcsl dZcy, Which are not necessarily zero, and may ex-the memory function by an approximate, constant, friction
hibit correlations with values at other times. Therefore thetensor. This GLE is local in space and the constant friction
friction tensor will have an explicit dependence og,,. We  tensor is evaluated at a single characteristic configuration of
have tested the sensitivity of the friction tensor to constraint¢he system, the configuration at the saddle point. Because we
with numerical simulation. The friction tensor was computedhave chosen a simplified version of a GLE to describe the
with justr andR constrained and compared with the friction dynamics, the effective Hamiltonian in E¢22) only in-
tensor compute with R, andR¢), constrained. No numeri- Vvolves linear couplings between the system and the bath.
cally significant differences were observed for the frictionOne may consider the same form for the effective Hamil-
tensors computed with the two different constraints. Our astonian with harmonic bath coordinates but allowing for non-
sumption is that the friction tensor with R, andZ¢y con-  linear coupling between the system and the bath. In this case
strained would also show no significant differences. a nonlinear GLE equation for the dynamics reséit&:*’
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Even more complicated representations for the dynamics caspect to the bath coordinates for each choice of solute coor-
be considered by introducing higher order couplings and andinates, i.e.,

harmonic terms in the Hamiltonian, E€R2). The construc-

tion .o_f Igss app_roxmate effective Hamiltonians and the ijs(ZA Z8.21) = 2 CiuZa. (27)
specification of higher order terms are open research prob- a=ABH

lems that are beyond the scope of the current work. The

precise conditions under which one can reduce the solverf'find thEg resulting equilibrium solvgtion potential is, the I.DMF'
dynamics to this simple form of the GLE are not generally'-€- \!eﬁ:W(i’R)' The sadqlle point on the PMF is defined
known. The validity of approximating a local friction tensor 2Y I~ @nd R* and the choice oZ¢y is arbitrary, so we

by a constant one for the proton transfer reaction studied hefg!00S€ it to be zero for convenience. The minimum energy
could be investigated by evaluating the friction tensor withPath on the PMF is obtained by following the paths of steep-

the system fixed at other configurations. The reaction considESt descent from the saddle point toward reactants and prod-
ered here has a highly peaked barrier, so a local regioHCtS in a mass-scaled coordinate system in which the reduced

around the saddle point determines the fate of a dynamicd'ass of each coordinate is thE% same. We call this the equi-
diprium solvation path(ESP, z.(sgsg), Where the reaction

trajectory. Because of this feature, the solute dynamics ne . X ) ; )
the saddle point will be fast compared to the solute responsgP°rdinateses is the signed distance from the saddle point

and approximating the local friction tensor by a constant af!ond the curvilinear ESP through the mass-scaled coordinate
the saddle point will give a good representation of the dy-SYStem and is negative on the reactant side. Generalized
namics. transition-state dividing surfaces in the equilibrium solvation
It is well known that solvents are not harmonic, andModel are defined to be orthogonal to the ESP, and the
solute-solvent coupling is not bilinear and in fact is strongly{ransition-state theory approximation to the reaction rate is
pbtained from the net flux toward products through the di-

given in Egs.(18) and (22) may be applied when one can viding surface®=2%|n a classical world this dynamical ap-

identify suitable variables associated with the solventalgat Proximation causes an overestimate of the rate constant
as effective oscillators, as discussed by Hynes andvhich is the basis for variationally optimizing the location of
co-workers'84° Evidence for the validity of the local, linear the dividing surfacdalong the reaction coordinatéo mini-

. 120,53 . . . .
approximation to the solvent friction is also offered by the Miz€ the rate constant****With this approximation the

general success of Grote-Hynes thé®and more generally expression for the geénezalized transition-state-thd@y)
the linear response approximation. The GLE in Ep) is  'at€ constant reduces to

the basis for the Grote-Hynes friction correction to TST. Fur- KeT

thermore, the Grote-Hynes friction correction can be derived  kEX(T,sgg) = WQ%(T,SEQGXF{ - ,
by applying variational transition state theqiyTST) to the Q™) 28)
effective Hamiltonian in Eq(18) with a locally quadratic

potential?>*! The validity of the Grote-Hynes method, and whereh is Planck’s constanQR(T) is the reactant partition
the underlying Hamiltonian, for a variety of model reactionsfunction for a unimolecular reaction or the reactant partition
has been confirmed by comparing results from Grote-Hynefunction per unit volume for a bimolecular reaction,
theory with accurate classical simulations of the reactionQEl(T,sco) is the generalized transition-state partition func-
dynamics’®>? Similar tests of the validity of the effective tion for the bound modes orthogonal to the reaction path at
GLE Hamiltonian in Eq(22) for the proton transfer reaction sgg, andVesdSg9 is the value of the PMF evaluated on the

VesH Sgs)
kgT

studied here are planned for future studies. ESP atsgg
111.B. Variational transition state theory VESF(SES):VNfIfES[ZES(SES) ZES(SES) ZES(SES)
e 1 L ’
The starting point for the VTST/MT calculations is the ES . UES
GLE Hamiltonian in Eqg.(22) from which we identify the Y1 (Ses) YN (Ses)]
effective potential =W[r(sgs),R(Sgg)]. (29
NES,
Vet (Za1Z8:ZH:Y1:-+YN) The present application, E@L), is a unimolecular reaction
N g 2 so we will specialize to that case. Conventional transition-
=W(r,R)+ >, Emb‘”jz yj— > CiaZal (26)  state theory(TST) is recovered by evaluating E428) at
=1 a=ABH

Sgs= 0, which yields
where Eq.(17) provides the relationship betweenR and
Za,Zg,Zy - The application of variational transition state
theory to this form of potential is described in detail ang canonical variational theotZVT) is obtained by mini-
elsewheré”*~2"For convenience, a brief overview of the mizing Eq.(28) with respect tcses

approach is provided here.

kea(T)=kEX(T,s5£5=0) (30)

ked (T)=minkgd(T,seg). (3D
II.B.1. Equilibrium solvation SES
An equilibrium solvation(ES) model is recovered from Partition functions are computed quantum mechanically

the GLE Hamiltonian if the potential is minimized with re- within the harmonic approximation:
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N+2 1 use an effective reduced mass that corresponds to an effec-
QRM =11 =— = tive tunneling path in the multidimensional spaé&he ef-
m=1 2 Sinfi 0q/2kgT] fective tunneling path differs from the ESP because the ESP
2 1 is curved. In this work we use the centrifugal-dominant
=11 -— RAFE small-curvature tunneling metht/c?® (denoted SCYthat in-
m=1 2 Sinf{fi o, ™/2KgT] cludes the effects of reaction-path curvature by means of an
N 1 effective reduced mass. The effective reduced mass is
xH . , (32 smaller than the common reduced mass introduced below
j=1 2 sintifiw;/2kgT] Eq. (27), and this accounts for the increased probability of
tunneling along corner-cutting paths on the concave side of

o N+1 1 the ESP/® The reaction probabilitieZS'(E) are ther-
Qgs(T,Ses) = nl_:[l 2 sl i oES(sea)/2kaT] mally averaged and normalized by the thermal average of the
mi>E B reaction probabilities corresponding to zero-curvature classi-

1 cal reaction coordinate motidhon the potential of Eq(35)

