
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

2012

An introduction to modern cryptology within an algebraic An introduction to modern cryptology within an algebraic

framework framework

John Szwast
Eastern Washington University

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Szwast, John, "An introduction to modern cryptology within an algebraic framework" (2012). EWU Masters
Thesis Collection. 13.
https://dc.ewu.edu/theses/13

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital
Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of
EWU Digital Commons. For more information, please contact jotto@ewu.edu.

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=dc.ewu.edu%2Ftheses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.ewu.edu/theses/13?utm_source=dc.ewu.edu%2Ftheses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

AN INTRODUCTION TO MODERN CRYPTOLOGY WITHIN AN

ALGEBRAIC FRAMEWORK

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science

By

John Szwast

Fall 2012

THESIS OF JOHN SZWAST APPROVED BY

DATE:

DR. RON GENTLE, GRADUATE STUDY COMMITTEE

DATE:

DR. DALE GARRAWAY, GRADUATE STUDY COMMITTEE

DATE:

DR. PAUL SCHIMPF, GRADUATE STUDY COMMITTEE

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Scope . 1

1.2 Background . 2

1.3 Conventions and Notations . 2

1.4 Overview . 3

1.5 General Definitions . 4

1.6 Bit Operations and Big-O Notation . 5

1.6.1 Overview . 5

1.6.2 Time Estimates for Integer Arithmetic . 8

1.6.3 Time estimates for modular arithmetic . 12

1.7 Probability . 15

iii

CONTENTS CONTENTS

1.7.1 Discrete distributions . 15

1.7.2 The uniform distribution . 20

1.7.3 The geometric distribution . 22

2 Affine Character Cyphers 25

2.1 Shift Cyphers . 26

2.2 Linear Cyphers . 30

2.3 Affine Cyphers . 32

2.4 Abstractions . 32

2.4.1 Ring Choices . 32

2.4.2 Group of keys . 33

2.4.3 Text Vectors And Sequences . 37

2.5 Breaking and Time Analyses . 38

2.5.1 Cypher Attacks . 39

2.5.2 Composition of encypherings . 45

2.5.3 Distribution Count Variance . 49

3 Affine, Block Cyphers 54

3.1 Multiple Digit m-graphs . 55

3.2 Vector m-graphs . 61

3.3 Vigenère Cyphers - An Historical Note . 65

3.4 Matrix m-graphs . 68

3.4.1 Single-sided Affine Transformations . 68

iv

CONTENTS CONTENTS

3.4.2 Double-sided Affine Transformations . 73

3.5 Combining m-graph Methods . 78

4 Exponential Cyphers 82

4.1 Introduction . 82

4.2 Prime Factorization . 86

4.3 The Discrete Logarithm . 92

4.3.1 Diffie-Hellman Key Exchange . 96

4.4 Signatures . 99

5 Solving “Hard” Problems 103

5.1 Prime Factorization . 104

5.1.1 Naïve Trial Division . 104

5.1.2 Pollard’s p− 1 Algorithm . 105

5.1.3 Lenstra’s Elliptic Curve Algorithm . 109

5.1.4 Fermat’s Factorization Methods . 110

5.2 Discrete Logarithm . 133

5.2.1 Naïve . 133

5.2.2 Silver-Pohlig-Hellman Algorithm . 134

5.2.3 Index-Calculus Algorithm . 140

5.3 Conclusion . 146

A The Declaration of Independence 148

A.1 Plaintext . 148

v

CONTENTS CONTENTS

A.2 Character Affine Encyphered Cyphertext . 153

A.3 Multidigit digraph Affine Encyphered Cyphertext 157

A.4 Vector digraph Affine Encyphered Cyphertext . 162

A.5 Vector 4-graph Affine Encyphered Cyphertext . 171

B Computer Code 179

B.1 encypher.cc . 179

B.2 distributioncount.cc . 186

Bibliography 194

Index 196

vi

List of Figures

2.1 Character distributions of plaintext and an example affine cyphertext Declaration

of Independence. 51

3.1 Character distributions of Example 3.2. 57

3.2 Character distributions of plaintext and an example multidigit, digraph, affine

cyphertext Declaration of Independence . 59

3.3 Character distribution of example vector digraph cyphertext of the Declaration

of Independence . 64

3.4 Character distribution of example vector 4-graph cyphertext of the Declaration

of Independence . 66

4.1 Exponential function in R. 93

4.2 Exponential function in Z13. 94

4.3 Exponential function in Z139. 95

vii

List of Tables

1.1 Example probability distribution function. 17

1.2 Two distributions with equal means and variances. 21

2.1 Caesar Cypher transformation. 26

2.2 26-character alphabet. 28

2.3 32-character alphabet represented by the polynomial ring F2[t]
〈t5−1〉 34

2.4 Character distribution of cyphertext in Example 2.8. 44

2.5 32-character alphabet represented by Z32 and by the polynomial ring F2[t]
〈t5−1〉 . . . 48

2.6 Character distribution of cyphertext in Example 2.8 (reproduced). 53

3.1 Character distributions of Example 3.2. 56

3.2 Character distributions of Example 3.3. 63

viii

Chapter 1

Introduction

1.1 Scope

This work is an introduction to modern cryptology built within an algebraic framework, rather

than a number theoretic one. Working within algebra, historic shift cyphers (such as the Caesar

cypher) shall be studied and expanded. Recent exponential cyphers including public-key cyphers

will be studied. Finally, a survey of methods of solving the arithmetic problems that form the

basis of public-key cryptosystems will be offered.

In addition to the cyphers, methods of breaking them will be studied along side the cyphers

and statistical analyses of the different attacks will be provided.

1.2. BACKGROUND CHAPTER 1. INTRODUCTION

1.2 Background

The material presented herein is done so with the expectation of a solid grounding in basic

finite algebra. A basic understanding of finite group theory, finite ring theory, and finite fields is

expected; A more detailed understanding will be helpful. An undergraduate level understanding

of number theory is also expected of the reader.

The rings of integers mod l will be very frequently used, as will their groups of units. This

includes the fields of integers mod p, for prime p. Since binary data is under study, finite fields

with a characteristic of 2 will also be seen.

1.3 Conventions and Notations

For the purposes of this work, zero shall be considered a natural number (0 ∈ N). When

necessary, the set of natural numbers excluding zero shall be denoted as N∗.

The base-10 logarithm, log10, shall be denoted as log. The natural logarithm, loge, shall be

denoted as ln. The base-2 logarithm, log2, shall be denoted as lg.

Numbers may be represented in bases other than 10 at various times. Bases of 2 and 10

are standard and when the context provides clarity numbers written in those bases will be

done so with no special notation, otherwise base-2 numbers shall be followed with a subscript

of 2: 101 = 11001012. When a number is written in a non-standard base, each digit will be

written in base 10 unless otherwise noted, with a colon ‘:’ separating each digit. For example,

1383 = 7 · 142 + 0 · 14 + 11, it would be expressed in base 14 as 7:0:11. This notation mimics

the common notation for time in the United States, which uses a base of 60 for the minutes and

2

1.4. OVERVIEW CHAPTER 1. INTRODUCTION

seconds digits.

The ring of integers mod n shall be represented as Zn. Finite fields shall be denoted by

Fq or Zp for a prime p. The multiplicative group of units of a ring shall be denoted with the

postfix, unary, * operator: R∗.

The R-module of n-dimensional vectors over R shall be denoted by Rn. The R-module of

m× n matrices over R shall be denoted by Rm×n.

The ring of n × n matrices over a ring, R, shall be denoted as Mn(R). The multiplicative

group of invertible n×n matrices over a ring may be denoted with the * operator or by GLn(R).

1.4 Overview

Data encryption through cyphers is an ancient form of security that has been relied on to protect

information for thousands of years. Julius Caesar used them to communicate securely with his

officers. One of the greatest victories of the Allied forces over Nazi Germany in World War II

is the breaking of The Enigma, Germany’s secret military code.1 Today, many governments,

corporations, and individuals rely on data encryption to secure data.

Initially, cyphers worked by operating on letters of the alphabet. Each letter in an original

message was replaced with another letter of the alphabet. Decyphering the secret message

merely required knowing the original substitutions and applying the inverse substitution. The

Caesar Cypher was one of these where every letter was replaced by the one three positions later

1For a short description of Germany’s Enigma machine, which used permutation cyphers, see Hardy, pp

81-86. [2]

3

1.5. GENERAL DEFINITIONS CHAPTER 1. INTRODUCTION

in the alphabet. Decyphering messages with the Caesar Cypher worked by substituting each

letter in the secret message with the one three positions earlier in the alphabet.

It quickly becomes advantageous to associate each letter or other character with a unique

numerical value so encyphering and decyphering can be described with analytic functions. With

this, cyphers realized by addition, like the Caesar Cypher, can be expanded to cyphers using

multiplication on the initial characters, like the linear cyphers. Exponentiation can also be added

to the list of possible operations to perform on the characters of the message to be encyphered.

Since these operations are valid in any ring, the characters of the messages need not necessarily

be associated with numbers, per se, but may be associated with unique elements of any ring of

an appropriate size.

Each style of encryption will have aspects that can be analyzed: speed, or computational

complexity, of encryption and decryption, as well as ease, or not, of a third party breaking the

cypher.

1.5 General Definitions

Encyphering is always performed by the application of an invertible transformation f : P → C.

Decyphering, therefore, is achieved by applying the inverse transformation f−1. The original,

legible message is referred to as plaintext, P , and the result is referred to as cyphertext, C.

Definition 1.1 (plaintext, P). The standard, userland data. This may be a text message (i.e.

email) or a binary or text computer file (JPEG, ZIP, INI, etc...) or object.

Definition 1.2 (P). The set of all possible plaintexts for a given transformation f , its domain.

4

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

Definition 1.3 (cyphertext, C). The result of applying a transformation f to a plaintext P ∈ P,

f(P).

Definition 1.4 (C). The set of all possible cyphertexts, f(P).

Definition 1.5 (encypher). The act of applying a transformation f to a plaintext P ∈ P

resulting in a cyphertext C ∈ C.

Definition 1.6 (decypher). The act of applying the inverse f−1 of an encyphering transforma-

tion to cyphertext resulting in plaintext.

In practice, encyphering a plaintext is expected to conceal its contents, but these definitions

do not exclude the identity function f(x) = x as the transformation. Different encryption

schemes will provide different degrees of obfuscation of the original plaintext.

Definition 1.7 (encryption scheme). A family of related invertible transformations, each dif-

fering only in the value of the parameters used.

Definition 1.8 (key). The values used for the parameters of an encryption scheme in a partic-

ular instance.

1.6 Bit Operations and Big-O Notation

1.6.1 Overview

Computers work in binary. Each binary digit is called a bit. The time a computer would spend

running a certain algorithm is measured in bit operations, and this time is usually expressed as

5

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

a function of the input, or of the size of the input. Since all (classical) computers are built on

the same engineering fundamentals, the actual number of bit operations required on a specific

processor will not vary significantly from properly calculated theoretical values. What can vary

significantly from one computer to another, is the number of bit operations it can perform in a

given amount of real time. This significant variance in the powers of computers is the primary

motivation for using bit operations as the unit of measurement for the time of an algorithm,

rather than a unit of clock time like seconds.

Rather than being concerned with the exact number of bit operations required for a specific

input, it is usually more important to know how the time required changes with regard to the

input When the size of an input to a procedure doubles, it is most desirable to know whether

the time required for the procedure will double with it, or increase 4-fold, or square, or increase

by only a small percentage or not change at all. This information is the focus of the Big-O

notation.

Definition 1.9 (Big-O notation). If f, g : N∗ → R>, it is said that f = O(g), “f is on the order

of g,” if there exists a non-zero constant c such that f(n) ≤ cg(n) for all n.

Example 1.10. The following are all true.

1. 3n+ logn = O(n)

3n+ logn =
(

3 + logn
n

)
n ≤ 4n

2. 2n2 + 4n = O(n2)

2n2 + 4n =
(

2 + 4
n

)
n2 ≤ 6n2

6

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

Big-O notation is small and simple, and shows nicely the time complexity of a process as a

function of the size of its input.

The following simplification and extension will make Big-O notation even easier and more

helpful. First, there may be multiple inputs to a given procedure, so that will be taken into

account. Second, on very small inputs smaller order aspects of a procedure may dominate

the time requirement, but since that time requirement will be so small it will not be of any

concern. The time required to complete large tasks is of primary concern. For example, the

time required for a computer to add two 2-digit numbers might be dedicated primarily to system

overhead, such as memory access. It may take essentially the same amount of time to add two

2-digit numbers as two 15-digit numbers. But perhaps the overhead involved starts requiring

proportionally shorter time as the size of addends increases above 15 digits so that it is negligible

for the addition of two 200-digit numbers. It won’t be important about how the time required

increased going from 1-digit to 15-digit addition; what is important is how the time required

increases going from 100-digit addition to 1000-digit addition.

While in practice any addition takes a minuscule amount of real time, algorithms other

than addition will be analyzed, for which only the time required for larger situations will be

important. The following redefinition of Big-O notation will make it more extensible and more

forgiving of quirky behavior on small problems.

Definition 1.11 (Big-O notation). If f, g : N∗m → R>, it is said that f = O(g), “f is on the

order of g,” if there exists a non-zero constant c and a vector b ∈ N∗m such that f(n) ≤ cg(n)

for all n ∈ N∗m where ni ≥ bi for all i ≤ m.

In this way, Big-O notation will describe the time behavior of an algorithm when the inputs

7

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

are “big enough.”

1.6.2 Time Estimates for Integer Arithmetic

Addition and Subtraction

When counting the time required to add two integers, m and n, it can be assumed without

loss of generality than m ≥ n. Integer addition is performed digit-by-digit starting with the

least significant digit, the ones digit. In each digit operation, the two corresponding digits are

summed along with any carry digit from the previous digit. The least significant digit of the

result is the corresponding digit of the sum, and the other digits are carried to the next digit’s

summation.

The number of digit operations is equal to the larger of the number of digits of m and the

number of digits of n. Since it was presumed that m ≥ n, then m will have the greater (or

same) number of digits, logm + 1. Since logm + 1 = O(logm), then it can be said that the

time required to add a smaller integer to m is O(logm). It is also said that addition takes

logarithmic time with respect to the summands, or linear time with respect to the number of

digits, or length, of the summands.

Computers work in binary (base 2), so it could be said that a computer takes O(lgm) bit

operations. However, O(logm) and O(lgm) are equivalent since the two functions only differ

by a constant multiple, as specified by the logarithm change of base formula, so either one is

correct no matter who or what is doing the addition. Subtraction, which is performed internally

by computers in a very similar fashion to addition, similarly requires O(lgm) time. Specifically,

subtraction is performed by first converting the subtrahend, n, into its opposite in O(lgn) time,

8

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

then adding −n to m in O(lgm) time.

Multiplication and Division

Multiplication is performed by computers in a manner that could be called repeated doubling.

A running total is initialized to a value of zero; At the end this running total will hold the result

of mn. For each bit (binary digit) of n, if 2i is the place value of that bit, and that bit of n is a

one, then the running total is incremented by 2im.

Example 1.12. The method of multiplying two integers shall be illustrated with n = 11 = 10112

and m = 26 = 110102

i n 2im Running total

1011 0 0

0 1011 11010 11010

1 1011 110100 1001110

2 1011 1101000 1001110

3 1011 11010000 100011110

1000111102 = 256 + 16 + 8 + 4 + 2 = 286, which is 11× 26.

Theorem 1.13. Multiplication of two positive integers, m and n, requires O(lgm lgn) time.

Proof. It may be assumed without loss of generality that m ≥ n. For each bit of n, of which

there are O(lgn), an O(lg(mn))-digit addition may be performed. So the total time required is

O(lgn)O(lg(mn)) = O(lgn)O(lgm+ lgn) = O(lgn)O(lgm) = O(lgm lgn).

9

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

In this sense, multiplication can be said to take quadratic time with respect to the lenth

of the factors. More generally, an algorithm that runs in a time as a power of the logarithm of

the size of the inputs, O((lgn)α), is said to run in polynomial time and one that runs in a

time as a power of the size of the inputs, O(nα), is said to run in exponential time.

Integer division is performed in a parallel, though opposite, fashion to multiplication, utiliz-

ing repeated doubling and halving to speed up the process of repeated subtraction. Two running

values are maintained: one will end up as the quotient and the second will be the remainder.

Thus if both the quotient and remainder are desired, only one operation is required.

Suppose the results of m ÷ n (integer quotient) and/or m mod n (remainder) are desired

for some given pair of integers m and n. First, the running values are initialized: the one to end

as m ÷ n, q, to 0 and the one to end as m mod n, r, as m. Second, the largest integer i such

that 2in ≤ m is identified. If i < 0 then nothing further need be done; m = qn+ r with r < n

already. Assuming i ≥ 0, 2i is added to the quotient running total, q, while 2in is subtracted

from the remainder running total, r, then the next largest i is found such that 2in is less than

or equal to the remainder running total. This process continues until i < 0, at which point the

running values will contain the proper quotient and remainder. In practice, the first i is found

by doubling n until n > m then dropping back one step. Each following i is then found by

halving n until n is less than or equal to the remainder counter.

Example 1.14. The method of dividing two integers shall be illustrated with n = 11 = 10112

and m = 300 = 1001011002.

10

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

i n Remainder Quotient

0 1011 100101100 0

1 10110 100101100 0

2 101100 100101100 0

3 1011000 100101100 0

4 10110000 100101100 0

5 101100000 100101100 0

4 10110000 1111100 10000

3 1011000 100100 11000

2 101100 100100 11000

1 10110 1110 11010

0 1011 11 11011

112 = 3, and 110112 = 27, and 300 = 27 ∗ 11 + 3.

Theorem 1.15. m÷ n and m mod n require O(lgm lgn) time (assuming m ≥ n > 0).

Proof. First, the initial i is found in O(lgm− lgn) = O(lgm) steps. Second, for each of O(lgm)

iterations, a subtraction with O(lgn) non-trivial bits is performed. The total time consumed is

O(lgm) +O(lgm)O(lgn) = O(lgm lgn).

Exponentiation

Exponentiation is performed in a manner parallel to the repeated doubling of multiplication, by

a procedure referred to as repeated squaring. To evaluate am, a running product is initialized

11

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

to 1, then for each bit of m, if 2i is the place value of that bit, and that bit of m is a one, then

the running product is multiplied by a2i .

Example 1.16. The repeated squaring method of exponentiation shall be illustrated with

a = 15 and m = 13 = 11012.

i m a2i Running product

1101 1

0 1101 15 15

1 1101 225 15

2 1101 50625 759375

3 1101 2562890625 1946195068359375

Theorem 1.17. Exponentiation by repeated squaring takes O(m2(lgm)(lg a)2) time.

Proof. The final result will have O((lg am) − 1) = O(m lg a) binary digits. For simplicity, all

intermediary results will be said to have O(m lg a) bits (which is still true).

O(lgm) iterations will be performed. In each iteration, a squaring (multiplication) and

maybe another multiplication will be performed, each in O((m lg a)2) time. So the total time

required will be O(lgm)O((m lg a)2) = O(m2(lgm)(lg a)2).

1.6.3 Time estimates for modular arithmetic

For any arithmetic done in a Zl ring, it will be assumed that most operands are almost as big as

l, after all, less than 1% of the elements of Zl will have fewer than log l−2 digits. Therefore each

addition and subtraction will be said to occur in O(lg l) time and each multiplication, division

12

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

and mod will be said to occur in O((lg l)2) time. However, these time estimates do not consider

the reduction of the result (mod l).

Addition, Subtraction and Multiplication

Theorem 1.18. In the ring Zl, addition and subtraction each take O(lg l) time and multiplica-

tion takes O((lg l)2) time.

Proof. The time estimates for addition and subtraction in Zl do not change because of the

special nature of the modular reduction that is able to be employed.

After adding two numbers each less than l, the result must be less than 2l. So after the

O(lg l) addition, if the sum is greater than l, subtract l; no division is required, just two O(lg l)

operations. So addition requires 2O(lg l) = O(lg l) time.

Similarly, the result of a subtraction must be in the range [−l+ 1, l− 1]. If it is less than 0,

add l. Subtraction also takes O(lg l) time.

Multiplication is similar in that after an O((lg l)2) multiplication operation, an O((lg l)2)

mod operation follows and 2O((lg l)2) = O((lg l)2).

Exponentiation

Theorem 1.19. In the ring Zl, exponentiation, the evaluation of am, requires O((lgm)(lg l)2)

time.

Proof. All results will have O(lg l) bits. There will be O(lgm) iterations each with up to two

modular multiplications inO((lg l)2) time. Therefore the exponentiation will requireO((lgm)(lg l)2)

time.

13

1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

Division

Division is not defined in Zl but multiplication by an inverse (if it exists) can be performed after

it is found. If φ(l) is known, then a−1 = aφ(l)−1. φ(l) < l and thus φ(l) = O(l) as a quantity,

however knowing φ(l) is equivalent to knowing the prime factorization of a number (very hard

for very large l), and thus it may be practically unknowable.

Finding the inverse of a number, a, in Zl when φ(l) is not known can be done with the

Extended Euclidean Algorithm.2 After finding the greatest common divisor of a and l, which

will be 1 if an inverse exists, by the Euclidean Algorithm, run back up the sequence of steps

from the Euclidean Algorithm to express 1 as a linear combination of a and l, 1 = ra+ sl. Then

ar = (−s)l + 1 or ar ≡ 1 (mod l) and r = a−1 in Zl.

Theorem 1.20. The (Extended) Euclidean Algorithm takes O((lg l)3) time.3

Proof. This hinges on the speed of the decrease in the successive remainders from step to step.

Specifically, that if rj is the remainder from the jth step, then rj+2 <
1
2rj .

If rj+1 ≤ 1
2rj , then rj+2 < rj+1 ≤ 1

2rj . If rj+1 > 1
2rj , then rj = 1 · rj+1 + rj+2 and

rj+2 = rj − rj+1 <
1
2rj because rj+1 >

1
2rj .

Since every two steps, the remainders are reduced by at least half, there will be no more than

2 lg l steps. Each step down requires one O((lg l)2) integer division, so the Euclidean Algorithm

requires O((lg l)3) time. Running back up the steps in the extension requires two O((lg l)2)

2For a complete description of the (Extended) Euclidean Algorithm see any elementary text on Number

Theory, including [7].
3The proof of this is essentially copied from Koblitz, 13. [4]

14

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

multiplications at each of the O(lg l) steps. The extension also occurs in O((lg l)3) time, so the

entire Extended Euclidean Algorithm, and thus finding a−1 in Zl requires O((lg l)3) time.

Theorem 1.21. Multiplication in Zl by a−1 (assuming it exists) requires O((lg l)3) time (re-

gardless of the knowledge of φ(l).

Proof. The procedure entails first finding a−1, then multiplying by it in O((lg l)2) time.

If φ(l) is not known, finding a−1 by the Extended Euclidean Algorithm will take O((lg l)3)

time. If φ(l) is known, then finding a−1 = aφ(l)−1 will takeO(lg(φ(l)−1)(lg l)2) = O((lg l)(lg l)2) =

O((lg l)3) time

O((lg l)3) +O((lg l)2) = O((lg l)3)

1.7 Probability

1.7.1 Discrete distributions

Probability distributions are usually classified into two sets: discrete and continuous. Continuous

distributions describe situations where a continuum of outcomes are possible, such as an interval

of the Real numbers. Discrete distributions describe situations where the set of outcomes is

discrete, including all finite distributions.

Let S be the discrete set of all possible outcomes of an experiment. Let X represent the

outcome of a specific running of the experiment. X is called a random variable or a discrete

random variable. S is called the sample space of X. For each s ∈ S, X has a probability

of being s. Designate that probability p(s). p : S → R is called a probability distribution

function, or pdf .

15

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

Definition 1.22 (random variable). A variable that will randomly assume values from a given

set.

Definition 1.23 (sample space). The set of all possible values of a random variable.

Definition 1.24 (probability distribution function). A function p : S → R from the sample

space of a random variable to the Real numbers such that for each s ∈ S, p(s) is the probability

that X = s. Probability distribution functions have the following properties:

• 0 ≤ p(s) ≤ 1 for each s ∈ S.

•
∑
s∈S p(s) = 1.

• For any subset A ⊆ S, p(A) =
∑
s∈A p(s).

• p(∅) = 0.

• For A,B ⊆ S, p(A ∪B) = p(A) + p(B)− p(A ∩B).

Verifying that a given p(x) is a valid probability distribution function requires p(s) ≥ 0 for

each s ∈ S and
∑
s∈S p(s) = 1.

For many discrete distributions, and all the ones used herein, the sample space S will be a

(not necessarily finite) set of consecutive integers. Whenever the sample space is a set of numbers

certain measurements of the probability distribution may be made. In fact, being numbers is

stricter than is necessary. In general, these measurements may be made whenever the sample

space S is a module of a ring containing the image of p.

16

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

First will be the average, or arithmetic mean, value ofX. This is referred to as the expected

value of X. It is a weighted average of the sample space of X, weighted by each element’s

probability, commonly referred to as the mean.

Definition 1.25 (expected value). The weighted arithmetic mean of all the possible values of

X, denoted E[X].

E[X] =
∑
x∈S

xp(x)

Example 1.26. Find the expected value of X for the pdf given in Table 1.1.

Table 1.1: Example probability distribution function.

x p(x)

0 0.5

1 0.25

2 0.125

3 0.125

First, verify that p is a valid pdf. By inspection, no p(x) is less than 0, and a quick addition

verifies that
∑3
x=0 p(x) = 1.

Finally, calculate the expected value of X using the definition of expected value.

E[X] =
3∑

x=0
xp(x) = 0 · 1

2 + 1 · 1
4 + 2 · 1

8 + 3 · 1
8 = 0 + 1

4 + 2
8 + 3

8 = 7
8

The expected value of X is 7
8 = 0.875.

Theorem 1.27. E[aX + b] = aE[X] + b.

17

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

Proof. This follows straight from properties of summation.

E[aX + b] =
∑
x∈S

(ax+ b)p(x)

=
∑
x∈S

(axp(x) + bp(x))

=
∑
x∈S

axp(x) +
∑
x∈S

bp(x)

=a
∑
x∈S

xp(x) + b
∑
x∈S

p(x)

=aE[X] + b(1)

=aE[X] + b

The expected value of a random variable is a measure of its central tendency, where X will

stay around. What it does not measure is how close X will stay. Variance is a measure of the

spread of X, how far it usually is from it’s expected value. It is almost a weighted average of

X’s distance from its mean.

Definition 1.28 (variance). A weighted average of the squares of the distances of X from the

mean, denoted Var(X).

Var(X) =
∑
x∈S

(x− E[X])2p(x) = E[(X − E[X])2]

It is usually more convenient to calculate variance by a different formula.

Theorem 1.29. Var(X) = E[X2]− E[X]2.

18

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

Proof.

Var(X) =E[(X − E[X])2]

=E[X2 − 2XE[X] + E[X]2]

=E[X2]− 2E[XE[X]] + E[E[X]2] Theorem 1.27

=E[X2]− 2E[X]E[X] + E[X]2 E[X] is a constant, Theorem 1.27

=E[X2]− E[X]2

Example 1.30. Calculate the variance of the pdf in Table 1.1 on page 17 by the definition of

variance, and by the formula from Theorem 1.29.

Recall that E[X] = 7
8 . Using the definition of variance,

Var(X) =E[(X − E[X])2]

=
3∑

x=0

(
x− 7

8

)2
p(x)

=
(

0− 7
8

)2(1
2

)
+
(

1− 7
8

)2(1
4

)
+
(

2− 7
8

)2(1
8

)
+
(

3− 7
8

)2(1
8

)
=
(
−7

8

)2(1
2

)
+
(

1
8

)2(1
4

)
+
(

9
8

)2(1
8

)
+
(

17
8

)2(1
8

)
=
(

49
64

)(
1
2

)
+
(

1
64

)(
1
4

)
+
(

81
64

)(
1
8

)
+
(

289
64

)(
1
8

)
= 49

128 + 1
256 + 81

512 + 289
512

=568
512 = 71

64 = 1.109375.

19

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

And using the formula from Theorem 1.29,

Var(X) =E[X2]− E[X]2

=
3∑

x=0
x2p(x)−

(
7
8

)2

=02 · 1
2 + 12 · 1

4 + 22 · 1
8 + 32 · 1

8 −
49
64

=1
4 + 4

8 + 9
8 −

49
64

=15
8 −

49
64 = 71

64 = 1.109375.

Using the formula from Theorem 1.29 for the variance took fewer steps utilizing easier

arithmetic than using the definition of variance directly.

While expected value and variance give meaningful measurements of a probability distri-

bution that provide one with an understanding of the location and spread of a probability

distribution, they do not necessarily give a precise understanding of the shape of the distribu-

tion neither do they define the distribution. The reader may verify that the two distributions

of Table 1.2 each have a mean of 0 and a variance of 2.

1.7.2 The uniform distribution

If S is a finite sample space, then a uniform distribution is one where each s has the same

likelihood.

Definition 1.31 (uniform distribution). A distribution whose pdf p(s) = c, some fixed constant,

for every s ∈ S.

20

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

Table 1.2: Two distributions with equal means and variances.

x p1(x) p2(x)

-2 0.2 0.25

-1 0.2 0

0 0.2 0.5

1 0.2 0

2 0.2 0.25

Since the sum of all probabilities in a distribution must be 1, it is clear that in the uniform

distribution the constant probability, c, must be 1
|S| . The standard primitive uniform distribution

covers the integers 0 to n, where p(x) = 1
n+1 for each x ∈ {0, 1, . . . , n}. Any other discrete

uniform distribution on a finite set of consecutive integers is just a shift of this one.

Theorem 1.32. If X is a discrete random variable with a uniform distribution on the integers

from 0 to n, then E[X] = n
2 and Var(X) = n(n+2)

12 .

Proof.

E[X] =
n∑
x=0

xp(x) =
n∑
x=0

x

(
1

n+ 1

)

= 1
n+ 1

n∑
x=0

x = 1
n+ 1

n(n+ 1)
2 = n

2

21

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

Var(X) =E[X2]− E[X]2 =
n∑
x=0

x2p(x)−
(n

2

)2
=

n∑
x=0

x2
(

1
n+ 1

)
− n2

4

= 1
n+ 1

n∑
x=0

x2 − n2

4 = 1
n+ 1

n(n+ 1)(2n+ 1)
6 − n2

4

=2n2 + n

6 − n2

4 = n2 + 2n
12 = n(n+ 2)

12

1.7.3 The geometric distribution

The geometric distribution models the situation where an experiment is tried repeatedly

until success is achieved. Each trial is considered independent of the others. The probability

of success each time is denoted by p and the probability of failure, 1 − p, is denoted by q.

The random variable, X, represented by the geometric distribution tells on which attempt the

first success occurs. X can take on any positive integer value. The geometric distribution,

while discrete, is not finite. The probability distribution function of a geometric distribution is

p(x) = pqx−1 for all positive integers, x, and 0 for any other value. The experiment must fail

with probability q for the first x− 1 trials then succeed on the xth trial with probability p.

Theorem 1.33. p(x) = pqx−1 is a valid probability distribution function when 0 < p < 1,

q = 1− p, and x takes only positive integer values.

Proof. Clearly p(x) is never negative, as both p and q are positive and x is a positive integer.

22

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

It remains to verify that
∑∞
x=1 p(x) = 1. Remembering that 0 < q < 1,

∞∑
x=1

p(x) =
∞∑
x=1

pqx−1 = p

∞∑
x=1

qx−1 = p

∞∑
i=0

qi

=p
(

1
1− q

)
= p

1− (1− p) = 1.

If one is rolling a fair die for a 6, one might expect the first 6 to have an average appearance

on the third roll (half of the six possibilities). It would average on the third or fourth roll if

numbers couldn’t be re-rolled. Because trials can fail with the same outcome multiple times

without affecting future trials, the average first appearance of the 6 (or any other desired side

of the die) will be on the sixth roll. Likewise the average first head (or tail) on a fair coin will

happen on the second flip. In general, if the probability of success is p, then the first success

will average on the
(

1
p

)th
trial, as demonstrated below.

Theorem 1.34. If X is a random variable with a geometric distribution, then E[X] = 1
p and

Var(X) = q
p2 .

Proof.

E[X] =
∞∑
x=1

xp(x) =
∞∑
x=1

xpqx−1 = p

∞∑
x=1

xqx−1 = p

∞∑
i=0

(i+ 1)qi

=p
∞∑
i=0

(qi + iqi) = p

(∞∑
i=0

qi +
∞∑
i=0

iqi

)
= p

(
1

1− q + q

(1− q)2

)

=p
(

1
p

+ q

p2

)
= p

p
+ q

p
= p+ q

p
= 1
p

23

1.7. PROBABILITY CHAPTER 1. INTRODUCTION

E[X2] =
∞∑
x=1

x2p(x) =
∞∑
x=1

x2pqx−1 = p

∞∑
i=0

(i+ 1)2qi = p

∞∑
i=0

(1 + 2i+ i2)qi

=p
(∞∑
i=0

qi + 2
∞∑
i=0

iqi +
∞∑
i=0

i2qi

)
= p

(
1

1− q + 2q
(1− q)2 + q(q + 1)

(1− q)3

)

=p2

p2 + 2pq
p2 + q2 + q

p2 = p2 + 2pq + q2 + q

p2 = (p+ q)2 + q

p2 = q + 1
p2

Var(X) =E[X2]− E[X]2 = q + 1
p2 −

(
1
p

)2
= q + 1

p2 − 1
p2 = q

p2

Example 1.35. An experiment consists of rolling a fair, six-sided die until a one is rolled. What

are the expected value and variance of the number of rolls it takes?

With six sides on the die and each side being equally likely, p = 1
6 and q = 5

6 . So the

expected number of rolls is E[X] = 1
p = 6, and the variance is Var(X) = q

p2 = 5
6 · 36 = 30.

24

Chapter 2

Affine Character Cyphers

Affine character cyphers are the oldest and most simple. These act on one character at a time

with the elementary operations of addition and multiplication.

Permutation cyphers, where each encyphering transformation is merely an element of the

symmetric group on a set X (to be defined later) could be considered. Using a cryptosystem

based on a general permutation cypher would require the storage and use of a complete cypher

table, whereas affine cyphers can be defined with only a few parameter values. The tradeoff

for this is that only a fraction of the permutations are able to be modeled by these simple

operations.

25

2.1. SHIFT CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

2.1 Shift Cyphers

One of the earliest recorded users of encyphered messages is Julius Caesar.1 The Caesar Cypher

is a simple one, where the transformation from plaintext to cyphertext merely involves replacing

each character with the one three positions further in the alphabet. See Table 2.1 for the

transformation.

Table 2.1: Caesar Cypher transformation.

pi A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

f(pi) D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Before encyphering, plaintext is stripped of spaces and punctuation, and the characters are

arranged in blocks of five. Each character is then transformed according to Table 2.1 to generate

the cyphertext.

Example 2.1. Suppose, now, it is desired to encypher the message

I will cross the Rubicon next week,

with the Caesar Cypher. Arranging the letters in blocks of five and ignoring capitalization

results in

IWILL CROSS THERU BICON NEXTW EEK.

1Rosen, 189. [7]

26

2.1. SHIFT CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

Looking up each letter in Table 2.1, each plaintext letter can be converted into it’s corresponding

cyphertext letter. For example, f(A) = D, f(J) = M and f(Q) = T. The corresponding

cyphertext is

LZLOO FURVV WKHUX ELFRQ QHAWZ HHN.

Decyphering is accomplished by applying the inverse transformation first, and then reinter-

preting the spacing and punctuation.

LZLOO FURVV WKHUX ELFRQ QHAWZ HHN

↓ f−1

IWILL CROSS THERU BICON NEXTW EEK

↓ interpret

I will cross the Rubicon next week.

The blocking of the letters into clusters of a fixed length has twofold purpose. First, an

adversary attempting to break the cypher could use the information from the original spacing

to his advantage. Second, for ease of reading, since a long, unbroken string of characters can be

difficult to read. The blocking into clusters isn’t used when the space is in the alphabet, but

then its associated cyphertext character will not likely be itself. The reasons for using all capital

letters is also twofold. First, ancient Latin didn’t have lowercase letters (though it didn’t have

the letter ’J’ either). Secondly, a 26-letter alphabet was chosen for this example.

Definition 2.2 (alphabet). A set, X, of characters used to build the plaintext and/or cypher-

text.

27

2.1. SHIFT CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

While ‘A’ and ‘a’ are usually considered as the same letter, they are two distinct characters.

The alphabet used in this past example had 26 characters, ‘A’ through ‘Z’ in the usual order,

and no others. This required the plaintext and cyphertext to be spelled with only capital letters.

It shall become evident why the use of a 52-character alphabet with uppercase and lowercase

letters could give an adversary extra information to use to break this cypher, especially on a

message with multiple sentences. The 26 characters occurring most often would likely be the

lowercase letters, and the other 26 the uppercase letters.

The Caesar Cypher is an example of a shift cypher whose shift parameter is 3. Any shift

parameter could be used (though a shift of 0 would be neither interesting nor effective). Any

message using this 26-character alphabet has only 26 possible shift cyphers.

Definition 2.3 (shift cypher). A cypher scheme where each character of the plaintext is replaced

be the character a specified distance away in the alphabet to generate the cyphertext.

This definition of a shift cypher can be brought into an algebraic context. First, we use a

bijection to associate each character of the l-character alphabet with an element of Zl. Table 2.2

shows a standard assignment for the 26-character alphabet used in the previous example.

Table 2.2: 26-character alphabet.

X A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z26 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

With this bijection in mind, each character of the alphabet, X, can be thought of as equiva-

lent to its associated element of Z26. In other words, the ring structure of Z26 can be copied onto

28

2.1. SHIFT CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

X. It can now be said, for example, that D = A + 3, and so the encyphering transformation,

f , can be defined with an algebraic expression, namely f(p) = p+ 3 for the Caesar Cypher. A

more algebraic definition of shift cypher may now be given.

Definition 2.4 (shift cypher). A shift cypher on an alphabet represented by an additive

group G is one whose encyphering transformation, f : G→ G, is of the form f(p) = p+b, where

b ∈ G.

Example 2.5. Encypher the message “Meet me at the drop spot at noon,” using the standard

26-character alphabet and a shift cypher with b = 10.

Write the characters in the chosen alphabet and in blocks of a fixed length (five).

MEETM EATTH EDROP SPOTA TNOON

Apply the encyphering transformation f(p) = p+ 10 to each character.