2 Sinf Aot see)/2KaT] to give the transmission coefficierS'(T)
N 4= o~ BERSCT,
T)=— — — , 36
Xjﬂl 2 sinffiw;/2kaT]’ (33 “es (1= i Ee PP E—maxvi¥ g O
SES

wherefZi=h/27. In the equilibrium solvation model the bath

modes decouple from the solute modes; this decoupling ighere 6(x) is the Heaviside step functiorn 6(x)=0,
explicitly indicated in Egs(32) and(33). Normal modes for x<0;0(x)=1x>0]. We also compute tunneling with the
the solute frequencies at reactants and the saddle point azero-curvature tunnelingZCT) approximation in which the
obtained by diagonalizing the>33 Hessian matrix in the effects of reaction-path curvature are neglected so that the
(za ,zg,zy) coordinates. Generalized normal modesich  effective reduced ma¥s°®is equal to the common reduced
are the vibrational modes at locations were the gradient isnass used in the ESP calculations described below 2.
not zerg are obtained by first projecting out the gradient

vector from the Hessian matrix, then diagonalizing the pro-

jected Hgssian matriX. One mode has a zero frequgncy COT~ 111.B.2. Nonequilibrium solvation

responding to the center-of-mass translation. This mode is

omitted from both the reactant and generalized transition- The saddle point geometry on the effective potential in
state partition functions. At reactants there are two boundEq. (26) is at (zi,z5 .25, y%, -+ ,yf) where
frequencies(corresponding approximately to proton vibra-

tion and A—B vibration while along the reaction path one Z/ﬁ r
mode corresponds to the unbound reaction coordinate mo- | z5|=aA"1 R* |, (37)
tion. Therefore there are two solute modes in the reactant Za Zew=0

partition function and only one in the generalized transition-
state partition function. In the equilibrium solvation mode,
contributions from theN bath modes cancel in the reactant ~ Yi= 2 CjaZh, (38)
and transition-state partition functions. a=ABH

Quantum mechanical effects on reaction coordinate mo
tion are included by a multiplicative transmission
coefficient?

so that at the saddle point for the full system, the geometry
corresponds to the saddle point on the equilibrium solvation
path. The minimum energy path on the effective potential is
- . ovT obtained by following the paths of steepest descent from the
kes (T)=red(Tkgs (T). (34) saddle point toward reactants and products in a mass-scaled
coordinate system including both solute and bath coordinates

Multidimensional tunneling effects are included by the zero- X X )
order canonical mean shaf@Ms-0) approximatiori® Prob- I which the mass of each coordinate is the same. We call
éhis the nonequilibrium solvation path (NESB,

abilities are computed semiclassically for transmission by th NES 5,9y NEsueq), where th ’ dinat
Snes).Yj  (Snes), Where the new reaction coordinate

one-dimensional CMS-0 potential, which in the harmonicZa \§ ) ) )
approximation is given by Snes IS the signed distance from the saddle point along the

curvilinear NESP and is negative on the reactant side. Gen-

N+1 eralized transition-state dividing surfaces in the nonequilib-
VEMS (s =VeedSed + = O wEX(Seq). (35) rium solvation model are defined to be orthogonal to the
ES £9) = Ves(Ses) 2m=p ™ e NESP and the rate constant expression is similar to/ZR);

however, the superscript ES is replaced by NES to indicate
Although the CMS-0 potential is a one-dimensional functionthat the potential along the reaction payzsH{Snes), and
of the reaction coordinate, multidimensional effects are inthe partition functions for bound modes orthogonal to the
cluded in two ways. FirstyS¥SYsz9 depends on the or- NESP,QSL(T,syeq), are different than in the equilibrium

thogonal modes because of the sum in &%). Second, we solvation model. The potential along the NESP is given by
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VNESF(SNES)=V’e\IfIfES[ZRES(SNES)ngES(SNES)r fects on reaction coordina_te motion are also treated by qsipg
the SCT method as described above. The CMS-0 potential in
NES NES, NES sl e . . .
Z3(Snes) Y1 (Snes)s " YN (Snes) ], the nonequilibrium solvation model is similar to Eg5), but

(39) the bound frequencies along the nonequilibrium solvation
) N - o _ path are different from those in the equilibrium solvation
and the generalized transition-state partition function is writ-,5qel. Furthermore, the nonequilibrium solvation path can
ten include curvature coupling from the bath modes that are not
N+1 1 included in the equilibrium solvation model.

GT _
QNES(T’SNES) r'rl1_=[1 2 Slnr[hmeS(sNEs)/szT] l (40)
where the frequencies are obtained by diagonalizing bhe ( IV. CALCULATION DETAILS
+3)X(N+3) mass-weighted Hessian matripobtained

from the second derivatives of the potential in E2f)] with . . . :
. . X Molecular dynamics simulation calculations were performed
the gradient projected out. The form of EQ6) still gives ) . )
. ; on this model system in order to acquire the data necessary
rise to a zero frequency mode that transforms like the center-_ . .
: . as input for the VTST/MT rate calculation, namely, the po-
of-mass motion of the solute with . ;
tential of mean forc&V(r,R) and the force—force time cor-
o_ 3 relation functions used to define the friction tensgt). For
Ayj= H CiaMaBZcu- (41) the purposes of this study, the values of the internal coordi-
) ) ) natesr and R in the reactive complex were kept constant
This mode is omitted from Ed40) as well as the mode that throughout each MD simulation. This allows the calculation
corresponds to motion along the reaction coordinate. Sincgs average forces on definite “clamped” values of the inter-
the bath modes represent nonequilibrium solvation effecty 5| coordinates.
near the saddle point, the coupling between the bath and  The molecular dynamics calculations were performed
solute should not be included in tHequilibrium) reactant  ynder very similar conditions to those reported by Azzouz
partition function. Therefore, Eq32) gives the expression and Borgi¢ and Hammes-Schiffer and TuflyThe simula-
for the reactant partition function in both the equilibrium andjons were performed using periodic boundary conditions on
nonequmbrlum solva}tlon mode_IS- o 250 methyl chloride molecules and one reactive complex in a
Since the effective potential at the saddle point in theyyncated octahedron with a number density of
equilibrium solvation model, the nonequilibrium conven- o5 5 NosSethermostaf® The Lennard-Jones potentials be-
tional TST rate constant is related to the equilibrium one byyeen the site4Cl atoms or CH groups of one solvent

All calculations in this study were carried out at 249 K.

a=AB

Qﬁes(T) molecule and those of another and between sites of solvent
KiesT) = Wkﬁsﬁ), (42)  molecules and sites of_ the solute were sphericglly truncated
E at R,=13.8A, and shifted to make them continuous. The

where the transition-state partition functions are given byCoulombic interactions between all molecules were also
Egs. (33) and (40) with the reaction coordinate set to zero. smoothly and spherically truncated Rt=13.8 A with the
Note that even though the saddle point geometry and effesame Steinhauser truncation functiom(R;;), used by
tive potential are the same in the two models, the harmonitlammes-Schiffer and Tully, reproduced here for conve-
frequencies are not in general, since the nonequilibrium solrience:
vation model includes coupling between the bath and soluter R.

. . - . ( |])
modes that is neglected in the equilibrium solvation model.

(However, this coupling is not included in the reactant parti- 1 Rjs=Rs

tipn functions since_by definition .the reactant_ is at equilib- (R; —Rp)A(3R,— Rr—2Ry)

rium.) The GLE in Eg. (18 is the basis for the =94 1- R R Rr=Rjj=R,
Grote-Hyne# friction correction to TST, which results from (Re=Ry)

nonequilibrium solvation. In the Grote-Hynes approach the 0 Rj=R;

reaction dynamics are treated classically and the PMF is ap- (44)

proximated by a quadratic expansion about the saddle point.

With these approximations the ratio of partition functions in WN€reRij is the distance between the centers of two inter-
Eq. (42) can be written acting molecules anB;=0.99R.. The equations of motion

were integrated using a velocity-Verlet algorithm for the

QiedT) Nt NES(ses=0) translations and a leapfrog algorithm with Lagrange multi-
QFEES(T) Iﬁ” 1 mes(SNES: 0)’ (43 plier for the rotation€® The integration time step was 0.1 fs,
classical limit'''—

which kept total energy fluctuations to within a relative stan-
and this expression is recognized as the Grote-Hynes corredard deviation of approximately 0.01% during the course of
tion factor’®®!In the approach used in this paper we do nota typical 50 ps run.
constrain the transition-state dividing surface to be located at Hammes-Schiffer and Tully provided us with their own
the saddle point; furthermore, we treat the partition functionsalculations of the potential of mean force, and the two sets
guantum mechanically. In addition, quantum mechanical efof results are in excellent agreement.
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IV.A. Potential of mean force

Using the Hamiltonian in Eq9) and the transformation

60 ! l 1 ' ] l ] I ) I L.

in Eq. (17), the potential of mean forc&V(r,R), which is - (a) .‘ k E
defined by Eq(19), can be expressed in thd& coordinates - : s -
by 40 |- s 3 -
N = ‘ .