WOODW OKDDR ONBYZ CZYDK DXYYX

Decyphering cyphertext into plaintext requires the use of f−1. For a shift cypher, clearly

f−1(c) = c−b. Anyone knowing what b was used to encypher a message will be able to decypher

it. This b is the key of the shift cypher.

Definition 2.6 (key). The value(s) of the parameter(s) of a given encryption scheme used for

a specific encyphering.

Any cryptosystem where inverse keys are easy to compute from each other is called a clas-

sical or symmetric. Cryptosystems where inverse keys are not easy to compute from each

other are discussed in Chapter 4.

29

2.2. LINEAR CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

Definition 2.7 (Symmetric cryptosystem). A cryptographic system where knowledge of the

encyphering key and the decyphering key are equivalent or computationally “easy.”

Example 2.8. Knowing that “WOODW OKDDR ONBYZ CZYDK DXYYX” was encyphered

in the standard 26-character alphabet with a shift cypher and a key of 10, decypher it to recover

the original message.

Apply the decyphering transformation f−1(c) = c− 10 to each character.

MEETM EATTH EDROP SPOTA TNOON

Spacing and punctuation may now be interpreted.

Meet me at the drop spot at noon.

2.2 Linear Cyphers

Rings, such as Zl, have two operations. In the shift cypher, addition is used. In the linear

cypher, multiplication is used. The encyphering transformation of a linear cypher is of the form

f(p) = ap. Remembering that f must be an invertible transformation, so that any cyphertext

generated by it may be uniquely decyphered, a must have a multiplicative inverse, so that

f−1(c) = a−1c can decypher cyphertext.

Definition 2.9 (linear cypher). A linear cypher on an alphabet represented by the ring R is

one whose encyphering transformation, f : R→ R, is of the form f(p) = ap, where a ∈ R∗.

30

2.2. LINEAR CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

Example 2.10. Encypher the following plaintext with a linear cypher. Use a 30-character

alphabet where A-Z are represented by 0-25 as before, (space)=26, ‘,’=27, ‘.’=28, and ‘?’=29.

Use the encyphering key a = 7.

The eagle lands at dawn. Will you be ready?

Since the space is a member of the alphabet, the letters should not be rearranged. Addi-

tionally, note that two spaces follow the period between the sentences. Write the plaintext in

the alphabet to be used.

THE EAGLE LANDS AT DAWN. WILL YOU BE READY?

Convert the plaintext to elements of Z30.

(19, 7, 4, 26, 4, 0, 6, 11, 4, 26, 11, 0, 13, 3, 18, 26, 0, 19, 26, 3, 0, 22, 13,

28, 26, 26, 22, 8, 11, 11, 26, 24, 14, 20, 26, 1, 4, 26, 17, 4, 0, 3, 24, 29)

Apply the encyphering transformation f(p) = 7p.

(13, 19, 28, 2, 28, 0, 12, 17, 28, 2, 17, 0, 1, 21, 6, 2, 0, 13, 2, 21, 0, 4,

1, 16, 2, 2, 4, 26, 17, 17, 2, 18, 8, 20, 2, 7, 28, 2, 29, 28, 0, 21, 18, 23)

Convert the elements of Z30 into the cyphertext.

NT.C.AMR.CRABVGCANCVADBQCCD RRCSIUCH.C?.AVSX

31

2.3. AFFINE CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

2.3 Affine Cyphers

The affine cypher combines the linear and shift cyphers, into a transformation of the form

f(p) = ap + b. Or, rather, the shift and linear cyphers are special cases of the affine cypher

where a = 1 and b = 0 respectively. The key of an affine cypher is an ordered pair, (a, b).

Theorem 2.11. The composition of two affine cyphers is an affine cypher.2

Proof.

f2(f1(p)) =f2(a1p+ b1)

=a2(a1p+ b1) + b2

=(a2a1)p+ (a2b1 + b2)

Just as shift and linear cyphers are special cases of the affine cypher, as special cases of

Theorem 2.11 the composition of two shift cyphers is a shift cypher (where a2 = a1 = 1) and

the composition of two linear cyphers is a linear cypher (where b2 = b1 = 0).

2.4 Abstractions

2.4.1 Ring Choices

All of the examples so far, and most of the considerations, have been using a cyclic ring of

integers (mod l), Zl, as the algebraic representation of the alphabet set, X. However, any ring

2Further analysis of the algebraic structure of affine cyphers will be developed in section 2.4.

32

2.4. ABSTRACTIONS CHAPTER 2. AFFINE CHARACTER CYPHERS

of the same size as X will do. In addition to modular rings of integers, finite polynomial rings

may be used. Table 2.3 illustrates a finite polynomial ring representing a 32-character alphabet.

This ring has 15 units, which are indicated in the third column. A finite polynomial field would

have a larger group of units.

Being a unit in a ring is equivalent to not being a multiple of any irreducible zero divisors.

The irreducible zero divisors of the ring in Table 2.3 are t − 1 and t4 + t3 + t2 + t + 1. Since

the ring only has five dimensions, being a multiple of t4 + t3 + t2 + t + 1 would mean being

t4 + t3 + t2 + t+ 1. Being a multiple of t− 1 means 1 is a zero of the polynomial, which would

mean having an even number of terms. So the units in Table 2.3 are all the polynomials with

an odd number of terms other than t4 + t3 + t2 + t+ 1.

2.4.2 Group of keys

Once an appropriate ring, R, is chosen to represent the alphabet being used, X, the set of

all possible affine character cyphers, f(p) = ap + b, is determined. b can be any element

of R, and a can be any element of R∗. Each unique cypher can be represented by its key,

(a, b). Let K represent the set of all affine character cypher keys for a particular ring, R, thus

K = {(a, b) : a ∈ R∗, b ∈ R}. Theorem 2.11 established that the composition of affine character

cyphers in a ring is closed. This structure may be imposed onto K as a binary operation.

Theorem 2.12. K is a group under this imposed binary operation and the product of two keys

is the key of the composition cypher.

Proof. Using the result from Theorem 2.11, if k1 = (a1, b1) and k2 = (a2, b2), then the result

of encyphering with k1 first, followed by k2, is equivalent to a single encyphering with the key

33

2.4. ABSTRACTIONS CHAPTER 2. AFFINE CHARACTER CYPHERS

Table 2.3: 32-character alphabet represented by the polynomial ring F2[t]
〈t5−1〉

Character Ring element Unit

A 0 No

B 1 Yes

C t Yes

D t+ 1 No

E t2 Yes

F t2 + 1 No

G t2 + t No

H t2 + t+ 1 Yes

I t3 Yes

J t3 + 1 No

K t3 + t No

L t3 + t+ 1 Yes

M t3 + t2 No

N t3 + t2 + 1 Yes

O t3 + t2 + t Yes

P t3 + t2 + t+ 1 No

Q t4 Yes

R t4 + 1 No

S t4 + t No

T t4 + t+ 1 Yes

U t4 + t2 No

V t4 + t2 + 1 Yes

W t4 + t2 + t Yes

X t4 + t2 + t+ 1 No

Y t4 + t3 No

Z t4 + t3 + 1 Yes

(space) t4 + t3 + t Yes

, t4 + t3 + t+ 1 No

. t4 + t3 + t2 Yes

? t4 + t3 + t2 + 1 No

’ t4 + t3 + t2 + t No

: t4 + t3 + t2 + t+ 1 No

34

2.4. ABSTRACTIONS CHAPTER 2. AFFINE CHARACTER CYPHERS

(a2a1, a2b1 + b2). Let this result be the definition of k2k1. Since a2a1 ∈ R∗ and a2b1 + b2 ∈ R,

then k = k2k1 ∈ K. The identity is (1, 0):

(1, 0)(a, b) = (1a, 1b+ 0) = (a, b) = (a · 1, a · 0 + b) = (a, b)(1, 0).

The inverse of (a, b) is (a−1,−a−1b):

(a, b)(a−1,−a−1b) = (aa−1, a(−a−1b) + b) = (1, 0) = (a−1a, a−1b− a−1b) = (a−1,−a−1b)(a, b).

Thus K has a group structure mimicking the group of encyphering and decyphering transfor-

mations themselves.

This group can be represented in matrix form as

K ∼=

 R∗ R

0 1

with standard matrix multiplication as the operation. a2 b2

0 1

 a1 b1

0 1

 =

 a2a1 a2b1 + b2

0 1

With the formula for the determinant of a 2 × 2 matrix, it is clear that valid keys require an

invertible a, and the value of b is irrelevant to invertibility.

When considering the character cypher transformations, shift and linear cyphers were con-

sidered special cases of the affine cypher. Therefore, the sets of keys yielding shift and linear

cyphers are subsets of this group K. Let the set of all shift cypher keys in K be denoted by

S = {(1, b) ∈ K}, and the linear cypher keys in K by L = {(a, 0) ∈ K}. Clearly S,L ⊆ K, but

it can also be easily verified that S,L ≤ K. Furthermore S E K

35

2.4. ABSTRACTIONS CHAPTER 2. AFFINE CHARACTER CYPHERS

Theorem 2.13. The group of shift cyphers is a normal subgroup of the group of affine cyphers.

Proof. Clearly the identity is in S, and the inverse of a shift is another shift. Closure may

easily verified by the reader. For normality, using the inverse and composition formulas stated

in Theorem 2.12,

(a, b)−1(1, b0)(a, b) = (a−1,−a−1b)(a, b+ b0) = (1, a−1b0) ∈ S.

Therefore S E K.

S is an Abelian group by the commutativity of addition in R, and L will also be Abelian

if multiplication in R is commutative, but K is not Abelian. As sets, K ∼= L × S, but not

as groups. Each (a, 0) ∈ L can represent an element of Aut(S), specifically, left multiplication

of b by a in R. As groups, K ∼= S n L. Although, in this sense, one might want to list the

components of an element of K in the reverse order: (b, a) instead of (a, b). Written that way,

the definition of multiplication in K looks exactly like a semi-direct product.

(b2, a2)(b1, a1) = (b2 + a2b1, a2a1)

At this point, encyphering and decyphering can be phrased in terms of group actions of

keys, K, on an alphabet, X. Encyphering and decyphering are actions of inverse keys. The only

distinction, at this point, is one of order. Given a key, k, and its inverse, k−1. If one applies k

first, then k−1 to a character of plaintext, x: k−1 · (k · x), then k is called the encryption key

and k−1 is called the decryption key. If they are used in the other order, then k−1 is called the

encryption key and k the decryption key.

36

2.4. ABSTRACTIONS CHAPTER 2. AFFINE CHARACTER CYPHERS

2.4.3 Text Vectors And Sequences

For a given alphabet, X, a message (whether plaintext or cyphertext) is a finite sequence of

elements of X; (xi)ni=1 for some n ∈ N. The message could also be considered a finite-length

vector over X, [xi]ni=1 ∈ Xn. Vector notation is more compact, and so will be preferred, though

sequence nomenclature and verbiage is more natural to the situation.

Definition 2.14 (message). Given an alphabet set, X, a message written in X is a finite length

vector element of Xn. The message may also be equated with the same length sequence of the

same alphabet characters in the same order:

[xi]ni=1
∼= (xi)ni=1.

Each message is an element of Xn. Xn is the set of all messages of length n. With the

structure of a ring, R, imposed through a bijection ontoX, thenXn is also a set of n-dimensional

vectors. The set of all messages, P and/or C, is the infinite union ∪∞n=1X
n.

Earlier, encyphering was described as a group action on the alphabet, X. With that group

action already defined, then the action of encyphering on a vector of characters, x ∈ Xn, can be

described as distributing the group action to each entry in the vector, just like multiplication by

a scalar in R. Encyphering is now a group action of the keyspace, K, on the message space, P.

However, because the only difference between the encyphering group action on a vector and on

a character is a repetition of the encyphering function n times, the base action on the character

is all that needs to be analyzed.

37

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

2.5 Breaking and Time Analyses

The number of shift cyphers is equal to the number of possible shifts (b), the number of elements

of R. A b of zero is neither interesting nor effective, but |R| − 1 is still O(|R|). So the size of

the keyspace of a shift cypher is O(|R|).

The number of linear cyphers is equal to the number of elements in R∗. When R = Zl, then

this is equal to φ(l), the Euler Totient (or Phi) Function.3 The actual value of φ(l) depends

greatly on the prime factorization of l. The more distinct prime factors l has, the smaller φ(l)

will be. However, if l is prime then φ(l) = l−1 and if l is the product of two distinct primes, then

φ(l) is still respectably big. Since time estimates should cover "worst case" scenarios, and it is

desirable in cryptographic settings to use rings with large groups of units, and the ring to work

in may be freely chosen, it can be said that l = O(φ(l)) and φ(l) = O(l). As a generalization, it

shall be considered that |R| = O(|R∗|). So the size of the keyspace of a linear cypher is O(|R|).

The keyspace of an affine cypher is the semi-direct product of the keyspaces of the shift and

linear cyphers. Its size is equal to the product of the two constituents’ sizes. So the size of the

keyspace of an affine cypher is O(|R|2).

To use an affine cypher (or either of its special cases), an element of the keyspace must

be chosen at random then up to one multiplication and one addition are performed on each

character. Choosing the key is a constant-time activity: some fixed number of random numbers

in a fixed range are chosen. Performing the multiplication and addition require times that are

dependent upon the ring being used. In the case of Zl, then the time estimates from Section 1.6.3

3The Euler Phi Function and it’s properties should be adequately described in any introductory number

theory text.

38

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

may be used. Thus, for any particular message with a fixed size, the running time to encypher it

with an affine cypher is O((lg l)2 + lg l) = O((lg l)2). The running time naturally grows linearly

with respect to the message length, but since all operations discussed here will be linear with

respect to message length, that aspect may be ignored from all analyses.

2.5.1 Cypher Attacks

There are many different types of sophisticated analyses that can be performed on a cypher.

This section will give a brief synopsis of three simple methods of attacking a cypher. The brute

force attack is the simplest, just keep guessing keys and trying them until the correct one is

found. It neither requires nor uses any information beyond knowledge of what cryptosystem was

used. When analyzing a cryptosystem, it is always presumed that an attacker knows everything

about the cryptosystem and its keyspace, just not which key was used. Academically, a break

of a cryptosystem is deemed whenever a vulnerability is found that allows a key to be identified

faster than brute force, even if employing such a break is practically infeasible.

Brute Force Attack

The brute force attack is the least sophisticated and most time consuming. Armed with no

additional knowledge than the cryptosystem used and its affiliated keyspace, an attacker tries

all keys until the correct one is found. This will eventually work, presuming that intelligible

plaintext can be easily identified (such as actual linguistic text or a known binary file’s header

format).

39

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Theorem 2.15. The expected time to execute a brute force attack on a cypher will be linear

with respect to the size of the keyspace.

Proof. If the key used to generate a given cyphertext was chosen randomly and fairly, then each

key had an equal chance of being chosen. Thus the probability of being the correct key is a

uniform distribution over the keyspace, K, where each key has a probability of p = 1
|K| of being

correct.

If an attacker is able to order the entire keyspace in any arrangement and systematically

iterate across the list of keys, then each guess also has an equal likelihood: the first key tried,

the third key in the sequence and the last key all have a probability of p of being correct.

The probability of the attacker finding the key in n tries is exactly the probability that the

nth key is correct. Thus the number of guesses required will also be a uniform distribution on

the set {1, 2, . . . |K|}. The average number of tries will be the mean of a uniform distribution,

|K|+1
2 = O|K|.

If an attacker is not able to order the entire keyspace (if, perhaps, it is too large to fit in his

computer’s memory and/or storage and too complex to define a systematic method of iteration)

then the attacker must guess randomly. Without being able to remember which keys had already

been guessed, then it becomes possible for the same key to be guessed multiple times. On each

guess, the attacker will have a probability of p of guessing correctly. The number of guesses

required to find the key now follows a geometric distribution. The average number of guesses

required will be the mean of a geometric distribution, 1
p = |K| = O(|K|).

And, therefore, the number of guesses required is O(|K|). Each guess will require applying a

decyphering. The time complexity of the decyphering is dependent upon the cryptosystem and

40

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

representative ring used. For an affine cypher, each guess will require O((one multiplication) +

(one addition)) time. While the choice of ring can affect both the size of the keyspace and the

complexity of the cypher transformations (i.e. Z29 will cause a larger keyspace and slightly

longer operations than Z27), if the complexity of the (en-/de-)cyphering could be held constant

while changing the size of the keyspace, the time for a brute force attack would grow linearly.

Example 2.16. The time required for a brute force attack on an affine cypher using Zl is

equal to the product of the number of guesses, O(l2), and the time to decypher with each guess,

O((lg l)2), thus O(l2(lg l)2).

Known Plaintext Attack

If the plaintext for a specific piece of cyphertext is known, then the key could be solved for

algebraically. Set up the equation c = f(p) and solve for the parameters of f . This is called

a known plaintext attack. In practice, the knowledge of the plaintext could come from

knowledge of a standard signature used by the sender of a text message or by the known header

format of a binary file (ZIP, JPEG, MP3, DOC, . . .) or other covert means.

For a shift cypher (f(p) = p+ b) or a linear cypher (f(p) = ap) only one plaintext/cypher-

text pair of characters is required to find the key. For an affine cypher (f(p) = ap + b) two

plaintext/cyphertext pairs of characters are required to solve for the key, but having just one

will still cut down the number of possible keys in a brute force attack to O(
√
|K|).

Example 2.17. Suppose that in the cyphertext

KIYYO TKOQG FUBGF WITVI YVWTS

41

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

generated with an affine cypher in the standard 26-letter alphabet from Table 2.2 it is known

that O represents E and that W represents I.

This gives the following system of equations.

14 =4a+ b

22 =8a+ b

Linear systems of equations in rings can be solved the same way as elementary systems

in R: with either substitution or elimination/addition, however, if the ring being worked in is

not a field, there may be no solution or multiple ones even if the system is otherwise linearly

independent. For a known plaintext attack, it is guaranteed that a key exists to map the

plaintext letters to the cyphertext letters, but the linear system in the ring may still not have

one unique solution.

Subtracting the two equations in Z26 gives 4a = 8, which is equivalent to 2a = 4 or 17.

17 is not a double in Z26, but 4 is, so a = 2 or 15. Substituting either value for a, or more

simply substituting 8 for 4a gives b = 6. This system has two solutions: (2, 6) and (15, 6). To

be a proper key, the a must be invertible. 2 is not invertible in Z26, so the key must have been

(15, 6). The inverse key is (7, 10) and when it is applied to the cyphertext plain English results,

COMMENCE SATURATION BOMBING.

If only one pair of letters were known, say that O was the image of E, then for each possible

a (only the units), only one b was possible and could be solved for. That would reduce the brute

force attack from 13∗25 = 325 possibilities to only 13, but with the extra effort required in each

try of solving for b (one modular subtraction).

42

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Frequency Analysis

If no piece of plaintext is actually known, it could still be possible to guess some plaintext. An

analysis of the cyphertext could imply some good guesses.

For example, the cyphertext of Example 2.17 has a double Y near the beginning. Few

English letters are doubled often, so it would make sense to guess that the doubled letter was

one of those, such as E, S or T.

An analysis of the distribution of characters in the cyphertext, and a comparison of that

distribution with the already known distribution of characters in plaintext is a very common

technique. This type of attack is called a frequency analysis. Spoken languages are not

written with a uniform distribution of characters from their alphabets. In English, for example,

E and T are the most common characters and Z, X and Q are the least common. A comparison

of the cyphertext character distribution with a known character distribution of the plaintext

language will also imply some good guesses.

The character distribution of the cyphertext from Example 2.8 is given in Table 2.4. The

most commonly occurring character in the cyphertext is D. The most commonly occurring letter

in English is E. It could be guessed that the encyphering key was -1. Decyphering with a key

of -1 gives the following:

XPPEX PLEES POCZA DAZEL EYZZY.

Apparently -1 was not the key. Looking at the distribution again, if the key were -1 then the

plaintext would have had to have a surprisingly large number of X’s, Y’s, and Z’s. The second

most popular letter in English is T. It could be guessed that the encyphering key was 10, and

43

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

this second guess is correct.

Table 2.4: Character distribution of cyphertext in Example 2.8.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 1 5 0 0 0 0 0 0 2 0 0 0 4 0 0 1 0 0 0 0 2 2 4 2

Example 2.18. Suppose it is known that the cyphertext

JKXMK ZFKJJ KXMJB SJGEJ BMUOM EJGKF

was generated by an affine cypher on the standard 26-letter alphabet. A statistical analysis

on a larger portion of cyphertext revealed that ’M’ and ’J’ are the two most common letters.

Knowing that the most popular letters in English plaintext are ’E’ and ’T’, find the encryption

key and decrypt the previous snippet.

Assuming that f(E = 4) = M = 12 and f(T = 19) = J = 9 the following system of equations

(in Z26) comes out
12 = a · 4 + b

9 = a · 19 + b

.

44

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Which is easily solved: 12

9

 =

 4 1

19 1

 a

b

 a

b

 =

 4 1

19 1

−1 12

9

=

 19 7

3 24

 12

9

 =

 5

18

So the encryption key was (5, 18). The decyphering transformation is f−1(c) = a−1(c − b) =

a−1c − a−1b. So the decryption key is (21, 14). Applying the decyphering transformation of

f−1(c) = 21c+ 14 to the above cyphertext results in

TOBEO RNOTT OBETH ATIST HEQUE STION,

or rather

To be, or not to be, that is the question.

2.5.2 Composition of encypherings

Theorem 2.11 established that the composition of encypherings is closed. This is considered a

weakness in a cryptosystem. One might think that encyphering a piece of plaintext twice would

square, or at least double, the difficulty in breaking it, but when the set of keys form a group,

no matter how many times a plaintext is encyphered with how many different keys, it is still

no more difficult to break than if it was encyphered once with the single key of the encyphering

composition.

45

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

The closure of affine encypherings under composition is with the assumption that both

encypherings were performed in the same ring with the same bijection between the alphabet

set, X, and the ring, R. If |X1| = |R1| ≤ |R2| = |X2|, then one can generate injective maps

ι1 : X1 → R1, ι2 : R1 → R2, and ι3 : R2 → X2, and the composition ι3 ◦ f2 ◦ ι2 ◦ f1 ◦ ι1 will be

an encyphering from the alphabet X1 to the alphabet X2. This will be fully invertible as it is

the composition of injective functions.

Example 2.19. Encypher the following plaintext using the 32-letter alphabet described in

Table 2.5 with two affine character transformations. Do the first encyphering in Z32 with a key

of (5, 12), and the second in F2[t]
〈t5−1〉 with a key of (t3 + t2 + 1, t2 + 1).

To be, or not to be: that is the question:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them?4

The plaintext should first be written in the chosen alphabet (all capital letters and ignore

line breaks).

TO BE, OR NOT TO BE: THAT IS THE QUESTION: WHETHER ’TIS NOBLER IN THE MIND TO

SUFFER THE SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE, OR TO TAKE ARMS AGAINST A

SEA OF TROUBLES, AND BY OPPOSING END THEM?

Next, the intermediary cyphertext is computed with the first key.
4Shakespeare, William. Hamlet, Prince of Denmark, III.1

46

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

LSORATOSBONSLOLSORAHOLPMLOUGOLPAO.QAGLUSNHO

PALPABOCLUGONSRDABOUNOLPAOIUN,OLSOGQFFABOLPAOGDUNKGOMN,OMBBS

GOSFOSQLBMKASQGOFSBLQNATOSBOLSOLMKAOMBIGOMKMUN5

GLOMOGAMOSFOLBSQRDAGTOMN,OREOSXXSGUNKOAN,OLPAI?

Then, use the second key on the intermediary cyphertext to compute the final cyphertext.

ZJB’FEBJIBWJZBZJB’FHBZM,ZBGKBZMFBNTFKZGJWHBCMFZMFIB:ZGKBWJ’SFIBGWB6

ZMFBOGWPBZJBKT??FIBZMFBKSGWGKB,WPB,IIJCKBJ?BJTZI,UFJTKB?JIZTJFEBJI

BZJBZ,XFB,IOKB,U,GWKZB,BKF,BJ?BZIJT’SFKEB,WPB’QBJRRJKGJUBFJPBZMFOA

If the result of a first affine encyphering is injected into a different ring of equal or greater size,

then put through a second affine encyphering, this composition will be harder to break. Assume

that the pre-images of two cyphertext characters is already known, whether by knowledge of the

form of the plaintext or a statistical analysis. What is not known is the intermediary cyphertext

characters (the image of the two known plaintext letters through only the first encyphering

transformation). For each of the possible O(l12) encryption keys for the first encyphering, there

is up to one valid second encryption key of the O(l22) total that will map the two intermediary

cyphertext characters to the correct two final cyphertext characters. And this will require a

brute force check: for each possible decryption key for the second transformation, calculate the

images of the two known cyphertext characters, solve the 2x2 system to find the decryption key

for the first transformation (if it exists), apply the two decyphering transformations and see if

5This line break was inserted for legibility, while the previous two occurred naturally at single spaces in the

cyphertext.
6Both of these line breaks were inserted for legibility, as the final cyphertext has no spaces in it.

47

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Table 2.5: 32-character alphabet represented by Z32 and by the polynomial ring F2[t]
〈t5−1〉

Character Z32
F2[t]
〈t5−1〉

A 0 0

B 1 1

C 2 t

D 3 t+ 1

E 4 t2

F 5 t2 + 1

G 6 t2 + t

H 7 t2 + t+ 1

I 8 t3

J 9 t3 + 1

K 10 t3 + t

L 11 t3 + t+ 1

M 12 t3 + t2

N 13 t3 + t2 + 1

O 14 t3 + t2 + t

P 15 t3 + t2 + t+ 1

Q 16 t4

R 17 t4 + 1

S 18 t4 + t

T 19 t4 + t+ 1

U 20 t4 + t2

V 21 t4 + t2 + 1

W 22 t4 + t2 + t

X 23 t4 + t2 + t+ 1

Y 24 t4 + t3

Z 25 t4 + t3 + 1

(space) 26 t4 + t3 + t

, 27 t4 + t3 + t+ 1

. 28 t4 + t3 + t2

? 29 t4 + t3 + t2 + 1

’ 30 t4 + t3 + t2 + t

: 31 t4 + t3 + t2 + t+ 1

48

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

legible plaintext results. This requires the same O(l2(lg l)2) as the dumb (knowledgeless) brute

force attack described in Section 2.5.1.

Example 2.20. The two most common alphabet characters in the plaintext in Example 2.19

are (space) occurring 38 times and T occurring 19 times. O occurs 18 times and E occurs 17

times. Assume that an attacker already knows two plaintext characters, say that (space) is

represented by B and that T is represented by Z in the cyphertext. What the attacker does

not know is the intermediary cyphertext characters B and L for (space) and T respectively. If

those were known, then all that would need to be done is solve two 2× 2 systems, one in each

ring. However, without knowing those two characters, he must consider every possible pair of

intermediary characters. For example, there are 32*15=480 possible keys in the polynomial ring

and 512 possible keys in the cyclic ring. For each of the 480 keys, an attacker may calculate the

pre-image, intermediary, cyphertext characters of B and Z, then solve the system in the cyclic

ring to find the key (if it exists) that would send (space) and T to them. On average, this will

take 240 tries, based on Theorem 2.15.

2.5.3 Distribution Count Variance

The United States’ Declaration of Independence is reproduced in Appendix A. This is a decently

sized document free of copyright. It will be a running example throughout this work. Each time it

will be considered to be in a 128-letter alphabet, encoded by the standard 7-bit ASCII standard

for the computer representation of text characters. Each uppercase letter, lowercase letter,

decimal digit, punctuation mark, and other control character (such as tabs and new lines) have a

standard numerical assignment. There are actually a number of standard character assignments

49

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

for alphabets in different languages (ANSI, ASCII, the ISO family, the Unicode family, etc.. . .),

most of the encodings of Latin alphabets (especially the English alphabet) agree with the ASCII

standard for most of the first 128 characters. This choice of alphabet is usually automatically

handled by the text software (word processor, web browser, email program, etc. . . .) so in

application, all that really needs to be considered is bits or bytes. The 26- to 30-character

alphabets will continue to be used in small examples throughout this work for ease of human

comprehension.

The character distribution of the plaintext Declaration of Independence is shown in Fig-

ure 2.1. The Declaration of Independence was encyphered with an affine character cypher, the

result of which is also presented in Appendix A. Note the jumbling of the paragraph breaks,

as the Carriage Return and Line Feed (new paragraph) characters are considered alphabetic

elements. The character distribution of the affine cyphertext Declaration of Independence is

also shown in Figure 2.1 for comparison. Note that the net effect between the two distributions

is just a shuffling of the bars in the histogram. The characters in the cyphertext appear no more

random than in the plaintext, they are just different characters.

The statistical measures of expectation and variance can be used to measure how evenly

spread out the distribution of characters is in a plaintext or cyphertext. Actually, expectation

(average) will not indicate any of that, but it is used in the formula for variance. An average

of the counts of each character should come out as total characters
size of alphabet regardless of whether it is

the plaintext or the cyphertext, or of the encryption scheme used. The variance will give an

indication of how non-uniform the character distribution is. The variance is the average of the

squares of the distribution count minus the square of the average of the distribution count, per

50

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

 0

 200

 400

 600

 800

 1000

 1200

 1400

-5 0 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0
 5

5
 6

0
 6

5
 7

0
 7

5
 8

0
 8

5
 9

0
 9

5
 1

0
0

 1
0

5
 1

1
0

 1
1

5
 1

2
0

 1
2

5
 1

3
0

C
o
u
n
t

Character

Plaintext
Affine Character Cyphertext

Figure 2.1: Character distributions of plaintext and an example affine cyphertext Declaration

of Independence.

51

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Theorem 1.29.

V ariance =
∑
a∈X c(a)2

|X|
−
(∑

a∈X c(a)
|X|

)2

,

where c(a) is the count of the number of a’s in the plaintext or cyphertext.

A higher variance means that some characters are occurring more often than other char-

acters, a less uniform distribution of characters. A lower variance means that more characters

occur approximately the same number of times, a more uniform distribution of characters. The

more uniform the character distribution of a cyphertext is, the closer it appears to a random

sequence, and the harder it is to analyze for information.

Example 2.21. Find the variance of the cyphertext from Example 2.8. The character distri-

bution table is reproduced here.

First find the average of the character distribution.

1 + 1 + 5 + 2 + 4 + 1 + 2 + 2 + 4 + 2
26 = 24

26 = 12
13 ≈ 0.923

Find the average of the squares of the distribution.

1 + 1 + 25 + 4 + 16 + 1 + 4 + 4 + 16 + 4
26 = 76

26 = 38
13 ≈ 2.92

Subtract the square of the average from the average of the squares.

38
13 −

(
12
13

)2
= 494

169 −
144
169 = 350

169 ≈ 2.07

The variance of the character distributions of both the plaintext and the cyphertext of affine

character transformations are the same. For the text of the Declaration of Independence, the

variance of both distributions shown in Figure 2.1 is approximately 31707.

52

2.5. BREAKING AND TIME ANALYSESCHAPTER 2. AFFINE CHARACTER CYPHERS

Table 2.6: Character distribution of cyphertext in Example 2.8 (reproduced).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 1 5 0 0 0 0 0 0 2 0 0 0 4 0 0 1 0 0 0 0 2 2 4 2

53

Chapter 3

Affine, Block Cyphers

There are a number of mutually related disadvantages with the character cyphers described

in Chapter 2. First is the small number of possible encryption keys. Second is the ease of a

statistical analysis on the cyphertext to break it. This is because of the small alphabet, and that

every ’A’ in the plaintext gets mapped to the exact same cyphertext character. Both of these

weaknesses may be overcome by a simple alteration. Rather than encyphering one character at

a time, in a ring the size of the alphabet, blocks of m characters are associated together and

encyphering is done in a ring magnitudes larger than the size of the alphabet. Specifically, if

the alphabet has l characters, then the ring will have lm elements.

This modification drastically increases the number of possible encryption keys; the larger

rings will have a larger number of invertible elements for the multiplicative a component and a

larger number of total elements for the additive b component. This modification also diversifies

the image of each character, as encyphering happens block-by-block rather than character-by-

54

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

character, thus increasing the statistical analysis required for breakage. What character any

specific ’A’ in the plaintext gets mapped to by the encyphering, will now depend on where in

the block the ’A’ occurs and the other characters in the block.

3.1 Multiple Digit m-graphs

Definition 3.1 (m-graph). A block of m letters in a plaintext or cyphertext. 2-graphs and

3-graphs are also called digraphs and trigraphs.

One simple way to inject a block of m characters of a size l alphabet into a cyclic ring, is by

considering that block as an m-digit number in base l. Each block of m letters will be mapped

to an element of the ring Zlm . Given a bijection from the alphabet to the ring, j : X → Zl, one

can define jm : Xm → Zlm by jm(a1, a2, . . . , am) =
∑m
i=1 ail

m−i.

Affine transformations in Zlm happen just the same as ones in Zl, except there are now

more choices for the parameters a and b. There are lm possibilities for b and φ(lm) = lm−1φ(l)

possibilities for a. So the total number of possible keys is O(l2m). The number of possible

encryption keys grows exponentially with the size of the block.

Example 3.2. Encypher the message

RUBBER BABY BUGGY BUMPERS

using the standard 26-letter alphabet from above with a multidigit affine transformation on

digraphs using the encryption key (93, 521). Note that 262 = 676 and that our message has an

above average number of B’s. Character distribution tables for both the plaintext and cyphertext

appear at the end of the example.

55

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

First write the code in blocks of two.

RU BB ER BA BY BU GG YB UM PE RS

Convert each digraph to an element of Z676 with the aid of Table 2.2.

17:20 1:1 4:17 1:0 1:24 1:20 6:6 24:1 20:12 15:4 17:18

462 27 121 26 50 46 162 625 532 394 460

Apply the encyphering transformation f(p) = 93p+ 512.

223 328 282 235 439 67 39 510 649 659 37

Convert back to digraphs in the 26-letter alphabet.

8:15 12:16 10:22 9:1 16:23 2:15 1:13 19:16 24:25 25:9 1:11

IP MQ KW JB QX CP BV TQ YZ ZJ BL

Arrange the cyphertext in blocks of five for easy human reading.

IPMQK WJBQX CPBNT QYZZJ BL

Table 3.1: Character distributions of Example 3.2.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

plaintext 1 6 0 0 2 0 2 0 0 0 0 0 1 0 0 1 0 3 1 0 3 0 0 0 2 0

cyphertext 0 3 1 0 0 0 0 0 1 2 1 1 1 1 0 2 3 0 0 1 0 0 1 1 1 2

56

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

The character distributions for Example 3.2 are in Table 3.1. Example 3.2 started with

a plaintext containing 6 B’s. Those 6 B’s were mapped by the encyphering transformation

to 4 different letters: M, Q, J, and C, and the three B’s that are in the cyphertext came

from three different plaintext letters: A, G, and R. The letters in the cyphertext are more

spread out than in the plaintext. This is visible in the histogram of Figure 3.1. It can also be

demonstrated by finding the variance of the counts of the letters in each. Using the formula

from Theorem 1.29 it is found that the variance in the character counts in the plaintext is

1+36+4+4+1+1+9+1+9+4
26 −(22

26)2 ≈ 1.98, but the variance in the character counts in the cyphertext

is about 0.822.

 0

 1

 2

 3

 4

 5

 6

-2 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

 2
2

 2
4

 2
6

C
o
u
n
t

Character

Plaintext
Cyphertext

Figure 3.1: Character distributions of Example 3.2.

57

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

That the third B in the plaintext went to a Q is a coincidence, but it is not a coincidence

that the second and sixth B’s went to the same letter. The least significant digit in an affine

transformation is not affected by the more significant digits, this is true even in base 10. The

ones digit of any multiplications and additions is only determined by the ones digits of the

components. Notice also that the first two U’s, each in the least significant digit of their

respective digraphs, each went to P.

The fact that the image of each letter in the least significant digit of each block is constant

with respect to the more significant digits is a weakness of this block cypher scheme. If the

alphabet and block size are known, which is standard, an attacker could gain information by

a statistical analysis of only the least significant digits of each block. With enough statistical

data, an attacker could determine the residue of the encryption key mod l.

For known plaintext attack, an attacker would need to know the plaintext equivalents of 2

blocks of cyphertext, just as he needed to know the plaintext equivalent of two characters of

cyphertext for an affine, character transformation. This could be more than m times harder,

because it requires two properly aligned, length-m blocks of contiguous characters to be known,

not just m times as many characters.

A statistical analysis can still be performed if enough cyphertext is available. Rather than

counting the number of each character, the number of each possible length-m block must be

counted and compared to a known m-graph distribution in the plaintext alphabet. Because the

data being counted are m times as big as with the character cyphers, and there are lm−1 times

as many possible data elements, it will now take at least mlm−1 times as much cyphertext to

be able to make as accurate of a statistical analysis as it did against single character cyphers.

58

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

Affine transformations for a multidigit m-graph now require time on the order of O((lg lm)2)

because each arithmetic operation now happens on numbers the size of lm rather than l. The

number of arithmetic operations required for a block cypher, though, is now only 1
m as many as

for a character cypher on a message of the same length. The time required to use a multi-digit

m-graph cypher is O((lg lm)2

m) = O(m(lg l)2). With O(l2m) possible keys, a brute force attack

against a multi-digit, affine, m-graph cypher will take O(ml2m(lg l)2) time. This encryption

scheme has a much better break-to-utilize time ratio than affine character cyphers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

-5 0 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0
 5

5
 6

0
 6

5
 7

0
 7

5
 8

0
 8

5
 9

0
 9

5
 1

0
0

 1
0

5
 1

1
0

 1
1

5
 1

2
0

 1
2

5
 1

3
0

C
o
u
n
t

Character

Plaintext
Affine Multidigit Digraph Cyphertext

Figure 3.2: Character distributions of plaintext and an example multidigit, digraph, affine

cyphertext Declaration of Independence

Once again, the Declaration of Independence was encyphered. This time with a multi-

59

3.1. MULTIPLE DIGIT M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

digit, digraph, affine transformation. The key used was (8567, 612). The text of the resulting

cyphertext is included in Appendix A. The character distribution histogram of the cyphertext

is graphed in Figure 3.2. The distribution of the original plaintext is included in the figure

for reference. Clearly, the cyphertext distribution shows a more even spread in the character

counts. This cyphertext has a character count variance of approximately 10100, as opposed

to the plaintext’s of approximately 31700. This smoother spread in the character distribution

indicates that a statistical analysis will require more than merely counting the characters to be

meaningful.

Notice that plaintext character 32 (space) has over 1300 occurrences, but no cyphertext

character has so many. This is because not every space in the plaintext was mapped to the same

character in the cyphertext. However, as previously mentioned, since the least significant digit

of the result of an arithmetic computation is only dependent on the least significant digits of

the operands, any space that occurred as the second character in a digraph was mapped to the

same character. Only character 68 (D) of the cyphertext has over 750 occurrences. Clearly, any

D in the cyphertext that occurs as the second character of a digraph is the image of a space in

the plaintext.

Rather than counting characters and guessing a pair of mappings based on known characters

in the plaintext alphabet, a statistical analysis on the cyphertext requires a count of the digraphs.

This count can then be compared to a list of known common digraphs in the plaintext alphabet

(such at ’th’, ’he’, and ’ng’ in English) to generate probable guesses for pair mappings to solve

for the key algebraically. The process is the same as for the single character cyphers, but

requires more data handling and computations. For this digraph example, a histogram of digraph

60

3.2. VECTOR M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

frequencies could be generated for the two texts; this histogram would resemble Figure 2.1 in

the sense that the bars of the cyphertext histogram would look merely like rearrangements of

the bars of the plaintext histogram, except that there would now be 1282 = 16384 bars instead

of 128. A presentation of this histogram here would, therefore, be impractical.

3.2 Vector m-graphs

Rather than considering each component character of an m-graph as a digit, it could also be

considered as a vector component. Rather than a mapping into Zlm , a mapping into Zlm, or

any Rm, is used. However, the vectors of Rm do not form a ring, for they may only be added,

not multiplied. An affine transformation will require a matrix multiplication by an invertible

element of Mm(R). It will have the form

f(p) = Ap+ b,

where A ∈ Mm(R)∗ and b ∈ Rm. The benefit thereof, is that the image of every component of

each vector, p, will be determined by every other component of the vector (for a reasonably well

chosen value of A).

The multidigit m-graph method only lends itself well to rings of the form Zl, but finite-

length vectors and the matrices by which they may be multiplied can be naturally formed from

any ring. And the natural (left) multiplication of elements of Rm by elements of Mm(R) show

Rm to be a (left) Mm(R)-module.1

Example 3.3. Encypher the message
1See Grove, p125 [1], for a discussion of modules.

61

3.2. VECTOR M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

RUBBER BABY BUGGY BUMPERS

using the standard 26-letter alphabet from above with a vector affine transformation on digraphs

using the encryption key
 3 12

15 7

 ,
 22

2

 .

First write the code in blocks of two.

RU BB ER BA BY BU GG YB UM PE RS

Convert each digraph to an element of Z26
2 with the aid of Table 2.2. 17

20

 1

1

 4

17

 1

0

 1

24

 1

20

 6

6

 24

1

 20

12

 15

4

 17

18

Apply the encyphering transformation f(p) =

 3 12

15 7

 p+

 22

2

.
 1

7

 11

24

 14

7

 25

17

 1

3

 5

1

 8

4

 2

5

 18

22

 11

21

 3

19

Convert back to digraphs in the 26-letter alphabet.

BH LY OH ZR BD FB IE CF SW LV DT

Arrange the cyphertext in blocks of five for easy human reading.

BHLYO HZRBD FBIEC FSWLV DT

After Example 3.2, a comparison was made between the variances of the character distribu-

tions of the plaintext and the cyphertext to demonstrate that block cyphers yield a cyphertext

62

3.2. VECTOR M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

with a more spread out character distribution than single character cyphers. A character dis-

tribution count table for Example 3.3 is shown in Table 3.2. It was further demonstrated that

the multidigit block cyphers are not able to spread out the distribution of the characters in the

least significant positions of their respective blocks. Vector cyphers are able to spread out the

character distributions of all positions in the block. Therefore, the vector cyphers should tend

to produce cyphertext whose character distributions have an even lesser variance. To illustrate

this, a calculation of the variance in the character counts of the cyphertext from Example 3.3

results in a variance of about 0.669, less than that for either the plaintext or the multidigit

cyphertext.

Table 3.2: Character distributions of Example 3.3.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

plaintext 1 6 0 0 2 0 2 0 0 0 0 0 1 0 0 1 0 3 1 0 3 0 0 0 2 0

cyphertext 0 3 1 2 1 2 0 2 1 0 0 2 0 0 1 0 0 1 1 1 0 1 1 0 1 1

With |Mm(R)∗| = O(lm2) (for an l-letter alphabet) choices for A and |Rm| = O(lm) choices

for b, there are O(lm2+m) possible encryption keys. Each affine transformation requires m2

multiplications in R. Each affine transformation will require O(m2(lg l)2) time and again only

1
m as many are required, so the total time to use a vector affine cypher is O(m(lg l)2), the same

as for the multidigit cypher. A brute-force attack will, therefore, require O(mlm2+m(lg l)2) time.

The Declaration of Independence was encyphered twice with vector block cyphers, once with

digraphs and once with 4-graphs. Both cyphertexts are included in Appendix A. The vector

63

3.2. VECTOR M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

 0

 100

 200

 300

 400

 500

 600

 700

 800

-5 0 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0
 5

5
 6

0
 6

5
 7

0
 7

5
 8

0
 8

5
 9

0
 9

5
 1

0
0

 1
0

5
 1

1
0

 1
1

5
 1

2
0

 1
2

5
 1

3
0

C
o
u
n
t

Character

Affine Multidigit Digraph Cyphertext
Affine Vector digraph Cyphertext

Figure 3.3: Character distribution of example vector digraph cyphertext of the Declaration of

Independence

64

3.3. VIGENÈRE CYPHERS - AN HISTORICAL NOTECHAPTER 3. AFFINE, BLOCK CYPHERS

digraph encyphering used the key
 95 5

97 58

 ,
 43

99

 ,

and the vector 4-graph encyphering used the key

37 68 26 95

16 103 100 89

122 33 17 51

55 42 82 24

,

89

92

59

92

.

Figure 3.3 shows the resulting character distribution of the vector, digraph encyphering with

the distribution for the multidigit, digraph encyphering included for reference. Notice that

the vector encyphering produced cyphertext with a much smoother character distributions.

Figure 3.4 shows the distribution of the 4-graph cyphertext with the distribution of the digraph

cyphertext for reference. The character count variances for the digraph and 4-graph cyphertexts

are approximately 515 and 261 respectively, significantly less than the 10100 of the multidigit

digraph cyphertext example. A visual inspection of the cyphertexts show a smoother look to the

paragraph breaks with the vector cyphers than the previous ones, agreeing with the numerical

measurement.

3.3 Vigenère Cyphers - An Historical Note

The Vigenère cypher was the first historical attempt at a block cypher, and was used successfully

for several centuries until cryptanalysis caught up with it.2 In practice, it was an extension of a
2Koblitz, 66. [4]

65

3.3. VIGENÈRE CYPHERS - AN HISTORICAL NOTECHAPTER 3. AFFINE, BLOCK CYPHERS

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0
 5

5
 6

0
 6

5
 7

0
 7

5
 8

0
 8

5
 9

0
 9

5
 1

0
0

 1
0

5
 1

1
0

 1
1

5
 1

2
0

 1
2

5
 1

3
0

C
o
u
n
t

Character

Affine Vector digraph Cyphertext
Affine Vector 4-graph Cyphertext

Figure 3.4: Character distribution of example vector 4-graph cyphertext of the Declaration of

Independence

66

3.3. VIGENÈRE CYPHERS - AN HISTORICAL NOTECHAPTER 3. AFFINE, BLOCK CYPHERS

single character shift cypher to a rotating key sequence. The key sequence was usually associated

with an easily remembered key word. The first letter of the word was the shift key for the first

letter. The second letter of the word was the shift key of the second letter. When all the letters

of the key word were used, the first would be used again in a repeating cycle.

Example 3.4. If the key word being used in a Vigenère cypher were “Petunia,” then the first

letter’s key would be P, the second letter’s key would be E, . . . the seventh letter’s key would be

A, the eighth letter’s key would be P again. Suppose we wanted to encypher the message “The

king has a mistress.” with a Vigenère cypher using the keyword “Petunia.” We could write our

plaintext on one line, repeat the word ‘petunia’ under it, and cypher one letter at a time as so:

THEK I NGHAS AM I ST RE S S

PETUN I AP ET UN I AP ETUN

ELXGV VGWEL UZQSE VXMF

The Vigenère cypher could be considered a block cypher. However, rather than the block

being encyphered together, each character of the block is encyphered separately, with a shift

cypher. This still gives the effect of smoothing the character distribution of the cyphertext, thus

prohibiting a direct statistical analysis of the entire character distribution. But once the block

size is known, the cyphertext can be fractured according to position in the block, and a simple

statistical analysis on the character distribution of each block position will lead to the discovery

of each respective key.

The Vigenère cypher may be classified as a special case of the vectorm-graph transformation

where the multiplicative portion of the key, A, is the identity matrix. The keyword determines

67

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

the entries of the shift portion, b. For example, a keyword of “Petunia” would represent a cypher

key of b = [15 4 19 20 13 8 0]T .

3.4 Matrix m-graphs

3.4.1 Single-sided Affine Transformations

Rather than mapping blocks ofm characters into vectors of lengthm, they could also be mapped

into matrices of size j × k where m = jk. If the encyphering transformation is of the form

f(P) = AP + B then A should be an element of Mj(R) and b an element of Rj×k. This type

of scheme, however, will be little more secure than a j-graph vector cypher. When the block of

size n is broken into k sub-blocks of size j and those arranged as the k columns of the j × k

matrix P , what gets created is a vector parallel to the Vigenère cypher: Each j-graph vector

sub-block gets encyphered with the key (A, bi) where bi cycles through the columns of B.

Example 3.5. Given a block of 9 characters mapped to the 3× 3 matrix

P =

p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

 ,

encypher the block with the keyA =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , B =

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 .

68

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

The resulting cyphertext block will be

C =

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

 = AP +B

=

a1,1p1,1+a1,2p2,1+a1,3p3,1+b1,1 a1,1p1,2+a1,2p2,2+a1,3p3,2+b1,2 a1,1p1,3+a1,2p2,3+a1,3p3,3+b1,3

a2,1p1,1+a2,2p2,1+a2,3p3,1+b2,1 a2,1p1,2+a2,2p2,2+a2,3p3,2+b2,2 a2,1p1,3+a2,2p2,3+a2,3p3,3+b2,3

a3,1p1,1+a3,2p2,1+a3,3p3,1+b3,1 a3,1p1,2+a3,2p2,2+a3,3p3,2+b3,2 a3,1p1,3+a3,2p2,3+a3,3p3,3+b3,3

 .

The extra flexibility of choosing an arrangement of the characters into the j × k matrix

merely adds a permutation layer. This layer does not affect the statistical complexity.

If the arrangement of the m characters were not known, then the transformation could

be modeled as an m-graph vector transformation. The m-graph vector model of the same

transformation would line all m entries of the block in a vertical vector. If the length-j sub-

blocks of the m-graph vector do not correspond exactly with columns of the original j×k matrix

P , then that difference is a simple m×m permutation matrix. This same permutation matrix

would also be the difference between the original j×k matrix B and the models length-m vector

B′.

The vector transformation model’s A′ will be an m ×m matrix. Since each element of C

was originally determined by exactly one row of A and j elements of P , then each row of A′ will

have m− j zero elements and the other j will be an arrangement of the elements from one row

of A. Since each row of A originally contributed to exactly k elements of C, then each row of

A will be represented by exactly k rows of A′. Each of A’s j rows will populate k rows of A′,

accounting for all m = jk rows of A′.

69

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

Only kj2 entries of A are (likely) non-zero, and those contain only j2 (permittedly) unique

values, each occurring k times. Furthermore, the kj2 non-zero entries will be distributed equally

over the jk rows, j in each row, with none of the j2 distinct entries occurring twice on the same

row. Note that if the original j × j A has multiple entries of the same value, then that value

will occur the same number of times as often in the m×m A′.

Example 3.6. Transform the 3×3 matrix transformation into a 9-graph vector transformation

and verify that the new 9 × 9 matrix in the vector transformation will also be invertible if the

original 3× 3 A is.

The length-9 vectors P ′ and B′ will be

P ′ =
[
p1,1 p2,1 p3,1 p1,2 p2,2 p3,2 p1,3 p2,3 p3,3

]T
,

and

B′ =
[
b1,1 b2,1 b3,1 b1,2 b2,2 b3,2 b1,3 b2,3 b3,3

]T
.

70

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

To compute a properly corresponding C ′ of

C ′ =
[
c1,1 c2,1 c3,1 c1,2 c2,2 c3,2 c1,3 c2,3 c3,3

]T

=

a1,1p1,1 + a1,2p2,1 + a1,3p3,1 + b1,1

a2,1p1,1 + a2,2p2,1 + a2,3p3,1 + b2,1

a3,1p1,1 + a3,2p2,1 + a3,3p3,1 + b3,1

a1,1p1,2 + a1,2p2,2 + a1,3p3,2 + b1,2

a2,1p1,2 + a2,2p2,2 + a2,3p3,2 + b2,2

a3,1p1,2 + a3,2p2,2 + a3,3p3,2 + b3,2

a1,1p1,3 + a1,2p2,3 + a1,3p3,3 + b1,3

a2,1p1,3 + a2,2p2,3 + a2,3p3,3 + b2,3

a3,1p1,3 + a3,2p2,3 + a3,3p3,3 + b3,3

,

requires the use of

A′ =

a1,1 a1,2 a1,3 0 0 0 0 0 0

a2,1 a2,2 a2,3 0 0 0 0 0 0

a3,1 a3,2 a3,3 0 0 0 0 0 0

0 0 0 a1,1 a1,2 a1,3 0 0 0

0 0 0 a2,1 a2,2 a2,3 0 0 0

0 0 0 a3,1 a3,2 a3,3 0 0 0

0 0 0 0 0 0 a1,1 a1,2 a1,3

0 0 0 0 0 0 a2,1 a2,2 a2,3

0 0 0 0 0 0 a3,1 a3,2 a3,3

.

71

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

Or, more concisely, starting with

P =
[
p1 p2 p3

]

and similarly

B =
[
b1 b2 b3

]
and a

C =
[
c1 c2 c3

]
such that

C = AP +B =
[
Ap1 + b1 Ap2 + b2 Ap3 + b3

]
,

then if one wants to restructure P as

P ′ =

p1

p2

p3

 ,

and similarly B as

B′ =

b1

b2

b3

 ,

and C as

C ′ =

c1

c2

c3

 ,

72

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

then A must be restructured as

A′ =

A 0 0

0 A 0

0 0 A

 .

The reader may easily verify that if C = AP +B, then C ′ = A′P ′ +B′.

Lastly, |A′| = |A|3, so A′ will be invertible if, and only if, A is.

Example 3.6 demonstrates what could be called a standard mapping of a character block

into a matrix, where each column, from left to right, is filled from top to bottom. Any other

arrangement can be converted into a vector block, like in Example 3.6, and if the coefficient

matrix A′ and constant shift vector B are multiplied by appropriate permutation matrices, then

the message vectors P ′ and C ′ can be equated with message blocks in the standard, same-order

sequence manner.

3.4.2 Double-sided Affine Transformations

Rather than a transformation of the form f(P) = AP +B, a matrix transformation could also

use a transformation of the form f(P) = APB + C, where if P ∈ Rm×n, then A ∈ GLm(R),

B ∈ GLn(R), and C ∈ Rm×n. The key space is now GLm(R) × GLn(R) × Rm×n, the size of

which is O(|R|m2+n2+mn).

This type of transformation is, also, able to be converted to one of a simpler form like the

single-sided transformation above was. While, in general, it is not possible to convert a right-

hand multiplication like PB into a left-hand of the form B′P with a fixed B′ and variable P , the

73

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

double-sided m×n matrix affine transformation can be converted into a single-sided length-mn

vector transformation just like the single-sided matrix transformation above.

For this, we’ll introduce some extra notation. First, the act of vectorizing a matrix, M , by

stacking its columns on top of each other will be notated with the vec operator. Thus if M is an

n×m matrix, then vecM is an mn-length column vector. Additionally, the column of a matrix

shall be denoted with a single subscript in the following.

A new matrix product, known as the Kronecker Product, shall be denoted with the ⊗

operator.

Definition 3.7 (Kronecker Product). If A is a k× l matrix and B is an m×n matrix, then the

Kronecker product A⊗B is a km× ln matrix formed by left distributing B to each element of

A.

a1,1 a1,2 · · · a1,l

a2,1 a2,2 · · · a2,l

...
...

ak,1 ak,2 · · · ak,l

⊗B =

a1,1B a1,2B · · · a1,lB

a2,1B a2,2B · · · a2,lB

...
...

ak,1B ak,2B · · · ak,lB

Theorem 3.8. A matrix transformation of the form f(P) = APB + C where A ∈ GLm(R),

B ∈ GLn(R), and P,C ∈ Rm×n is convertible to one of the form f(P) = A′P ′ + C ′ where

A′ ∈ GLmn(R) and P ′, C ′ ∈ Rmn.3

3The proof of this is essentially copied from Horn and Johnson, 254-255. [3]

74

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

Proof. We’ll first examine the kth column of the product APB.

(APB)k = A(PB)k =APBk

=A

∑n
i=1 p1,ibi,k

...∑n
i=1 pm,ibi,k

=A

∑n
i=1 bi,kp1,i

...∑n
i=1 bi,kpm,i

=A
n∑
i=1

bi,kp1,i

...

bi,kpm,i

=A
n∑
i=1

bi,k

p1,i

...

pm,i

=A

(
n∑
i=1

bi,kPi

)

=
n∑
i=1

Abi,kPi

This distribution of A into the summation will eventually become a Kronecker product of a

matrix with A. At this point we may reinterpret the summation as a vector inner product and

75

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

continue like so:

n∑
i=1

Abi,kPi =
[
Ab1,k Ab2,k · · · Abn,k

]

P1

P2

...

Pk

=
[
b1,kA b2,kA · · · bn,kA

]
vecP

=(BkT ⊗A) vecP

Remember that this is just the kth column of APB. The vectorization of APB will result in

stacking these columns on top of each other.

vecAPB =

(B1
T ⊗A) vecP

(B2
T ⊗A) vecP

...

(BnT ⊗A) vecP

=

(B1
T ⊗A)

(B2
T ⊗A)
...

(BnT ⊗A)

[vecP]

76

3.4. MATRIX M -GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

But since vecP is already a vector, [vecP] = vecP .

vecAPB =

(B1
T ⊗A)

(B2
T ⊗A)
...

(BnT ⊗A)

vecP

=

B1
T

B2
T

...

Bn
T

⊗A

vecP

=(BT ⊗A) vecP

And so, not only do we know that a transformation exists to vectorize P and C, but we also

know the form of the transformation. The important part is that the same vector-based analysis

may be used by an attacker whether the actual transformation is a vector, single-sided matrix

or double-sided matrix transformation. Note also, that the single-sided matrix vectorization of

Example 3.6 is a special case of the double-sided one where the right-hand matrix is just an

identity, I.

The time involved in using a double-sided matrix transformation on a plaintext message is

dominated by the matrix multiplications. There are m2n multiplications in R when multiplying

by A and mn2 multiplications in R when multiplying by B. If R = Zl, then each multiplication

requires O((lg l)2) time, but there are only 1
mn of them. The full transformation will therefore

77

3.5. COMBINING M -GRAPH METHODS CHAPTER 3. AFFINE, BLOCK CYPHERS

require O((m + n)(lg l)2) time. With a keyspace of O(lm2+n2+mn), a brute-force attack would

require O(lm2+n2+mn(m+ n)(lg l)2) time.

Compare this with the time requirements for an mn vector transformation: O(mn(lg l)2)

transformation time and O(l(mn)2+mn)-size keyspace. The vector transformation has a usage

requirement mn
m+n times harder, and a keyspace lm

2n2+mn

lm2+n2+mn = lm
2n2−m2−n2 times larger, the

breakage requirement is mn
m+n · l

m2n2−m2−n2 times harder. A vector transformation with the

same block size seems favorable to a matrix transformation.

3.5 Combining m-graph Methods

Different m-graph methods may also be used together. The most simple combination would be

to use multiple digit m1-graphs as the base ring elements in a vector or matrix m2-graph. This

is especially true with computers.

Computers use the byte (8-digit binary numbers) as their base unit of storage. This produces

a natural 256-letter alphabet with a natural mapping to Z256. However, the base unit (or perhaps

more properly called the optimal unit) for mathematical operations may be 2, 4, or 8 bytes,

depending on architecture, and is called a word. On a computer that can natively (in hardware)

handle 32-bit operands (4 bytes), it would be very convenient to use multiple digit 4-graphs

mapped to Z232 . Even more convenient, is the fact that arithmetic operations will naturally

wrap around from 232 − 1 to 0, easing the requirements for a mod operation to always follow.4

A 32-bit arithmetic processor will naturally work with integers mod 232.

4Computer programmers refer to this “feature” as overflow when modular computations are not desired.

78

3.5. COMBINING M -GRAPH METHODS CHAPTER 3. AFFINE, BLOCK CYPHERS

Once the characters of a plaintext message are grouped into words of length 4 (for example),

Z232 may then be used as the base ring to form m-graphs (of words now, not characters) into

vectors or matrices.

Section 2.5.2 discussed the composition of affine encypherings and demonstrated that it was

only beneficial when a different ring was used for each encyphering. With all these different

m-graph techniques, it is not hard to find two or more different rings in which to work. Even

using the same m-graph technique with different sizes of blocks will suffice. And while the net

result will be a block cypher with a block size of the lcm of each of the component block cyphers,

the resultant cypher may not be representable as an affine cypher, and the associated keyspace

would then not form a group structure.

Example 3.9. Take the notes of Twinkle, Twinkle, Little Star (in the key of C-Major), written

in the seven-character alphabet X = {A, . . . G} (neglecting note lengths):

C C G G A A G F F E E D D C G G F F E E D G G D D E E D C C G G A A G F F E E D

D C.

Let the notes be represented by the ring Z7 in alphabetical order with A = 0 and G = 6. First

encypher the sequence as multidigit 2-graphs (in the ring Z72 with the key (45, 8). First collect

the message in groups of two and then convert the groups of two to elements of Z49 considering

the first element of each pair as the 7’s digit.

CC GG AA GF FE ED DC GG FF EE DG GF FE ED CC GG AA GF FE ED DC

16 48 0 47 39 31 23 48 40 32 27 47 39 31 16 47 0 47 39 31 23

79

3.5. COMBINING M -GRAPH METHODS CHAPTER 3. AFFINE, BLOCK CYPHERS

Next apply the affine transformation c = 45p+8 then convert the resulting elements of Z49 back

to character pairs.

42 12 8 16 48 31 14 12 44 27 47 16 48 31 42 12 8 16 48 31 14

GA BF BB CC GG ED CA BF GC DG GF CC GG ED GA BF BB CC GG ED CA

Next collect the characters into groups of three and convert them to elements of Z73 .

GAB FBB CCG GED CAB FGC DGG FCC GGE DGA BFB BCC GGE DCA

295 253 118 325 99 289 495 261 340 189 85 65 340 161

Then encypher them with the key (177, 140) in Z73 and convert back to tri-graphs.

219 331 103 41 170 186 12 32 295 322 93 326 295 168

EDC GFC CAF AFG DDC DFE ABF AEE GAB GEA BGC GEE GAB DDA

These two encypherings in series have the effect of a 6-graph encyphering. However it is certainly

not a multidigit, 6-graph affine cypher. As 6-graphs, the first two blocks of the final cyphertext

would correspond to the values 75,448 and 35,370 in Z76 respectively. The first two blocks of

the original plaintext correspond to the values 40,768 and 114,789 in Z76 respectively. Using

these two blocks, a known plaintext attack yields the system of equations

75, 448 =40, 768a+ b

35, 370 =114, 789a+ b

80

3.5. COMBINING M -GRAPH METHODS CHAPTER 3. AFFINE, BLOCK CYPHERS

Using a computerized algebra software such as Sage5 or Maxima6, because working by hand in

a ring this big is tedious, yields a solution of the key (17912, 86375). The next two blocks of

cyphertext correspond to the values 58,496 and 4148 respectively and the next two blocks of

plaintext correspond to the values 57,615 and 78,202 respectively. Setting up a system of equa-

tions and solving for the key again gives 7 possible keys that work with this pair: {(6495, 90540),

(23302, 6505), (40109, 40119), (56916, 73733), (73723, 107347), (90530, 23312), (107337, 56926)}

(like the system in Example 2.17 this one need not have a single unique solution because it is

only over a ring and not a field), none of which match the key that works for the first pair of

6-graphs.

5http://www.sagemath.org/
6http://maxima.sourceforge.net/

81

http://www.sagemath.org/
http://maxima.sourceforge.net/

Chapter 4

Exponential Cyphers

4.1 Introduction

The encyphering systems of Chapters 2 and 3 belong to the class of symmetric cryptosystems.

The cryptosystems of this chapter are asymmetric.

Definition 4.1 (Asymmetric cryptosystem). A cryptographic system where knowledge of one

of the pair of keys is “easily” computable from knowledge of the second, but knowledge of the

second is computationally “difficult” from knowledge of the first.

The affine transformations of Chapters 2 and 3 all have relatively easily computed inverses,

and the encyphering transformations themselves are just as easily computed from their inverses.

With asymmetric cryptosystems, the key from which the other can be “easily” computed is con-

sidered the decyphering key and the key from which it would be “difficult” to compute the other

is considered the encyphering key. In practice, a participant in an asymmetric cryptosystem

82

4.1. INTRODUCTION CHAPTER 4. EXPONENTIAL CYPHERS

makes his encyphering key publicly available, and keeps his decyphering key private. The two

keys, therefore, are commonly referred to as the public key and the private key. And by virtue

of this public key, asymmetric cryptosystems are commonly called public-key cryptosystems.

The security of an interaction between two parties using a symmetric cryptosystem is de-

pendent upon the pre-existing knowledge of the encryption keys by both parties and the secrecy

of those same keys from all other (or at least all untrusted) parties. For both interested parties

to already know the secret key, it would have to have been agreed upon at an earlier meeting.

For no third parties to know the key, the meeting where it was agreed upon must have been

absolutely secure and the key must not have been cracked by an eavesdropper. For example, if

Alice and Bob want to pass notes to each other in English class, but because they sit in opposite

corners of the room and don’t want anyone else to be able to read their notes decide to encrypt

their messages with a symmetric encryption, they must agree on a key sometime before class,

somehow so that no one else in class knows the key.

A third party would only need to crack the key once, and discover either the encyphering or

the decyphering key. Once one is known the other may be easily computed and the third party

will have covertly gained full privileges to the secret conversation. With this knowledge, the

third party could continue eavesdropping (now in knowledge of the correspondence), decrypt

saved messages that had been encyphered with the key before he cracked it, and/or impersonate

one or both of the members of the secret conversation. The third party is now capable of sending

encrypted messages to the legitimate participants (alleging to be the other legitimate member),

and could fully hijack the conversation if he is capable of intercepting the legitimate messages

and blocking their delivery.

83

4.1. INTRODUCTION CHAPTER 4. EXPONENTIAL CYPHERS

With a symmetric cryptosystem, a group of parties may all share one key for secret messages

amongst themselves, but if two parties of the group wish to converse without the others, they

must share a separate key for just themselves. If every distinct pair of parties sets up a symmetric

key, then there will be as many keys as handshakes (n(n−1)
2). Furthermore, if every possible set

of 3 parties, and every possible set of 4 parties, and every possible set of 5 parties, etc. . . want

to set up a symmetric key to be able to communicate to the exclusion of the rest of the group,

then the number of required keys will be close to 2n.

In asymmetric cryptography, when one party desires to send a message to a second, he

transforms the message with his private key, which only he knows, then transforms that result

with the intended recipients public key, which had been made public knowledge. Upon receipt,

the recipient transforms the cyphertext with his private key, which only he knows, inverting the

senders second transformation, then transforms that result with the senders public key, which

had been made public knowledge, inverting the senders first transformation. Suppose party

A’s public key performs the transformation fA and private key performs the transformation

fA
−1, and party B’s public key performs the transformation fB and private key performs the

transformation fB−1. When party A wants to send a message to party B, party A encyphers

the plaintext message with

C = fB(fA−1(P)).

Upon receipt, party B decyphers the cyphertext with

fA(fB−1(C)) = fA(fB−1(fB(fA−1(P)))) = fA(fA−1(P)) = P.

For example, if Alice and Bob decide to use an asymmetric cyptosystem for passing notes

84

4.1. INTRODUCTION CHAPTER 4. EXPONENTIAL CYPHERS

in English class, they may agree in front of everyone (except perhaps the teacher) to do so,

each go to his/her seat and generate a key pair, then share their public keys publicly. When

Alice uses fB in encyphering a message to Bob she knows that only Bob will be able to invert

(decypher) it, and when Bob uses fA in decyphering the message he knows that only Alice

could have encyphered it. The messages are both secure (only the recipient will get them) and

authenticated (the sender is verified to be as claimed).

With an asymmetric cryptosystem, only one key (public-private pair) is needed for each

individual party, and any pair of parties may then communicate to the exclusion of everyone

else. However, sharing messages among more than two parties requires a separate encyphering for

each recipient. In practice, nearly all encrypted conversations involve only two parties anyway.

In general, an encyphering transformation is considered practical if encyphering with f and

decyphering with f−1 take time no longer than on the order of a polynomial in logn where n is

the size of the ring used. The transformation is considered asymmetric if decyphering a message

knowing only f (cracking the key) requires time at least on the order or a polynomial in n.1

Such a transformation, f , is called a trap-door function, because a message could be easily

encyphered (fall through the trap door) by anyone with Alice’s public key, but it could not be

easily decyphered (escape back out through the trap door) except by Alice who has the private

key.

Definition 4.2 (Trap-door function). A trap-door function is an invertible function f : X → Y

such that

• f(x) is “easy” to evaluate for any x ∈ X and
1Koblitz, 88. [4]

85

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

• y = f(x) is “difficult” to solve for x given a y ∈ Y .

Such trap-door functions are best found in historically difficult problems. The two histori-

cally difficult problems whose derived cryptosystems will be described here are that of factoring

an integer into prime factors and evaluating the discrete logarithm.

4.2 Prime Factorization

Given two or more prime integers, it is fairly simple to compute their product. However, given

a composite integer, it can be very difficult to compute its prime factorization. The difficulty

of factoring an integer into it’s prime factors is the basis for the security of the RSA public-key

cryptosystem.

The process of generating a key pair for RSA encryption proceeds as follows: First, two

prime numbers are chosen at random, p and q. Their product is calculated, n = pq. The size

of the group of units of Zn is calculated, φ(n) = (p− 1)(q − 1). An invertible element of Zφ(n)

is chosen at random, e. The inverse of e in Zφ(n) is calculated, d. The public key is K = (e, n)

and the private key is K−1 = (d, n). Encyphering involves mapping m-graphs into Zn and

transforming them with the function

C = f(P) = P e mod n.

Decyphering is performed with the inverse function

P = f−1(C) = Cd mod n = P ed mod n = P 1 mod n.

86

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

These functions are inverses because e and d were chosen so that they would be. For any

x ∈ Zn, unit or not, the multiplicative, cyclic group or semi-group, respectively, 〈x〉 will have

an order dividing φ(n). Therefore, because φ(n) divides (ed− 1), |〈x〉| will also divide (ed− 1)

and xed = x. As a side note, knowing the structure of Zn = Fp×Fq, ed need only be congruent

to 1 (mod gcd(p− 1, q − 1)). It would, therefore, be advisable that when choosing one’s p and

q, one chose a pair whose p− 1 and q − 1 have the fewest common multiples possible. (As they

are both odd, a common factor of 2 will be unavoidable.)

The RSA cryptosystem is dependent of the difficulty of factoring integers, because if the

factorization of n were known, then the inverse of any number in Zφ(n) could be easily calculated

with the Extended Euclidean Algorithm.

Example 4.3. Encypher and then decypher the message

Call me Ishmael.

in a 33-character alphabet by appending ‘"’=32 to the 32-character alphabet in Table 2.5 on

page 48 with the encryption key (3, 33).

Note that 33 = 3 · 11, φ(33) = 2 · 10 = 20 and 3−1 ≡ 7 (mod 20).

First, convert the characters to their representatives in Z33.

(2, 0, 11, 11, 26, 12, 4, 26, 8, 18, 7, 12, 0, 4, 11, 28)

Then, raise each element to the third power in Z33.

(8, 0, 11, 11, 20, 12, 31, 20, 17, 24, 13, 12, 0, 31, 11, 7)

And convert each element of Z33 back to a character of the chosen alphabet.

87

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

IALLUM:RUYNMA:LH

Decyphering will follow the reverse steps backwards. Convert the cyphertext to elements of

Z33.

(8, 0, 11, 11, 20, 12, 31, 20, 17, 24, 13, 12, 0, 31, 11, 7)

Raise each element to the seventh power.

(2, 0, 11, 11, 26, 12, 4, 26, 8, 18, 7, 12, 0, 4, 11, 28)

And convert each element back to a character to reveal the plaintext.

CALL ME ISHMAEL.

Example 4.3 is unrealistic for multiple reasons. First, the chosen modulus is too small to

be secure, though this was done intentionally so that the procedure could be the focus of the

example. Second, the encyphering was performed on single characters, rather than blocks. And

finally, the size of the alphabet was the same as the key’s modulus.

The reason it is unrealistic for the modulus and alphabet size to be the same, is that every

participant should have a different modulus. Each participants modulus is the product of their

secret pair of prime numbers. If any two also had the same modulus, they would know the

factorization of each others modulus and be able to decypher messages intended for the other.

For participants to send each other messages, they need an agreed-upon alphabet and block

size. But if the moduli of the participants are all different, then how could the alphabets and

block sizes be the same? This is handled by selecting a larger alphabet and/or block size for

the cyphertext messages than the plaintext messages. Each participant chooses their p and q

88

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

such that the product is between the moduli for the two text bases. If lP and lC are the sizes of

the plaintext and cyphertext alphabets respectively and mP and mC are the block sizes of the

plaintext and cyphertext messages respectively, then each participant chooses his p and q such

that lPmP ≤ n = pq < lC
mC . The blocks of text each get interpreted as multidigit m-graphs.

The order in which transformations are applied is determined by modulus size.

Suppose Alice has a modulus of nA and Bob has a modulus of nB . When Alice sends Bob

a message she applies the transformations in the order of increasing modulus. If nA < nB , then

Alice first applies her private key (mod nA), then applies Bob’s public key (mod nB), and sends

Bob

C = fB(fA−1(P)).

If nB < nA, then Alice first applies Bob’s public key (mod nB), then applies her private key

(mod nA), and sends Bob

C = fA
−1(fB(P)).

When Bob receives the message he applies the transformations in the order of decreasing mod-

ulus. If nA < nB , then Bob first applies his private key (mod nB), then applies Alice’s public

key (mod nA) and reduces that result (mod lPmP) to read

fA(fB−1(C)) = fA(fB−1(fB(fA−1(P)))) = fA(fA−1(P)) = P.

If nB < nA, then Bob first applies Alice’s public key (mod nA), then applied his private key

(mod nB) and reduces that result (mod lPmP) to read

fB
−1(fA(C)) = fB

−1(fA(fA−1(fB(P)))) = fB
−1(fB(P)) = P.

89

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

The flow of events will look either like

P → mP -graphs→ ZlPmP
fA
−1

−−−→ ZnA
fB−−→ ZnB → ZlCmC → mC-graphs→ C

C → mC-graphs→ ZlCmC → ZnB
fB
−1

−−−→ ZnA
fA−−→ ZlPmP → mP -graphs→ P,

or like

P → mP -graphs→ ZlPmP
fB−−→ ZnB

fA
−1

−−−→ ZnA → ZlCmC → mC-graphs→ C

C → mC-graphs→ ZlCmC → ZnA
fA−−→ ZnB

fB
−1

−−−→ ZlPmP → mP -graphs→ P.

Example 4.4. Use the standard 26-letter alphabet from Table 2.2 for both the plaintext and

cyphertext. Use 3 character blocks for plaintext and 4 character blocks for cyphertext. Use a

private key of (78701 = 101−1,124931 = 271 · 461) and encypher the following message for a

recipient with a public key of (101,122431).

O ROMEO O ROMEO WHEREFORE ART THOU ROMEO

The plaintext should first be grouped into 3-graphs and converted into elements of Z263 .

ORO MEO ORO MEO WHE REF ORE ART THO URO MEO

(14:17:14, 12:4:14, 14:17:14, 12:4:14, 22:7:4, 17:4:5, 14:17:4, 0:17:19,

19:7:14, 20:17:4, 12:4:14)

(9920, 8230, 9920, 8230, 15053, 11601, 9910, 461, 13040, 13966, 8230)

Since the recipient’s key has the smaller modulus, his will be used first. Each entry in the

latest vector shall be raised to an exponent of 101 (mod 122431). Exponentiation by repeated

90

4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

squaring will be demonstrated here in a Zl ring on the first entry only. See Section 1.6.3 for the

description of the procedure.

99202i Running product

i 101 (mod 122431) (mod 122431)

1

0 1100101 9920 9920

1 1100101 94307 9920

2 1100101 55116 96305

3 1100101 15484 96305

4 1100101 34358 96305

5 1100101 114893 68740

6 1100101 13460 29333

(29333, 43110, 29333, 43110, 9902, 30040, 110028, 43397, 75323, 46988, 43110)

Now each entry gets raised to an exponent of 78701 (mod 124931).

(3138, 55108, 3138, 55108, 124825, 64615, 10857, 33987, 17985, 16826, 55108)

Then convert to 4-graphs in the 26-letter alphabet.

(0:4:16:18, 3:3:13:14, 0:4:16:18, 3:3:13:14, 7:2:16:25, 3:17:15:5, 0:16:1:15,

1:24:7:5, 1:0:15:19, 0:24:23:6, 3:3:13:14)

AEQS DDNO AEQS DDNO HBQZ DRPF AQBP BYHF BAPT AYXG DDNO

According to Theorem 1.19 in Section 1.6.3, each exponentiation will require O((lg e)(lgn)2)

or O((lg d)(lgn)2) time. Each of d and e are elements of Zφ(n) and thus have magnitudes of

91

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

O(φ(n)) = O(n). And n = O(lCmC). If the plaintext and cyphertext use the same alphabet (it

is standard that each computer byte is an element of Z256) then the subscript on the l can be

dropped. And once l is fixed then mP and mC differ by a fixed multiple, so the subscript on

the m may also be dropped. Now, each exponentiation will require O((lg lm)3) = O(m3(lg l)3)

time. For any specific plaintext, only O(1
m) as many exponentiations will be required, thus using

this exponential cypher requires O(m2(lg l)3) time. This is one order of magnitude larger than

a vector transformation, which requires O(m(lg l)2) time, of the same block size, which makes

perfect sense as exponentiation is repeated multiplication.