IW <aH> avHB+ IWSg 0 b } . i
=) = - u . i

ar ar | o o ar o . 0,'."_-"

d 1o, pg)
+<a_r{2|(r,R)\P0+sin29

¥

Average force (kcal mol* A™)

2 —
oV IW alnl(r,R) i
_%VHB i oVVs KeT (45) -
ar ar ar 0 .
and ]
L
ﬂvz<ﬁ> _ Ve Ws 0.8 1.2 16 2
dR JR . dR dR r(A)
o[ 1 [, P
+\{— Pyt 7 FIG. 1. Average external forces(@ —(dVcs/dr),r and (b)
dr|21(r 'R)\ sin” ¢ IR —(dVcsldR), g, as a function of for fixed R=2.70 A [see Eqs(43) and
(44)]. Solid circles are the data obtained from molecular dynamics simula-
dNyg IWg alnl(r,R) tions, and error bars indicate statistical uncertainty at representative points.
= IR + &_R_ B (?—R’ (46) The curve in partb) is a fit to the functional form in Eq(53).

where the averaging is done over all variables in the Hamil-
tonian other tham R, andZc,,. A brief derivation of the last W(r,R)=Wp+Vyg(r,R)+A(r) =B(r)(R—Ro)

terms in the second lines of Eq45) and(46) is provided in B

Appendix A. If the moment of inertia is approximated by 2kgTIn(R/Ro), (50
uasR2, then the last term in Eq45) vanishes and the last where we have used the approximatiea uagR?,
term in Eq.(46) reduces to the usual expressiokgZ/R.%!

r AY
The partial derivatives of the potential of mean force due to A(r)=f dr'<—cs> (51)
the direct solvent interaction®yg, are given by "o ar r=r’,R=R,
IWs [ Vs . and
o\ ar [ o @7 Ncs
r B(N=-{—g . (52
and r,R=R,
The averages in Eq$51) and (52) were calculated as func-
= (48)  tions ofr by performing individual MD simulations for val-
IR IR R ues ofr in regularly spaced 0.05 A intervals ranging from 0.8

to 1.3 A and from 1.6 to 2.0 A, all for a fixed value &
=2.7A. A finer grid of averages, spaced at 0.02-0.03 A
intervals, was calculated from=1.3 to 1.6 A since the av-
W(r,R)=Wp+Vyg(r,R) +Ws(r,R) erage force on the coordinate is sharply peaked in this
interval. The total simulation time at each valuerofvas at
I(r,R) least 50 ps; in the range=1.30 to 1.50 A, several indepen-
dent 50 ps calculations were averaged. Figure 1 shows these

1(ro,Ro)
_ _ ~average external forces as a functiorr ¢or a fixedR equal
whereW,, 1y, andR, are arbitrary constants of integration. 5 2 70 A.

We setR, equal to 2.70 A, and we s, such thatW(r,R) After these average external forces were calculated,
equals 0 at the minimum of the reactant well. The caIcuIa-A(r) was calculated by evaluating the integral in E§l)
tions presented below do not depend explicitly on the conyth a trapezoid rule, using,=0.8 A andR,=2.7A. Then
stantry, so it is left arbitrary. Operationally, the solvent free gmgoth functiond A(r) andfg(r) were fitted to the numeri-

energy,Ws, can be calculated from numerical integration of cally determined values @§(r) andB(r), where each of the
its derivatives in Eqsi47) and(48). In practice, Azzouz and  gmooth functions is of the form

Borgis’ have found that/Vs/dR is nearly constant in the
range 2.5A<R<3.0A, so that the solvent free energy in
this range ofR can be accurately approximated by

Integrating Eqs.(45) and (46), the potential of mean
force can be written

—kgTIn , (49)

ea3(r —ap) _ e ay(r—ap)

f(ry=a, +ay, (53

eas(r—a2)+ e—aG(r—aZ)
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TABLE Ill. Nonlinear fit parameters. 3.0
A(r) B(r)
a, —6.250 827 1.929 821 T 28
a, 1.452 337 1.4654495 -
as 9.150 984 6.003 337 @
a, 9.148 94 10.318 115
as 8.143 5.663 757 2.6
ag 8.799 735 10.561 206
a; —7.814 075 0.903 583 oF -
© L -
@Units are such that coordinates in A yiei{r) in units of kcal/mol and £ - -
B(r) in units of kcal mol* A2, = sk -
Q = -
X - -
T 4F -
. . . . i ey o - =3
which is chosen solely for its numerical flexibility. The best- - F — ' -3
fit parameters for this functional form were found via a oF t ) T BT ¢ / | 07
. . .y, . . . [ L
guasi-Newton nonlinear fitting algorithm, and are given in 0.8 1.2 1.6 20
Table Ill. Figure 2 shows these functions along with the data r(A)

points to which the fit was performed. A contour plot of the
resulting potential and plots of the potential along cuts withrFIiG. 3. (a) Equipotential contours of the potential of mean fowér,R).
R=2.6265A (the value ofR at the saddle pointand R Contours(solid curveg are plotted for energies of 0, 4, 8, 12, 16, 20, 24, and

_ 28 kcal/mol. The zero of energy is taken as the minimum of the reactant
2.70A (the value of R near the reactant and product well atr=1.01 A, R=2.70 A. The solid diamonds indicate the locations of

minima) are shown in Fig. 3. the reactant and product minimum and the saddle point. The dashed curve
depicts the minimum energy pattb) PotentialW(r,R) as a function ofr
for R fixed at 2.6265 Asolid curve, for R fixed at 2.7 A(chain curvé, and

IV.B. Force—force correlation function along the minimum energy patiotted curve

The other simulation-produced information needed as in-
put for the rate constant calculation is the friction kernel of
the generalized Langevin equation. This kernel is obtained NVcs <19Vcs>
rnR

from calculations of force—force time correlation functions — OFo(t)=F.(t) =(Fo); r=— T ar

as shown in Eq(20). Rather than calculate the correlation “ “
functions for the fluctuations in force for the coordinates

=(za,Zg,2y), as indicated in Eq21), we calculate the cor- a=A,B,H. (55)
relation functions in the Cartesian coordinateg,(rg, ry)
then transform back to thecoordinates. To accomplish this,
we first define force vectors in the Cartesian coordinates b
gradients ofH:

Fo= =G =~ ar.c @~ABH. (54)

ote thatV,z is a function of onlyz so that the difference
f the instantaneous and averaged values of its gradients van-
ishes) The force component fluctuations in theoordinates,
as shown in Eq(21), are then given in terms of the force
vector fluctuations in the Cartesian coordinates by

wheredl Jr , is a gradient vector, and the fluctuations in force
are given by OF4(1)=2:0F, (1), a=ABH. (56)

The 3X 3 block ngi,(t) of the 9X9 friction tensor in
the Cartesian coordinates,(,rg,ry) for r, andr, is given

T T T T T T T T 17 in terms of the correlation functions between force fluctua-
— 0‘_ ] tions on Cartesian coordinateg andr .. by
g F ]
5 8 7] KT 77,0 (1) = (8F () 8F o (0)); g
3 L -
:“\, 16- - :<[Fa(t)_<Fa>z][Fa’(O)_<Fa’>z]>r,R
< -16f -
" 1 :<Fa(t)Fa'(0)>r,R_<Fa>r,R<Fa’>I’,R' (57)
0.8 1.2 1.6 2
r(A) When calculating the correlation functions from a finite, dis-