4.3 The Discrete Logarithm

Another arithmetic operation that historically has been computationally difficult is the discrete

logarithm: the evaluation of the logarithm of an element in a discrete field.

In the Real Numbers and in discrete fields, exponential functions are (relatively) easy to

evaluate. The repeated squaring method keeps evaluation time down. The exponential function’s

inverse, however, is not so simple.

In the case of the Real Numbers, exponential functions are smooth and continuous. Real

logarithms tend to be irrational numbers but can be approximated with several calculus-based

methods. This ease comes from the niceness of an exponential curve, as depicted in Figure 4.1.

Exponential functions in discrete fields have a much more random appearance to them. This

makes estimation of a logarithm in a discrete field “difficult.” The proximity of two inputs to an

exponential function appears to have little relation to the proximity of the outputs. Examine

92

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 5

 1
0

y=6x

Figure 4.1: Exponential function in R.

93

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

the function y = 6x in Figure 4.2. Notice that while 5 and 6 differ by only one, 65 and 66 differ

by 10 (or 3). On the other hand, 63 and 64 differ by only one, as do 61 and 67.

 0

 2

 4

 6

 8

 10

 12

 0 5

 1
0

y=6x

Figure 4.2: Exponential function in Z13.

This random appearance can be seen more clearly in larger fields. Figure 4.3 shows y = 12x

in Z139. This exponential function clearly illustrates that estimating discrete logarithms is

probably impossible, and calculating them is rather “difficult.” This apparent randomness of

the discrete exponential function is utilized in the generation of pseudo-random numbers.2

2Menezes, §5.5, p. 185-187. [5]

94

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

 0

 20

 40

 60

 80

 100

 120

 0 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0
 5

5
 6

0
 6

5
 7

0
 7

5
 8

0
 8

5
 9

0
 9

5
 1

0
0

 1
0

5
 1

1
0

 1
1

5
 1

2
0

 1
2

5
 1

3
0

 1
3

5

y=12x

Figure 4.3: Exponential function in Z139.

95

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

4.3.1 Diffie-Hellman Key Exchange

As exponentiation is an order of magnitude more (computationally) expensive than multiplica-

tion, public-key cryptosystems using it are also significantly more expensive to use than classical,

symmetric-key cryptosystems. As such, public key systems require significantly more time to

use than classical systems. For this reason, public key systems are usually employed as an

augmentation to a classical system, rather than as a replacement for one.

The Diffie-Hellman key exchange is a method by which two previously unacquainted parties

may publicly agree to a classical cryptosystem’s key, under the security of a public key system.

First the two parties agree to a discrete field and a generator, g, of a cyclic subgroup, 〈g〉, of

the multiplicative group of units. Preferably, g is chosen to generate the entire group of units,

so as to permit the greatest number of possible classical system keys. A mapping from the

generated group to the classical systems’ keyspace is agreed upon. Each party then selects a

random integer, α and β respectively (these are their private keys), in the range [0, |〈g〉|) and

calculate the respective powers of g. The parties trade their powers of g, gα and gβ (these are

their public keys). The key to be used in their classical cryptosystem communiqués is the one

represented by gαβ , which each may calculate by raising the other parties power of g to their

own power. Let’s illustrate this exchange with an example.

Example 4.5. Suppose Alice and Bob wish to initiate a classical cryptosystem-encoded con-

versation with a secret key decided by a Diffie-Hellman key exchange.

Alice and Bob have agreed to use the 26-letter alphabet of Table 2.2 with an affine, character

96

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

transformation of the form

f(p) = ap+ b.

Alice and Bob agree to use the field Z677 with g = 2, which is a generator of the group of

units. The group of units Z677
∗ has exactly 676 = 262 elements, which, very conveniently, is the

exact same size as the keyspace, Z26
2. It is not necessary to get a 1-1 correspondence between

the generating field and the keyspace, but a roughly equal chance of each key is important for

security.

Alice and Bob agree to a mapping of gαβ to (a, b), i.e. from Z677
∗ to Z26

2. The mapping from

the field’s group of units to the key space will begin by reducing the obtained gab (mod 676) (if

necessary). The element of Z262 will be converted to an element of Z26
2 by writing it in base-26,

the digits of which will be the 2 elements of the key.

If the obtained a is not an invertible element of Z26 then Alice and Bob will choose two new

random exponents.

Alice and Bob choose random exponents, α and β, less than 676: Alice chooses 674 and

Bob chooses 136 at random.

Alice and Bob each calculate their public key (gα and gβ respectively) by raising the gen-

erator g to their respective powers (α and β) in Z677: Alice calculates gα = 2674 = 508 and Bob

calculates gβ = 2136 = 148.

Alice and Bob trade their individual public keys and each calculate their shared private key,

gαβ : Alice calculates gαβ = (gβ)α = 148674 = 189 and Bob calculates gαβ = (gα)β = 508136 =

189.

Alice and Bob, individually, each write 189 in base-26 (no reduction mod 676 is necessary

97

4.3. THE DISCRETE LOGARITHM CHAPTER 4. EXPONENTIAL CYPHERS

this time) as 7:7. They each verify that 7 is an invertible element of Z26, so they will use the

encryption key (7, 7). They can each calculate the decryption key with relative ease from the

encryption key to decode each other’s messages.

This example used a numeric field of prime size. It is also common in practice to use a

Galois field with polynomial representation and map the coefficients into the key elements.

If a weak classical system is used after a Diffie-Hellman key exchange, then it would be

easily broken. However, if a reasonably strong classical system is used, and a different key is

chosen randomly for each conversation between two parties, then their keys will not be easily

broken. An adversary will have a significantly reduced chance of accumulating enough cyphertext

by the same key for an accurate statistical analysis attack and will have to resort to a more

computationally intensive attack against the classical cypher or the discrete logarithm.

The security of the Diffie-Hellman key exchange depends not only on the difficulty of solving

the discrete logarithm but the difficulty of the related problem of computing gab from only ga

and gb. While, clearly, with a solution to the discrete logarithm to the base g, a and b can be

computed separately and then gab computed, but it remains an open question whether gab could

practically be computed directly from ga and gb without solving the discrete logarithm.3 It is

commonly assumed that such a computation would be equally difficult, if not even equivalent

to solving the logarithm.

Definition 4.6 (Diffie-Hellman Assumption). It is computationally infeasible to compute gab

knowing only ga and gb.

3Koblitz, 99. [4]

98

4.4. SIGNATURES CHAPTER 4. EXPONENTIAL CYPHERS

4.4 Signatures

Signatures provide a digital method of source verification. Rather than information security

or secrecy, the purpose of signatures is information authenticity. A message’s signature affirms

that whom the message claims as its author is actually the message’s author.

Signatures are useful when it isn’t important for a message to be secret, but it is important

that it not be tampered with during transmission. This is becoming more common as more

media is being purchased digitally and downloaded over the Internet. It may not be important

to encrypt an ebook, song, video, or piece of software, but it is important to know that the file

downloaded is exactly the same as was sent: that an interlocutor has not injected a virus or

other malware or in any other way tampered with the recently purchased merchandise.

Signatures use a type of cryptographic function called a hash function.

Definition 4.7 (Hash function). Let P be the set of all plaintext messages and S a finite set.

Then a hash function, f : P → S, is a function such that

• f(P), for P ∈ P, is “easy” to compute.

• y = f(P), for a fixed y ∈ S, is “difficult” to solve for P .

The primary difference between a hash and a trap-door from Page 85, is that a hash is

many-to-one, while the trap-door functions are one-to-one. Being many-to-one, means that the

word “solve” must be used in a more broad sense. It must be “difficult” to find a message for a

given hash, find a message whose hash matches a given message, or find any two messages with

the same hash. When two inputs to a hash function have the same output it is called a hash

collision.

99

4.4. SIGNATURES CHAPTER 4. EXPONENTIAL CYPHERS

Example 4.8. Polynomials are well-known by elementary algebra students to be easy to eval-

uate but hard to solve. Consider p(x) = 7x2 + 9x + 15 ∈ Z263 [x]
〈x3−1〉 which we intend to use for

messages in our standard 26-character alphabet of Table 2.2 to generate hashes three characters

long. We will use this polynomial in the following manner: We will initialize the running hash,

h0, to 0, then for each character, x, of a message, we compute the next running hash value with

the formula hi = p(hi−1 + x) (in Z263).

Let us use this hash function to calculate a hash for the message

START.

i x hi = p(hi−1 + x) hi as text

1 S = 18 p(18) = 7(182) + 9(18) + 15 = 2445 DQB

2 T = 19 p(2445 + 19) = 7(24642) + 9(2464) + 15 = 4919 HHF

3 A = 0 p(4919 + 0) = 7(49192) + 9(4919) + 15 = 5149 HQB

4 R = 17 p(5149 + 17) = 7(51662) + 9(5166) + 15 = 8945 NGB

5 T = 19 p(8945 + 19) = 7(89642) + 9(8964) + 15 = 16307 YDF

The final hash of the message is “YDF.” Naturally, this example hash is not strong enough for

real-world use. It’s small size makes a brute-force search for messages whose hashes collide a

short exercise and the use of a quadratic p make direct algebraic solving attempts practical.

Real-world hashes are significantly longer (256 to 1024 bits) and tend to make heavy use

of vectors of words (16-, 32- or 64-bits each), with bitwise operations (or, and, not and xor),

100

4.4. SIGNATURES CHAPTER 4. EXPONENTIAL CYPHERS

bitwise rotations, and permutations being performed on the elements of the running hash (state)

vector and message block vector.

The general method used to sign a message starts with the author generating the hash,

h = f(P), of the plaintext message, performing a private-key encyphering on the hash value, and

sending the encyphered hash with the message. The recipient computes the hash of the received

plaintext, possibly after decyphering the cyphertext, uses the author’s public key to decypher

the signature, and compares the two values. If the two values match then the authenticity of

the received message is confirmed.

Example 4.9. Suppose Alice wants to send the message

Once more

to Bob. She plans to use the standard 26-character alphabet of Table 2.2. To ensure that the

message cannot be tampered with or forged, she will sign her message with her RSA private

key of (7, 143 = 11 · 13). Her public key (103, 143) is already known to Bob who is expecting all

messages from Alice to be signed using her key. Alice and Bob also planned to use the hash of

Example 4.8.

Alice does not plan on encyphering the whole message. In this case it is not important to

be secret, as long as Bob can be guaranteed of the authenticity of any message claiming to be

from Alice.

Alice first calculates the 3-character hash of the message using the same method described

above. This comes out to IHB. Alice may then encypher the hash (going from 1-graphs in Z26

to 2-graphs in Z262), and get the signature of CFAGAB. Alice appends the signature to the

101

4.4. SIGNATURES CHAPTER 4. EXPONENTIAL CYPHERS

message and either sends them as-is, or may encypher the whole packet with Bob’s public key.

Bob recieves the message. If Alice encyphered with his public key, he decyphers with his

private key. He segregates the signature from the message. He hashes the message to get IHB.

He applies Alices public key to the signature and also gets IHB. Since the hashes match, he may

consider the message to be authentic.

There are only two ways that a plaintext message could be tampered with such that the

signature matches. First, an imposter could resign the tampered message with the “author’s”

key, but that would require breaking the “author’s” key, which is “difficult.” Second, the imposter

could modify the message in a way that leaves the hash unchanged, but that would require a

solution to the hash function, which is also “difficult.” Thus, signatures affirm the authenticity

of a received message.

102

Chapter 5

Solving “Hard” Problems

This chapter explores a small sample of the known ways to solve the two “hard” problems

from Chapter 4 upon which the security of the related private-key cryptosystems depends. A

“success” is considered when a method is found that grows logarithmically with the length of

the inputs, i.e. when a method runs twice as long when the input is squared, rather than when

the input is doubled. Success is also counted when the time requirement for an algorithm is

a polynomial of the logarithm of the input, e.g. O((lnn)k). These are labeled as running in

polynomial time, being referenced to the logarithm of the input. Failures, whose running time

of a polynomial of the inputs, are labeled as running in exponential time, also with regard to

the logarithm of the input, e.g. O(nk).

103

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

5.1 Prime Factorization

RSA encryption depends on the difficulty of factoring large integers. One that possesses an-

other’s public key, but not private, knows a composite integer n, but not any of its factors.

Definition 5.1. The integer factorization problem. Given a composite integer n, find a (not

necessarily prime) 1 < p < n such that p is a factor of n.

By repeatedly finding proper divisors, the full prime factorization will eventually be found.

A sample of common methods of integer factorization follows.

5.1.1 Naïve Trial Division

Naïve factoring works rather quickly on very small integers (less than 20 digits or so). It has no

initial setup or overhead, and jumps straight into the work. The principle is simple: try dividing

the integer, n, by every prime less than its square root,
√
n. Some implementations forgo the

effort of identifying prime numbers by trying to divide by every odd integer.

Example 5.2. Factor 611 by trial division.

p n
p

2 305.5

3 203.66

5 122.2

7 87.28 . . .

11 55.54

13 47

104

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Thus, 611 = 13× 47.

Again, that may not seem so bad for such a small n (or more particularly, for an n with

such small factors), but when n is 123463, then the first prime divisor found won’t be until 331.

In an RSA application, n has only two factors that differ in length by only a few digits. The

running time will then grow roughly with the square root of n.

5.1.2 Pollard’s p− 1 Algorithm

Pollard’s p − 1 factoring algorithm depends on Fermat’s Little Theorem and the Chinese Re-

mainder Theorem.

Theorem 5.3 (Chinese Remainder Theorem). If R is a Principal Ideal Domain (which Z is),

{u1, u2, . . . , un} are pairwise relatively prime (i 6= j ⇒ 〈ui〉∩〈uj〉 = 〈uiuj〉) and u = u1u2 · · ·un,

then

R

〈u〉
∼=

R

〈u1〉
× R

〈u2〉
× · · · × R

〈un〉
.

The isomorphic transformation from left to right is simply reduction mod ui at each coor-

dinate. The transformation from right to left is much trickier. It usually occupies the bulk of

the discussion of the Chinese Remainder Theorem in an introductory text on number theory,

and the formulas involved in solving such a system of modular congruences is irrelevant to this

theoretical discussion. This vast difference in difficulties in navigating the isomorphism in the

two directions make this a trap-door function.

The Chinese Remainder Theorem may be stated more simply with regard to an RSA appli-

105

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

cation:

Zpq ∼= Zp × Zq,

where

a 7→ (a mod p, a mod q).

Fermat’s Little Theorem, when stated in a number theoretic context, can look rather im-

pressive.

Theorem 5.4 (Fermat’s Little Theorem). If p is a prime integer and a is relatively prime to p

(gcd(a, p) = 1), then ap−1 ≡ 1 (mod p), or in other words, p divides ap−1 − 1.

In an algebraic context, Fermat’s Little Theorem merely says that the order of each element

of the group of units of the ring Zp, divides p − 1 if p is prime. But if p is prime then Zp is

a field and the size of its group of units is p − 1. LaGrange’s Theorem says the order of each

element of a group divides the size of the group.

There are composite numbers, n, such that every a ∈ Zn∗ has an order dividing n− 1, even

though n− 1 6= |Zn∗|. This will happen whenever n is the product of distinct primes and each

p − 1 divides n − 1.1 If n =
∏l
i=1 pi then every a ∈ Zn∗ will have an order dividing gcd({pi})

which itself divides n− 1 because each p− 1 does. For example, 561 = 3 · 11 · 17 is one such n:

φ(561) = 2 · 10 · 16 where each p− 1 divides 560.

Pollard’s p − 1 method of factoring works best when one of the factor fields is smooth: its

group of units has many subgroups. Specifically, for an RSA number n = pq, either p − 1 or

q − 1 has only small prime factors. Suppose n = pq and p − 1 is smooth. Let a be any integer

1Koblitz, 128. [4]

106

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

strictly between 1 and n. Let k be a product of lots of small prime numbers, for example k = K!

or k = lcm(1, 2, . . . ,K). Then ak 7→ (ap, aq)k = (apk, aqk). If p− 1 divides k but q− 1 does not,

then apk will equal 1 (in Zp), aqk probably won’t (in Zq), so ak − 1 will be a multiple of p (in

Zn). Thus p = gcd(n, ak − 1) and a factoring of n has been found. If p − 1 does not divide k

either, then gcd(n, ak − 1) = 1 and a larger (with more bigger factors) k should be tried.

Example 5.5. Factor n = 123463 with Pollard’s p− 1 method.

First, pick an a from {2, . . . , n− 1}. This may be done randomly or systematically. Let us

use a = 2. Quickly check the gcd of a and n in case of a lucky guess. In this case the gcd is 1,

so 2 is not a factor of 123463.

Second, find a product of a lot of small numbers. Let’s use k = lcm(1, 2, . . . , 4) = 12.

Calculate ak−1 in Zn. In practice this is done using the repeated squaring method described

in Section 1.6.2 in O((lg k)(lgn)2) time. 212 − 1 = 4095.

Calculate the gcd of ak − 1 and n. This can be done in O((lgn)3) time with the Euclidean

Algorithm as shown in Theorem 1.20. gcd(4095, 123463) = 1.

The gcd came out to 1. This means that the k used was too small, it is missing at least one

factor of p− 1. Let’s try again with a larger k. Let’s use k = lcm(1, 2, . . . , 8) = 840.

Calculate ak − 1 in Zn. 2840 − 1 = 72820.

Calculate the gcd of ak − 1 and n. gcd(72820, 123463) = 331.

If the gcd is strictly between 1 and n, then a non-trivial factor was found. Divide n by that

factor to find the other factor. n = 331× 373.

If the gcd is n, then try a smaller k or a different a. We might have tried a = 3 next had

our first try been unsuccessful. This example would require a very large k to end up with a gcd

107

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

of 123463. 372 factors into 22 · 3 · 31. So k would have to be a multiple of 31 before the gcd

would be 123463. In fact, since 2 generates Z373
∗, k would have to be a multiple of 4, 3 and 31.

The three major time-consuming steps are the calculations of k, ak and the gcd. Calculating

k involves roughlyK multiplications of sizeK×k, running inO(K(lgK)(lg k)) time. Calculating

ak runs in O((lg k)(lgn)2) time. And calculating the gcd runs in O((lgn)3) time. Since k =

O(eK), the whole algorithm runs in O(K2(lgK) + K(lgn)2 + (lgn)3) time. Simplifying this

estimate requires a relationship between K and n.

The actual K required can vary greatly depending on the smoothness of both n and p− 1

for each prime factor p. A smoother n has more prime factors, meaning that they will tend to

be smaller (at least one will have to be), and a smaller p means a smaller p − 1. And smaller

p − 1’s mean smaller factors of p − 1 which require a smaller k and/or K. For each p | n, the

largest factor of p− 1 is the critical one in determining the required K.

If R is the set of greatest prime factors of the p − 1’s, and r is the least of these greatest

prime factors, then this r is the key determining factor and the running time will be O(r lnn
ln r)

multiplications, according to Menezes.2 The worst case running time for Pollard’s p−1 algorithm

is when n = pq (only two factors, exactly what RSA is), and p − 1 and q − 1 each have

a very large factor, being of the form 2 · r. The smallest r, a required factor of k, will be

roughly equal to 1
2
√
n. This case is not very likely, but still a possible worst-case, with a

running time of O(n 1
2 lgn +

√
n(lgn)2 + (lgn)3) = O(n lgn). Plugging in r =

√
n to Menezes’

estimate and multiplying by the time of each multiplication would give O(
√
n(lgn)2) if it were

presumed that each multiplication were mod n, or at least on the order of n, which is slightly

2Menezes, 93. [5]

108

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

better than our estimate. Menezes actually gives a slightly more efficient method of computing

k = lcm(1, 2, . . . ,K) and ak that does keep each multiplication on the order of n, while our

estimate of multiplications on the order of K × k to calculate the lcm is higher and ended up

dominating our estimate.

5.1.3 Lenstra’s Elliptic Curve Algorithm

The points of an elliptic curve,3 including ones over finite fields, form an additive group structure.

The group of points of an elliptic curves over Zpq are isomorphic to the cross product of the

groups of points of the elliptic curves over Zp and Zq. This allows the equivalent of Pollard’s p−1

algorithm to be used on the group of points on an elliptic curve over Zn to find a factorization:

with multiples of a chosen point replacing powers of a.

The computations involved in working with points on an elliptic curve are more intense

than computing with integers, but this extra computational intensity is made up for by a key

difference in the group structures of elliptic curves and integral groups of units. The size of the

group of units of a field Zp is always p − 1, and that is why Pollard’s p − 1 algorithm depends

on at least one smooth p− 1 from the factors of n, which is not often enough the case. The size

of an elliptic curve over the field Zp can vary from p+ 1− 2√p to p+ 1 + 2√p,4 and will vary

within this range over different curves even for the same p.

This freedom in the actual size of the curve over Zp increases the chance of finding an elliptic

curve whose number of points is a smooth enough number to permit a successful factoring with

3For an easy introduction to elliptic curves and a detailed explanation of Lenstra’s Elliptic Curve Factoring

Algorithm, please see Silverman’s Rational Points on Elliptic Curves. [8]
4Silverman, 107-110. [8]

109

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

a significantly smaller K than would be required by Pollards p − 1 Algorithm. This increased

chance, however, is not a guarantee, so, while it is significantly more efficient than Pollard’s

p − 1 algorithm, Lenstra’s Elliptic Curve Algorithm still has a running time dependent on the

nature of the factors of n and will run too slowly on non-preferred values of n. In it’s worst case,

where n is the product of two prime factors of very close size, this algorithm’s running time is

O(e
√

(lnn)(ln(lnn))).5

5.1.4 Fermat’s Factorization Methods

The running times of Naïve Trial Division, Pollard’s p−1 Algorithm and Lenstra’s Elliptic Curve

Algorithm are dependent on the character of the factorization of the integer in question. Because

of this, they tend to lose effectiveness on larger numbers, where such special characteristics

become rarer, and are thus considered special purpose algorithms. Their running times grow

with either the smoothness of n or of the groups involved (p− 1 or the smoothest size of a used

elliptic curve over Zp), rather than directly with the size of n.

Fermat’s Factorization Method serves as the framework for the currently used general pur-

pose algorithms. The running times of these algorithms tend to be more dependent on the size

of n than on the characterization of its factorization. This is beneficial for attacks on RSA keys,

where the p and q are intentionally chosen so that special purpose factoring algorithms like the

ones previously described are impractical in an attack.

The basis of Fermat’s Factorization Method is the Difference of Squares special form bino-

5Menezes, 94. [5]

110

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

mial:

a2 − b2 = (a+ b)(a− b).

All odd numbers can be expressed as a difference of squares, 2k + 1 = (k + 1)2 − k2.

(“Trial” division can extract all factors of 2 quite easily.) Once such a difference-of-squares

expression is found, then the number can be factored as a difference of squares. In practice an

exact difference of squares representation, n = a2−b2, is not needed, but merely a congruence of

squares, a2−b2 ≡ 0 (mod n), such that a and b themselves are neither congruent nor congruently

opposite (a � ±b), otherwise one of the two factors would be congruent to n.

Once an appropriate congruence of squares is found, a2 ≡ b2 (mod n) where a 6≡ ±b

(mod n), then a proper factorization is found. Since a 6≡ ±b (mod n), then n will divide neither

a + b nor a − b. But since (a + b)(a − b) ≡ 0 (mod n) n does divide their product. Therefore,

each of the difference-of-squares factors contains a proper factor of n, which can be found by

finding the gcd of the factor and n.

Example 5.6. The number 15 = 3× 5 is odd.

15 may be expressed as 16− 1 = 42 − 12 = (4 + 1)(4− 1) = 5 · 3.

15 may also be expressed as 64 − 49 = 82 − 72 = (8 + 7)(8 − 7) = 15 · 1. However, this

expression of 15 as a difference of squares will not yield a factorization because 8 ≡ −7 (mod 15),

8 + 7 ≡ 0 (mod 15).

The congruence of squares 49 ≡ 4 (mod 15) holds. 45 = 49− 4 = 72− 22 = (7 + 2)(7− 2) =

9 · 5. Once we have this factoring, calculating gcd(9, 15) = 3 which properly divides 15 and

gcd(5, 15) = 5 which also properly divides 15.

111

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

The congruence of squares 49 ≡ 484 (mod 15) holds. 435 = 484 − 49 = 222 − 72 =

(22 + 7)(22 − 7) = 29 · 15. Calculating the gcd’s reveals 1 and 15. This was because 22 ≡ 7

(mod 15) and therefore 22− 7 ≡ 0 (mod 15).

Naïve Search

If p and q are close to each other, then they are also each close to
√
n (as

√
n is the geometric

mean of p and q). Then a quick search along the sequence (a2 − n)a>√n will find a square, b2,

such that a2 − b2 ≡ 0 (mod n). Knowing this, RSA pairs of primes are chosen so that p and

q differ in size by at least a couple digits, rendering such a naïve search a linear-time pursuit.

Thus, merely searching the sequence (i2 − n)i>√n for a square is considered a special purpose

algorithm ultimately on par with trial division on worst-case running time, yet with significantly

higher rates of worst-case occurrences.6

Example 5.7. Factor 123463 by naïvely searching for a difference of squares representation.

Start with a = d
√

123463e = 352.

3522 − 123463 = 441 = 32 ∗ 72

Therefore 123463 factors as (352− 21)(352 + 21) = 331 ∗ 373.

This example aptly demonstrates the ease by which a number may be factored with a naïve

Fermat factorization search when p and q are close. When p and q are not close a naïve search

will be impractical. In such cases a congruence of squares may be found by multiplying an

6Pomerance, 1474. [6]

112

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

appropriately chosen set of a2 ≡ a2 − n (mod n) relations. Clearly the product of the first

components, which are all squares, will also be one. Finding a subset of pairs whose product of

ai
2−n (mod n) ∈ Zn is a square is usually accomplished by factoring them in Z and inspecting

the parity (even vs. odd) of the exponents on their prime factorizations. A set whose product

contains only even exponents in the prime factorization will yield a congruence of squares relation

which, if the roots are not themselves equal or opposites in Zn, will allow a factoring of n in Z

as a difference of squares.

Example 5.8. Factor 36181 with Fermat Factorization.

113

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Start searching with a0 = d
√

36181e = 191.

1912 ≡ 300 = 22 · 3 · 52

1922 ≡ 683 = 683

1932 ≡ 1068 = 22 · 3 · 89

1942 ≡ 1455 = 3 · 5 · 97

1952 ≡ 1844 = 22 · 461

1962 ≡ 2235 = 3 · 5 · 149

1972 ≡ 2628 = 22 · 32 · 73

1982 ≡ 3023 = 3023

1992 ≡ 3420 = 22 · 32 · 5 · 19

2002 ≡ 3819 = 3 · 19 · 67

2012 ≡ 4220 = 22 · 5 · 211

2022 ≡ 4623 = 3 · 23 · 67

2032 ≡ 5028 = 22 · 3 · 419

2042 ≡ 5435 = 5 · 1087

2052 ≡ 5844 = 22 · 3 · 487

2062 ≡ 6255 = 32 · 5 · 139

2072 ≡ 6668 = 22 · 1667

2082 ≡ 7083 = 32 · 787

2092 ≡ 7500 = 22 · 3 · 54

A congruence of squares is found with only 2 relations: a = 191 and a = 209. Thus

(1912)(2092) ≡ (22 · 3 · 52)(22 · 3 · 54) = 24 · 32 · 56 (mod 36181). 191 · 209 ≡ 3738 (mod 36181)

114

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

and 22 ·3 ·53 = 1500, which are neither equal nor opposite (mod 36181), so a helpful congruence

of squares is found and a proper factoring follows. gcd(3738−1500, 36181) = 373 and gcd(3738+

1500, 36181) = 97. Therefore 36181 = 97 · 373.

Often times, for at least two reasons, when looking for a congruence of squares, a “small”

set of primes is chosen as a factor base, and only the a2− n that factor over this set of primes

are retained to find an appropriate subset to multiply together. First, the point of this Fermat

Factorization is to avoid factoring large prime factors out of a number, it would be costly to

factor large primes out of the reductions of the a2. Second, by restricting the search to a2 whose

reductions factor over a predetermined set of primes one limits the difficulty of finding a set

whose product is a square.

This allows each a2 − n to be represented by a finite-length vector of the exponents of its

prime factorization. And since only the parity of the exponents is a concern, they may be

reduced mod 2 and considered members of F2
m where m is the number of primes in the factor

base. Now finding a set of relations whose product is a square is equivalent to finding a set of

exponent vectors in F2
m whose sum is 0, or, in other words, is linearly dependent.

Example 5.9. Let’s factor n = 1234589 by finding a system of prime factorizations to multiply

together. Notice that n = 277 · 4457. These two factors are separated enough that a linear

search for a straight a2 − b2 = n will take a long time. Trial division, actually, would work

very quickly with such a small factor as 277. But let’s collect the factorizations of the modular

residues of a2 that have no prime factors over 50, to find a square product thereof.

Start searching with a0 = d
√

1234589e = 1112. But only record when the prime factorization

115

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

after the modular reduction has only factors less than 50.

11122 ≡ 1955 = 5 · 17 · 23

11132 ≡ 4180 = 22 · 5 · 11 · 19

11292 ≡ 40052 = 22 · 17 · 19 · 31

11322 ≡ 46835 = 5 · 17 · 19 · 29

11422 ≡ 69575 = 52 · 112 · 23

11572 ≡ 104060 = 22 · 5 · 112 · 43

11582 ≡ 106375 = 53 · 23 · 37

11652 ≡ 122636 = 22 · 23 · 31 · 43

12082 ≡ 224675 = 52 · 11 · 19 · 43

12172 ≡ 246500 = 22 · 53 · 17 · 29

12272 ≡ 270940 = 22 · 5 · 19 · 23 · 31

At this point a square congruence is found with the following lines:

11122 ≡ 5 · 17 · 23

11292 ≡ 22 · 17 · 19 · 31

12272 ≡ 22 · 5 · 19 · 23 · 31

giving the congruence

(1112 · 1129 · 1227)2 ≡ (22 · 5 · 17 · 19 · 23 · 31)2 (mod 1234589).

But 1112 · 1129 · 1227 ≡ 22 · 5 · 17 · 19 · 23 · 31 (mod 1234589) so the search continues.

12432 ≡ 310460 = 22 · 5 · 192 · 43

116

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Quickly another congruence is found with 1157 and 1243, (1157 ·1243)2 ≡ (22 ·5 ·11 ·19 ·43).

This time the two roots are not congruent or congruently opposite, so a proper factorization

will follow.

gcd(1157 · 1243− 22 · 5 · 11 · 19 · 43, 1234589) =277

gcd(1157 · 1243 + 22 · 5 · 11 · 19 · 43, 1234589) =4457

The factor base may be freely chosen. There are trade-offs between large and small factor

bases, and an efficient balance is desirable. Too small a factor base will yield very few ai
2 − n

that factor completely over the factor base, lengthening the time of that search. It would have

required a lot more searching to find congruences that factored into primes only up to 11 or 19 in

Example 5.9. Too large a factor base will increase the number of congruences necessary to find

a linearly dependent set, not necessarily increasing the length of the search for the congruences,

as more tried elements of the sequence will be factorable over the base, but certainly increasing

the size of the linear system and, thus, the computations required to solve it. There would

have been many more congruences in Example 5.9 if factoring into primes as high as 100 were

allowed, but then the system would have been much harder to deal with in searching for a set

to multiply.

An exploration into the time complexity of this algorithm is beyond the scope of this paper.

Pomerance discusses the running times of these more advanced factorization algorithms. The

time does depend on the chosen factor base, and will be too long if the factor base is either too

small or too large. The running time will be minimized when the chosen factor base is the set of

117

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

all primes less than or equal to approximately P = e
1
2

√
ln 2
√
n ln ln 2

√
n and that minimal running

time will be O(e
√

lnn ln lnn).7

The Quadratic Sieve

The Quadratic Sieve is an efficient means of identifying which elements of the sequence ai2

(mod n) factor completely over the chosen factor base. Rather than trial dividing each ai
2

(mod n) by all elements of the factor base, all the elements of a pre-compiled range of ai2

(mod n) that can be divided by each prime are identified, and that prime is divided out from

all of them.

A set of ai’s are chosen ahead of time, as is the factor base. Koblitz recommends a factor

base of B = {p ≤ P} where P is approximately e
√

lnn ln lnn and the set of ai’s of {b
√
nc +

1, b
√
nc + 2, . . . b

√
nc + A} where P < A < P 2.8 After running through all of the primes in

the factor base, B, any ai2 (mod n) that end up divided all the way down to 1 factors over the

factor base and passes to the next stage to find a square product.

Considering whether a2 (mod n) is divisible by a prime p is equivalent to considering when

p | a2 − n or a2 ≡ n (mod p). Therefore, if n is not a square in Zp, then p cannot divide a2 − n

for any a. This means that only the primes for which n is a square need to be retained in the

factor base. This piece of information could be used in the previous algorithm to reduce the

number of primes by which to trial divide, here it will be used to limit the number of sieving

steps.

7Pomerance, 1477,1478. [6]
8Koblitz, 161. [4]

118

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Limiting the factor base this way will roughly cut the size of the factor base in half, as

half of all elements of a field (of odd characteristic) are squares. Also, limiting the factor base

this way is only valid if all a’s used are between
√
n and

√
2n, where the reduction of a2 is

equivalent to subtracting n. If any a’s are used where xn < a2 < (k + 1)n then those would

have to be sieved with kn (mod p) in the following manner rather than just n. Having to use

a’s all the way to
√

2n would end up with a running time of at least ‰(
√
n) in which case trial

division would have been just as well. This may only happen for small enough n where a simpler

algorithm would be faster. For large enough n, the asymptotic running time given at the end

of this section will be better than ‰(
√
n).

Further a2 ≡ n (mod p) ⇔ a ≡ ±
√
n (mod p). Thus a2 (mod n) will be divisible by p if,

and only if, a is congruent to one of the square roots of n (mod p). The congruence x2 ≡ n

(mod p) need only be solved once for each prime. Then for each root, xi, identify an ai that

is congruent to it (mod p). Not only will that ai2 (mod n) be divisible by p, but so will every

ai + kp2 (mod n) be divisible by p. Thus roughly 2
p of all the ai2 (mod n) can be divided by

each prime, and they can all be easily (faster than by trial division) identified. “Trial” divisions

now need only be done when divisibility is already known, and are thus no longer “trial.”

The above will identify only one factor of each prime. To identify prime factors of higher

multiplicities (such as the 4 that divides 60), the above steps should be repeated, for each prime,

modulo each successive power of the prime, until a power α is found for which no ai is congruent

to a square root of n (mod pα). Once p is divided out for all ai’s congruent to a
√
n (mod p),

the search should be repeated for ai’s that are congruent to a
√
n (mod p2) and a second p

divided from their entries. Repeat this for p3 and so on, until a power is reached for which no

119

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

more congruent ai’s are found. After which, move on to the next prime.

It is a basic fact of number theory that for the odd primes, being a square in any particular

Zpα guarantees being a square in all Zpα , thus the same set of primes are to be checked regardless

of power. This will have two important implications for us. Firstly, that if (the reduction of) n

is a square in Zpα , then it is also a square in Zp, meaning that once the set of primes are set

for the factor base considering the primes’ first powers, no extras are needed for higher powers.

Secondly, once we find square roots mod p, we should keep looking for, and will keep finding

square roots mod each successive pα until they’ve spread far enough out that no more are found

in the chosen range of ai’s.

Theorem 5.10. For any odd prime, p, if n (not a multiple of p) is a square in one Zpα then

it is a square in all Zpα . Only 1 is a square is Z2, Z4 and Z8, and being a square in one Z2α is

equivalent to being a square in all other Z2α for α ≥ 3.

Proof. This will be a simple proof by induction on α. First we’ll show that if n is a square in

Zpα then it is a square in Zp1 . This includes p = 2.

If n is a square in Zpα then there exists an x such that x2 ≡ n (mod pα) ⇒ pα | x2 − n.

That also means that p | x2 − n and so n is also a square in Zp.

And now the inductive step: if n is a square in Zpα then it is also a square in Zpα+1 , when

p is an odd prime.

If n is a square in Zpα then there exists an x such that x2 ≡ n (mod pα) ⇒ pα | x2 − n.

But that x is not unique, any number congruent to x (mod pα) will also work, so we can say

that pα | (x+ kpα)2 − n for any k ∈ Z. For the following simplification, we’ll use the fact that

pα divides x2 − n to write x2 − n in the form pαl.

120

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

pα |(x+ kpα)2 − n

= x2 + 2xkpα + k2p2α − n

= pαl + 2xkpα + k2p2α

= pα(l + 2xk + k2pα)

Because 2 and x are units in Zp, k may be chosen so that 2xk = −l, or in other words

p | l + 2xk. Therefore, an additional p may be factored out from (l + 2xk + k2pα) and pα+1 |

(x+ kpα)2 − n. Therefore n is also a square in Zpα+1 .

In Z2, 1 is the square of itself. In Z4, 1 is the square of 1 and 3. In Z8, 1 is the square of

1, 3, 5 and 7. Thus, while all odd n will be squares in Z2 (n ≡ 1 (mod 2)), only half of those

will be squares in Z4 (n ≡ 1 (mod 4), but not 3), and only half of those will be squares in Z8

(n ≡ 1 (mod 8), but not 5), though they will have 4 square roots.

The inductive step above only worked for odd primes because 2 is not a unit in Z2α . The

above inductive step will only yield a square in Z2α+1 if l is even, if n were already a square in

Z2α+1 : x2 − n = l2α = l
2 2α+1.

Suppose now that l is odd. Note that x is also odd. Let k be another odd number and

121

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

consider

(x+ k2α−1)2 − n = x2 + 2xk2α−1 + k222α−2 − n

= x2 − n+ xk2α + k222α−2

= l2α + xk2α + k222α−2

= (l + xk)2α + k222α−2.

Because l, x and k are all odd, l+xk is even and so contains another factor of 2. If 2α−2 ≥ α+1,

which happens whenever α ≥ 3, then the entire expression will be a multiple of 2α+1. Therefore

2α+1 | (x + k2α−1)2 − n, meaning that (x + k2α−1)2 ≡ n (mod 2α+1), than n is a square in

Z2α+1 .

As primes are divided out of the ai2’s, record should be kept of how many of each prime in

the factor base were divided out, and the remaining quotient after all primes in the factor base

are divided out. The set of all ai which factor completely over the factor base (leave a quotient

of 1 after all primes in the base have been fully divided out during the sieving) should then be

segregated out for further computations. These are the ai’s whose prime factorizations of ai2

should be examined for a set whose product is a square.

Being a square means that all of the exponents in the prime factorization are all even. When

sets of congruences are multiplied together, the exponents of the prime factors get added. In

identifying which ones will multiply to a square (only even exponents) only the mod 2 reductions

of the exponents need to be considered: p2 is as much a square as p4 and as p6, likewize p is as

much not a square as p3 and p5.

122

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

The simplest way to find the set of prime factorizations which is a square, is by converting

the prime factorizations into vectors of the exponents (mod 2). At that point, all that needs

to be found is a linearly independent set of vectors whose sum is the zero vector. Once that is

found, then those vectors included in the sum will correspond precisely with the factorizations

whose product is a square.

Example 5.11. Use the quadratic sieve to filter the congruences when factoring 36181.

First a factor base should be chosen. As mentioned earlier, a good choice is the set of all

primes less than or equal to B = e
1
2

√
ln 2
√

36181 ln ln 2
√

36181 ≈ 5.09. So our factor base will be

all primes less than or equal to 5 for which 36181 has quadratic residue, which is all of them

because 36181 ≡ 1 mod each of them. For out set of ai’s, a quick glance up at Example 5.8

shows that only 18 were needed, which is in the earlier stated range, but for pedagogical reasons,

let us choose A = 25 for maximum impact. Thus, our table would start as follows.

123

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

ai ai
2

191 300 =

192 683 =

193 1068 =

194 1455 =

195 1844 =

196 2235 =

197 2628 =

198 3023 =

199 3420 =

200 3819 =

201 4220 =

202 4623 =

203 5028 =

204 5435 =

205 5844 =

206 6255 =

207 6668 =

208 7083 =

209 7500 =

210 7919 =

211 8340 =

212 8763 =

213 9188 =

214 9615 =

215 10044 =

124

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Sieving shall be performed by increasing primes. 36181 is congruent to 1 (mod 2) and is also

congruent to 1 (mod 4), but to 5 (mod 8). 36181 is congruent to 1 (and is therefore a square)

mod 2 and 4, but not 8. For each ai congruent to 1 (mod 2) (which are the square roots of n

in Z2, which are all the odd ai, ai2 − n will be divisible by 2. Next, for each ai congruent to

1 or 3 (mod 4) (which are the square roots of 1 in Z4), also all the odd ai, ai2 − n is divisible

by another 2. However, since 5 is not a quadratic residue (mod 8), no ai2 − n is divisible by

a third 2. Therefore 22 can be factored out of every other entry leaving odd cofactors behind.

The table may be updated as follows.

125

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

ai ai
2

191 300 = 22 · 75

192 683 = 683

193 1068 = 22 · 267

194 1455 = 1455

195 1844 = 22 · 461

196 2235 = 2235

197 2628 = 22 · 657

198 3023 = 3023

199 3420 = 22 · 855

200 3819 = 3819

201 4220 = 22 · 1055

202 4623 = 4623

203 5028 = 22 · 1257

204 5435 = 5435

205 5844 = 22 · 1461

206 6255 = 6255

207 6668 = 22 · 1667

208 7083 = 7083

209 7500 = 22 · 1875

210 7919 = 7919

211 8340 = 22 · 2085

212 8763 = 8763

213 9188 = 22 · 2297

214 9615 = 9615

215 10044 = 22 · 2511

126

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Because 36181 ≡ 1 (mod 3), for any ai that is congruent to 1 or 2 (mod 3), ai2− 36181 will

be divisible by 3: 191 + 3k and 193 + 3k. 36181 is also congruent to 1 (mod 9), so a second 3

can be factored out for the ones congruent to 1 and 8: 197 + 9k and 199 + 9k. 36181 is also

congruent to 1 (mod 27), so a third 3 can be factored out for 215, which is congruent to 26 (mod

27). 215 is also congruent to 53 (mod 81), whose square, 55, is congruent to 36181, so a fourth

3 can be factored out for 215. 36181 is congruent to 217 (mod 35 = 243), whose square roots

are 109 and 134. None of the ai are congruent to 109 or 134 (mod 243), so no more 3s can be

factored. The quadratic sieve table now looks as follows.

127

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

ai ai
2

191 300 = 22 · 3 · 25

192 683 = 683

193 1068 = 22 · 3 · 89

194 1455 = 3 · 485

195 1844 = 22 · 461

196 2235 = 3 · 745

197 2628 = 22 · 32 · 73

198 3023 = 3023

199 3420 = 22 · 32 · 95

200 3819 = 3 · 1273

201 4220 = 22 · 1055

202 4623 = 3 · 1541

203 5028 = 22 · 3 · 419

204 5435 = 5435

205 5844 = 22 · 3 · 487

206 6255 = 32 · 695

207 6668 = 22 · 1667

208 7083 = 32 · 787

209 7500 = 22 · 3 · 625

210 7919 = 7919

211 8340 = 22 · 3 · 695

212 8763 = 3 · 2921

213 9188 = 22 · 2297

214 9615 = 3 · 3205

215 10044 = 22 · 34 · 31

128

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

Proceeding the same way with powers of 5, a 5 can be factored out for 191+5k and 194+5k.

36181 is congruent to 6 (mod 25), whose square roots are 9 and 16, so a second 5 can be factored

out for 191 and 209. 36181 is congruent to 56 (mod 125), whose square roots are 41 and 84, so

a third 5 can be factored out for 209. 36181 is also congruent to 556 (mod 625), whose square

roots are 209 and 416, so a fourth 5 can be factored out for 209. But the square roots of 36181

(mod 55) are 834 and 2291, so no more 5s can be factored out.

129

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

ai ai
2

191 300 = 22 · 3 · 52

192 683 = 683

193 1068 = 22 · 3 · 89

194 1455 = 3 · 5 · 97

195 1844 = 22 · 461

196 2235 = 3 · 5 · 149

197 2628 = 22 · 32 · 73

198 3023 = 3023

199 3420 = 22 · 32 · 5 · 19

200 3819 = 3 · 1273

201 4220 = 22 · 5 · 211

202 4623 = 3 · 1541

203 5028 = 22 · 3 · 419

204 5435 = 5 · 1087

205 5844 = 22 · 3 · 487

206 6255 = 32 · 5 · 139

207 6668 = 22 · 1667

208 7083 = 32 · 787

209 7500 = 22 · 3 · 54

210 7919 = 7919

211 8340 = 22 · 3 · 5 · 139

212 8763 = 3 · 2921

213 9188 = 22 · 2297

214 9615 = 3 · 5 · 641

215 10044 = 22 · 34 · 31

130

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

The sieving is done. Any entry still containing a factor that is not a member of the factor

base, will not factor over the factor base and will be discarded. The factorizations presented

in this final table are not necessarily prime factorizations, even though many of them are. The

final factor is merely the product of all the prime factors that are not members of the factor

base. Dropping all entries that do not factor over the chosen factor base leaves the following

two lines.

ai ai
2

191 300 = 22 · 3 · 52

209 7500 = 22 · 3 · 54

In an actual RSA scale application, there will be tens of thousands of lines with tens of

thousands of prime factors. This example is interesting in that there are not enough lines to

guarantee a linearly dependent set of exponent vectors, though such a set does exist, notably

because both exponents of 2 and 5 are even. When rewritten as a matrix of exponents reduced

mod 2, the following equation arises.

0 0

1 1

0 0

 ·
 x191

x209

 =

 0

0

Clearly the not-trivial solution is 1

1

 ,
implying that 1912 · 2092 ≡ 24 · 32 · 56, yielding the factoring described above.

131

5.1. PRIME FACTORIZATION CHAPTER 5. SOLVING “HARD” PROBLEMS

The Quadratic Sieve algorithm has a running time of O(e
√

(lnn)(ln(lnn))) to factor the inte-

ger n.9 While this growth rate is the same as for Lenstra’s Elliptic Curve Algorithm,10 actual

running times will differ by a constant factor. The Quadratic Sieve algorithm has faster prac-

ticals, and so gains the benefit of the constant factor between the two running times. This is

mostly due to the fact that the Quadratic Sieve is working in a much easier group, basic integers

in a Zl as opposed to two-dimensional points on an elliptic curve.11

The General Number Field Sieve

The Quadratic Sieve algorithm has now been superseded by the General Number Field Sieve

with better asymptotic behavior. Its fanciness and complexity are beyond the scope of this

paper, but a brief overview will be given.

One chooses a degree, d, and builds an irreducible, monic polynomial, f , whose coefficients

are in the range of d
√
n, and an integer, m, such that m is also in the range of d

√
n and f(m) ≡ 0

(mod n). Then take one of the polynomial’s complex roots, α, the extension ring Z[α], and the

natural ring homomorphism Φ: Z[α]→ Zn by α 7→ m mod n.

With these tools in hand, a set of {(a−αb)} is chosen/found such that
∏

(a−αb) is a square

in Z[α]. Once this set is found, then a natural, and hopefully helpful, congruence of squares

follows. The properties of Φ guarantee that Φ(
∏

(a− αb)) ≡
∏

Φ(a− αb) ≡
∏

(a−mb), and if∏
(a− αb) is a square, then so will be

∏
(a−mb).12

9Pomerance, 1478. [6]
10See Section 5.1.3.
11Menezes, 97. [5]
12See Pomerance [6] and his references for additional practical concerns such as how to identify squares in Z[α]

and, once recognized, finding their square roots.

132

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

The General Number Field Sieve has a asymptotic running time of O(e(64
9 lnn)

1
3 (ln(lnn))

2
3)

to factor the integer n.13 This is a significant improvement over the Quadratic Sieve method,

but the extra complexities over the Quadratic Sieve render it’s use to larger n, from around 150

digits and larger.14

5.2 Discrete Logarithm

The difficulty of computing logarithms in a discrete field was touched upon in Section 4.3.

Solving a discrete logarithm involves finding the exponent required to raise a base to obtain a

given element.

Definition 5.12 (The Discrete Logarithm Problem). Given a cyclic group 〈b〉 and an arbitrary

member, g ∈ 〈b〉, find a natural number k ∈ N such that bk = g but i < k ⇒ bi 6= g

In cryptographic applications, a finite field is usually used and a b is found that generates

all of F∗ as the cyclic group. This maximizes the size of the group being used, which is desirable

for the security of the cryptosystem being implemented.

A sample of common methods of solving the discrete logarithm problem follows.

5.2.1 Naïve

Just as an integer may be factored by trial division, the logarithm of g = bk may be found by

evaluating all powers of b until the desired one is found, commonly known as trial multiplication.

This will require k−1 multiplications. If b generates all of F∗ and g is a random non-zero member,
13Pomerance, 1482. [6]
14Koblitz, 164. [4]

133

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

then roughly 1
2 |F| multiplications will be required on average, which puts the running time of

trial multiplication at O(|F|).

5.2.2 Silver-Pohlig-Hellman Algorithm

The Silver-Pohlig-Hellman algorithm requires the knowledge of the size of 〈b〉, which is usually

known when b is a generator of the group of units of a known field, and the factorization of the

size. For a field of size q, the ease of finding the factorization of q−1 depends on the size and/or

smoothness of q − 1.15 The efficiency of the Silver-Pohlig-Hellman algorithm also depends on

the smoothness of q − 1. This algorithm will work best when q − 1 is smooth.

The Silver-Pohlig-Hellman algorithm works by finding the residues of k mod each maximal

prime power dividing q − 1 then computes k by the Chinese Remainder Theorem. Write the

prime factorization of q − 1 as
∏l
i=1 pi

αi . Then if the least positive residue of k mod each piαi ,

kp, can be found, then k can be calculated from the {kp} by the Chinese Remainder Theorem.

The details can get murky, so we’ll demonstrate a simple example before describing the

algorithm, then show a more involved example.

Example 5.13. We’ll use the field Z101. 100 = 2252. At this point, many of the calculations

become too tedious to perform by hand, so an advanced calculator or computer algebra software

would be handy. To find a generator, b, we need b 100
2 = b50 and b 100

5 = b20 to each not equal 1.

250 =100

220 =95

15See Section 5.1.

134

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

Thus 2 is a generator of Z101
∗. Let’s find log2 25 in Z101.

First we find the sets of square and fifth roots of unity. We’ll label the primitive roots r2

and r5, and the elements of the set as rp,j = rp
j where j < p. Because 2 is a generator of Z101

∗,

2 100
2 = 250 will be a primitive square root of unity and 2 100

5 = 220 will be a primitive fifth root

of unity.

250 = 100

220 = 95

240 = 36

260 = 87

280 = 84

rp,j 2 5

0 1 1

1 100 95

2 - 36

3 - 87

4 - 84

We’re trying to find the value of k where 25 = 2k. First we’ll find k2 = k (mod 4)

We start finding k2 = k (mod 4) by first thinking of k2 as a base-2 number: x1 : x0 =

x0 + 2x1. We’ll find x0 by evaluating 2550 and comparing the result with the square roots of

135

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

unity.

2550 = 1 = r2,0.

Therefore x0 = 0. If it had been non-zero, then we would have divided 2 off of 25 before finding

x1.

To find x1 we’ll evaluate 2525 and compare the result with the square roots of unity.

2525 = 1 = r2,0.

Therefore x1 = 0 also. This means that k2 = 0, that k ≡ 0 (mod 4).

We’ll do the same work to find k5 = k (mod 25). k5 as a base-5 number would look like

x1 : x0 = x0 + 5x1. We’ll find x0 by evaluating 2520 and comparing the result with the fifth

roots of unity.

2520 = 87 = r5,3.

Therefore x0 = 3. Before finding x1 we’ll have to divide 23 off of 25 to get 2k−3.

25
8 = 41.

To find x1 we’ll evaluate 414 and compare the result with the fifth roots of unity.

414 = 84 = r5,4.

Therefore x1 = 4. This means that k5 = x0 + 5x1 = 3 + 5 · 4 = 23.

k2 = 0 and k5 = 23 gives the following system of congruences.

k ≡ 0 (mod 4)

k ≡ 23 (mod 25)

This system has the solution k ≡ 48 (mod 100). We can verify this by evaluating 248 = 25.

136

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

To find each kp, the pth roots of unity must be calculated. These may be found as rp,j =

b
j(q−1)
pi for j = 0, 1, . . . pi − 1. Observe that this would require a large table for any large primes

dividing q− 1, hence the desire for a smooth q− 1. Each kpi may then be written as an αi-digit

number in base pi.

kpi = xαi−1 : xαi−2 : · · · : x1 : x0 = x0 + x1pi + · · ·+ xαi−1pi
αi−1

To find x0 compute

g
(q−1)
pi = b

k(q−1)
pi = b

kpi
(q−1)
pi

The denominator cancels out with all parts of kpi except the x0 leaving

g
(q−1)
pi = b

x0(q−1)
pi

the result of which is one of the pth roots of unity and may be compared with the entries in the

table of roots of unity and x0 is the corresponding j.

Then let g1 = g · b−x0 . This subtracts x0 from k and kpi so that the next digit may be

found. At this point g1
q−1
pi would be 1 because g1 is a pi-multiple power of b: g1 = bpim for

some m. Finding x1 will require pi2 in the denominator of the exponent. Compute

g1
(q−1)
pi

2 = b
(k−x0)(q−1)

pi
2 = b

(kpi−x0)(q−1)
pi

2 = b
x1(q−1)

pi = rpi,x1

to find x1 and let g2 = g1 · b−x1pi . Continue in this manner with increasing powers of pi until

all of kpi is found.

Repeat the above to find each kpi , then use the Chinese Remainder Theorem to compute

k. Note that if the same group and generator thereof is used multiple times, then the table of

prime roots of unity need only be generated once.

137

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

Example 5.14. Let F49 = F7[t]
〈t2−2t+3〉 , and let b = t, a generator of F49

∗. Find the discrete

logarithm of g = 6t+1 to the base t in F49. As above, all computations should be performed with

algebra software for expediency, otherwise make good use of the method of repeated squaring.

Let’s verify that t is a generator by ensuring that neither the square nor cube root of t48 is

1. 48 = 24 · 3.

t2 = 2t− 3

t4 = (2t− 3)2 = 3t− 3

t8 = (3t− 3)2 = 3

t
48
3 = t16 = 32 = 2

t
48
2 = t24 = t16t8 = 2 · 3 = 6

And, indeed, 62 = 1 and 23 = 1. If t were not a generator of F49
∗, it would have generated a

subgroup whose order divides 48 and one of those two powers of t would have equaled 1. So t

is a generator of F49
∗.

Next, we find the pth roots of unity for each prime dividing 48: 2 and 3. The square roots

are r2,0 = t
0(48)

2 = 1 and r2,1 = t
1(48)

2 = 6 = −1. The cube roots are r3,0 = 1, r3,1 = t
1(48)

3 = 2

and r3,2 = t
2(48)

3 = 22 = 4. Thus our lookup table is as follows.

rp,j 2 3

0 1 1

1 6 2

2 - 4

138

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

To find k2, we first think of it as x0 +x1 ·2+x2 ·22 +x3 ·23 and compute the “digits” of this

“base-2 number.” First, compute g 48
2 = (6t + 1)24 = 1 = r2,0, so x0 = 0. Let g1 = g

tx0 = g
t0 =

6t+ 1. Second, compute g1
48
22 = (6t+ 1)12 = 1 = r2,0, so x1 = 0. Let g2 = g1

t0·2 = 6t+1
1 = 6t+ 1.

Third, compute g2
48
23 = (6t + 1)6 = 6 = r2,1, so x2 = 1. Let g3 = g2

t1·22 = 6t+1
t4 = 6t+1

3t+4 = 2.

Lastly, compute g3
48
24 = 23 = 1 = r2,0, so x3 = 0. Now,

k2 = x0 + x1 · 2 + x2 · 22 + x3 · 23

= 0 + 0 · 2 + 1 · 22 + 0 · 23

= 4

To find k3, we merely calculate g 48
3 = (6t+ 1)16 = 4 = r3,2, so k3 = 2. Nothing more with

higher powers of 3 needs to be calculated, because 3 divides into 48 only once.

To summarize the events so far, k ≡ 8 (mod 24) and k ≡ 2 (mod 3). This gives the following

system of congruences.

k ≡ 4 (mod 16)

k ≡ 2 (mod 3)

By the Chinese Remainder Theorem, this k, which clearly equals 20, is unique (mod 48).

Therefore 6t+ 1 = t20. This can be verified by evaluating it to check.

Presuming that q − 1 can be easily factored into q − 1 =
∏k
i=1 pi

ei , then this algorithm has

a running time of O
(∑k

i=1 ei
(
ln(q − 1) +√pi

))
.16

16Menezes, 108. [5]

139

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

5.2.3 Index-Calculus Algorithm

The Index-Calculus Algorithm for solving the discrete logarithm problem bears a striking re-

semblance to the Quadratic Sieve integer factoring algorithm. The Index-Calculus Algorithm

also uses a factor base and establishes linear relations of exponents of factorings over the se-

lected base. In solving the equation g = bx for g ∈ G = 〈b〉 the following steps constitute the

Index-Calculus Algorithm:

1. Select a factor base B = {pi} such that a “significant proportion” of the elements of G

will factor over it.

2. Select random (or systematic) k’s to find ones such that bk factors over B, bk =
∏
pi
ei ,

to generate the linear relations of the form k =
∑
ei logb pi until a dependent system is

found with which to solve for the logb pi.

3. Solve the system to solve for the logarithms of the factor base elements.

4. Select random (or systematic) k’s until one is found such that gbk factors over the factor

base, indicating that k + logb g =
∑
ki logb pi.

5. Evaluate logb g.

While step 3 depends on step 2, just like in the Quadratic Sieve Algorithm, and the individual

relations of step 2 can be found in parallel, just like in the Quadratic Sieve Algorithm, a factoring

of a gbk in step 4 can be found in parallel with the other two. And, similarly to the Quadratic

Sieve Algorithm, the Index-Calculus Algorithm also has a trade-off between the size of the factor

base, and therefore of the linear system, and the ease of filling the linear system.

140

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

Example 5.15. Take the field F35 represented by F3[t]
〈t5−t+1〉 where t generates F35

∗. Find the

logt(t4 − t3 + t2 − t+ 1).

We compute t22 = −t3 − t2 + t+ 1 and t121 = −1 to verify that t does generate all of F35
∗.

35 − 1 = 242 = 2 · 112, so if t wasn’t a generator then one of those powers of t would have been

1.

It is customary to choose a factor base that is the set of all irreducible polynomials up to a

certain degree. It would be simple to try using a factor base of just the linears, but that turns

out to allow no more than 11 linearly independent factorizations of powers of t: -1 is the only

constant that can be counted, and has order 2. The modulus polynomial clearly indicates that

t5 = t− 1, which gives one linear relation of exponents (in fact it gives the logt(t− 1) = 5, but

also prevents higher powers of (t−1) being useful for generating independent linear relations, as

log(t− 1)α = 5α. Since much time could be spent looking in a field of 243 elements for one that

is a power of (t+ 1) up to 4 or an opposite thereof, a larger factor base should be considered.

Allowing irreducible monic quadratics adds t2 + 1, t2 + t − 1, and t2 − t − 1 to the factor

base. With a total of 6 irreducibles in the factor base, an element of F35 that factors thereover

could be found by selecting up to 4 of the six base elements (not even counting multiplicity),

which yields at least
(6

1
)

+
(6

2
)

+
(6

3
)

+
(6

4
)

= 56 elements, which might be substantial enough.

Our factor base is B = {−1, t± 1, t2 + 1, t2 ± t− 1} and has 6 elements.

The first step is to find at least 6 k’s such that tk factors over B. In practice, extras are

usually found to compensate for the probable discovery of dependent relations. The first four

powers of t offer no information, so we’ll start at 5. We’ll also skip over any powers that give no

information, those will be the powers where there is no modular rollover (through a t5 = t− 1)

141

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

from the preceding power.

t5 = t− 1 =

t9 = −t4 + t− 1 = −(t+ 1)(t3 − t2 + t+ 1)

t10 = t2 + t+ 1 = (t− 1)2

t13 = t4 + t3 + t− 1 = (t2 + 1)(t2 + t− 1)

t14 = t4 + t2 − 1 =

t15 = t3 − 1 = (t− 1)3

t17 = −t2 + t− 1 = −(t+ 1)2

t20 = t4 − t3 − t+ 1 = (t− 1)4

t21 = −t4 − t2 − t− 1 = −(t4 + t2 + t+ 1)

t22 = −t3 − t2 + t+ 1 = −(t− 1)(t+ 1)2

t24 = −t4 + t3 + t2 − t+ 1 = −(t4 − t3 − t2 + t− 1)

t25 = t4 + t3 − t2 + 1 = (t+ 1)(t3 − t+ 1)

t26 = t4 − t3 − t− 1 = (t2 + 1)(t2 − t− 1)

t27 = −t4 − t2 − 1 = −(t+ 1)2(t− 1)2

t28 = −t3 + t+ 1 = −(t3 − t− 1)

t30 = t3 + t2 − t+ 1 =

t32 = t4 − t3 + t2 + t− 1 =

t33 = −t4 + t3 + t2 − 1 = −(t− 1)(t3 − t− 1)

t34 = t4 + t3 + t+ 1 = (t+ 1)4

t35 = t4 + t2 − t− 1 = (t− 1)(t3 + t2 − t+ 1)

t36 = t3 − t2 − 1 = (t+ 1)(t2 + t− 1)

142

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

Eight k’s have been found that are not higher powers of t− 1 and yield the following linear

relations of logarithms.

5 = log(t− 1)

13 = log(t2 + 1) + log(t2 + t− 1)

17 = log(−1) + 2 log(t+ 1)

22 = log(−1) + log(t− 1) + 2 log(t+ 1)

26 = log(t2 + 1) + log(t2 − t− 1)

27 = log(−1) + 2 log(t− 1) + 2 log(t+ 1)

34 = 4 log(t+ 1)

36 = log(t+ 1) + log(t2 + t− 1)

One of these logarithms, however, is already known. log(−1) was discovered when t was verified

to be a generator of the group of units at the beginning of this example and is 121. This

simplifies the system of equations to the following in only 5 unknowns.

143

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

5 = log(t− 1)

13 = log(t2 + 1) + log(t2 + t− 1)

138 = 2 log(t+ 1)

143 = log(t− 1) + 2 log(t+ 1)

26 = log(t2 + 1) + log(t2 − t− 1)

148 = 2 log(t− 1) + 2 log(t+ 1)

34 = 4 log(t+ 1)

36 = log(t+ 1) + log(t2 + t− 1)

This system now has a pair (third and seventh) that are linearly dependent so one of them

may be discarded. We’ll discard the one in the seventh position. Our linear system of seven

equations now has the following matrix equation in Z242.

0 1 0 0 0

0 0 1 1 0

2 0 0 0 0

2 1 0 0 0

0 0 1 0 1

2 2 0 0 0

1 0 0 1 0

log(t+ 1)

log(t− 1)

log(t2 + 1)

log(t2 + 1− 1)

log(t2 − t− 1)

=

5

13

138

143

26

148

36

144

5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

This system’s augmented matrix reduces in Z242 to

1 0 0 0 1 49

0 1 0 0 0 5

0 0 1 0 1 46

0 0 0 1 −1 229

0 0 0 0 2 202

0 0 0 0 0 0

0 0 0 0 0 0

which gives the solution as one of

log(t+ 1)

log(t− 1)

log(t2 + 1)

log(t2 + t− 1)

log(t2 − t− 1)

=

49− log(t2 − t− 1)

5

26− log(t2 − t− 1)

229 + log(t2 − t− 1)

101 or 222

.

One quick trial of t101 6= t2 − t− 1 reveals the solution to be

log(t+ 1)

log(t− 1)

log(t2 + 1)

log(t2 + t− 1)

log(t2 − t− 1)

=

69

5

46

209

222

.

Now that the logarithms of the factor base elements are known. A search begins for another k

145

5.3. CONCLUSION CHAPTER 5. SOLVING “HARD” PROBLEMS

such that (t4 − t3 + t2 − t+ 1)tk factors over B.

(t4 − t3 + t2 − t+ 1)t1 = −t4 + t3 − t2 − t− 1 = −(t+ 1)(t− 1)(t2 − t− 1)

And by quite a stroke of luck, such a k was found very quickly. Therefore

log((t4 − t3 + t2 − t+ 1)t) = log((−1)(t+ 1)(t− 1)(t2 − t− 1)

log(t4 − t3 + t2 − t+ 1) + 1 = 121 + 69 + 5 + 222

log(t4 − t3 + t2 − t+ 1) = 174

The running time of the Index-Calculus Algorithm depends on the selected factor base. A

judicious selection of a factor base is highly dependent on the working field. But if a optimal

factor base can be chosen, then the Index-Calculus Algorithm has an expected running time

of O(ec
√

lnn ln lnn), where n is the size of the working field and c is known to vary between

about 1.5 and 2 for the common fields of F2m and Zp respectively.17 Notice how similar this

algorithm is to the Fermat factorization with a factor base, their running times even have the

same asymptotic behavior (see page 118)

5.3 Conclusion

As stated at the beginning of this chapter (see page 103) success in the algorithms presented

here is considered to be when the running time can be expressed as a polynomial of the length

(number of bits/digits) of the inputs, a polynomial of the logarithm of the inputs. While some

of the best algorithms known have been presented, none of them are successful in this regard.

Nor are any of their more complex slightly faster superiors successful in this regard either.
17Menezes, 112. [5]

146

5.3. CONCLUSION CHAPTER 5. SOLVING “HARD” PROBLEMS

No algorithm is known yet for either of these problems whose running time can be expressed

like O((lnn)k). Though, neither are these more efficient algorithms considered failures, for their

running times are not polynomial in the inputs, they are not of the formO(nk). These algorithms

have running times that are faster than exponential, but still slower than polynomial, in the

log of the input. They have been written O(e(lnn)α(ln lnn)1−α). When written in this form, an

exponential-time algorithm will have an α of 1 while a polynomial-time will have an α of 0. The

better algorithms shown here and their superiors not examined here have running times with

α’s of 1
2 or 1

3 .

The difficulty of finding successful methods of solving these factorization and logarithm

problems has helped enforce these problems’ use as the foundations of our modern cryptosystems.

Without such earnest and fervent attempts, our trust in these systems would be unfounded. And,

yet, with such attempts, our trust may eventually be betrayed. It is still yet unknown whether

a polynomial-time algorithm is possible for either of these problems.

147

Appendix A

The Declaration of Independence

A.1 Plaintext

When in the Course of human events , it becomes necessary for one people to

dissolve the political bands which have connected them with another , and to

assume among the powers of the earth , the separate and equal station to which

the Laws of Nature and of Nature ’s God entitle them , a decent respect to the

opinions of mankind requires that they should declare the causes which impel

them to the separation .

We hold these truths to be self -evident , that all men are created equal , that

they are endowed by their Creator with certain unalienable Rights , that among

these are Life , Liberty and the pursuit of Happiness . --That to secure these

rights , Governments are instituted among Men , deriving their just powers

from the consent of the governed , --That whenever any Form of Government

becomes destructive of these ends , it is the Right of the People to alter or

148

A.1. PLAINTEXT APPENDIX A. THE DECLARATION OF INDEPENDENCE

to abolish it , and to institute new Government , laying its foundation on such

principles and organizing its powers in such form , as to them shall seem

most likely to effect their Safety and Happiness . Prudence , indeed , will

dictate that Governments long established should not be changed for light and

transient causes ; and accordingly all experience hath shewn , that mankind

are more disposed to suffer , while evils are sufferable , than to right

themselves by abolishing the forms to which they are accustomed . But when a

long train of abuses and usurpations , pursuing invariably the same Object

evinces a design to reduce them under absolute Despotism , it is their right ,

it is their duty , to throw off such Government , and to provide new Guards for

their future security . --Such has been the patient sufferance of these

Colonies ; and such is now the necessity which constrains them to alter their

former Systems of Government . The history of the present King of Great

Britain [George III] is a history of repeated injuries and usurpations , all

having in direct object the establishment of an absolute Tyranny over these

States . To prove this , let Facts be submitted to a candid world .

He has refused his Assent to Laws , the most wholesome and necessary for the

public good.

He has forbidden his Governors to pass Laws of immediate and pressing importance ,

unless suspended in their operation till his Assent should be obtained ; and

when so suspended , he has utterly neglected to attend to them.

He has refused to pass other Laws for the accommodation of large districts of

people , unless those people would relinquish the right of Representation in

the Legislature , a right inestimable to them and formidable to tyrants only.

He has called together legislative bodies at places unusual , uncomfortable , and

distant from the depository of their public Records , for the sole purpose of

fatiguing them into compliance with his measures .

149

A.1. PLAINTEXT APPENDIX A. THE DECLARATION OF INDEPENDENCE

He has dissolved Representative Houses repeatedly , for opposing with manly

firmness his invasions on the rights of the people .

He has refused for a long time , after such dissolutions , to cause others to be

elected ; whereby the Legislative powers , incapable of Annihilation , have

returned to the People at large for their exercise ; the State remaining in

the mean time exposed to all the dangers of invasion from without , and

convulsions within .

He has endeavoured to prevent the population of these States ; for that purpose

obstructing the Laws for Naturalization of Foreigners ; refusing to pass

others to encourage their migrations hither , and raising the conditions of

new Appropriations of Lands .

He has obstructed the Administration of Justice , by refusing his Assent to Laws

for establishing Judiciary powers .

He has made Judges dependent on his Will alone , for the tenure of their offices ,

and the amount and payment of their salaries .

He has erected a multitude of New Offices , and sent hither swarms of Officers to

harass our people , and eat out their substance .

He has kept among us , in times of peace , Standing Armies without the consent of

our legislatures .

He has affected to render the Military independent of and superior to the Civil

power .

He has combined with others to subject us to a jurisdiction foreign to our

constitution and unacknowledged by our laws; giving his Assent to their Acts

of pretended Legislation :

For Quartering large bodies of armed troops among us:

For protecting them , by a mock Trial , from punishment for any Murders which they

should commit on the Inhabitants of these States :

150

A.1. PLAINTEXT APPENDIX A. THE DECLARATION OF INDEPENDENCE

For cutting off our Trade with all parts of the world :

For imposing Taxes on us without our Consent :

For depriving us , in many cases , of the benefits of Trial by Jury:

For transporting us beyond Seas to be tried for pretended offences :

For abolishing the free System of English Laws in a neighbouring Province ,

establishing therein an Arbitrary government , and enlarging its Boundaries so

as to render it at once an example and fit instrument for introducing the

same absolute rule into these Colonies :

For taking away our Charters , abolishing our most valuable Laws , and altering

fundamentally the Forms of our Governments :

For suspending our own Legislatures , and declaring themselves invested with power

to legislate for us in all cases whatsoever .

He has abdicated Government here , by declaring us out of his Protection and

waging War against us.

He has plundered our seas , ravaged our Coasts , burnt our towns , and destroyed the

lives of our people .

He is at this time transporting large Armies of foreign Mercenaries to compleat

the works of death , desolation and tyranny , already begun with circumstances

of Cruelty and perfidy scarcely paralleled in the most barbarous ages , and

totally unworthy the Head of a civilized nation .

He has constrained our fellow Citizens taken Captive on the high Seas to bear

Arms against their Country , to become the executioners of their friends and

Brethren , or to fall themselves by their Hands .

He has excited domestic insurrections amongst us , and has endeavoured to bring on

the inhabitants of our frontiers , the merciless Indian Savages , whose known

rule of warfare , is an undistinguished destruction of all ages , sexes and

conditions .

151

A.1. PLAINTEXT APPENDIX A. THE DECLARATION OF INDEPENDENCE

In every stage of these Oppressions We have Petitioned for Redress in the most

humble terms : Our repeated Petitions have been answered only by repeated

injury . A Prince whose character is thus marked by every act which may define

a Tyrant , is unfit to be the ruler of a free people .

Nor have We been wanting in attentions to our British brethren . We have warned

them from time to time of attempts by their legislature to extend an

unwarrantable jurisdiction over us. We have reminded them of the

circumstances of our emigration and settlement here. We have appealed to

their native justice and magnanimity , and we have conjured them by the ties

of our common kindred to disavow these usurpations , which , would inevitably

interrupt our connections and correspondence . They too have been deaf to the

voice of justice and of consanguinity . We must , therefore , acquiesce in the

necessity , which denounces our Separation , and hold them , as we hold the rest

of mankind , Enemies in War , in Peace Friends .

We , therefore , the Representatives of the united States of America , in General

Congress , Assembled , appealing to the Supreme Judge of the world for the

rectitude of our intentions , do , in the Name , and by the Authority of the

good People of these Colonies , solemnly publish and declare , That these

United Colonies are , and of Right ought to be Free and Independent States ;

that they are Absolved from all Allegiance to the British Crown , and that all

political connection between them and the State of Great Britain , is and

ought to be totally dissolved ; and that as Free and Independent States , they

have full Power to levy War , conclude Peace , contract Alliances , establish

Commerce , and to do all other Acts and Things which Independent States may of

right do. And for the support of this Declaration , with a firm reliance on

the protection of divine Providence , we mutually pledge to each other our

Lives , our Fortunes and our sacred Honor .

152

A.2. CHARACTER AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

A.2 Character Affine Encyphered Cyphertext

QV7ŤnŃŤnRV7n - IĞhİ7nIlnVĞ_cŤn7 <7 ŤRİjnŃRnŸ7MI_7İnŤ7M7İİch [nlIhnIŤ7n ~7I~*7 nRInĆŃİİI

<7 nRV7n ~I ŃRŃMc * nŸcŤĆİnqVŃMVnVc <7

nMIŤŤ7MR7ĆnRV7_nqŃRVncŤIRV7hjncŤĆnRIncİİĞ_7nc_IŤ ! nRV7n ~

Iq7hİnIlnRV7n7chRVjnRV7nİ7 ~ chcR7ncŤĆn73Ğc * nİRcRŃIŤnRInqVŃMVnRV7n

cqİnIlntcRĞh7ncŤĆnIlntcRĞh7aİnĄIĆn7ŤRŃR *7 nRV7_jncnĆ7M7ŤRnh7İ ~7 MRnRInRV7nI ~

ŃŤŃIŤİnIln_cŤuŃŤĆnh73ĞŃh7İnRVcRnRV7 [nİVIĞ * ĆnĆ7M * ch7nRV7nMcĞİ7İnqVŃMVnŃ_ ~7*

nRV7_nRInRV7nİ7 ~chcRŃIŤTn ‘ Q7nVI * ĆnRV7İ7nRhĞRVİnRInŸ7nİ7 *l§7 < ŃĆ7ŤRjnRVcRnc **

n_7Ťnch7nMh7cR7Ćn73Ğc * jnRVcRnRV7 [nch7n7ŤĆIq7ĆnŸ [nRV7Ńhn -

h7cRIhnqŃRVnM7hRcŃŤnĞŤc * Ń7ŤcŸ *7 nHŃ! VRİjnRVcRnc_IŤ ! nRV7İ7nch7n

Ńl7jn

ŃŸ7hR [ncŤĆnRV7n ~ ĞhİĞŃRnIln6c ~~ ŃŤ7İİTn§§2VcRnRInİ7MĞh7nRV7İ7nhŃ !VRİjnĄI <7

hŤ_7ŤRİnch7nŃŤİRŃRĞR7Ćnc_IŤ !n?7 ŤjnĆ7hŃ <ŃŤ! nRV7Ńhn@ĞİRn ~

Iq7hİnlhI_nRV7nMIŤİ7ŤRnIlnRV7n !I <7 hŤ7Ćjn§§2VcRnqV7Ť7 <7 hncŤ[nLIh_nIlnĄI <7

hŤ_7ŤRnŸ7MI_7İnĆ7İRhĞMRŃ <7 nIlnRV7İ7n7ŤĆİjnŃRnŃİnRV7nHŃ ! VRnIlnRV7n ^7I~*7 nRInc *

R7hnIhnRIncŸI * ŃİVnŃRjncŤĆnRInŃŤİRŃRĞR7nŤ7qnĄI <7 hŤ_7ŤRjn *c[ŃŤ!

nŃRİnlIĞŤĆcRŃIŤnIŤnİĞMVn ~ hŃŤMŃ ~*7 İncŤĆnIh ! cŤŃŘŃŤ ! nŃRİn ~

Iq7hİnŃŤnİĞMVnlIh_jncİnRInRV7_nİVc ** nİ77_n_IİRn *Ńu7 *[nRIn7ll7MRnRV7Ńhn }cl7R[

ncŤĆn6c ~~ ŃŤ7İİTn ^ hĞĆ7ŤM7jnŃŤĆ77ĆjnqŃ ** nĆŃMRcR7nRVcRnĄI <7 hŤ_7ŤRİn *IŤ! n7İRcŸ *

ŃİV7ĆnİVIĞ * ĆnŤIRnŸ7nMVcŤ !7 ĆnlIhn *Ń! VRncŤĆnRhcŤİŃ7ŤRnMcĞİ7İĚncŤĆncMMIhĆŃŤ !*[nc

** n7 &~7 hŃ7ŤM7nVcRVnİV7qŤjnRVcRn_cŤuŃŤĆnch7n_Ih7nĆŃİ ~ Iİ7ĆnRInİĞll7hjnqVŃ *7n7 <Ń

* İnch7nİĞll7hcŸ *7 jnRVcŤnRInhŃ ! VRnRV7_İ7 *<7 İnŸ[ncŸI* ŃİVŃŤ !

nRV7nlIh_İnRInqVŃMVnRV7 [nch7ncMMĞİRI_7ĆTnxĞRnqV7Ťncn *IŤ!

nRhcŃŤnIlncŸĞİ7İncŤĆnĞİĞh ~ cRŃIŤİjn ~ ĞhİĞŃŤ !nŃŤ < chŃcŸ *[nRV7nİc_7n)Ÿ@7MRn7 <

ŃŤM7İncnĆ7İŃ ! ŤnRInh7ĆĞM7nRV7_nĞŤĆ7hncŸİI * ĞR7nb7İ ~ IRŃİ_jnŃRnŃİnRV7ŃhnhŃ !