FIG. 2. FunctionA(r) used to fit th 1 of forthir.R) [ crete set of force data, the averages in &Y) are carried
. 2. Functio r) used to fit the potential of mean for r, see H H
Eq. (50]] and obtained by integratinggVes/dr), g from 0.8 A tor. Solid out over a slightly different set of data for each valuet.of

circles are the data obtained from numerical integration of the data point§ OF & run withN; total time steps pf sizat, one ?Stimate of
shown in Fig. 1. The curve is a fit to the functional form in E§3). the nth discrete value of the friction tensor is given by
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(r) T 1
k6T g (NAY) wL=—(L——), L=1,.Nc. 63)
N¢—n tC 2
=———" Z [6F,((n+n")At)SF, (n"At)] Sincen is a symmetric matrix, each block of 7 ., IS
(Nt_ n) n/:1 . . .
also symmetric and thus can be diagonalized
1 N¢—n
- N— Z [Fa((n—‘r n,)At)Fa’(n,At) NMaa' = E ULaa”)\La”ULa’a"a (64)
(Ne=n) 7=, o"=ABH
—F.((n+n")At)(F, ) r where\  , are the eigenvalues and the corresponding eigen-
, vectorsU, are orthonormal. Equatiof61) then becomes
_<Fa>r,RFa’(m At)+<Fa>r,R<Fa’>r,R]v (58) Ne
Where naa’(t)% 2 2 ULaaH)\LaHULaraH COith)
L=0 4"=ABH
1 M (65
<F”>V'R:N_tn§1 Fa(nAt). (59) This can be rearranged into a single summation by associat-

ing a single inde) with the dual index La) and changing
A second estimate of this value of the friction tensor is ob-the summation limits appropriately

tained using the last expression in E§7) to give 3(Ne+1)
N Maw (= 2 UjakUjer cOLayt). (66)
ksT#",(nAt)= > F((n+n")AtF,.(n’At)
B Haa (Ne—=n) 724 Equating this result with Eq23) with N=3(Nc+1) deter-
C(F)r (Fur) (60) mines coupling constants of the GLE Hamiltonian, E2R),
a/r,R\"a'/r R-

on which the VTST calculations are based, namely,

Comparison of results using Eqg&8) and (60) provides a Uiow Moo
self-consistency check of the numerical uncertainty in the  Cj,, =——— \/——. (67)
computed friction tensors. We found that they agree to within “L Mo
the numerical errors. The>33 friction tensor in thez coor- By using this procedure, each of tig+1 frequencies in
dinates is obtained by transforming eack 3 block of the  Eg. (61) is coupled separately to each degree of freedom in
9% 9 friction tensor in Cartesian coordinates by using Eq.the reactive complex in Eq18).
(56) to get the single component along the A—B bond for ~ The cutoff time for the fit{c, is chosen so that all of the
each atom, A, B, and H. elements of the friction function matrix are close to zero at
The friction kernel at the saddle point in tlzecoordi- t-. The results are not overly sensitive ttg, varying by
nates is fitted with a finite sum of cosines in the same mannesnly 4% whent is varied from 1.5 to 2.5 ps. For the final
as in our previous work>?’ Each elemeny,,,. is expanded calculations we seti-=2.25 ps. As was the case in our pre-
in a finite cosine series: vious work?” usingN.=5 provides a fit of adequate quality
over the short time scale relevant to the reaction dynamics. A
comparison between the elements of the friction matrix and

%w(U*EO M aa’ COL WL 1), (61)  the fits withNe=5 (i.e., with six cosine termsis given in

Fig. 4. The recurrences seen in Fig. 4 are a consequence of

whereNc+1 is the number of cosines used in the fit, theth® periodicity inherent in Eq61). The recurrence time is
expansion coefficients, . are given by determined by the choice of . With our choice oftc, the
nonphysical recurrence in the fit occurs on a time scale too
long to significantly influence the calculated rate constants

Nc

2 (tc
nLaa’:t_ f CO‘deLt) naa’(t)dti (62)
cJo

IV.C. VTST/MT calculation

andtc is the cutoff time for the cosine expansion fit. Several Once the simulation calculations have been Completed'
of the components of the friction tensor have significantthe processed data are used as input for the semiclassical
long-time decays. Since the cosine expansion method d&fTST/MT calculations. Specifically, the minimum energy
scribed here works best when the function being fitted goepath(MEP) is determined by following the negative gradient
to zero att=tc, these long time, “static friction” parts of of the potential surfacdin mass-scaled coordinajesand
the friction components are included approximately by in-the signed reaction-path distansgis calculated by integrat-
cluding the very low frequencw,. The final results of the ing the arc length along this path in both the reactaega-
calculation are not particularly sensitive to the valuewgf,  tive s) and productpositives) directions. The former is done
so we have set it equal to 1/8 the valuewf in Eq. (63).  using an Euler integrat®t with a step size of 2.5
With this choice forwg, the frequencies are given by X 10 *ay. Data needed for subsequent calculati¢esy.,
potential, normal mode frequencies, gtwere stored at in-
- tervals of 2.510 3a, along the path. Unlike the model
16tc’ system used previousfy,the potential energy surface used

ar
o
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T T T T T T rrrr[rrrT and NESP are generally different, in this case we see that
\ - they are approximately equal, indicating small coupling be-
= - tween the solute and solvent. In addition to the real frequen-

3 cies shown in Fig. 5, it is interesting to note the imaginary
L - frequencies at the saddle point. These are R2d8* for the

L) ']I[]llll

(o]
r
—~
o
~

ES model and 224&m™* for the NES model. Replacing the
proton by a deuteron changes these values to i1%59id
1594 cm %, respectively. These are rather large imaginary
frequencies, which indicates a narrow barrier.

e

;

V. RESULTS AND DISCUSSION

deuteron are reported in Table IV. In addition to the
VTST/MT results, we present calculations from approximate
TST approaches that treat the two dimensions in the equilib-
rium solvation model at different levels of theory: harmonic
versus anharmonic and classical versus quantum mechanical.
These latter calculations allow us to assess the importance of
anharmonicity and the validity of a mixed quantum-classical

treatment. Expressions fdtlaca, Klach K&ich KCaoH:

kTST kTST kTST/PT kTST/PT kTST/PT kTST/UST TST/UST
CHQH KQHQH KcAQH KcHQH ' KQHQH: KcaQH » KCHQH
and kiion" are presented in Appendix B. The notation
Ky, indicates the treatment of tiR coordinate(wx) andr
coordinatg(yz) and tunneling correction factdt). Subscripts
b w andy can be C or Q to indicate classical or quantum
T T T treatment, ank and z can be A or H to indicate an anhar-
0 1 monic or harmonic treatment. The supersctipan be blank
t (ps) to indicate no tunneling contribution, PT to indicate tunnel-
o _ , ing is approximated through 1-D barriers for edRlusing a
FIG. 4. Elements of the friction tensor in thecoordinate system as a . . . . L
function of timet: (@) 7an » (6) 788, (© Trsts (@ g+ (€ 7ass () 7. parabolic gpproxmaﬂon to the_ barrier, or UST to |nd|c§te
Solid curves are the results of molecular dynamics simulations of the force that tunneling is treated by a uniform semiclassical tunneling
force correlation functions, and dashed curves are the fits of the frictiorapproximation based on a 1-D cut througifr ,R). The first
tensors to the cosine expansion in Egfl). Note that the scale of paft) is 12 rows in Table IV are the results of these TST approxima-
a factor ofSSmgIIer than that for pa«i®, (c), and(e), and that the scale of tions as defined in Appendix B. The next three rows are
parts(d) and (f) is a factor of 10 smaller than that for pdh). ) -
results of the semiclassical VTST and VTST/MT calcula-
tions for the equilibrium solvatioGES) model, and the final
here has a minimum in each of the reactant and produdhree rows are results of the semiclassical VTST and
channels. As the reaction path approaches either of the3éTST/MT calculations for the nonequilibrium solvation
wells, the magnitude of the gradient gets smaller, leading téNES) model. The bottom row is our most complete calcu-
instability in the Euler integration method. To avoid this, anlations, and all the other rows show the effects of various
arbitrarily chosen cutoff in the magnitude of the gradient isfurther approximations.
used to switch from an Euler integration method to a multi- ~ Comparison of the rate constants in the first 12 rows of
dimensional Newton—Raphson search for the location of thdable IV allows us to assess the importance of quantization
nearby well minimum. The MEP is then connected to theand anharmonicity on the computed rate constants. The
well bottom. Normal modes and harmonic frequencies wergurely classical rate constar(t®ws 1-3 all agree to within
calculated in directions orthogonal to the MEP at each stora few percent indicating that a harmonic treatment of the
age interval along the MEP. classical rate constant is adequate. Rows 4 and 5 show that
The potential, frequencies, and CMS-0 potential alongquantization of the degree of freedorfcorresponding to the
the MEP are shown in Fig. 5 as a function of the reactionlight H-atom motion increases the rate constant by a factor
coordinates. The CMS-0 potential for the ES model is de- of 200, whereas comparisons of rows 5 and 6 show that
fined by Eq.(35), and that for the NES model is defined by quantization of theR degree of freedongcorresponding to
the same equation, except thatspis replaced by espand  the heavier AB relative motigrhas a much smaller effect on
the coupled vibrational frequencies along the NESP are useithie rate constant. The reasonably good agreement between
instead of the uncoupled ones along the ESP. Note that ththe mixed classical-quantum rate constd@gH, and the
CMS-0 potential is the effective potential for tunneling in quantum harmonic onég; oy, validateswithin 35%—40%
liquid-phase reaction® and it is generalization of the vibra- the mixed treatment of the rate constant when tunneling is
tionally adiabatic ground-state potentfal* that is used for excluded. For the system studied here the quantum harmonic