VRjnŃRnŃİnRV7ŃhnĆĞR [jnRInRVhIqnIllnİĞMVnĄI <7 hŤ_7ŤRjncŤĆnRIn ~hI <

ŃĆ7nŤ7qnĄĞchĆİnlIhnRV7ŃhnlĞRĞh7nİ7MĞhŃR [Tn§§} ĞMVnVcİnŸ77ŤnRV7n ~

153

A.2. CHARACTER AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

cRŃ7ŤRnİĞll7hcŤM7nIlnRV7İ7n -I* IŤŃ7İĚncŤĆnİĞMVnŃİnŤIqnRV7nŤ7M7İİŃR [

nqVŃMVnMIŤİRhcŃŤİnRV7_nRInc * R7hnRV7ŃhnlIh_7hn }[İR7_İnIlnĄI <7

hŤ_7ŤRTn2V7nVŃİRIh [nIlnRV7n ~ h7İ7ŤRnUŃŤ ! nIlnĄh7cRnxhŃRcŃŤn %Ą7Ih !7

nkkkŔnŃİncnVŃİRIh [nIlnh7 ~7 cR7ĆnŃŤ@ĞhŃ7İncŤĆnĞİĞh ~ cRŃIŤİjnc **nVc <ŃŤ!

nŃŤnĆŃh7MRnIŸ@7MRnRV7n7İRcŸ * ŃİV_7ŤRnIlncŤncŸİI * ĞR7n2 [hcŤŤ[nI <7 hnRV7İ7n }

RcR7İTn2In ~hI <7 nRVŃİjn *7 RnLcMRİnŸ7nİĞŸ_ŃRR7ĆnRIncnMcŤĆŃĆnqIh *ĆTn ‘67

nVcİnh7lĞİ7ĆnVŃİnCİİ7ŤRnRIn

cqİjnRV7n_IİRnqVI *7 İI_7ncŤĆnŤ7M7İİch [nlIhnRV7n ~ĞŸ*ŃMn!IIĆTn ‘67

nVcİnlIhŸŃĆĆ7ŤnVŃİnĄI <7 hŤIhİnRIn ~cİİn

cqİnIlnŃ__7ĆŃcR7ncŤĆn ~ h7İİŃŤ !nŃ_~ IhRcŤM7jnĞŤ *7 İİnİĞİ ~7 ŤĆ7ĆnŃŤnRV7ŃhnI ~7 hcRŃIŤnRŃ

** nVŃİnCİİ7ŤRnİVIĞ * ĆnŸ7nIŸRcŃŤ7ĆĚncŤĆnqV7ŤnİInİĞİ ~7 ŤĆ7ĆjnV7nVcİnĞRR7h *[nŤ7 !*7

MR7ĆnRIncRR7ŤĆnRInRV7_Tn ‘67 nVcİnh7lĞİ7ĆnRIn ~ cİİnIRV7hn

cqİnlIhnRV7ncMMI__IĆcRŃIŤnIln *ch !7 nĆŃİRhŃMRİnIln ~7I~*7 jnĞŤ *7 İİnRVIİ7n ~7I~*7 nqIĞ*

Ćnh7* ŃŤ3ĞŃİVnRV7nhŃ ! VRnIlnH7 ~ h7İ7ŤRcRŃIŤnŃŤnRV7n

7! Ńİ* cRĞh7jncnhŃ ! VRnŃŤ7İRŃ_cŸ *7 nRInRV7_ncŤĆnlIh_ŃĆcŸ *7 nRInR [hcŤRİnIŤ *[Tn ‘67

nVcİnMc **7 ĆnRI !7 RV7hn *7! Ńİ*cRŃ <7 nŸIĆŃ7İncRn ~* cM7İnĞŤĞİĞc * jnĞŤMI_lIhRcŸ *7

jncŤĆnĆŃİRcŤRnlhI_nRV7nĆ7 ~ IİŃRIh [nIlnRV7Ńhn ~ĞŸ* ŃMnH7MIhĆİjnlIhnRV7nİI *7n~Ğh~

Iİ7nIlnlcRŃ !ĞŃŤ! nRV7_nŃŤRInMI_ ~* ŃcŤM7nqŃRVnVŃİn_7cİĞh7İTn ‘67 nVcİnĆŃİİI *<7 ĆnH7

~h7İ7ŤRcRŃ <7 n6IĞİ7İnh7 ~7 cR7Ć *[jnlIhnI ~~ IİŃŤ! nqŃRVn_cŤ *[nlŃh_Ť7İİnVŃİnŃŤ <

cİŃIŤİnIŤnRV7nhŃ ! VRİnIlnRV7n ~7I~*7Tn ‘67 nVcİnh7lĞİ7ĆnlIhncn *IŤ!

nRŃ_7jnclR7hnİĞMVnĆŃİİI * ĞRŃIŤİjnRInMcĞİ7nIRV7hİnRInŸ7n7 *7 MR7ĆĚnqV7h7Ÿ [nRV7n

7! Ńİ*cRŃ <7n~ Iq7hİjnŃŤMc ~cŸ *7 nIlnCŤŤŃVŃ *cRŃIŤjnVc <7 nh7RĞhŤ7ĆnRInRV7n ^7I~*7 ncRn*ch

!7 nlIhnRV7Ńhn7 &7 hMŃİ7ĚnRV7n } RcR7nh7_cŃŤŃŤ ! nŃŤnRV7n_7cŤnRŃ_7n7 &~ Iİ7ĆnRInc **

nRV7nĆcŤ !7 hİnIlnŃŤ < cİŃIŤnlhI_nqŃRVIĞRjncŤĆnMIŤ <Ğ* İŃIŤİnqŃRVŃŤTn ‘67 nVcİn7ŤĆ7c <

IĞh7ĆnRIn ~h7 <7 ŤRnRV7n ~I~Ğ* cRŃIŤnIlnRV7İ7n } RcR7İĚnlIhnRVcRn ~Ğh~ Iİ7nIŸİRhĞMRŃŤ !

nRV7n

cqİnlIhntcRĞhc * ŃŘcRŃIŤnIlnLIh7Ń ! Ť7hİĚnh7lĞİŃŤ !nRIn~ cİİnIRV7hİnRIn7ŤMIĞhc !7

154

A.2. CHARACTER AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

nRV7Ńhn_Ń ! hcRŃIŤİnVŃRV7hjncŤĆnhcŃİŃŤ ! nRV7nMIŤĆŃRŃIŤİnIlnŤ7qnC ~~ hI~

hŃcRŃIŤİnIln

cŤĆİTn ‘67 nVcİnIŸİRhĞMR7ĆnRV7nCĆ_ŃŤŃİRhcRŃIŤnIln ĞİRŃM7jnŸ [nh7lĞİŃŤ !

nVŃİnCİİ7ŤRnRIn

cqİnlIhn7İRcŸ * ŃİVŃŤ !n ĞĆŃMŃch [n~Iq7hİTn ‘67 nVcİn_cĆ7n ĞĆ !7 İnĆ7 ~7 ŤĆ7ŤRnIŤnVŃİnQŃ **

nc* IŤ7jnlIhnRV7nR7ŤĞh7nIlnRV7ŃhnIllŃM7İjncŤĆnRV7nc_IĞŤRncŤĆn ~c[

_7ŤRnIlnRV7Ńhnİc *chŃ7İTn ‘67 nVcİn7h7MR7Ćncn_Ğ * RŃRĞĆ7nIlnt7qn)

llŃM7İjncŤĆnİ7ŤRnVŃRV7hnİqch_İnIln) llŃM7hİnRInVchcİİnIĞhn ~7I~*7

jncŤĆn7cRnIĞRnRV7ŃhnİĞŸİRcŤM7Tn ‘67 nVcİnu7 ~ Rnc_IŤ ! nĞİjnŃŤnRŃ_7İnIln ~7 cM7jn }

RcŤĆŃŤ ! nCh_Ń7İnqŃRVIĞRnRV7nMIŤİ7ŤRnIlnIĞhn *7! Ńİ*cRĞh7İTn ‘67

nVcİncll7MR7ĆnRInh7ŤĆ7hnRV7n ?Ń*ŃRch[nŃŤĆ7 ~7 ŤĆ7ŤRnIlncŤĆnİĞ ~7 hŃIhnRInRV7n -Ń<Ń*

n~Iq7hTn ‘67 nVcİnMI_ŸŃŤ7ĆnqŃRVnIRV7hİnRInİĞŸ@7MRnĞİnRIncn@ĞhŃİĆŃMRŃIŤnlIh7Ń !

ŤnRInIĞhnMIŤİRŃRĞRŃIŤncŤĆnĞŤcMuŤIq *7Ć!7 ĆnŸ[nIĞhn * cqİĚn !Ń<ŃŤ!

nVŃİnCİİ7ŤRnRInRV7ŃhnCMRİnIln ~ h7R7ŤĆ7Ćn

7! Ńİ*cRŃIŤPn ‘ LIhnŞĞchR7hŃŤ !n*ch !7 nŸIĆŃ7İnIlnch_7ĆnRhII ~ İnc_IŤ !nĞİPn ‘LIhn~ hIR7MRŃŤ

! nRV7_jnŸ [ncn_IMun2hŃc * jnlhI_n ~ ĞŤŃİV_7ŤRnlIhncŤ [n? ĞhĆ7hİnqVŃMVnRV7 [nİVIĞ *

ĆnMI__ŃRnIŤnRV7nkŤVcŸŃRcŤRİnIlnRV7İ7n }RcR7İPn ‘ LIhnMĞRRŃŤ !

nIllnIĞhn2hcĆ7nqŃRVnc **n~ chRİnIlnRV7nqIh *ĆPn ‘ LIhnŃ_ ~IİŃŤ!n2c &7

İnIŤnĞİnqŃRVIĞRnIĞhn -IŤİ7ŤRPn ‘ LIhnĆ7 ~hŃ <ŃŤ! nĞİjnŃŤn_cŤ [

nMcİ7İjnIlnRV7nŸ7Ť7lŃRİnIln2hŃc *nŸ[n Ğh[Pn ‘ LIhnRhcŤİ ~ IhRŃŤ ! nĞİnŸ7 [IŤĆn }7

cİnRInŸ7nRhŃ7ĆnlIhn ~ h7R7ŤĆ7ĆnIll7ŤM7İPn ‘ LIhncŸI * ŃİVŃŤ ! nRV7nlh77n }[İR7_nIlnŮŤ

!* ŃİVn

cqİnŃŤncnŤ7Ń ! VŸIĞhŃŤ !n^hI < ŃŤM7jn7İRcŸ * ŃİVŃŤ ! nRV7h7ŃŤncŤnChŸŃRhch [n!I <7

hŤ_7ŤRjncŤĆn7Ť *ch!ŃŤ! nŃRİnxIĞŤĆchŃ7İnİIncİnRInh7ŤĆ7hnŃRncRnIŤM7ncŤn7 &c_ ~*7

ncŤĆnlŃRnŃŤİRhĞ_7ŤRnlIhnŃŤRhIĆĞMŃŤ ! nRV7nİc_7ncŸİI * ĞR7nhĞ *7 nŃŤRInRV7İ7n -I*

IŤŃ7İPn ‘ LIhnRcuŃŤ !ncqc[nIĞhn - VchR7hİjncŸI * ŃİVŃŤ ! nIĞhn_IİRn <c*ĞcŸ *7n

cqİjncŤĆnc * R7hŃŤ ! nlĞŤĆc_7ŤRc **[nRV7nLIh_İnIlnIĞhnĄI <7 hŤ_7ŤRİPn ‘ LIhnİĞİ ~7 ŤĆŃŤ!

155

A.2. CHARACTER AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

nIĞhnIqŤn

7! Ńİ* cRĞh7İjncŤĆnĆ7M *chŃŤ! nRV7_İ7 *<7İnŃŤ <7 İR7ĆnqŃRVn ~ Iq7hnRIn *7! Ńİ*

cR7nlIhnĞİnŃŤnc ** nMcİ7İnqVcRİI7 <7hTn ‘67 nVcİncŸĆŃMcR7ĆnĄI <7 hŤ_7ŤRnV7h7jnŸ [nĆ7M

chŃŤ! nĞİnIĞRnIlnVŃİn ^ hIR7MRŃIŤncŤĆnqc !ŃŤ! nQchnc ! cŃŤİRnĞİTn ‘67 nVcİn ~

ĞŤĆ7h7ĆnIĞhnİ7cİjnhc <c!7 ĆnIĞhn - IcİRİjnŸĞhŤRnIĞhnRIqŤİjncŤĆnĆ7İRhI [7 ĆnRV7n *Ń <7

İnIlnIĞhn ~7I~*7Tn ‘67 nŃİncRnRVŃİnRŃ_7nRhcŤİ ~ IhRŃŤ !n*ch !7 nCh_Ń7İnIlnlIh7Ń !Ťn ?7

hM7ŤchŃ7İnRInMI_ ~*7 cRnRV7nqIhuİnIlnĆ7cRVjnĆ7İI * cRŃIŤncŤĆnR [hcŤŤ[jnc*h7cĆ[nŸ7!

ĞŤnqŃRVnMŃhMĞ_İRcŤM7İnIln -hĞ7*R[ncŤĆn ~7 hlŃĆ[nİMchM7 *[n~chc **7*7

ĆnŃŤnRV7n_IİRnŸchŸchIĞİnc !7 İjncŤĆnRIRc **[nĞŤqIhRV [nRV7n67cĆnIlncnMŃ <Ń*

ŃŘ7ĆnŤcRŃIŤTn ‘67 nVcİnMIŤİRhcŃŤ7ĆnIĞhnl7 **Iqn - ŃRŃŘ7ŤİnRcu7Ťn -c~RŃ <7 nIŤnRV7nVŃ !

Vn }7 cİnRInŸ7chnCh_İnc ! cŃŤİRnRV7Ńhn - IĞŤRh [jnRInŸ7MI_7nRV7n7 &7

MĞRŃIŤ7hİnIlnRV7ŃhnlhŃ7ŤĆİncŤĆnxh7RVh7ŤjnIhnRInlc ** nRV7_İ7 *<7 İnŸ[

nRV7Ńhn6cŤĆİTn ‘67 nVcİn7 & MŃR7ĆnĆI_7İRŃMnŃŤİĞhh7MRŃIŤİnc_IŤ !

İRnĞİjncŤĆnVcİn7ŤĆ7c < IĞh7ĆnRInŸhŃŤ !

nIŤnRV7nŃŤVcŸŃRcŤRİnIlnIĞhnlhIŤRŃ7hİjnRV7n_7hMŃ *7 İİnkŤĆŃcŤn }c<c!7

İjnqVIİ7nuŤIqŤnhĞ *7 nIlnqchlch7jnŃİncŤnĞŤĆŃİRŃŤ ! ĞŃİV7ĆnĆ7İRhĞMRŃIŤnIlnc ** nc !7

İjnİ7 &7 İncŤĆnMIŤĆŃRŃIŤİTn ‘kŤn7 <7h[nİRc !7 nIlnRV7İ7n)~~ h7İİŃIŤİnQ7nVc <7n^7

RŃRŃIŤ7ĆnlIhnH7Ćh7İİnŃŤnRV7n_IİRnVĞ_Ÿ *7 nR7h_İPn) Ğhnh7 ~7 cR7Ćn ^7 RŃRŃIŤİnVc <7

nŸ77ŤncŤİq7h7ĆnIŤ *[nŸ[nh7 ~7 cR7ĆnŃŤ@Ğh [TnCn^

hŃŤM7nqVIİ7nMVchcMR7hnŃİnRVĞİn_chu7ĆnŸ [n7 <7h[ncMRnqVŃMVn_c [nĆ7lŃŤ7ncn2 [

hcŤRjnŃİnĞŤlŃRnRInŸ7nRV7nhĞ *7 hnIlncnlh77n ~7I~*7Tn ‘tIhnVc <7 nQ7nŸ77ŤnqcŤRŃŤ !

nŃŤncRR7ŤRŃIŤİnRInIĞhnxhŃRŃİVnŸh7RVh7ŤTnQ7nVc <7

nqchŤ7ĆnRV7_nlhI_nRŃ_7nRInRŃ_7nIlncRR7_ ~RİnŸ[nRV7Ńhn *7! Ńİ* cRĞh7nRIn7 &

R7ŤĆncŤnĞŤqchhcŤRcŸ *7 n@ĞhŃİĆŃMRŃIŤnI <7 hnĞİTnQ7nVc <7

nh7_ŃŤĆ7ĆnRV7_nIlnRV7nMŃhMĞ_İRcŤM7İnIlnIĞhn7_Ń ! hcRŃIŤncŤĆnİ7RR *7

_7ŤRnV7h7TnQ7nVc <7 nc ~~7c*7 ĆnRInRV7ŃhnŤcRŃ <7 n@ĞİRŃM7ncŤĆn_c ! ŤcŤŃ_ŃR [

jncŤĆnq7nVc <7 nMIŤ@Ğh7ĆnRV7_nŸ [nRV7nRŃ7İnIlnIĞhnMI__IŤnuŃŤĆh7ĆnRInĆŃİc <

156

A.3. MULTIDIGIT DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

IqnRV7İ7nĞİĞh ~ cRŃIŤİjnqVŃMVjnqIĞ *ĆnŃŤ7 <ŃRcŸ *[nŃŤR7hhĞ ~

RnIĞhnMIŤŤ7MRŃIŤİncŤĆnMIhh7İ ~ IŤĆ7ŤM7Tn2V7 [nRIInVc <7 nŸ77ŤnĆ7clnRInRV7n <

IŃM7nIln@ĞİRŃM7ncŤĆnIlnMIŤİcŤ ! ĞŃŤŃR [

TnQ7n_ĞİRjnRV7h7lIh7jncM3ĞŃ7İM7nŃŤnRV7nŤ7M7İİŃR [jnqVŃMVnĆ7ŤIĞŤM7İnIĞhn }7~

chcRŃIŤjncŤĆnVI * ĆnRV7_jncİnq7nVI * ĆnRV7nh7İRnIln_cŤuŃŤĆjnŮŤ7_Ń7İnŃŤnQchjnŃŤn ^7

cM7nLhŃ7ŤĆİTn ‘ Q7jnRV7h7lIh7jnRV7nH7 ~h7İ7ŤRcRŃ <7 İnIlnRV7nĞŤŃR7Ćn }

RcR7İnIlnC_7hŃMcjnŃŤnĄ7Ť7hc *n-IŤ! h7İİjnCİİ7_Ÿ *7 Ćjnc ~~7c*ŃŤ! nRInRV7n }Ğ~ h7_7n

ĞĆ !7 nIlnRV7nqIh * ĆnlIhnRV7nh7MRŃRĞĆ7nIlnIĞhnŃŤR7ŤRŃIŤİjnĆIjnŃŤnRV7ntc_7jncŤĆnŸ

[nRV7nCĞRVIhŃR [nIlnRV7n !IIĆn ^7I~*7 nIlnRV7İ7n -I* IŤŃ7İjnİI *7 _Ť *[n~ĞŸ*

ŃİVncŤĆnĆ7M * ch7jn2VcRnRV7İ7ngŤŃR7Ćn -I* IŤŃ7İnch7jncŤĆnIlnHŃ ! VRnIĞ !

VRnRInŸ7nLh77ncŤĆnkŤĆ7 ~7 ŤĆ7ŤRn } RcR7İĚnRVcRnRV7 [nch7nCŸİI *<7 ĆnlhI_nc ** nC **7!

ŃcŤM7nRInRV7nxhŃRŃİVn - hIqŤjncŤĆnRVcRnc **n~I* ŃRŃMc *

nMIŤŤ7MRŃIŤnŸ7Rq77ŤnRV7_ncŤĆnRV7n } RcR7nIlnĄh7cRnxhŃRcŃŤjnŃİncŤĆnIĞ !

VRnRInŸ7nRIRc **[nĆŃİİI *<7 ĆĚncŤĆnRVcRncİnLh77ncŤĆnkŤĆ7 ~7 ŤĆ7ŤRn } RcR7İjnRV7 [nVc

<7 nlĞ **n^ Iq7hnRIn *7 <[nQchjnMIŤM *ĞĆ7n ^7 cM7jnMIŤRhcMRnC ** ŃcŤM7İjn7İRcŸ *ŃİVn -

I__7hM7jncŤĆnRInĆInc ** nIRV7hnCMRİncŤĆn2VŃŤ ! İnqVŃMVnkŤĆ7 ~7 ŤĆ7ŤRn } RcR7İn_c [

nIlnhŃ ! VRnĆITnCŤĆnlIhnRV7nİĞ ~~ IhRnIlnRVŃİnb7M * chcRŃIŤjnqŃRVncnlŃh_nh7 *

ŃcŤM7nIŤnRV7n ~ hIR7MRŃIŤnIlnĆŃ <ŃŤ7n^hI < ŃĆ7ŤM7jnq7n_ĞRĞc **[n~*7Ć!7

nRIn7cMVnIRV7hnIĞhn

Ń <7 İjnIĞhnLIhRĞŤ7İncŤĆnIĞhnİcMh7Ćn6IŤIhT ‘

A.3 Multidigit digraph Affine Encyphered Cyphertext

&<: ĘX3ĎD !<UD .}5 baWi} LDsGŃ {ĎDQ >: ĘĄYVD ’PČrYiİŔĹY ’ ĘYiĹYU {%# ŔNkbi }ŐW ,t|} QŸUDu }Ľ‘dY ~}Š

>UD!<UDŹ },3 d3e{ŰDn{K‘WDĘ <5i:D8{FWFi ‘ĘŐW] P ‘8 PDW

DI3!<@{+}! < EbVD^Ę^Du}@{

YgŔUDŻŔ ‘ĘCD!<UDŹ }= WŞYi}LD!<UDS{VP] X8PDWuY ? tiboPUD ^Ę^DĆkC{ ŰDMPoPX }ĎDu}Ą5P3 :<8

PDWC885WDHNI & oP5bUD ^Ę^DHNI&oP5b*ĚWD

157

A.3. MULTIDIGIT DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

}^D:Ęd3 -ŸUD!< wŔVDyDhWqWzP2bĹY |W]P8P{D!< UDetŰĘX }7 Yi}LDŃ{ !ŰĘ^DjW"G! bĹY8P8 {ND!<Ž#

uYa}$Ÿ^ DhWFŸibUD !<UDe{ xYĹYĄ5P3 :< X3wt4Ÿ8PDW

Du }8 PDWuY ? tiboPX }-FĆ

]WŢ <ZŸ^D!<ĹYUD >b; PmY8P { DzWuY4Ÿ2OQ >x ‘: ĘqX8P8 { NDXŸŰDŮWĎDibUDWbS {XW^DĆkC {9 X8P8{ND!<Ž

#@{jWLWK ‘:5 ‘Čr!D!<k3 ‘DwbS{u}‘DI3!< FiEbL {ŰĘ{GĆ { ,3:Ę:r WUĆAE0PzX8P8 {NDŻŔ ‘ĘCD!<

ĹYUDibUDL3VWVDL3zWVP !D^Ę^D!<UD+GŞY [3 NDHN7 \ ctĹ3ŐW

YDD3OA <oP8P{DaW GjW8PDWaW2bAE0PzXtew >Eb&Ŕ:ĘĄY@{ jWX37Yd3ĞGXW ^DŻŔ ‘ĘCD7W ’XĽ ‘Eb ->ŰĘCD

!<k3 ‘DaGMP ,t:5 EbWD <bİŔ8PDWFi ‘ ĘaWzPi }LD!<UDj} F W E Ę ‘VD3OA < oPĄ5DWŐWFW ‘D^Ę!DŞ}ĆŔi

}LD

} FWEĘŮWzPČrYiİŔĹYĽ ‘ĹY > bIid3FWi }LD!<ĹYUD:ĘŚYVD ’ PX3WD !<UDŰ3Ű < NDHN8PDWOŤ |} QŸUDu }@{

ŇPEbi }‘Du}@{Ů},3*< X3qX@ {K ‘8P{DŰĘMP ’P; PUDŐW3D

} FWEĘŮWzPVDŤ {73 ŤEX3ĄYŔN4GK ‘oPX}ĎD ‘ ĘuYIi : DbbŰĘ }3 QŸĹY@ {K‘i}pE^Ę9ŽŰĘCD ’PWDŹ }=

WŞYX3ĎDŘG :< ŔNkb0X@ {WDu }8 PDW

D*< XŸŰDaWwŔdŔ .YND ,3)W[#8P{D"NVW] P8PDW ! bŮyFNKP !D^Ę^DX {\ tŰĘĹYĂFOŤŹGhWĹixXX3K ‘

_WĄXĄ5ŘŸŰDt3] PoPUD !<oPtew >Eb&Ŕ:ĘĄY!Ÿ‘ ĘCDĹYL { OŸdYDW ^D*<4G]‘’ ĘqPČrUD :<^ ĘMW^Ds}‘

D ,3Ű<ND^Ę^D>b^Ęm3:ĘNDe{ xYĹYOD ^Ę^D}iŐ}’‘ŰĘ"Ÿ!DXŸŰDW ,| Wv3:ĘqWŢ <oP:D*<Ť5 ’X8P8{

NDŃ{ !ŰĘ^ DibUD4 }jWĽ ‘dYŹ}aW^Du} uYŠNVWČXĄ5P3 WLWR3IY@ { jWuYŠNVW ^{ OŸxX8P8 {ĎDu }2

bAE0P8PDW@Y4ŸFWWD5 #@{Ů},3*< ŰĘCD!<UDs} ĆŔWDu }Ą5P3 :<8 PDW! DibUD }i G M P İ Ŕ ‘DDIGNDĘ

<: Ę@ {!Ÿ‘ĘCD > bŔ3ĎDHN@ {) GaWWD ^Ę^ DxY5bp {d3 ‘ĘzX , t5bŘGŰĘCDŰĘ :{ v3:r[#8 PDWuYŻŔUD \r2W

] PLWR3ĹiĹY@ {Ľ‘ ĹYAEĎDu }2 b ‘IiUD!<wŔ{GK ‘Eb@ {# YZŸ; PUDĹWAtqPdY0XX3NDdY8PDW !

b2bAE0PVD ’ PX3WD !<k3 ‘DŮGŞ#VDu }8P*b:5i} ŹNuYIi :D

} FWEĘŮWzPVD ^Ę^Du},tĞ}R3hW ’ ĘŤ5teC {’‘WDs}‘D!<k3 ‘ DĚGĞGjWuYYi5b ’PJF(O"yIi:D8{WDzW:

Ę8PDW ,toP; WzPuYŠNVW ^{ ĹiUDHN8PDWaWiĽZŸ ‘Ę;WfQ@{K‘uYIi:DdY ’Ę:58 PDW ’ ĘYiĹYm3Ş #Ą5P3

:<Fi ‘ĘMP ^{ ŰĘWD!<wŔ8P{DXŸXW ‘D!<k3 ‘Ds} ĆŔEbŮyTYXW@Yi }LD

} FWEĘŮWzPDDA < UDP3MPkb !DHN8PDW , tjWaWzPĂAŰĘCDHNtejWoP &Šv3L{ŰĘ /1 mWkbMWzSĽSİDdY@ {Ţ<

dYu }%#i}LDjW| W o P ‘X3]*5b;WWD^Ę^ DxY5bp {d3 ‘ĘzX@{uŸŢ <u>ŰĘCDŰĘĽ ‘! bYiND <r2W]

P8PDWLWMP :r ,3* < ŮWzPi }LD^Ę@ {# YZŸ;PUD3 #^{ iĘ!Dw > Eb8PDWaWŮyL { XWĂFZp {Dbbw >UD!<dYVD

158

A.3. MULTIDIGIT DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

WNDj {] PWDzWuYĘr #3 D P ‘8P{DyDe{K‘x‘Ą5kb]‘DD }\ UD8{ WDjWĚGaW ^ DP3WDLYaWzP8P {D4{

fYVD!<UD4} MPĄ5a } W~} ŮW@{K‘’ ĘYiĹYU {%# ŔNkb8PDW ,tĘr ,3 gDj}B‘DD }\ UD8{WDs }!rx ‘

hWĎDP3WD

} FWEĘkbWDu },t,YWD4{fYi} LDSŔŮWt3oPUD ^Ę^ DbbĹYm3ŤEX3wtkbL {ĹixX{ GcŸĹYWDŘGAt :ĘhW^

DŰĘ8PDW !bi }|W^{d3 ‘ Ę8PŘŸŰDP3WDLYaWzPuYa }$Ÿ^DzWi} fPŔ3ŐWmQ@ {K‘ Ą5DWĎD ~} uYxY|WK ‘ ‘

VDDWŢ <,Y{ GDPEb [#’ ĘeE W] P ‘8P{DoPXWK ‘8P{D!<wŔDD }\ UD8{ WDjWĚGaW ^Du},t,YWDqPDW ‘D4

{ fYŔNkb8PDW@ { kiİŔ4 }\{d3 ‘Ęi}LDŤ{ pEUDt3MPv3]PWDHN ,t|} QŸxX{ GcŸĹYWD !<. YUD|Wet

WĄ54G]‘2 b4ŸŰĘ "GdY:D!<UDv3Ű < NDHNUĆ ? tjWaWzPoPX } ĎDŰĘ8PDWC8eEdYŤ { ĞGjWVDyDv3Ű <

NDŰĘĹYd3Ń { OŸUDu }8 PDW

D^Ę^Ds}ĆŔx ‘:r W8P{DŞ #^{ zPWD ‘Ę[# DD }\ UD8{WDe{ u Ÿ ‘8 PŃEKPDW ‘D WY36ŸoP ->UDŮ} t3ĹY@ {NDQŸ

}iĹY{G= GŘGXŸVD *ĘŐ} ZNkbL { OŸxX@ {K‘Ľ‘dYL{ zPŔNĞ }

D!< UDhWŹ }m3u }%#i}LD!<k3 ‘D+ GOŸ5iUĆYikbŚYVDs }‘D!<UD ~} W,t5bŹ}aWi}LDJ{d3| GŰĘCD !<

wŔX3zP {DŐ}wt ,3^ ĘqWĄ5 ’P:DP3WDŮW , Y5bĹYDD }\ UD8{WDt3

YZŸFW ^D

WbbĹY :ĘL{ d3FW7 \4 GaWWDjW | W o P ‘[# VDs}‘DetŹ}m3ŤEĄ5 ’P:DŃ{cŸ! Db3ĆŔŐW

YŢ <dYX3Ă >,YX }7 Yi}ĎD!<UDv3Ű <ĄYi}LD!<UD|Wet WDD }\ UD8{ WDjWĚGaW ^Ds}‘DyD =} ŤE8PSŔxX@ {

BPEbuYIi :Dt3

YZŸ;PX }7 YVDu} Fi2GaWi }!< EbWDu } ČrUD4ŸYiXWmQĄ5DWjW5 #8 PDWC8eEdYŤ {d3FW ,t:5 EbzXX3Ĺict :r

Wi}LD~ ĘŽ3P3Ť {d3 ‘ĘVD8{ FW2bKP5bŐW ^Du }8 PDWOŤ |} QŸUDoP ! ŸibMWŔNkb8PDW !

bLW4WdidYdQ8PDWŮyL { XW2bwŔŔ3Ž3ŤEX3ĎD !<UDŮW^Ę8PSŔUDW ,Ź}aW^Du}@{uŸ8PDWĽ ‘^ ĘMWŞYi }

LDŰĘ :{m3 ‘ĘŔNĞ}

DI3 !<4 GqX@{K‘Fi ‘ ĘuGIYX }7YĄ5 ’PP3 -FĆ

dWŢ <,YLWK ‘S{c}5 b ‘8P{DbbQ >: ĘND!<UDŹ }+ GŤ{d3 ‘Ęi}LD!< ĹYUDmPoPĹYODs }‘D!<oP ,t5bŹ}aWi }#

Y> bIid3ŤE8PDWC885WDs }‘D"{ ĞG ^{ ,3Ű{d3 ‘Ęi}LDŞ} jWAEŐWŞYODjWĚGm3ŤE8P {Dp{

Yi}!< EbWDu } LWĹi4G ^{ MW8PDW ! bdŔAE ^{d3 ‘ ĘWDP3 !<EbVD^Ę^D^{ dYŰĘCD !<UDŐ}K‘’PX }7 Yi}

LDŐW3DČtbbetv3oPX }7 Yi}LD4{K‘ĂFĆ

dWŢ <,Yi }#Y> bIiXW ^D!<UD ‘ ‘#3 Ž3MP ^{d3 ‘Ęi} LDĄGMP5ixXČr ! DjWĚGm3ŤEŢ <dYcŻ

159

A.3. MULTIDIGIT DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

Y:ĘNDu} C885WDs }‘DĹYL{ OŸdYP3ŤE =JŇ ‘5i/{%# ,t:5 EbĂFĆ

dWŢ <,YdŔ@ ‘UDĄGnEĹYĽ ‘?t: ĘhWzPi } ĎDP3WDi3uŸ@ {=} ŐWVDs }‘D!<UDXW=GjWi}LD!<k3 ‘ DHNb3qWzX@

{K ‘8 PDW@ {4}* ĘND^Ę^Dp{CŔ: ĘNDHN8PDW ! buYXŸib ;WĂFĆ

dWŢ <, YLWjW] P ‘@{ dŔ$Ÿd3ĞGhWi }LD. W3DhNb3qWzX@ {K‘uY: ĘNDP3 !< EbuY1 { ĆŔWDHNŇİŹN5iEbWDu }Ţ

<ib ,YWD4G ‘D|Wet WVD^Ę^DS{ ND4GND !<k3 ‘DŘG#YL{Ĺi~FĆ

dWŢ <,Y^!? tNDŻŔ ‘ ĘCDxYVDŰĘ8PSŔĹYi }LD|W} ixXŮyL {K‘ ŰĘCDĽb #3 ĹYĄ5 ’Pa }; P8PDWFi ‘ ĘaWzPi }

LD4G ‘D WY36ŸoP5bĹYDD }\ UD8{ WDFNVW] P ‘8P{DjWK ‘ Eb8PDWĘ /ŘŸ ’Pib! DŰĘhW |WK ‘: ĘNDHN@ {K

‘uY/tEbX}‘Du }8 PDWiĽ ->ŘŸ ,t:5 EbDD }\ UD8{WDŐ} N r Ű Ę ‘Ą5 ’P: DqPDWŞY8P {DŘGI* YiNDxY8P {

DyDaGv3đ ‘5id3 ‘ ĘŔNkbk3 (Ę8P{D4G ‘DŐ }7 Yd3ĞGd3 ‘Ę@{K ‘{ GĆ{Č!+} Š Ÿ ‘MW^D5#i}5b!Ÿ85fQRE

-> ŰĘCDP3WDLYaWzP8P {D!<k3 ‘ DİiĄYi } LDbbKP :ĘhW^ D@WY36ŸoPX }PZĆ

Ş}‘ DBGibXWv3ŤE !ŸibMWČrB ‘; WWDHN@ { Ć Ŕ ‘8 PĞ}etWDŻŔ ‘ ĘCDxYXDwnkb ,tĞ}XW] PŰĘCD !< wŔVD5 #@{

dŔ-i§D^b/{9 XŔNĞ}

D+GŽ3*< ŮWzPŔNkb@ {I#Ę/5 bhWŞYĄ5P3 :<8 PDW!D*<4G]‘FiİŔ #3ND ‘Ę8PDWzSW <:r’P^ĘĄYi}LD!<

ĹYUDmPoPĹYXDwnkbFi ; Pd3ŤEi }ŹNi }5 bZp ^{ hWĄ5 ’P: DXŸŰDp { VPWDHN8PDWĄ5kb]‘ XDwnkbX3wt .