gas-phase reactions. Although the frequencies along the ES&te constank >, is essentially equivalent to the conven-
q g QHQH y €q
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g N~ / friction (equilibrium solvation, and parts(c) and (d)
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—~———— T tion). The frequencies displayed in pat& and(c) are
40 for the normal modes orthogonal to the minimum en-
- - - ergy path. The top most frequency is for the mode that
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- 4 . frequencies are six sets of three frequencies, as dis-
B T k cussed below Eq(63), which are degenerate in the
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tional quantized harmonic TST expressicee Appendix B times larger than the rate constant neglecting tunneling,
and comparison of rows 6 and 13 shows it agrees quite wek{agy in row 4. The rate constalktEST’PTm Eq.(A23) is the
with the quantized CVT rate constant for the equilibrium closest expression to the corrected TST expression of
solvation modelk&y'. Azzouz and Borgig.The large difference in computed rate
Next consider the inclusion of tunneling. Tunneling of constants, 7.% 10’ for Azzouz and Borgis compared to 1.2
the light H-atom is quite important for this system, and in X 10'* computed herérow 7), is a consequence of different

fact the parabolic tunneling resuk{3on, in row 7 is 80  expressions for the probability densitiggR). The close

TABLE IV. Approximate transition state theory and semiclassical VTST rate const@r(mits of 13%°s™%)
and H/D kinetic isotope effectH/D) for the proton and deuteron transfer reactions in the equilibrium and
nonequilibrium solvation approximatioAsT=249 K.

Row a b H D H/D KIE
1 TST CACA 7.5¢1074 5.3x1074 1.4x10°4
2 TST CACH 7.6<10°4 5.4x 1074 1.4x10°%
3 TST CHCH 7.810°* 5.5x1074 1.4x10°4
4 TST CAQH 0.15 0.015 10.

5 TST CHQH 0.16 0.015 10.
6 TST QHQH 0.11 0.010 10.
7 TST/IPT CAQH 12 0.10 120
8 TST/PT CHQH 7.6 0.096 80.
9 TST/PT QHQH 5.1 0.064 80.
10 TST/UST CAQH 240 1.8 130
11 TST/UST CHQH 82 11 74
12 TST/UST QHQH 55 0.74 74
13 CVT ES 0.11 0.010 10.
14° CVT/ZCT ES 11 0.53 21
1% CVT/SCT ES 16 1.0 16
16 CVT NES 0.10 0.010 10.
17 CVT/ZCT NES 8.3 0.41 20.
18 CVT/SCT NES 13 0.85 15

#The first 12 rows are TST results for equilibrium solvati&@$) and use the notati TS;" explained in the first

paragraph of Sec. V. The last six rows are CVT and Q\WEkults in the equilibrium solvation and nonequi-
librium solvation approximations and hawexyz=QHQH, with t being ZCT or SCT.
PVTST/MT calculations.
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agreement of our results for the mixed classical-quantum rat 30 LI B B B e e
constantklagy With the quantized CVT resulté.e., kgd" - s
provides evidence that we have used a consistent probabili
density in the mixed expression, EGA23), since the same
probability density is appropriate for bokiao andkEagy - 20 |-
Next we consider the effect of going beyond the parabolic
approximation but retaining a one-dimensional model of tun- -
neling; this yieldsk gy~ in row 10, which is based on a i
semiclassical procedure employing the conservation-of 10 ,'_
vibrational-energy(see Appendix B approximation. This L
method greatly enhances the tunneling and gives a rate co -
stant about a factor of 20 larger thgzgy; this result il- -
lustrates the danger of parabolic approximations.
Comparingk{aoy (row 4) andk iy (row 5) shows that TR Y DTS P
making the harmonic approximation on tRemotion when -0.4 0.0 0.4
the R coordinate is treated classically ands quantized but s (A)
tunneling is neglected has little effect on the computed ratt

constant. However, the effects are larger when tunneling is o )
g TST/IPT 9 FIG. 6. Reaction path curvature(s) (solid line) and CMS-0 potential

; STIPT \, 0
included. For example, CompakéAQH with I(CHQH (row 7 (dashed lingas a function of distancealong the minimum energy path for

VS row 8 or kgigﬁST with k(T:SHgL,_J'ST (row 10 vs row 1). The  the proton transfer reaction in the equilibrium solvation approximation. The

CAQH method averages the tunneling correction factorgmr_izor_nal line segment indicates_the zero—_point energy level in reactants,
over R and the shape of the effective potentialrichanges which is the lowest energy for which tunneling can occur.
for different values ofR. The narrower potentials in at
larger R values enhance the tunneling over the value of the
tunneling factor at the saddle point. In the CHQH methodsfor systems that display large reaction-path curvature such as
the effective quadratic potential results in the effectiyeo- g light-atom transfer reaction between two heavy moieties,
tential being the same for R values and equal to its value which is studied here. In this method, the tunneling path for
at the saddle point. a given tunneling energy is taken to be a straight-line path
Next we compare the approximate QHQH methods withpetween turning points along the MEP of the CMS-0 poten-
tunneling to the CVT/MT results for the equilibrium solva- tial. For reactions with large reaction-path curvature, these
tion model. The CVT/MT method includes multidimensional paths may exhibit much greater corner cutting than the im-
tunneling effects in that they are based on the zero-ordgglicit paths of the SCT approximation and thus greatly re-
canonical mean shape approximation and the SCT methagduce the tunneling distance, and thereby enhance tunneling.
includes a further multidimensional effect, namely corner-In the present case, the region of the potential where tunnel-
cutting tunneling, because it employs the small-curvature aping is important does not have large reaction-path curvature,
proximation to the effective mass. The best approximation teven though the system does exhibit large curvature for some
the equilibrium solvation rate constant is given k§¥"*“T  parts of the MEP. Reaction-path curvature is defined by
(row 15, which includes the effect of reaction-path curva- x(s) =|9?x/3s?|, wherex(s) is the vector of mass-weighted
ture on the tunneling; in particular, multidimensional tunnel-coordinates along the MEP. For straight-line patkgs) is
ing is treated by the small-curvature tunneling approximatiorzero. First note in Fig. @& that the minimum energy path is
by using Eq.(36). Comparison with the rate constant that a nearly straight line that is parallel to thexis from about
neglects reaction-path curvatukgy "““" (row 14), indicates r=1.05 to 1.55 A. In Fig. 6 we have plottee(s) for the
that the multidimensional “corner-cutting” effect enhances proton transfer reaction in the equilibrium solvation model.
the rate constant by about 50%. The CVT/SCT results for th@he curvature is quite large nese +0.2—0.3 A, which cor-
equilibrium solvation model are about 33% higher than theresponds to values ofin Fig. 3(a) near the potential minima.
k&aon results and a factor of 15 smaller than tkipy>'  The zero-order canonical mean shape potential for proton
results. The better agreement V\A@TQ’ETfor the H isotope is  transfer is also plotted in Fig. 6, and its peak and most of the
fortuitous sincekEapy Neglects reaction-path curvature and barrier in V™S lies between the peaks (s). The hori-
tunnels through the bare potential of mean force, whereas tteontal line in Fig. 6 is the value of the energy for the zero-
CVT/SCT results include the effects of reaction-path curvapoint motion in the reactant well, which is the lowest energy
ture and tunneling through the zero-order canonical mearfor which tunneling occurs. Although we have not performed
shape barrier. Furthermor&lagn' and kE¢"SCT differ by~ LCT calculations in the present study, it would be interesting
over a factor of 5 for the D isotope. Comparison of the mul-to do so.
tidimensional VTST results and those from “corrected” TST Comparison of the rate constants calculated for the non-
based on one-dimensional cuts for fix€dshow that the equilibrium solvation model with those for the equilibrium
latter approach is not adequate for treating the dynamics afolvation model indicates that the effects of nonequilibrium
this type of reaction for which tunneling is important. solvation are small. In the classical limit the ratio of the
The large-curvature ground-state tunneling.CT)  nonequilibrium solvation and equilibrium solvation conven-
method”®is often the most appropriate tunneling methodtional TST rate constants is the classical Grote-Hynes factor.

x(s) (A7)

(low/1ey) (8)y.gpAt
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For the friction model computed here, this factor is 0.99. Theeffect on quantum mechanical tunnel#ff® This is also true
size of the Grote-Hynes factor is influenced by the magniin the present case, where the rafgfy>c kS¢S Tis 0.81.
tude and time scale of the friction and also by the size of the  Our best estimate of the rate constant for this system is
imaginary frequency at the saddle point. For the system studsbtained by the CVT/SCT method for the nonequilibrium
ied here the largest components of the friction tensor, AAsolvation modelrow 18 of Table I\j. The H/D kinetic iso-
HH, and AH in Fig. 4, can be fit to the Gaussian functionaltope effect (KIE) from the semiclassical VTST and
form VTST/MT calculations ranges from 10 to 21, with our most
1/t \2 complete calculation yielding 15. As noted above, tunneling
n(t)~n(1)(0)exr{— E(W) } contributes significantly to the rate constant for this light
g atom transfer reaction, and the tunneling correction factor is
1/ t smaller for the heavier D atom; as a consequence the KIE
+ n(z)(O)eX[{ - 5(@ : (68) increases from a value of 10 when tunneling is neglected to
7 a value of 15 or more when it is included. The effect of
where the time scalas™ ando(? are about 100 and 700 fs. reaction-path curvaturdincluded in the SCT tunneling
The time scale for barrier crossing, which is determined bymethod but not the ZCT methpéhcreases the rate constant
the imaginary frequency, (2248 cm* for H) at the saddle for deuteron transfer more than for proton transfeven
point, is about 2 fs and is therefore much faster than thehough the SCT tunneling factor is still larger for the proton
frictional time scale. In a one-dimensional classical barriertransfej, so that the KIE for the CVT/SCT method is about
crossing model the Grote-Hynes correction factor is giveni5 while the KIE for the CVT/ZCT method is about 20. The
by KIEs obtained from the mixed classical-quantum methods

2

CH (o (1) including tunneling, i.e.kfaoy and kiagy ' overestimate
(kC)2+ —f dtexp — kM wy|t) ——1=0, (69)  the kinetic isotope effect by factors of 8.0 and 8.7, respec-
wp Jo 7

tively.
where u is the effective mass for the one-dimensional mo-  Table V. compares rate constants computed previously by
tion. For a Single Gaussian form foy(t), values Of(T(l) other methOd7S_9’13'l4tO those by the CVT/SCT method in
=100fs and »Y=12kcal/mol A~2 reproduce the Grote- the nonequilibrium solvation approximation. First note that
Hynes factor in the multidimensional model. Using thisthe rate constants vary by over two orders of magnitude for
model for the friction in Eq(69), the exponential function in the different methods. The systematic comparison of 18 com-
the integral damps out much more quickly than the friction,binations of approximations in Table IV, as discussed above,
except for very small values of®". For the magnitude of Will help us to place these differences in perspective.
the friction and imaginary frequency used in the modé&t First consider the “corrected” classical TST resuits,
is close to unity. In this casej(t) is a weakly varying func- which are a factor of 1700 lower than the NES-CVT/SCT
tion of time over the time period for which the exponential in results. As discussed above, this appears to result from an
Eqg. (69 damps out, and therefore the time scale of the fric-incorrect treatment of the probability densigfR) in Eq.
tion is not an important factor in determining®™. In fact,  (A5).
«x®H'is a monotonically decreasing function of the time scale ~ Next consider rows 2, 3, and 7 of Table V. The surface
o, and the time scale is so large that further increase®f  hopping (MDQT) results of Hammes-Schiffer and Tully
has negligible effect or®". We have computed sensitivities agree with our CVT/SCT results within 31% for H transfer,
of x®" to changes in the barrier frequency, time scale, andut this good agreement is most likely fortuitous because
magnitude of the friction for this model(e.g., agreementis much worgmore than a factor of 4 deviation
an kY 1n o). The sensitivity ofx®" to o) is about for D. The curve-crossing TSTand path-integral TS'® re-
—2x107°, while the sensitivities tav, and »*) are 0.03 sults differ even more from the NES-CVT/SCT curve results,
and—0.01, respectively. Thus, changing the time scale of thén particular by factors ranging from 12 to 50. The curve-
friction has little affect onk®". On the other hand, the crossing TST, path-integral TST, and surface-hopping
Grote-Hynes factor is decreased to a value below 0.6 whemethod all treat the proton quantum mechanically and the
the barrier frequency is lowered by a factor of(fom  other coordinates classically. Our analysis above of mixed
2228 cm*to 450 cm™1). The effect of increasing the mag- (CAQH) classical-quantum models of the rate constant for
nitude of the friction is less; increasing™ by a factor of 5 the equilibrium solvation model shows that this type of
decreasesc®" to only 0.92. The fact that a Grote-Hynes mixed approacti.e., treatingr quantum mechanically aril
factor near one-half can be obtained by decreasipg but  classically is not appropriate for reactions in which tunnel-
with no change to the friction, indicates that it is not a smalling is important. In particular, the mixed classical-quantum
magnitude of the friction that is responsible for the value ofapproach with tunneling included by a semiclassical ap-
the Grote-Hynes factor being near unity. Instead, it is theproach for the actual potential of mean for@ew 10 of
large imaginary frequency that reduces the effect of nonequitable IV) is over an order of magnitude larger than our more
librium solvation in the classical rate constants. The effect ofaccurate CVT/SCT method, whereas introducing further ap-
quantizing the bound degrees of freedom does not quantitgroximations for the tunnelin¢as in rows 7—9 of Table 1Y
tively change the effects of nonequilibrium solvation, as thecan convert this to an underestimate. Previous comparisons
ratio of the quantized CVT result§{ o/kSS " is also 0.99. In - of VTST/MT and PI-QTST results for a model reaction in a
our previous work we found that friction can have a largerliquid showed that they agreed wéfi Thus the severe un-
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TABLE V. Previously calculated rate constants {49 ) and KIEs compared taSyeCT from the present

work for the proton and deuteron transfer reactions.

H D H/D KIE
“Corrected” classical TST 0.0077
Curve-crossing TST 0.78 0.017 46
PI-QTST 11 0.026 40
QK (MFP) 0.065
QK (gas-phas&/, linear coupling® 0.99 0.012 83
QK (gas-phas&/, nonlinear coupling 8.6 0.23 37
MDQT? 7.8 2.0 3.9
KSGa/seT 13 0.85 15

@Average of one-dimensional TST rate constants for fiRechlues(Azzouz and Borgis, Ref.)7
bLandau—Zener curve-crossing TST meth@dzouz and Borgis, Ref.)7

‘Calculation by Azzouz and Borgi®Refs. 7 and 8using the centroid path-integral quantum TST method of
Voth and co-workergRefs. 5 and 3R

dQuantum Kramers approach using effective “mean-field” potential and linear coupling tdAatbniou and
Schwartz, Ref. 18

fQuantum Kramers approach using gas-phase potential and linear coupling t@A\btthiou and Schwartz,
Ref. 13.

fQuantum Kramers approach using gas-phase potential and nonlinear coupling (artiathiou and Schwartz,
Ref. 14.