YŰĘCDl {4WWD ‘Ę{ GWDI3 !<4GND4G ‘D.}7Y:ĘŽZĆ

Ş}‘DhWbb -> ŰĘCDxYVDŰĘdŔ ^Ę!De{ aWzXi }LD!< UDzWŐWb3ĄYi }LD^b/{ ŰD5 #= J5bmZĆ

Ş}‘D>b^ ĘAtkbd3ŤE { GWDzWH }K‘ŮyS{WDu}ČrUD >b;W^Ds}‘ DbbKP :ĘhW^ DHNVWĹiĹYXDwnkb@ {Ů},3*<

ŰĘCD!<UD < b_WŮyTYXW

DHNnwŤE ,3* < C885WDŰĘ@ {’Ęk3Ű <Ů}5 bŰĘCDĆbw > ŰĘqWVDĹYL { OŸdYP3ŤE8PDWjWŰĘ@ {ĎDĽbĘ3 >bib!Dj}

FWEĘŮWzPVD ^Ę^D:ĘŤ{pEŰĘCD ’PWD7 }*Ę\{ v3ĹYuY {D,Y8P{DjWK ‘ EbX3NDoPi }ĹiUD^ĘLW ({ wt W@

{K‘ŔN ’PX37Y >bgŔ:ĘNDs}‘DŰĘ >bB ‘ IiŰĘCD !<UDU{ŮW@ {# YZŸ; PUDŹG WX3zP {D!<ĹYUD .}=}

Ž3ĹYXDwnkb8PŢ !ŰĘCD85 >#i}5 biĽ8{ VPEbzX@ {Ů},3*< ŰĘCD4G ‘D4}MP >>XŸC{ OŸUD4 {fYVD^Ę^

DXŸXWv3ŤEŔN *Ę\{ ŮWzPXŸ [#8 PDW1nkb@Yi }LD4G ‘D

} FWEĘŮWzP #ZĆ

Ş}‘ DŘGAt : Ęt3ŤEi }5 bi} ŸĘC8eEdYŤ { ĞGjWzX@ {K‘Ľ‘YiŤ{ v3ŤE8PDW@Y4ŸFWWDŰĘFWMP ‘Ą5 ’P:DŹ }=W‘

Du }! ŸeEdYŤ { XWŔNkb { GWDŰĘ@ {uŸFi , YĹYĄ58 { ĄYĚWFWĽFĆ

dWŢ <,Y@ {7 ‘5 i o P ‘tew >Eb&Ŕ: ĘNDDWjWVD5 #Ľ‘YiŤ{v3ŤE{ GWD4GNDHNŢ < dYOŤĞ }XW]PX}ĎD^Ę^D1{

160

A.3. MULTIDIGIT DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

Y3ŤE#Uib@{A{ŰĘMP{GĂFĆ

dWŢ <,Y,tOGK ‘ E b ‘i}5 buYS{zX2bu > Ľ E ‘i}5 biĽy{ MPzXČr5bzPi }5 b8P :57 YVD^Ę^ DhWMPĞ }+W^D!<

UD ,3 FWWDHNi }5b,t|} QŸ~FĆ

dWX3WDoP8PP3WDd3ŮW8P ^{7 YŹ} VPŰĘCDŤ { pEUDĽb #3 ĹYi}LDs} jWAEĎD7Wdi :Ęib;WWDu} FiİŔQŸS {ND

!<UDZ }|! WDHNĽ ‘S{!< VDhW ~}Ť{d3 ‘Ę@{K ‘8 PŚb^ĘI#VDXŸjW@ ‘! DzW| GĎDI3 !<Fi!b G@YL{ ĹiĹYi

} LDwbOWŇP !D^Ę^D|W-Nx ‘!D[iibqW [#, tibXŸ W W^ DŰĘ8PDWdŔ .YNDn {! rib4GWDĽEĹYVD ^Ę^Du}

L{uŸ!D*ĘZ}VP -#8 PDW7\S{^ DHN@{Fi -> Ř Ÿ 9 Ž ‘’ĘoPX}-FĆ

dWŢ <,YFi ‘ĘMP ^{ Ű Ę ‘i}5 bŔN4Ÿ =}3 Dİ3d3 " W7Y8PŢ !: ĘiĽctd3FWi }ĎD!<UDP3Ű <ŮyS{WDu}ČrS{‘

DĽb@Y@ {A{ ŰĘMP8PDW ! biĽ4GzP %# VDu} ČrYiİŔUD !<UDW ,Yi;PX} ŐWŞYi }LD!<k3 ‘D<b;WK ‘WD^Ę^

DĂbKP *b: ĘVDkb8P {DJ{ uŸ8PDW@Y4ŸFWWD5 #8 PDW!b7 \^ ĘŚYDD }\ UD8{WDW ,}3 XW^DĚ}

ŮWMP5iX37Y5bjW]PX }7 Y@ {4} ŤEMP{GzX@{K‘Ţ<,YLWK ‘S{c}5 b ‘8P{D‘bŰĘCD ‘Ę8PDWX3W <:r’P^

ĘĄYi}LD4G ‘D<b‘ Ęd3EbzX8PDWdŔEb }3 W

YzSK ‘/{ ĎDu {:{ MWzXĄ5a }aW ^!+} ŸĘ2b$ŸUDHNĄ5ibJ { jWVDdY@ {ĎD* Ęt3MPŰĘ | GdYDW ^ DhWMPŹG]PX}

ĎDHN@ {uŸ@{MWzXuYW ,ĹY@{K‘Fi ‘Ęt3d3 ‘ĘĂFĆ

6 ĘLWFW %# uYL{MWi}LD!< ĹYUDĚtbbĹYm3 ‘ĘWD]WŢ <u> UD Wd3d3 ‘ Ę ‘ Ŕ N k b U Ć ‘jW

YX3ĎD !<UD4}MPŢ < gŔOŸUDXWĆŔ # ZŇİ5b2b ?tS{XW^ D W d 3 d 3 ‘ĘWD8{ FWČr_WĎD ^ Ę Ű 5 E b ‘i}cŸ!D5 #2b?

tS{XW^ DŰĘaG %# DDŹDĆbŰĘqWĄ5a } aWFi8 {^{] PEbX3WD !< xYdŔib)W^D5#LWFW %#@{] PĄ5P3 :<dŔ >#

Ľ ‘" NŰĘUDyD3 #^{ zPVDdY {GQN ’P8P{ DzW8PDW2b$ŸEbi }LDyD <b_W ,t|} QŸ~FĆ

K}‘D8{FW# UUDzW :ĘĄ5^ Ęd3ŤEX3ĎDoPXWzPX }7 Y8P{D4G ‘DĂb ’PdY:D‘bKP*b:ĘDD]WŢ <u>UD1{ E Ę ‘8

PDW

D< bİŔ8PSŔUDu }8 PSŔUDHN@ { DPwŔhPWD5 #8 PDW!b! ŸeEdYŤ { ĞGjW8P {DW ,XWK ‘@{ĎD*Ę1{Pb^ĘL{

OŸUDaGv3đ ‘5id3 ‘Ęi}FW ‘ DxYDD]WŢ <u>UDjW #3K‘ ‘8 PDW

DHN8PDWFi !b G@YL{ ĹiĹYi }LD4G ‘ DwŔAE ^{d3 ‘Ę@{K‘uYKP -ŸwŔ: ĘNDDWjWDD]WŢ <u>UDct| W X Ÿ ‘8P{D

!<k3 ‘DĆ{ d3FWŻ * xYd3qW@ {K‘ dŔĽEĆ {Ž3 #3Ş#VD^Ę^D=WŢ <u>UDŐ }]*5 b ‘8 PDW

D5 #8 PDW8P ; WWDHNi }5 bFiİŔ4 }ĎD53K ‘jW^Du}Ľ‘dYu >:58 PDWaW { GŘGJtoPX }7 YVDĘ <5i] XĄ54G]‘

X3ŐWR3L {OŸ! DŰĘXWPb /tND4G ‘DŐ}iĘYid3 ‘ĘWD^Ę^DŐ} PbĹYŹ }K ‘: ĘqWDDA <Ž#8P"}Ţ<u>UDzW:ĘĽ

‘S{LDu }8PDW >> Ś3qWi } LDaGMP5iUD ^Ę^DHNFi ‘ĘU{ŤE [3 Ž3Ş#DD] WdŔxYqX8PDWjWs }jWVD}i"G;W

161

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

[iUDŰĘ8PDW ’ ĘYiĹYm3Ş #VDĘ <5i:DhW +}* ĘqWWD4G ‘DĄWp {^{d3 ‘ĘVD^Ę^Da }] ‘8 PDW0X@ {WD=WŢ <

ZŸ^D!< UDjWMPi }LDŃ{ ! ŰĘĄXnwŐW #3 ĹYX3ĎDQ { Č X X 3 Ď D W }iUD\b;WK ‘ĂFĆ

]WVD!<Eb" NkbxX8PDWUĆ ?tjWaWzPoP ->ĹYi}LD!<UD*Ę’ P ‘ŮyL{ XWWDHNcŻŮWv3e { VDŰĘte :ĘEbXŸiĽ ‘

Ę3bĹYzXcŻ

Y w Ŕ O Ÿ ‘VDct| WXŸŰĘCDu }8 PDWŮy / tjWŮW =JŇ ‘MWi}LD!<UDZ }?Ÿ^Ds}‘D!<UDjW]P’PŇ ‘ UDHNi }5 bX3zP

:Ęd3 ‘ĘzXĽ ‘ đXX3ĎD !<UD "{ ŮWVD^Ę^D5 #8 PDWcŻ ;Pa}v3Ş#i}LD!<UDj}B‘OŤ |}

QŸUDHN8PDWaWiĽZŸ ‘Ę; WzXuYZŸwŔcŸ !D+ GOŸdY :D^Ę^ DhWFŸibxXZp8 {ND!<ĹYUDJĘ ’ P ‘iĽZŸ ‘Ę;

WWDibxX@ {K‘i}LDŰ3Ű <ND4GŰ <NDu}ČrUD\b_W@{K‘zSK ‘?t: ĘhWzPŮyL { XWfQ8P8 {ND!<Ž#@{jWcŻ

YZŸFW ^D<bİŔ@{ uŸcŻuŸeE /{ ĹiUDu }8 PDW& Šv3d3 *<iĽĞ}ŸĘVD^Ę^D!<oP@{uŸ ,tZŸ ’P5iXŸFi ‘

ĘŐW]PX}ĎDzW

5_WĎD!<wŔ@{K ‘8 PDWŮyL {XWi} LDSbS {NDĂb ’PŔ3 ’ XX3WD ^Ę^D4GŰ <NDu} ČrUDu }L{uŸ!Dt3

YZŸFWmQ@ {K ‘8 P8{ND , Y1njWUD ^Ę^ D6ĘhW |WK ‘: ĘNDmPoPĹYVD !<Ž#Ţ<u> UDĚGuŸOŤ :5 Eb8P{D WĄ ##

UibVDŐ } ĹiOGhWOŤS { qWVDŐ }zP ^{] PcŻuŸ /{ ĹiĹYVDĹYL {OŸdY:D.}/ ŔEbqWVD ^Ę^Du}Ľ ‘{

DXŸŰDqPDW ‘ DİiĄY@ {K‘ZpP3ŤEWDĘ <5i: D6ĘhW |WK ‘: ĘNDmPoPĹYdŔ >#i}LDv3Ű <NDĚ}DD~Ę^Ds}‘D

!<UDŘG\ tkbNDHN8PP3WDĹWFŸiboPX }’XĄ5 ’P: DyDb3ĆŔ2b4Ÿ /{ ĹiUD ‘Ę8PDW ,tĞ}XW]PX}ĎDHNĽ

‘->ŰĘUDĆbw >x ‘: ĘqWVD =WdŔ;PC{uŸ! D Q Ÿ ‘MW8P{DS{:<i}!< Ebi }5bC8 ->ĹYVD4G ‘DŞ}VP*ĘĹY@{

K‘i}5 buY}ijW^DĄ }+} ĽF

A.4 Vector digraph Affine Encyphered Cyphertext

C V Vi3i3_Ĺ_Ĺ4Ń4Ń =F= FŠiŠijKjK ^X^ XĄ1Ą1t *t* wBwBŘ /Ř/-p-p7 ,7 ,%d% d Ž Ž ,w,w[d[

duĽuĽq4q4o *o* _Ĺ_Ĺt6t6Ő@Ő@h }h}]Ď] ĎŞŞŞŞpŢpŢ8J8JC #C#VpVpTETE ’Ľ’Ľ|-|-Ż]Ż] ŠZŠZđ ^đ

^X~X~YjYj?U? Urjrj_Ĺ_ĹŰđŰđPXPXwŤwŤ3939ĞŤĞŤTETEWĚWĚŇĆŇĆđ .đ .~9~9^ Č^Č.p.pŐ -Ő-

Ć$Ć$kokoTETE ,3 ,3Ÿ>Ÿ>ŮvŮv ,đ,đđ^đ^.t.t^n^n\i\i % %i?i? oorMrMoĂoĂ *Ĺ*Ĺİ

İ

YNYNDŇDŇDDHXHXŹIŹI <Ÿ<Ÿ(i(i’Ń’Ń \!\!:%:% JEJEMSMSfyfyFXFXzPzPCwCwH ^H^_Ĺ_Ĺ{B{

BgPgPkoko -§-§ntnt ’3 ’3 eŹeŹ"z" z Z B Z B Ľ 3 Ľ 3 m 8 m 8 Ÿ Ů Ÿ Ů p p ,c,cĹ~Ĺ~

OsOsoĎoĎDŽDŽ1İ1İŘnŘnF

162

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

F

XaXaŃlŃlĆ -Ć-g"g" NZNZy y ~9~9R/R/XaXa}t}tUŤUŤb <b<>3>3 z z6D6DJŞJŞŚŮŚŮ

m

mPČPČUGUG]e]e8 8 m

m

Y’Y’$-$ -3 @3@XaXajEjErjrj ,c, cŽŠŽŠ !=!=C/C/(@(@MŇMŇđ ^đ^_Ĺ_Ĺ^r^rN[N[t^t^u=u=nFnFDUDUČ

,Č, oĎoĎEĹEĹssss ^Ĺ^Ĺ$

$

3 @3@eOeOYgYg§9§9LĹLĹ6Ő6Ő4X4XyoyojajaĽ]Ľ]K4K4.Ť.ŤŤ

Ť

viviĆqĆqŸ (Ÿ(ŘCŘC"f"f${${2 j2jEŮEŮĂ -Ă- wŤwŤŹ_Ź_ !%!% Z8Z8n ?n?ŮwŮw\Ť\Ť/Ğ/ Ğ@Š@ŠzRzR1 }1}Ŕ

*Ŕ*ŸoŸo -z- zwBwBZ5Z5ŤcŤcMRMR ,v, vwŤwŤ Ě Ě-y-ykTkTk ’k’_Ĺ_Ĺ%§%§=N=NTETE ,Ů,Ů[d[dX~

X~U^U^i-i-X~X~ nVnVOeOeŇĽŇĽŻLŻL ‘n‘n~Ř~ Ř4l4lĽ {Ľ{Ŕ*Ŕ* ŸoŸog8g8zhzhR .R.

CWCW@Ż@ŻĽ3Ľ3W6W6$@$@ŔđŔđC [C [(?(? Ě§Ě§B \B\ Ę Ę Ť

Ť

ddŰđŰđŰBŰBX5X5bZbZŠ

Š

KoKoeŹeŹ ’3 ’3 ĘTĘTđĚđĚŹlŹlŸĄŸĄ2D2De§e§ĂŰĂŰĚ_Ě_TETE [%[%D>D> Ć n Ć n U U E .E. >[>[8 A8A

"

" YaYaŇĽŇĽf /f/ Ő0Ő0K [K[P,P,#,#, eOeOYgYg§9§9AjAj +Ż+ ŻiwiwİnİnŞŘŞŘŇSŇSČNČN #^#^

tĘtĘŸ§Ÿ§Ğ

Ğ

g?g? IđIđcncn ;Ż;ŻR^R^{B{B\İ\İđ^đ^ iĎiĎ_z_zŰ$Ű$f0f0 -Q- QKmKmTWTWđXđXČ7Č7 ;D; DMSMS ?^?^F

^F^H^H^%z%z‘Ů‘Ů.Ő. ŐFcFcAKAKS3S3 ^ ^Ď\Ď\p&p& LĹLĹAKAK ~ ~ I0I0XaXa8Č8Č$

$

}\}\ tŐtŐŹUŹUSESEbBbB§o§oŤ

Ť

163

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

_Ĺ_ĹŽRŽRqSqS ^ ^ Ť8Ť8_c_cH ^H^#Ž# ŽĄyĄyŐĂŐĂ§ -§- @ V @ V Ś o Ś o r j r j 6 _ 6 _ _ n _ n X X Z ;Z;đ^đ^~G~

GŇ4Ň4đFđFiBiBĹaĹa8n8n6L6LEŻEŻTETERjRjVzVzŹ§Ź§@Ÿ@ŸzĂzĂŹ ’Ź’

aDaD8Č8Č§r§r0Ţ0ŢrMrMU +U+ yCyCi)i)4l4l?Ż? ŻŃwŃwĄaĄat {t{TETE\l\l~Q~QkTkTk ’k’

vivifŹfŹŹŻŹŻeŹeŹŸuŸu +S+ S$@$@HŔHŔ !%!%& Ż& ŻađađFcFc ~Ń~Ńn(n(q q 6 Z 6 Z q D q D Ğ

Ğ

viviŽaŽa@T@TĎĂĎĂ@b@bĄŞĄŞĚ0Ě0pŢpŢgQgQvBvBĚoĚoS9S9 |c|c1 +1+ ĂfĂfŠ ^Š^TETEiziz ,Z,Zm~m~

Ě§Ě§$@$@8 ;8; Y YTETE0 }0}#^#^**** koko]K]K[y[yL:L: rMrMoĎoĎQMQM3T3TJŞJŞŽRŽRGeGe %

đ% đŮĹŮĹ ~o~o !%!%& Ż&Ż§Ť§Ťy -y -\6\6 vđvđTETEHŚHŚĎ {Ď{aKaK \~\~ dŠdŠl

l

~D~ DCQCQĎmĎmgPgP ? ? QjQjp3p3Ť ^Ť ^1}1} Ć|Ć| ŇPŇP_m_m /+/+ $Ő$Ő \+\+ iČiČŹuŹugygy }8}82(2(8

n8nĄ >Ą>fqfq +?+? D Ň D Ň p p Ă .Ă.§o§o&Ż&Ż1 }1} UgUgi)i)4 l4l4Ň4Ň !b!bL\L\ TETEY

Y

$ Ř $ Ř B B Š Ő Š Ő ^Z^ ZŤsŤs (I(I8

8

ĘDĘDDŽDŽS /S/ KĂKĂoĎoĎk1k1Ţ@Ţ@););ŚpŚp

Ĺ

Ĺ3o3onnT_T_S ’S’s:s:[<[< ŻŢŻŢpapa_Ĺ_ĹPŢPŢVtVt (B(B-Ĺ-Ĺa6a6 -p-p7 ,7 ,%d% dTETEy2y2G ’G’

ŽŢŽŢ;Ň; ŇĄeĄeĚ [Ě[!2!2 -W-WS ’S’Ŕ*Ŕ*§<§< qSqS@K@K /U/UĽ(Ľ(4 Ě4Ě

‘

‘P,P,đ^đ^@)@)AŠAŠ-§- §s3s3 !Q! QMsMsŇ }Ň}J{J{MŻMŻI >I>TETE?a? ap@p@ŹuŹuĞŸĞŸ |İ|İ?K?KĎ{Ď{

FXFXzPzPH6H6$

$

r rĚ§Ě§ z zđ§đ§ŤPŤP %;%; Z8Z8

’

’Ţ^Ţ ^}^}^+ Ľ+ ĽAjAjVpVpoĎoĎqĚqĚŻLŻLDDr§r§

Ĺ

Ĺ3o3onnT_T_i5i5x =x =?5?5

164

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

E

E2Ğ2Ğx ~x~t8t8 -" -"=đ= đŹuŹu1 }1} ĘzĘzŚİŚİSASAĘDĘDLFLFb !b!M

M

^§^ §XdXdŠ %Š%3 K3K2đ2đŇSŇSŮ :Ů :#-#- ĆqĆq_Ĺ_ĹE§E§ =N=NŞ >Ş>P(P(u u Ő-Ő-

Ć

Ć)k)k% % l l -o-oiUiUĎŤĎŤ -İ-İŠ(Š(UĎUĎeŹeŹ ’3 ’3đ^đ^ ŽRŽRNđNđŢŞŢŞŞ

Ş

OOOOŘĘŘĘ %c%c

Ĺ

Ĺ3o3oxOxON <N<ŐĚŐĚ) ’) ’6|6| Ő8Ő8ĂzĂzđ6đ6 =*=* ŚHŚHŹ0Ź0$Ť$ŤzŔzŔininŘ ?Ř? s3s3I0I0Ě§Ě§ ‘Ů‘

ŮŹoŹoVĚVĚzĎzĎŢ9Ţ9 *r*rŤ^Ť ^1}1} viviđIđIŽ_Ž_@9@9Ą5Ą5BkBk3T3TQŔQŔŹ /Ź/ŻaŻa=F=Fr -r-

bDbDŤ

Ť

rMrMŢgŢg #o# oImIm§w§wKŢKŢh]h] ĚİĚİŽĞŽĞ

Ľ

Ľ

Ĺ

Ĺ3o3oŇBŇBŃuŃu ! !@)@) qwqwxŘxŘJ]J]Z;Z;Ć|Ć| ŇPŇPqŻqŻĞ

Ğ

5353 AŠAŠKŢKŢrĽrĽŹŤŹŤĆhĆhnFnFp3p3SŹSŹELEL <Ÿ< Ÿ§Ť§Ť }Ţ} ŢQoQo1 }1} _Ĺ_Ĺ3K3KUWUW

Ĺ

Ĺ3o3onnT_T_Ğ

Ğ

ĞŞĞŞgĄgĄŘĞŘĞ %Ŕ%Ŕ’Ě’Ě~A~ AŇBŇBĆHĆH [Ĺ[Ĺ.c.c

B

B=F=FM

M

165

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

qSqS #^#^!-!-~ R~R z zĆxĆxTETE$3$3ĽŽĽŽxŘxŘ (’(’<B<BF~F~VrVr:V:VČ >Č >* * x t x t t ^t^

Ÿ Ÿ Ŕ Ć Ŕ Ć 1 § 1 § F c F c T E T E ,Ů,Ů[d[dĆ$Ć$Ů #Ů#%d% dTETEĽgĽgVrVr9 (9(TETELJLJ -a-

a7l7lĹBĹBi3i3_Ĺ_ĹŽqŽqfqfq <8 <8.Ő. ŐFcFcI§I§TETE5 :5: QrQr1 }1}9-9- teteVĚVĚ ’Ľ’Ľn}n}

ŇĽŇĽLcLcČSČS \|\|4 ‘4 ‘]9]9 m8m8m ’m ’%N%NŘ%Ř%Ş;Ş;N<N<ŠŐŠŐ^X^X}t} tČcČcŤXŤXŹuŹu1 }1} ,

c, clLlLİĞİĞm [m[3 T3T~Ĺ~ ĹŻaŻa =F=F%3%3 MRMRgĄgĄ)k) kĹYĹYĞ

Ğ

Ű@Ű@Ę4Ę4 ~T~T

%

%dŃdŃ

r

rTbTboŚoŚP <P< gĄgĄC %C% uhuhM

M

qSqS6b6bŃ Ń \C\C -% -%P

P

VTVT*Ž*Ž%Ş% ŞŠZŠZđ ^đ^ nĆnĆŤ

Ť

_Ĺ_Ĺlqlq1313 <Ÿ<Ÿ >1 >16Ă6Ă ’Ę’ Ęİsİs [Ĺ[Ĺ1 }1} a_a_&Ĺ&Ĺm ’m ’[H[H%3%3 QnQn -t-t (4(4! d!d[y[

yŹuŹu1 }1} YOYOhĄhĄ +.+. nnAŠAŠp3p3ŸjŸjR ^R^

1

1 ĹYĹYĞ

Ğ

EzEz

o

o*b* b§Ž§Ž {~{~ GŻGŻŘCŘC &Ĺ&Ĺm ’m’İŰİŰŘ <Ř< ĂnĂnZ5Z5FnFnYŃYŃĄİĄİS ’S ’\G\Gf*f*k/k/Ğ

Ğ

_Ĺ_ĹĹdĹdŸ6Ÿ6wŤwŤJŞJŞO /O/~g~ gĚ§Ě§TETEĂŐĂŐ "^"^đ^đ^

Ň

166

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

ŇR^R^H*H*-%-% sŚsŚKkKk &Ĺ&Ĺm ’m ’%N% NA§A§A !A! cwcw4X4XŠVŠV ~1~1l~l~ĎDĎDgygy <s<sR^R^%Ş%Ş

’Ě’ĚW@W@Ÿ >Ÿ >+s+ sbWbWqSqSA :A:x=x= lĞlĞ3K3K !Ŕ!Ŕđ^đ ^^#^# O OviviluluVJVJ_Č_Čl§l§

Ş Ş7M7MjEjErjrj &A&A

Ć

Ći6i61 }1} tNtN /;/;) _)_Ť

Ť

Ŕ_Ŕ_gPgPŮOŮO ^,^,2 j2jEŮEŮĂ -Ă-H%H%F)F)bČbČ^n^n

Ľ

Ľ

Ĺ

Ĺ3o3oMkMkVpVpoĎoĎo [o[Ę^Ę^ ĹDĹDl8l8P .P.a[a [%;%; R^R^;Ŕ;Ŕ<s< sŠRŠRv =v= e Ź e Ź R J R J v v (’(’

F"F"

Ĺ

Ĺ3o3oŤ [Ť[f fKŢKŢ3l3lvĆvĆoĎoĎVAVAfqfqŽEŽEđ0đ0JŸJŸo7o7ŹuŹu %d% dđeđeoĎoĎlĞlĞ }(}(4

X4XŹuŹuĚ§Ě§8 8 q(q(ŽxŽxŸ§Ÿ§ŸBŸB ^Ű^Ű

<

<IWIWŤ

Ť

S’S’s:s:[<[< DDJŞJŞ -Ň-Ň1 }1} §Ć§ĆMŻMŻĂIĂIbČbČĽ3Ľ3İŇİŇg

g

JĚJĚ|H| Ho9o9Ů #Ů# cjcjhŻhŻ ;Ŕ;Ŕ%Ŕ%ŔŐ ’Ő ’2 h2hjajaK [K[9 Ž9Ž|Ž| Ž Š Š Š Š t z t z $ $ >W> Wfdfdp ~p

~&^&^ ŰoŰoVĚVĚeyeyiŔiŔ &Ż&Ż%d%dPlPlİ -İ- b B b B ^ ^ Ť8Ť8_c_cImImĆCĆCa <a <5 Ű5ŰTETE ![![

2 2 Ń y Ń y 1 }1} ,c, clLlLİĞİĞ9Ž9Ž)Ţ)ŢQ)Q)ŇDŇD]]v>v >:0:0 KŢKŢO ,O, TuTu1414H *H*đ^đ^

@đ@đ9Ž9Žc +c+ MŞMŞŤ

Ť

l l ŘĘŘĘŻ {Ż{PČPČ O OlĞlĞ](](xhxhnQnQvĽvĽEDEDŤ

Ť

167

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

&A& AqŞqŞ@Š@ŠŢ Ţ ŹWŹWwŤwŤaqaqf8f8ŽxŽxmŐmŐ "C"C]e] eZxZxnQnQiNiNT

T

k{k{ FZFZgQgQŽQŽQFnFnqSqS #^#^

Ż

ŻZkZkĄ >Ą>V

V

)o) oSKSKzĂzĂ9Ž9ŽkckcnVnVŤ &Ť& $ $ Ę Ę S *S*%đ%đ :^:^2 f2f§o§o ,3 ,3t.t.O!O!dOdO /{/{Ť

Ť

A A GwGwkkiwiwŹRŹRgĄgĄDD }g}g ’" ’"} -} -P.P ./*/* ŸoŸog8g8đ ^đ^!W!W+/+/ rĎrĎ]K]K

!7!7&*&*+ İ+ İ6Ě6ĚsQsQ_Ő_ŐĚŃĚŃ§ /§/-%-% QKQKŮgŮgĹxĹxinin

Ź

ŹasasJ9J9 *k* kOđOđGŽGŽ

C

C $ $ § 1 § 1 -Ĺ-Ĺi)i)4l4lZ\Z\ ŢgŢgDD Ě Ě -| -| ŠjŠj9Ž9Žx ~x~F;F;?o?os2s2 ’U’UE?E?<B<

BbBbB§o§oŤ

Ť

lĞlĞPŢPŢ ?F? FŐĞŐĞ)u) upapađ ^đ^ Q M Q M Ć Ć E X E X đ T đ T }X} Xe§e§oUoUk9k91 }1} lĞlĞŔ *Ŕ* ŸoŸoC ~C~

nQnQluluLNLNŰ "Ű "%[%[]?]? $3$3ĽŽĽŽ@T@Tgygy +<+<5 j 5 j Ć Ć T E T E |q| qIkIk5c5c &p&

pKŢKŢrŞrŞTŮTŮmQmQ % % |Ř|Ř%d%dŻ{Ż{}g}g"{"{Y Y $Ű$ŰjZjZaeael§l§ Ş

ŞMoMo8y8yŻŮŻŮL \L\GIGI (9(9- o- o Č o Č o 5 j 5 j Ć Ć Ż {Ż{ O OT~T~ ĆĄĆĄŠŠŠŠSSSSk >k> b1b1ĚRĚR

=c= c2X2XxnxnMYMYl§l§ Ş Ş I I _ Ő _ Ő s -s- wĚwĚ8k8keeŸŢŸŢ %[%[

f

fJpJp1 1 Ă-Ă-V^V^Y Y ađađp)p)

W

W2 ?2? _Ĺ_ĹPŘPŘŸ >Ÿ >%[%[,w,w

B

Bl§l§k ’k’zlzlS ’S’ŐŇŐŇ\I\I\X\ X§j§j3Ţ3ŢQĄQĄŔ_Ŕ_oĹoĹ$Ń$Ń

168

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

r

rŇMŇM3Č3ČKkKkqSqS ~r~rz}z}}t} t9§9§MŢMŢXŽXŽŰ +Ű+X)X) kđkđŹuŹuĚ§Ě§anan)7) 7#l# lİGİGE1E1

\w\ wPČPČ =W=W{.{. JĘJĘoĹoĹ3j3jŽSŽSĆnĆn (Y(Y1N1NA #A#/Ş/Şi;i;Ť:Ť:<Ň<ŇI >I>TETE ‘Ő‘ŐŘ

}Ř} ČpČpĘkĘk)L) LađađFcFcm_m_

>

>(Q(QQ_Q_ -Ğ-Ğ>c>c;Ŕ;Ŕ9 ;9;&N&NŤ&Ť&Ľ3Ľ3m8m8m ’m’ g g V N V N Ş E Ş E s -s- $Ă$ĂKgKgQYQY ‘ ‘ ŮUŮU

^+^+/%/% xŘxŘĄİĄİ_Ĺ_ĹS -S- FnFnqSqSBwBw ;b;be*e*|Ţ|ŢŤŇŤŇ -% -% vZvZ

Ą

Ą.c.cĂ)Ă)z;z; _Ĺ_ĹQSQSmsmsTbTb1 }1} vivi}V}V"K" K$Ő$ŐOfOf Ž ŽĆ >Ć>x~x ~?=?=

qdqdtŐtŐŹUŹUSESETETEFRFRk9k9 ;Ň; ŇĄeĄeBŸBŸO8O8 &#&#(Ŕ(ŔĽBĽB {W{ WA§A§ [Ĺ[ĹĂŐĂŐUmUmŔ

’Ŕ’Ě§Ě§ Ş ŞŢ;Ţ; c b c b h B h B o Ď o Ď G G T F T F T E T E !;!; 2 2 Ń y Ń y 1 }1} lĞlĞw4w4ŚqŚqtŤtŤhdhd

?7?7$&$&%w% wVŃVŃŮdŮdŠ ’Š’ VtVtAbAb #§# §7z7zŠ ^Š^=C= CjhjhŇ {Ň{I{I{Ź-Ź-DzDz

’^ ’^=/=/[-[- ĄŔĄŔŐ -Ő -;Ŕ;ŔdIdIŠ ’Š’OMOM =*=* LcLc;§; §ŹuŹu &Ĺ& ĹYKYK6x6xL *L* ĄĘĄĘwŤwŤ

Ě Ě2 >2 >#^#^*Ž* ŽŸŮŸŮXzXz |P| P Ź u Ź u ^ ^Z,Z,Ś

Ś

;R; R§Ť§Ť5757 ‘ ‘>[>[5 y5y{m{m%{%{ ŞđŞđy y hYhY@ ,@ ,*Ž* Ž Ÿ Ÿ >[>[k>k> $Č$Čs -s-

ŹŤŹŤ5M5MsisiyoyomCmCČCČC ,. ,. GwGwVtVtIŽIŽ8$8$ĹNĹNk ’k’L#L#Ţ=Ţ=,_, _bHbH6x6xWcWc

^ ^{I{I^_^_ĘxĘx ,Ř, Ř4Ň4Ňg8g8 =^=^

đ

đoĎoĎ #s#sC!C! Ć6Ć61 }1} ĹFĹFŰ ?Ű?b!b! ((Ŕ

Ŕ

Ÿ Ÿ 7 q 7 q k Q k Q A _ A _ f "f" i3i3qĚqĚjČjČŮUŮUŢ5Ţ5UFUF -Ů-Ů#&#& Ž Ž6Ę6ĘŸŮŸŮXzXz6Ź6ŹN <N<’3’3Ÿ

[Ÿ[fqfqksksfqfqŠ ^Š^ ŚĞŚĞRŻRŻSESETETE "V"V% % l l ssss.X.X9 {9{I{I{Ŕ#Ŕ#G|G|iwiw

!!!! ĄkĄkŚŠŚŠ

%

%/Ğ/ ĞZĽZĽŸŮŸŮXzXz0404 -0 -0 TETE :^:^ TETE=W=W{.{. JĘJĘoĹoĹH %H%

Ĺ5Ĺ5uđuđŹuŹuĚ§Ě§SiSiĆiĆiR ^R^ DDP5P5 =đ=đ\‘\‘KoKoN <N< DDJŞJŞBŤBŤQ9Q9

169

A.4. VECTOR DIGRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

B

B;h;hĆ]Ć]eŐeŐ ,Ř, ŘŹŻŹŻđ ^đ^8 Ů8ŮXzXz &Ğ& ĞhBhBTETEueueTETEn)n)Ÿ>Ÿ >%[%[~ r~r"m"m|Ğ|Ğ/O/

OuĽuĽ6Ż6ŻLĄLĄ ^Ĺ^Ĺ&Ĺ& ĹyDyD [Ĺ[Ĺc c 6-6-FFFF <Y< YĘxĘxiwiwRŐRŐSiSi *,*, lĞlĞ"k"k}R}R

*Ž*Žđ^đ^ Ę_Ę_ŔHŔHc *c* ĹGĹGFyFy@ {@{=đ= đaqaqĘ2Ę2r +r+eŹeŹ?Ě? ĚQTQT1 }1} yOyOtUtUđ ^đ^

yAyAI3I3tbtbR \R\P5P5|f| fŹ$Ź$DD "

"

LKLKg g fufu

Ć

ĆG=G=-p-pŃ ,Ń,c c BĄBĄ~N~ NČ7Č7)u)u<e<e‘$‘ $ŹuŹuađađŐ3Ő3Q ,Q,

Ż _ Ż _ K o K o 8 Ů 8 Ů p p _ Ĺ _ Ĺ a _ a _ 1 }1}?^?^:

:

t4t4mZmZi3i3Ÿ ’Ÿ’ i3i3TNTN \Ę\Ę"K"K&Ĺ&ĹŸ?Ÿ?M

M

đ4đ4n4n4cĄcĄAaAaĎ {Ď {"""" oĹoĹwŤwŤ &~&~4 P4PLJLJ -K-K[o[oyXyXDcDcW]W]:Ď:Ď++++ ‘l‘lĂ)Ă)

ŸjŸjn [n[Z8Z8yYyY

"

"5 Ş5ŞTETEwewe4P4P§Ž§ŽĄĘĄĘwŤwŤ9§9§Ń Ń Ğ

Ğ

_Ĺ_ĹA§A§TŘTŘŠ ^Š ^%[%[ŢgŢgi ?i?đFđF#@# @i3i3_Ĺ_Ĺptptađađ (U(UTETE +Ń+

ŃhŐhŐ2b2bwŤwŤŹ_Ź_dXdXb !b!Š^Š^TETEiziz ,Z,Z\G\ G_Ľ_Ľ &Ń&Ń!9!9

o

o

^

^p)p) ĂĘĂĘŐŤŐŤMSMS ,c,cf~f~4 P4P§9§9A /A/ r raŹaŹ@Ŕ@Ŕb %b% ĎŤĎŤĘCĘCŰcŰc #^#^|+|+ Ě§Ě§%w%

wFnFnYŃYŃLJLJĎ .Ď.XaXa}t} tUŤUŤĘ8Ę8i)i) CŔCŔŸ [Ÿ[I§I§I ?I?wZwZ -% -% eŹeŹsqsqvŇvŇ5

/5/7 _7_ađađ -t- tmQmQuĂuĂJŸJŸ@1@1]K]K-_-_Ő -Ő- HNHNRgRgrMrMĚ§Ě§TETELJLJbVbVŻzŻz

^#^# a2a2BoBok ’k’đ^đ^ ĘCĘCŰcŰc #^#^ ‘N‘ NOtOtŇBŇBŃuŃu8Š8ŠŻLŻLMSMS$Ğ$ĞI3I3đ ^đ^A[A

170

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

[%;%; R^R^ ŐpŐpVAVAfyfy =đ=đ9Ś9ŚŢ ‘Ţ‘ŘCŘCoĎoĎ ,h,h=c=ct?t? nnnnŚŔŚŔ ?|?|t?t?") ")

WQWQNMNMzĂzĂkkiwiwĆqĆqĽ .Ľ. CSCSađađFcFc /Ť/ Ťf0f0 ?5?5*+*+ hŽhŽ ;,;,*b*b&Ř& ŘBĄBĄA

[A [%;%; R^R^ ŐpŐp1V1Vs2s2 "%"% ĎŤĎŤU]U]~^~^ Ğ

Ğ

_Ĺ_Ĺ|O| OTŽTŽH *H*S’S ’#w# wŇĆŇĆĆYĆYKŢKŢŻ@Ż@ĆhĆhŮ :Ů:3 V3V

&

&TETE~Ń~ŃŃ?Ń?Ő-Ő- XŽXŽZ (Z(‘n‘ nĆŐĆŐ3737FŢFŢ [?[? ŠoŠoJŸJŸsAsAoĎoĎ \Ğ\ĞU}U }+!+!~ v~

vMUMUfĚfĚ K KWŽWŽ =*=* @Ŕ@ŔwĚwĚ9f9fN3N3ak

A.5 Vector 4-graph Affine Encyphered Cyphertext

V8Gi322_ĹĂ24Ńs != FKKŠi .NjK\m^ X2ŢĄ1 ">t* _cwB6ŞŘ /:} -p>o7 ,7W% d 6 6 Ž 7 &,w=^[d ~uĽ^ đq4XĞo

*~ F_ĹĂ2t6ĄŠŐ@rPh }(L]ĎŐ < ŞŞŃgpŢ &\8 JUPC#<uVp~cTEvŇ ’Ľ§ }| -^0Ż] b Š Z [[đ^’GX~ EVYjX !?