9Trajectory surface hopping approaémolecular dynamics with quantum transitions, Hammes-Schiffer and
Tully, Ref. 9.

derestimate afforded by PI-QTST in Table V is surprising. sults of Azzouz and Borgis, when the coupling between the
The surface hopping approach agrees better with theolute and bath is linear. Interestingly, they find that replac-
CVT/SCT method, and the results may be understood in paihg the linear coupling with nonlinear coupling significantly
from the results in Table IV. Table IV show that changes the rate constant. This is contrary to our finding that
k&aoH Konon is 1.4 for H and 1.5 for D. Thus we expect that solvent friction has a small effect on the computed rate con-
if the only approximation is to use classical mechanics forstant.
the heavy-particle solute coordinate, one might see a devia- The H/D kinetic isotope effects also show a large varia-
tion from a QHQH result like the NES-CVT/SCT one of tion with the different methods of calculation ranging from
about this magnitude. Table V show thajpor/Kes C'is 3.9 to 83. The largest values of the KIE40-83 are remi-
0.6 for H and 2.4 for D, within about a factor of 2 of the niscent of the large KIEs seen in the “corrected” TST calcu-
expected deviation. This comparison is complicated by thdations in which tunneling is inconsistently appli€d.g.,
lack of an explicit reactant partition function in the surfacerows 7—12 of Table IY. The relatively low value of the KIE
hopping approach. The source of the disagreement mighpredict by the MDQT method, 3.9, is the lowest and it is
however, be due to tentative quantum transitions in the suiinconsistent with the VTST calculations, even those without
face hopping method that are “frustrate(iind therefore do tunneling corrections, which predict a value of 10. Our best
not occuj because the surface hops that are required foestimate of the KIE with the NES-CVT/SCT method is 15.
self-consistency in this method are sometimes forbidden b inetic isotope effects this large are generally cited as an
the conservation of total energy or the requirement that théndication of quantum mechanical tunneliffgln our previ-
momentum change be in the nonadiabatic couplingpus studies of gas-phase reactions with barriers comparable
direction® to the one in the current model and for light-atom transfer,
The quantum Kramers approdéf® (rows 4—6 of Table we found that VTST/MT gives good estimates of accurate
IV) treats all coordinates in an effective GLE Hamiltonian onH/D KIEs 225667 For one system with a comparable mass
an equal footing and in this regard is similar to our approachcombination and barrier heigktollinear CH-HCI) the accu-
However, the GLE Hamiltonian used by Antoniou and rate H/D KIE was only 8 at 250 K¢
Schwartz is different than the one we use. Our Hamiltonian
includes three C(_)ordlnates for th_e _solute system plu_s batOL CONCLUSIONS
modes representing the solvent friction. The potential in the
absence of friction is the potential of mean force, which we  We have presented a systematic approach to applying
calculate explicitly from molecular dynamics simulations. semiclassical variational transition state theory with multidi-
Antoniou and Schwartz treat the solute system as a singlmensional tunnelingvTST/MT) to proton transfer reactions
reaction coordinate that is coupled to bath modes represenia polar solution, and we have illustrated the approach by
ing the solvent friction. They have used two different func-applying it to a model system that is of especially high in-
tions for the potential in the absence of friction: the bareterest because it has been widely studied by previous work-
gas-phase potential and the gas-phase potential plus the dirs. In the VTST/MT approach as implemented here, the
agonal terms arising from the frictide.g., the terms that go effects of the solvent on the proton transfer reaction are in-
like (Cjaza)2 in Eqg. (22)]. Their computed rate constants cluded using a generalized Langevin equati®LE). The
using the bare gas-phase potential agree better with the rpeotential of mean force and solvent friction, which enter into
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the GLE, are obtained from molecular dynamics simulationsAPPENDIX A: DERIVATION OF MEAN FORCE
of the explicit solvent molecules interacting with the reactiveEXPRESSIONS [EQS. (45) AND (46)]
solute system. The GLE dynamics are approximated by an . . N
effective Hamiltonian, which includes explicit bath modes We define the rotational kinetic energy operaigy; by
that are treated as harmonic oscillators coupled to the solute 1 p>
coordinates. Then the VTST/MT method, including quanti-  T,= (p§+ —# )
: o . ) 21(r,R) sir? 6
zation of bound vibrational modes and multidimensional
semiclassical tunneling corrections, is applied to the effectiverhen the third term on the right hand side of the first line of
GLE Hamiltonian. Eq. (45) is just
Rate constants calculated with and without solvent fric-
tion and with and without inclusion of tunneling allow us to d 1 2 Pi ]9 5
assess the importance of these effects. It is not surprising that \ gr | 2I(r,R) ot siré 0 ) R_ ET")‘ ) R' (A2)
guantum mechanical tunneling is important for this light- ’ '
atom transfer reaction. The rate constants are enhanced by Bge onlyr andR dependence iif,, is due tol (r,R), so that
much as two orders of magnitude by including tunnelingthe derivative ofT ; with respect tar can be rewritten
effects. It is somewhat surprising that the effect of solvent

(A1)

2
friction is very small for this reaction that involves charge S P Py )(i[ 1 :( _ (9I_nl>_|_
transfer in a polar solvent. An analysis of the effect of non-  dr " "% sin®6/\dr|21(r,R) ar | v
equilibrium solvation indicates that the narrownésslected
in the large imaginary frequency, 2348n ! for H) of the Substituting Eq(A3) into (A2) we obtain
potential barrier at the saddle point leads to poor coupling
between the dynamics of the solvent bath and the proton 4 1 ) (2,)
transfer. E 21(r,R) Pyt SIré 6
Previous calculations on the model problem studied here "R
have exhibited a wide variation in the rate constants calcu- alnl
lated by different theoretical approaches. Also, the previous =~ a_r<Trot>r,R
methods have predicted an H/D kinetic isotope eff&dE)
that ranges from about 4 to 83. Our most reliable estimate of ~_ kBTaI—nI (Ad)

the H/D KIE is 15. The wide variation of computed rate ar

constants and KIEs with different methods is an indication of o ) )

the difficulty of accurately computing rate constants for re-"‘fhere‘9 Inl/ér is just a constant in the averages in E42)
actions in condensed phases when quantum mechanical &ince!(r,R) depends only on the coordinateandR and not
fects are important. Accurate benchmark calculations ar@" @ny other coordinates in the system. We have used the
more difficult to perform in this case, so we rely on compari-€auipartition of energy to giveT o) = —kgT in this expres- -
sons of the results of approximate methods to gain insigh?'on' Similar .arguments.can be mgde _to evaluate the third
into the reaction dynamics and applicability of different ap-t€rm on the right hand side of the first line of H¢6):
proximation to the system. By calculating the rate constanj P(zZS )

with a systematic sequence of approximations, we have clari-— 24 —
y . PP R 2I(r,R)(P"+ Si? 6

alnl
i ! i > == (?_R<Trot>r,R
fied a number of the factors that help explain the difference r.R

between the various approximations in the literature. Never-

theless, there is opportunity for further studies to understand = —kgT gl

even better the sources of the differences between the calcu- JR
lated results for different methods.

(A5)

APPENDIX B: APPROXIMATE TWO-DIMENSIONAL
TRANSITION-STATE THEORY APPROACHES
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Z(r,R)=0 defines the transition-state dividing surface, and  Azzouz and Borgis modify the one-dimensional classical
QE(T) is the classical reactant partition function, which is TST rate constant to account for quantization of the bound
discussed below. We choose the dividing surface by vibration in ther coordinates for reactants and to include
B tunneling through the one-dimensional barriers. This leads to
Z(r,R)=r=ry(R) (B3) a mixed quantum-classical expression in which ithiegree
and r,(R) is the location of the maximum iw(r,R) for  of freedom is treated quantum mechanically whiReis
fixed value ofR. Note that the choice of dividing surface in treated by a classical average. This previous approach is one
Eq. (B3) is different than that assumed in conventional TST.motivation for us to examine the effects of quantization on
In conventional TST the dividing surface is chosen to bethe computed rate constants and the validity of mixed
perpendicular to the minimum-energy isoinertial reactionquantum-classical expressions for the rate constants. In addi-
path at the saddle point, and for the two-dimensional systertion, we wish to examine the importance of anharmonicity,
studied here, the conventional dividing surface correspondahich we can study explicitly in the classical calculations.
to the bound normal mode coordinate at the saddle poinfThe remainder of this appendix presents different approxi-
The normal mode will depend on the masses of the systemmate TST rate constants based upon the TST expression in
whereas the definition in E4B3) does not depend upon the Eq. (B4).
masses, so they will not be the same in general. However, the A consistent treatment of quantum mechanical effects in
normal modes at the saddle point are almost puesidd R the TST rate constant requires including effects of quantiza-
motion for the system studied here, so for the present extion in the probability densityg(R) as well as the one-
ample, TST based on the conventional dividing surface andimensional rates constants. For consistency, if effects of
TST based on EqB3) agree to within a couple of percent quantization are included ig(R), they should also be in-
for all cases where we compared them. cluded in the reactant partition function. The classical reac-
For the choice of dividing surface in E¢B3), the ex- tant partition function for the dividing surface in E@®3) is
pression fork:>'(T) in Eq. (B1) can be reduced to a one- given by
dimensional integral oveR

1
R —
k(T:ST(T)=fng(R)kEST’lD(R,T). (B4) QC(T)_(ZWﬁ)zfdPRJdPJdRJ o

The classical one-dimensional TST rate constant for a fixed
value ofR is given by " kg T(detu)2
=lcaca™ T onh? dR| dr
kgT

TST,1D, —
kC (R,T)— hQr(R,T)

exil ~Wy(R)/kgT],  (BS) xexd —W(r,R)/keT10[ro(R)—1], (B8
where the functiorQ" (R, T) is the reactant partition function where we have introduced the notati@ﬁACA to denote that
in the one-dimensional potentighs a function ofr) at  both ther andR coordinates are being treated classicélly
fixed R, and anharmonicallyA). If the r potential for each fixe® is
treated as a harmonic oscillator we approxim@g ., by

Wp(R)=W[rp(R),R] (B6)
1/2
is the value of the potential of mean force at its local maxi- R (1) kBTmB(mZA“LmH)} f dr
mum for fixedR, and the equilibrium probability density R cac 27hM
's defined by X ex —Wo(R)/keTIQ4(RT), (B9
)
g(R)= wmﬂkﬂ det u)]Y? whereWy(R)=W[ry(R),R], ro(R) is the reactant minimum
hQc(T) in W(r,R) for fixed value ofR, the reactanR-dependent
B 1 frequency is defined by
X | Y2 )‘ B7
B —drp/dR ®7) o 1 J*W(r,R) (B10
Expression of the TST rate constant as an integral of (R Pan O r=ro(R) !

one-dimensional rate constants as expressed in(B). is

similar to the “corrected” classical theory presented byWwith way=mamy/(ma+my), and

Azzouz and Borgid.In the previous work the weighting fac- kaT

tor was defined as the “probability distribution function for QLy(RT)= B (B12)
R in the reactant regiom,<r,(R),” but no explicit expres- @ (R)

sion was provided. The ratlQ'(R,T)/QE(T) IN OUr eXpreés-  Replacing the classical partition given by H&11) by the
sion for the probab_ﬂﬂy density |s_the probab!llty densityRn quantized one in EqBY) results in
in the reactant region. The remaining terms in 8¥) result

from the integration over the momentum integrals in Eg. R 12

(B1) and combined with the rati@"(R,T)/QR(T) give the Qcaor(T) = f dR

correct weighting of the one-dimensional rate constants for

eachR in the classical TST expression. X exd —Wo(R)/ksT1Qour T) » (B12)

KgTmg(ma+my)
27h*M
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where
L . PW PW  PPW  5°W
r - PRI\ rZ GRT ar 9R or R
Qon(RT) 2sinfjfw (R)/2kgT]" (B13
Treating both the and R degrees of freedom as harmonic P*W -1
oscillators, the classical partition function is approximated / ar?
% -1/2,
by de(p) | u 2W
R T)= kBT kBT B14 ar oR r=rf R=R¥
QcChcH( )_ﬁ_wizﬁ_wg’ (B14) (B19)

Although this expression is not equivalent to the bound nor-
where»? and f are the harmonic frequencies of the reac-mal mode frequency at the saddle point, it is closely approxi-
tant well; mode 1 is of low frequency and consists largely ofmated by the normal mode frequency for the system studied
R motion, and mode 2 is of high frequency and cons|stshere The mixed classical- quantum harmonic expression,
largely ofr motion. The mixed classical-quantum and quan- kCHQH(T) is obtained by replacm@CHCH by QCHQH The
tum partition functions in the harmonic approximation arequantum harmonic expres&dthQH(T) is obtained by re-

given by placing QR by QQHQH and by replacing the classical par-
tition function for R at the saddle point by its quantum har-
ke T 1 monic analogue to give
Qe T)= 7R 2 sin(h wRi2kgT) (B19 sy keT 1
KQriQH hQBHor(T) 2 sinflfi wi/2kgT)
and X expl — WHkgt). (B20)

Tunneling is important for this light-atom transfer reac-
(B16)  tion and we consider including tunneling contributions in the
mixed classical-quantum rate expression in a manner similar
to that used by Azzouz and Bordidn their approach an
The different approximations to the reactant partition func-effective parabolic barrier is fitted to the barrier height and
tion are used in EqB7) along with the appropriate expres- width for each value oR and the parabolic tunneling prob-

sion for Q"(R,T) to define the appropriate probability den- apilities are integrated to obtain the parabolic tunne(i®)
sity. SinceQ"(R,T) cancels out in the product af(R) and  transmission coefficient:

TST,1D, ; o
k%T (R,T), its definition dges not che.m.ge the vqlue of i R)dEexp(—E/kT)PPT(R,E)
ko™'(T), so we do not specify the explicit expression for PTRT)= o (B21)
Q'(R,T). ’ Jw,(rdEexp(—E/KT) '

We now define approximate TST rate constants that ar PT
consistent with the definitions of the reactant partition func- Fn this expressiorP” (R,E) is the probability for tunneling

through the parabolic barri&rin r for fixed R at energyE.
ti E B8), (B9), (B14), (B1 d(B16). A
lon given in Eqs.(B8), (BY), (B14), (B13), and (B16). The mixed classical-quantum expressi&fiag (1), based

on the parabolic approximation for tunneling contributions,
is given by

ke (T =f dR RKLSTIAR,T), B1
CXCZ( ) %XCZ( ) C ( ) ( 7) Ei-gET(T)_J‘dR%AQH(R)KPT(R,T)k-I(;ST'lD(R,T)_

wherex andz may be H or A, andy,,(R) indicates that e (8_22)
ngcz is used for the reactant partition function in Eg7). To assess the sensitivity of the calculated tunneling con-

Mixed quantum-classical expressmnskCAQH(T) and tributions to approximatipns that aﬁ_gqt the barrie_r shape, we
KIST also compute the tunneling probabilities by a uniform semi-

CHQH(T) excluding tunneling, are given by similar expres- X ] i i
sions, but with ge,c«R) is replaced bygeagu(R) and classical tunnelindUST) expression on the actual potential
4 . .

deron(R), respectively. If the potential is treated harmoni- of mean force along the reac.tlon'path. Note that this UST

cally about the saddle point and reactant, the classical raf@Proach and the PT approximation to it are based on the

constant reduces to potential of mean force rather than the canonical mean
shapé® potential; thus these approximations are liquid-phase

analogs of the conservation-of-vibrational-ener¢@VE)

QR (T)= R R
QHQH 2 sinfA wf/2ksT) 2 sinl(fiwy/2kgT)

purely classical expression is given by

ESHEH(T)_k—TEfqu WHkgT), (B19) approach' rather than the more physical vibrationally
hQChc(T) fiwg adiabati€®®® approach. As such, these approximations are

true one-dimensional tunneling approximations, in contrast
whereW?* is the value of the potential of mean force at theto the multidimensional ZCT, SCT, and LCT approaches that
saddle point, and the frequency kis given by include the effects of vibrational energy in modes transverse
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