U%ŹrjĘ? _ĹĂ2Űđp8PX§ ‘ wŤcn39ĚAĞŤ / RTEvŇWĚStŇĆ4Yđ .X1 ~9;

^Č

Ą.p

ŃŐ -B]Ć$ ’fko§dTEvŇ ,3mnŸ >ZoŮvŰz ,đD

đ^’G.tqĄ^nde\igK %d[i?* Żo$ĎZrMWjoĂ$ "* ĹŽŸİ

qvYN?EDŇŹID$ -]HX ,] ŹIĽĄ <Ÿ7Ď(iĞĹ ’ŃU ~\!4Ť:%Y’JEl

MS ‘Ffy;

FXSRzPm ?Cw-@H^< A_ĹĂ2 { BŸMgPĚUko§d -§Ś ‘ntĚg ’3 m0eŹŐđ " zYNZBt1Ľ3 -Em83: ŸŮŐ§ pŚu ,cĽzĹ~g’

OsB§oĎ .RDŽ}Ď1İĘ+ ŘnxmF

ČcXa*,ŃlŸ:Ć -/2g" nĂNZF5y 1Ź~9;

R/n!Xa*,} tŔpUŤiAb <S$ >3 § zgg6DqČJŞXMŚŮcg

mDĆPČfŔUG)Ď]eg$8 1Bm

[tY ’bW$ -Ńz3@ &2 Xa*, jEKRrjĘ ?, cĽzŽŠ$Ś !=t-C/(p(@İFMŇl$đ ^’ G_ĹĂ2 ^r+jN[Žat ^? qu= @KnF8 .DU;

Č ,8 joĎ. REĹpQssPŇ ^ĹŠŤ$

+:3@&2 eOČĂYgŤ7§9 (ŃLĹ -"6Ő;z4XŔ" yoŇbjaKsĽ]- _K4_V .Ť

171

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

uŤ

*uviŃ

ĆqĹĘŸ (mYŘCcE "f%-${j72j) NEŮŚŔĂ -X. wŤcnŹ_q5 !% x Z 8

Ŕn?FŚŮw >#\Ť=z/ ĞnL@ŠŇĄzR /X1}pđŔ*UŮŸoŹH -zAvwB6ŞZ5 <

ŤcŽEMR_ =, v9pwŤcn ĚEG-yŸkkThŠk ’ ĞL_ĹĂ2 %§gr=NT&TEvŇ ,Ůİđ[d ~X~EVU^Š"i-<vX~ EVnVUŘOe |9

ŇĽ"XŻLGĘ ‘n$g~ ŘŠŻ4lĘaĽ {s.Ŕ* UŮŸoŹHg8gđzh (ŤR.y| CWHv@ŻpČĽ3 - E W 6 Ř $ @ L \ ŔđŚĎC [qĚ (?%

FĚ§6BB \ a đ Ę j Q Ť

*ud$ < IŰđp8ŰBmPX59ŇbZCĄŠ

TsKo -| eŹŐđ ’3 m0ĘTfSđĚŢđŹlAiŸĄĹ ;2 DvĹe§Ĺ

ĂŰH_Ě_ŃnTEvŇ [% ’D>l)Ćn ‘} U đ @ E .n > >[}Ş8A ,X

" onYaŤ_ŇĽ_8f /dxŐ0 =;K[Ż(P ,~Ţ#, xJeOČĂYgŤ7§9 (ŃAj0R + ŻŔ_iw

6 İn§ŚŞŘ ^. ŇSN_ČN$6 #^2*tĘ , ŞŸ§ZŮĞ

ŸĂg?KĹIđ~ jcnmp ;Ż1mR^§C{BŸM\İ{Sđ^’ GiĎhŔ_zV4Ű$ &wf0mČ -QdŮKm7 > TWF3đX1ŃČ7 [#; DŔVMS ‘F?^

MuF^w-H^<A%z-y‘ŮAŐ.Ő,pFcT(AKe$S32 | ^% jĎ\wZp&ŢPLĹ -" AKe$~ A t I 0 T X a *,8 ČŸN$

+:}\{\ tŐvxŹU >ŃSEF

bBŻr§oŮ ‘Ť

* u_ĹĂ2ŽRo8qSza ^% jŤ8

Q_c9ĹH ^<A# ŽŽ§ĄyŞ_ŐĂ /3§-Xd@Vx ’Śo ĘrjĘ ?6 _Śf_nx \ X M Ć Z ;Śyđ^’G~ GKĞŇ4 ; VđF67iBfFĹaĄ58nT

/6 Lu|EŻ ^7 TEvŇRjvdVzBMŹ§sJ@ŸArzĂĹ ^Ź’ĹFaD .78 ČŸN§rN *0 ŢUŮrMWjU +J

yCĆŻi)% v4lĘa ?ŻŻ ‘Ńww ’ ĄadŮt { ĚrTEvŇ \lMŔ~QŘĄkThŠk ’ ĞLviŃ

fŹ"ŽŹŻh: eŹŐđŸuŚđ +Sb.$@L\HŔ?Ž!% x & Ż u a đ .rFcT (~ ŃŽĹn(C p q Ş J 6 Z : tqDvŸĞ

ŸĂviŃ

ŽaD >@TIvĎĂ << @bD5ĄŞj_Ě0 ^gpŢ &\gQJ -vBG; Ěo@ĘS9ĄU |c$Ő1+ Ĺ_ĂfŮHŠ ^. mTEvŇizĞ +,ZVKm ~.[

Ě§6B$@L \8;M^ Y=~ TEvŇ0 }Ůj#^>Ż**q

ko§d]KĞX[yb5L: vMrMWjoĎ . RQM4Ń3TŻĆJŞXMŽRo8Ge8K % đŃYŮĹ =M~oK ,!% x & Ż u § Ť Ş &y-Pw \6

ŠWvđ69TEvŇHŚ ŸĎ {x?aKĽ |\~"[dŠS^l

/+~ D§TCQ4 ?Ďm+mgPĄ ’ ?{ OQjŃ! p3E6Ť ^- Z1}pđĆ |# DŇP

172

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

u_mp "/+ GM$ŐĎ3 \+1 ZiČr+ŹuU ‘gy (!}8 wH2(ŐĄ8nT /Ą> Ővfq4u +? l 5 D Ň Ź I p Ŕ ~Ă.t[§oŮ ‘& Ż u 1 }

pđUgŰŮi)% v4lĘa4ŇA ^!b>LL\ BŻTEvŇY

7+ $ Ř W R B S =ŠŐgĚ^ ZlkŤsMB (Iđ 8

Ň Ę D ‘- DŽ}ĎS/ GUKĂŸ

oĎ.Rk1{ AŢ@ph); gĂŚpĚ4

Ĺ\,3 oOtn$)ŘT_Š+S’WDs:J-[<W&ŻŢ epaŘc_ĹĂ2PŢ ;3 VtWz(Bx ‘-Ĺ%1 a6Ţv -p>o7 ,7W% d66TEvŇy26FG

’/ ĂŽŢk !; ŇIrĄe87Ě [Ňe !2Űp -WŰ&S’WDŔ*UŮ§ < R$qSza@KEv /UĹAĽ(Ąs4Ě ’‘

‘A9P ,~ Ţđ^’G@) kBAŠe /-§Ś ‘s3Z)! Qc6MsbJŇ }3 CJ{ŚŹMŻNŻI >f

TEvŇ? a4Gp@ĚŽŹuU ‘ĞŸlĘ|İ&x?KckĎ{x? FXSRzPm ? H61$$

?\ rŚ Ě§6B zY

đ§Ğ|ŤP |\%; ZŽZ8

Ŕ

’(FŢ ^7I}^ bZ+ ĽVzAjoĚVp ~coĎ.RqĚ <[ŻLGĘD$ -]r§X -

Ĺ\,3 oOtn$)ŘT_Š+i5B >x=Kg ?5 Ě

EŐ

2Ğ6Żx~ŔĽt8Cđ -"B%= đsİŹuU ‘1} pđĘzK &ŚİŇ/SAzuĘD ‘- LF71b ! EM

x-^ §1XXdŢ9Š % Ľm3KOŇ2đ

ŇSN_Ů :fj #-C!Ćq ‘Ź_ĹĂ2E§ ’R=NT&Ş>Š

P(V:u (xŐ -B]

Ć/Ů)kŤ &% Ę _ l 7Ž-o‘ĎiUŠOĎŤM5 -İŚŹŠ(Ď U Ď p |eŹŐđ ’3 m0đ^’ GŽRo8Nđ ŢŢŞtBŞ

ŘuOOz ‘ŘĘr /%c:&

Ĺ\,3 oOtxOŽCN <} ŮŐĚ9U)’BJ6| zxŐ8Ć ;ĂzŘ!đ6MĂ =*# EŚHŮĹŹ0VŞ$Ť -" zŔŞuinĆZŘ ? GQs3Z) I0T Ě§6B ‘

ŮAŐŹonNVĚPdzĎ9oŢ9@O *rxPŤ ^- Z1} pđviŃ

đInrŽ_

Ň@9{RĄ5 ‘9 Bk6$3TŻĆQŔ =

Ź/(bŻa <{= FKKr - ŘJbD2xŤ

* urMWjŢgnŠ # oqŞIm4Ů§wUmKŢgDh]> Ě İ Ě 3 Ž Ğ C ;

173

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

Ľđ)

Ĺ\,3 oOtŇBx0ŃuĆ1 !ŤT@) kBqwŠ [xŘĄFJ]qŠZ;ŚyĆ |# DŇP

uqŻŸĆĞ

ŸĂ53đ]AŠe/ KŢgDrĽ {vŹŤ|xĆh)<nF8. p3E6SŹTBEL ^Ż< Ÿ7Ď§Ť3 &} Ţz+QoV }1} pđ_ĹĂ23KOŇUW &^

Ĺ\,3 oOtn$)ŘT_Š+Ğ

ŸĂĞŞ^sgĄ* ĎŘĞKG %Ŕ^2’ ĚŸK~AĹ

ŇBx0ĆHnG [ĹK %. c$

B~Ď=FKKM

VbqSza #^2*!-7 i~Rmj zY

Ćx1(TEvŇ$3Ą6ĽŽŮyxŘĄF (’-R<Bv9F~ŃzVr\U:VuJČ >2(* Č ‘ xtSzt ^ Ż Y Ÿ A b Ŕ Ć ~*1 § g F c T (TEvŇ ,Ůİđ[

d ~Ć$

ŻŮ#İ]% d66TEvŇĽg6WVr ;Ć9(Ő+ TEvŇLJ5Ž -a^J7lF[ĹBČ i322_ĹĂ2Žq

;fq§đ <8 Ži.Ő,pFcT(I§ ,^ TEvŇ5 :: ĘQrQ [1} pđ9- [te [) VĚPd ’Ľ§}n}Ź^ŇĽ" XLcdnČStĚ \| x 4 ‘OD]9

ŇŻm83 :m’hf%NĞIŘ%ŞXŞ;AŰN <} ŮŠŐgĚ ^X2Ţ} tŔpČc

ŮŤX/NŹuU ‘1}pđ , c Ľ z l L E İ Ğ Ğ]m[\]3 TŻĆ~ĹY{Ża <{= FKK %3, MR_=gĄ*Ď)kŤ& ĹYOŔĞ

ŸĂŰ@k (Ę4 ’4~T-|

%ŇidŃ:Z

rŠ6Tb ’\ oŚ*EP <z&gĄ*ĎC% ĎmuhŹŮM

VbqSza6bĞRŃ ŻČ\CŠ / -%- ŸP

ĘhVT/D*ŽRŮ% Ş@VŠZ [[đ^’GnĆr.Ť

* u_ĹĂ2lqrs13O }<Ÿ7Ď >1d:6 Ă2-’Ę|. İs%Ę[ĹK %1} pđa_ .6& ĹŢMm ’hf[HĚ9 %3, QnŞ]-toĂ (4:Ą!doŢ[

yb5ŹuU ‘1} pđYOS *hĄĄ #+. ĘŠn$)ŘAŠe/ p3E6ŸjhĎR ^§C

1Ű^ ĹYOŔĞ

ŸĂEz7 -

o=Ň*b’R§Ž6 :{~ TcGŻŸtŘCcE &ĹŢMm ’hfİŰ§ĽŘ <nuĂn=$Z5 <

FnlŹYŃRĘĄİx .S’WD\Gj-f*E&k/x(Ğ

ŸĂ_ĹĂ2Ĺd % ŐŸ6QŤwŤcnJŞXMO /xu~gU) Ě§6BTEvŇĂŐVx "^?3đ^’G

174

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

Ň\PR^§CH*ČŚ -%- ŸsŚCLKk ?Ą&ĹŢMm ’hf% NĞIA§CĆA !4 OcwQ84XŔ "ŠV%Š~1 Dzl ~" ŃĎDŠ.gy(!< sŤnR^§C%

Ş@V ’ ĚŸKW@ ;ŞŸ >Zo+ sBnbWs3qSzaA :

Őx=KglĞ(k3KOŇ !ŔĎ:đ^’G^#r! OJŔviŃ

lu! hVJIĹ_ČIfl§ ,h Ş=&7 MK$jEKRrjĘ ?& A u

Ć/ Ůi6po1 } pđtNJX /;2O)_>NŤ

* uŔ_ŔIgPĚUŮO >+^,-’2j) NEŮŚŔĂ -X.H%% ŇF)z*bČĄ -^ nde

Ľđ)

Ĺ\,3 oOtMkĂŞVp ~coĎ.Ro[NĹĘ^KcĹDG >l8F%P.Ř)a[6w%; ZŽR^§C;Ŕ:I< sŤnŠRXiv =Ę% eŹŐđRJIN vxĽ

(’-RF "}-

Ĺ\,3 oOtŤ [{ q fŤ1KŢgD3lfbvĆKŠoĎ .RVA > Ůfq4uŽEŇ } đ0ŠĞJŸQ0o7§cŹuU ‘% d66đe ’ŮoĎ.RlĞ(k}(o[4

XŔ"ŹuU ‘ Ě§6B8 1Bq(§SŽx~ _Ÿ§ZŮŸBEl ^ŰSŞ

<0ŮIW=TŤ

*uS ’WDs:J-[<W&D$ -] JŞXM-ŇŢĄ1} pđ§ĆđZMŻNŻĂI .hbČĄ -Ľ3-EİŇ ?2g

X JĚŚ7| HĚ6o9ŠDŮ #İ]cjh >hŻMS;Ŕ:I%Ŕ=vŐ ’ đ02hŤkjaKsK [§-9 ŽŻV|ŽC) Š Š 1 0 t z @ Ż $]%> W6Ľfd { p ~

t&^#1 Űo6

VĚPdeyŇ_iŔŃN & Ż u % d66Ple :İ- c Ĺ b B c 6 ^% jŤ8

Q_c9ĹIm§ ’ĆCpĂa < VY5ŰlfTEvŇ ![j 2 2 ,IŃy@ /1}pđ , c Ľ z l L E İ Ğ Ğ]9 ŽŻV)Ţ,qQ)ŘĞŇD+Ň]:*v>ŃS :0

SDKŢgDO ,‘& TuŰH14Ę8H *ČŚđ ^%. @đka9ŽŻVc +^ ĄMŞe}Ť

*ul [: ŘĘr/Ż{ ŞDPČfŔ OJŔlĞ (k](/{ xhM3nQĹ4vĽrŽEDHRŤ

*u& A u q Ş J o @ Š Ň Ą Ţ , YŹWrqwŤcnaqđ +f8] ŤŽxŞNmŐAđ "CRm] eftZxFenQĹ4iNŹrT

ŰŢk{riFZ] g Q J -ŽQn - Fn6LqSza #^2*

ŻMŰZkf ,Ą>U*V

pA)olrSK ,ŢzĂĹ ^9 ŽŻVkcFAnVUŘŤ & T Ş $]% Ę y +S*Ń)%đŃY :^~%2 f3r§oŮ ‘,3 mnt.ŇCO! Ę6dOuĞ /{9 JŤ

* u A n ^Gw %% $kq2iw

6 ŹRkqgĄ * ĎD$ĄB }gfO ’" N@}-b|P.Ř)/* ŢwŸoŹHg8gđđ ^’G!W

K+/92 rĎĘ ?]K (]!7"+&*66+ İ

(6 ĚĎ1sQrq_ŐvpĚŃŸđ§ /&c -%- ŰQKbwŮgyxĹx +zin }6

175

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

ŹDŃasd4J9)Ń* k Ę O đ Š Ň G Ž Ă j

C#/ $]% §1s=-Ĺ%1i)% v4lĘaZ \ o ŢgnŠD$ -] ĚEG -| AwŠjNZ9ŽŻVx ~ŔĽF ;#3? oŮws2K5 ’U(;E?zĆ <

Bv9bBŻr§oŮ ‘Ť

*ulĞ(kPŢ ;3?F& JŐĞĎm)u\? paŘcđ ^’ GQM4Ń ĆkxEXPBđT@$ } XŘ8e§Ĺ

oUbŰk9yŻ1 }pđlĞ(kŔ* UŮŸoŹHC ~ LLnQĹ4lu ! hLNŸŻŰ "?v%[E]?Ż‘ $3Ą6ĽŽŮy@TIvgy (!+ < ŮĘ5j§ }

Ć k x T E v Ň | q9§Ik -đ5ch ;& pđSKŢgDrŞx < TŮhČmQv ^% Ę _ |ŘĞŽ%d66Ż{ŞD}gfO "{ xPY f3$Ű

*jZT , a e 8 l § ,h Ş=& Mojj8yŢŻŻŮĘ_L \ BŻGIS

(9*P-o‘ ĎČoŤd5j§ } Ć k x Ż {ŞD OJŔT~§qĆĄ(ĽŠŠ10SSs3k >" b1=NĚR -Ż= cYD2X &<xn2 -MY]Ťl§ ,h Ş=&

I f , _Ővps -~ §wĚ8 ;8 kEoe$ ŠŸŢ]S%[E

fP ‘ JpdŔ1 ŸzĂ-X.V^kSY /? ađ.rp)FŸ

W,Ě2? nu_ĹĂ2PŘ1ŐŸ >Zo %[E ,w=^

BfNl§ ,hk ’ĞLzl %[S’ WDŐŇhd \IT ‘\ XĞ$§jfT3ŢpmQĄkŽŔ_ŔIoĹmŢ$ŃZŽ

rŠ6ŇMČ ‘3 ČqBKk ? ĄqSza ~rT@z}ŔŰ} tŔp9§ĄUMŢ]> XŽSŚŰ +JaX)ŰŘkđWwŹuU ‘ Ě§6Ban .6)7ŇS# lHBİGq ^E1

&w\ wŤkPČfŔ =WmL {. $ĚJĘŃ6oĹmŢ3j ,ŽSJĽĆn ‘}(YŠp1NŽŸA #a9/ŞYŢi ;<*Ť: Ź <ŇČ2I >f

TEvŇ ‘ŐPtŘ} xĎČpX0Ęk9 =) LZ;ađ.rFcT(m_4j

>4e(QnĞQ_ .-ĞHF >cbĄ;Ŕ:I9 ;9 ,& Nx5Ť&KĞĽ3-Em83:m’ h f g ! ŹVNŐwŞEs6s -~ §$Ă! ČKgŠGQYo {‘

EŐŮU6 |^+ _k /% _LxŘĄFĄİx . _ĹĂ2S -c, Fn6LqSzaBw %B; b 6 e *s}| Ţ5YŤŇ99 -%- ŸvZL@

ĄHb.c$ Ă)Ńrz; Cq_ĹĂ2QSCamsĞŚTb ’\1} pđviŃ

}V+v" KĎŹ$ŐĎ3OfŻl ŽoŮĆ >W3x~ŔĽ ?= Z9qd[htŐvxŹU >ŃSEF

TEvŇFRo§k90Ŕ ; ŇIrĄe87BŸFkO8E {&# DĹ(ŔqŔĽBŞA { WuĘA§CĆ [ĹK%ĂŐVxUm -ŽŔ ’ wdĚ§6B Ş=&Ţ;: jcbQ -

hBPmoĎ . R G Ď Ř T F : ŻTEvŇ !;

r 2 ,IŃy@ /1} pđlĞ(kw4RXŚqwŇtŤqihd ’ >?7

Q$&D@% wđRVŃtŚŮds -Š ’= ĚVtWzAb -k#§G "7 zv

Š^.m=CyĎjhĽ ,Ň{5 zI {* bŹ -:kDz ‘Ń ’^ HŹ =/ TN[-’ ĄŔS"Ő-B];Ŕ:IdIŠ Š ’= ĚOMk4 =*# ELcdn ;§^!ŹuU ‘&

ĹŢMYKrO6x)$L* UZĄĘŞ7wŤcn ĚEG2 >wE#^>Ż* ŽRŮŸŮŐ§Xz@i |P-đŹuU ‘ ^3GZ ,IYŚ

rs; RgĞ§Ť3 &57W! ‘UŹ >[Ře5yPo {mMĆ %{%\ Şđ2Jy 1ŹhYr0@ ,+Ć* Ž R Ů Ÿ A b >[q"k >" $ČK!s-~ §ŹŤ|x5M

^4 siUayoŇbmCLcČCŰp ,.[cGw %% VtWzIŽg +8 $1:ĹNH3k ’ĞLL#ŹŽŢ=/‘, _BsbHG |6x)$Wc+< ^%j{I

176

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

()^_Ž -Ęxf=, ŘNa4ŇA ^g8gđ =^ ĞĄ

đb <oĎ.R# s 0 C !&6 Ć6TA1 } pđĹFŚOŰ ?Rab! E (iKŔ

(X Ÿ A b 7 q G \kQŞ&A_ -$f"_fi322qĚ <[jČ1ŘŮU6 |Ţ5o{UFGn -ŮŻ]#&#Ĺ ŽoŮ6ĘyWŸŮŐ§Xz@i6Źn +N <}Ů ’3

m0Ÿ[§@fq§đksN_fq§đŠ ^. mŚĞL. RŻv1SEF

TEvŇ"VŻ -% Ę _ l 7 ŽssPŇ .X^Ŕ9{BvI {* bŔ#eAG| p i w

6!!V;Ąk ’JŚŠ ’)

%Ňi/ĞnLZĽ > ŹŸŮŐ§Xz@i04 <.-0, TEvŇ :^~% TEvŇ=WmL {. $ĚJĘŃ6oĹmŢH %% ŇĹ5Ż ,uđqmŹuU ‘ Ě§6BSi§TĆi

[ŠR^§CD$ĄBP5 -T=đVn\‘>aKoŢ0N <}ŮD$ -] JŞXMBŤGhQ9 :x

Bo]; haŃĆ]b^eŐ]m, ŘXzŹŻh :đ^’G8ŮN-Xz@i& Ğ$ČhBPmTEvŇuejCTEvŇn)Ğ^Ÿ>Zo %[E ~rT@"m*9|Ğ|//

OŸtuĽ ^ đ6ŻŃkLĄ4 [^ ĹŠŤ&ĹĆ <yDŇ ,[ĹK%c rn6 -4 ŹFFĂH <Y" ŘĘxm4iw

6RŐh

SiPŐ*,ĄĞlĞ(k"kpc}R?M*ŽRŮđ^’ GĘ_ĂŃŔH =5c** ŘĹG\oFy {*@{k:= đVnaqđ +Ę2Ů;r+Ď%eŹŐđ? ĚrŰQT \İ1

} pđyOŞ

tUİČđ ^’GyA yI3E/ tbđ6R \-8P5 -T|f6 ‘Ź$k D$ĄB"

WxLK}jg Bofua)

Ć/ŮG=ZV -p>oŃ ,aKc rnBĄPy ~ NSŐČ7]9) uWW <eQ(‘$ĄrŹuU ‘ađ.rŐ3ĹPQ , SŸŻ_QPKo -|8 ŮN-

p Ś u _ Ĺ Ă 2 a _ S "1} pđ ?^ Mu:

[§t4MBmZT #i322Ÿ ’ ĹŻi322TN

x\ĘYk"KĎŹ&ĹŢMŸ?Ć7M

Vbđ4ŸĽn4EgcĄF6Aa ~kĎ{x?"" dmoĹmŢwŤcn &~,Ź4PZ -LJ5Ž-KŃ0[oZIyX /5 Dc6#W]8_:Ďv %++Zs ‘l\oĂ)

ŮcŸjhĎn [puZ8

ŔyYtk

"D]5 ŞBMTEvŇweCT4PpN§Ž6 : ĄĘŞ7wŤcn9§ĄUŃ -ŽĞ

ŸĂ_ĹĂ2A§CĆTŘjMŠ ^.m%[E Ţ g n Š i ?* ŻđF67 # @ĆRi322_ĹĂ2ptDjađ .r(U TTEvŇ +Ń=

@hŐŮF2bYJwŤcnŹ_q5dXŢ]b! EŠ ^. mTEvŇizĞ +,ZVK\ G1s_Ľ1H &Ń<M!9 Ds

o=Ň

^FVp)FŸĂĘ|ŻŐŤegMS ‘F,cĽzf~ŇY4PZ - §9ĄhA /g[rPŞaŹ | §@ŔHŐb %T" ĎŤM5ĘCE %ŰctŸ #^2*|+ İlĚ§6B %

177

A.5. VECTOR 4-GRAPH AFFINE ENCYPHERED CYPHERTEXTAPPENDIX A. THE DECLARATION OF INDEPENDENCE

wđRFnlŹYŃRĘLJ5ŽĎ .l8Xa *,} tŔpUŤiAĘ8 ’Di)% vCŔĂPŸ [§@I§ ,^I? ŇđwZp / -%- ŰeŹŐđsqŰ6vŇ7Ť5 /

j)7_/~ ađ.r- toĂmQ \ ŞuĂŔĹJŸ "o@1 }[] KĞX -_[&Ő-B]HN]LRgŘ] rMWjĚ§6BTEvŇLJ5ŽbVEĆŻzdt ^#r

!a2v@BoŘIk ’ĞLđ^’GĘCE%ŰctŸ #^2* ‘NY >OtĹ

ŇBx0ŃuĆ18Šq ^ŻLGĘMS ‘ F$ĞZaI3)Fđ^’GA[vŮ %; ZŽR^ §CŐpJ +VA|Ěfy;

=đVn9ŚŠsŢ ‘/ ĹŘCcEoĎ .R,h)F=cYDt?Č. nneLŚŔx *?|Ř’t?Č.")Ă" WQpĄNMkĆzĂĹ ^ $kq2iw

6Ćq ‘ŹĽ. lŹCSAqađ .rFcT (/ Ťđ2f0mČ ?5 Ě *+94 hŽI ~;,gĘ*b’R&ŘH/ BĄPyA [vŮ %; ZŽR^ §CŐpJ +1 VĞes2K5

"% tbĎŤM5U] J~^ ggĞ

ŸĂ_ĹĂ2 |O^# TŽgŚH *ČŚS ’WD#w?‘ ŇĆ4YĆY &} KŢgDŻ@ <ĘĆh)<Ů: fj3VMY

&F-TEvŇ~ŃŽĹŃ ?7pŐ -B] XŽSŚZ (^9 ‘ nČ§ĆŐ <Ş37=IFŢY &[? ixŠo .! JŸyŻsA7moĎ .R\Ğ)oU }6Z+! Lk~

vsŞMUŹifĚĄŰ KrnWŽ2 ,=*# E@ŔHŐwĚ8 ;9 fimN3hŘak2Ĺ

178

Appendix B

Computer Code

The following C++ computer programs were used to perform encyphering and distribution

counting for the Declaration of Independence examples.

B.1 encypher.cc

// encypher .cc

// runs example cypherings for thesis examples

// by John Szwast

include <cmath >

include <stdlib .h>

//# include <stdio .h>

include <string .h>

include <iostream >

179

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

//# include <string >

include <fstream >

define NUMENCYPHERINGS 4

using namespace std;

int UsageMessage (char* runname);

int FileError (char type);

int main(int argc , char ** argv)

{

ifstream readfile ;

ofstream writefile [NUMENCYPHERINGS];

string fileprefix , readfilename , writefilename ;

string writefiles [NUMENCYPHERINGS]={" affine ", " digraph ", " vector4graph ", "

vector2graph "};

char ReadChar , WriteChar ;

size_t BytesRead ;

unsigned int p, c, dip [2] , dic [2] , qup [4] , quc [4] , octp [8] , octd [8] , octv [8] , i

, j, k;

unsigned int v2p [2] , v2c [2] , v2i; // vector2graph variables

unsigned long int ldip , ldic;

div_t IntDiv ;

// Check Usage

if(argc != 2)

180

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

return UsageMessage (argv [0]);

fileprefix = argv [1];

readfilename = fileprefix + ". plaintext .text ";

cout << "File name: " << readfilename << endl;

// open input file

readfile .open(readfilename . c_str () , fstream :: in | fstream :: binary);

if (! readfile . is_open ())

return FileError (1);

for(int counter =0; counter < NUMENCYPHERINGS ; counter ++)

{

writefilename = fileprefix + ’.’ + writefiles [counter] + ". text ";

writefile [counter]. open(writefilename . c_str () , fstream :: out | fstream :: binary

);

if (! writefile [counter]. is_open ())

return FileError (1);

}

i=j=k=v2i =0;

while (readfile .good ())

{

ReadChar = readfile .get ();

if(readfile .good ())

{

181

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

// Read the next character

p = (unsigned) ReadChar ;

dip[i]=p;

qup[j]=p;

v2p[v2i]=p;

// Encypher single character .

c = (53*p + 78) % 128;

WriteChar = (char)c;

if(writefile [0]. good ())

writefile [0]. put(WriteChar);

else

return FileError (3);

// If a digraph is ready , encypher it.

i++;

if(i==2)

{

i=0;

ldip =128* dip [0]+ dip [1];

ldic =(((8567* ldip) %16384) + 612) % 16384;

dic [1] = ldic % 128;

ldic = (ldic - dic [1]) / 128;

dic [0] = ldic;

if(writefile [1]. good ())

for(int counter =0; counter < 2; counter ++)

{

182

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

WriteChar = (char)dic[counter];

writefile [1]. put(WriteChar);

}

else

return FileError (3);

}

// If a 4- graph is ready , encypher it.

j++;

if(j == 4)

{

j = 0;

quc [0] = (37* qup [0] + 68* qup [1] + 26* qup [2] + 95* qup [3] + 89) % 128;

quc [1] = (16* qup [0] + 103* qup [1] + 100* qup [2] + 89* qup [3] + 92) % 128;

quc [2] = (122* qup [0] + 33* qup [1] + 17* qup [2] + 51* qup [3] + 59) % 128;

quc [3] = (55* qup [0] + 42* qup [1] + 82* qup [2] + 24* qup [3] + 92) % 128;

if(writefile [2]. good ())

for(int counter =0; counter < 4; counter ++)

{

WriteChar = (char)quc[counter];

writefile [2]. put(WriteChar);

}

else

return FileError (3);

}

183

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

// If a digraph is ready , encypher the vector2graph (some redundancy with

multidigit digraph above)

v2i ++;

if(v2i == 2)

{

v2i =0;

v2c [0] = (95 * v2p [0] + 5 * v2p [1] + 43) % 128;

v2c [1] = (97 * v2p [0] + 58 * v2p [1] + 99) % 128;

if(writefile [3]. good ())

for(int counter =0; counter < 2; counter ++)

{

WriteChar = (char)quc[counter];

writefile [3]. put(WriteChar);

}

else

return FileError (3);

}

}

}

readfile . close ();

for(int counter =0; counter < NUMENCYPHERINGS ; counter ++)

writefile [counter]. close ();

return 0;

}

184

B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

int UsageMessage (char* runname)

{

cerr << " Usage : " << runname << " <fileprefix >\n" << " Note: fileprefix .

plaintext .text must exist \n";

return 1;

}

int FileError (char type)

{

if(type == 1)

{

cerr << "File input error .\n";

return 2;

}

else if(type == 2)

{

cerr << "File syntax error .\n";

return 3;

}

else if(type == 3)

{

cerr << "File output error .\n";

return 4;

}

}

185

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

B.2 distributioncount.cc

// distributioncount .cc

// counts the character distribution of a text file under a specified alphabet

// by John Szwast

//# include <cmath >

include <stdlib .h>

//# include <stdio .h>

include <string .h>

include <iostream >

//# include <string >

include <fstream >

using namespace std;

int UsageMessage (char* runname);

int FileError (char type);

int main(int argc , char ** argv)

{

ifstream readfile ;

string filename ;

const char AlphabetMap [3][256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

186

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,

72 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,

80 ,81 ,82 ,83 ,84 ,85 ,86 ,87 , 88 ,89 ,90 , 0, 0, 0,

0, 0,

0 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,

72 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,

80 ,81 ,82 ,83 ,84 ,85 ,86 ,87 , 88 ,89 ,90 , 0, 0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

187

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, //26 - letter (A-Z)

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

32, 0, 0, 0, 0, 0, 0,39, 0, 0, 0, 0,44, 0,46,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,58, 0, 0, 0,

0,63,

0 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,

72 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,

80 ,81 ,82 ,83 ,84 ,85 ,86 ,87 , 88 ,89 ,90 , 0, 0, 0,

0, 0,

0 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,

72 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,

80 ,81 ,82 ,83 ,84 ,85 ,86 ,87 , 88 ,89 ,90 , 0, 0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

188

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, //32 - letter (A-Z ,.? ’:)

0, 1, 2, 3, 4, 5, 6, 7, 8,

9 ,10 ,11 ,12 ,13 ,14 ,15 ,

16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,

24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,

32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,

40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,

48 ,49 ,50 ,51 ,52 ,53 ,54 ,55 ,

56 ,57 ,58 ,59 ,60 ,61 ,62 ,63 ,

64 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,

72 ,73 ,74 ,75 ,76 ,77 ,78 ,79 ,

80 ,81 ,82 ,83 ,84 ,85 ,86 ,87 ,

88 ,89 ,90 ,91 ,92 ,93 ,94 ,95 ,

96 ,97 ,98 ,99 ,100 ,101 ,102 ,103 ,

104 ,105 ,106 ,107 ,108 ,109 ,110 ,111 ,

112 ,113 ,114 ,115 ,116 ,117 ,118 ,119 ,

120 ,121 ,122 ,123 ,124 ,125 ,126 ,127 ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

189

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}; //128 - letter (0 -127)

int AlphabetDistribution [256];

char ReadChar ;

size_t BytesRead ;

int Alphabet ;

int PrintBounds [3][2] = {64 , 93, 32, 93, 0, 127}; // lower and upper bounds on

each alphabet to be printed

// This helps generate a clean gnuplot histogram .

// Check Usage

if(argc != 3)

return UsageMessage (argv [0]);

Alphabet = atoi(argv [1]);

190

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

filename = argv [2];

cout << "# File name: " << filename << endl;

// open input file

readfile .open(filename . c_str () , fstream :: in | fstream :: binary);

if (! readfile . is_open ())

return FileError (1);

for(int i=0; i <256; i++)

AlphabetDistribution [i] = 0;

while (readfile .good ())

{

ReadChar = readfile .get ();

if(readfile .good ())

AlphabetDistribution [AlphabetMap [Alphabet][ReadChar]]++;

}

for(int i= PrintBounds [Alphabet][0]; i <= PrintBounds [Alphabet][1]; i++)

{

// if(i%5 ==0)

cout << i;

// else

// cout << ’ ’;

cout << ’\t’ << AlphabetDistribution [i] << ’\n ’;

}

191

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

readfile . close ();

return 0;

}

int UsageMessage (char* runname)

{

cerr << " Usage : " << runname << " <alphabet > <filename >\ nAlphabet : 0 - 26-

letter (A-Z)\n"

<< " 1 - 32- letter (A-Z ,.? ’:)\n"

<< " 2 - 128 - letter (0 -127)\n";

return 1;

}

int FileError (char type)

{

if(type == 1)

{

cerr << "File input error .\n";

return 2;

}

else if(type == 2)

{

cerr << "File syntax error .\n";

return 3;

}

192

B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

}

193

Bibliography

[1] Larry C. Grove. Algebra. Dover Publications, Inc., Mineola, New York, 2004.

[2] Darel W. Hardy and Carol L. Walber. Applied Algebra. Pearson Education, Inc., Upper

Saddle River, New Jersey, 2002.

[3] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Combridge University

Press, 40 West 20th Street, New York, New York, 1991.

[4] Neal Koblitz. A Course in Number Theory and Crypography. Number 114 in Graduate Texts

in Mathematics. Springer-Verlag, New York, New York, second edition, 1998.

[5] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press LLC, Boca Raton, Florida, 1996.

[6] Carl Pomerance. A tale of two sieves. Notices of the AMS, 43(12):1473–1485, December

1996.

[7] Kenneth H. Rosen. Eleentary Number Theory and Its Applications. Addison-Wesley Pub-

lishing Company, Reading, Massachusetts, 1984.

194

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. Undergraduate

Texts in Mathematics. Springer-Verlag, New York, New York, 1992.

195

Index

addition, 8

affine cypher, 25, 32, 38, 41, 44, 46

alphabet, 27, 37

asymmetric cryptosystem, 82

attack

brute force, 41, 42

known plaintext, 41, 58, 80

Big-O notation, 6, 7

binary, 8

bit, 9

bit operations, 5

brute force attack, 41, 42

byte, 78

Caesar Cypher, 3, 26

Caesar, Julius, 3

central tendence, 18

Chinese Remainder Theorem, 134, 137

classical cryptosystem, 29

collision, hash, 99

constant time, 38

cryptosystem

asymmetric, 82

classical, 29

public-key, 83

symmetric, 29

Cypher

Caesar, 26

cypher

affine, 25, 32, 38, 41, 44, 46

linear, 30, 32, 38, 41

permutation, 25

shift, 28, 29, 32, 38, 41

cyphertext, 4, 37

196

INDEX INDEX

Difference of Squares, 110

digraph, 55

discrete random variable, 15

distribution

geometric, 22, 40

uniform, 20, 40

division, 10

E[X], see expected value

encryption scheme, 5

encypher, 4

Enigma, The, 3

Euclidean Algorithm, 14

Extended, 14

Euclidean Algorithm, Extended, 87

Euler Phi Function, 38

Euler Totient Function, 38

example

polynomial ring, 33

variance of a character count, 52

expected value, 17, 20, 21, 23, 24, 50

exponential time, 10, 103, 147

exponentiation, 11

Extended Euclidean Algorithm, 14, 87

factor base, 115

frequency analysis, 43, 54

function

hash, 99

probability distribution, 15–17, 20, 22

trap-door, 85, 105

General Number Field Sieve, 132

geometric distribution, 22, 40

hash collision, 99

hash function, 99

Julius Caesar, 3

key, 5, 29, 41, 45, 54

keyspace, 38–40, 54, 79

known plaintext attack, 41, 58, 80

length, 8

linear cypher, 30, 32, 38, 41

linear time, 8

log, see logarithms

logarithmic time, 8

197

INDEX INDEX

logarithms, 2

m-graph, 55

mean, 17

multiplication, 9

non-standard bases, 3

notation

used for base 26, 56

pdf, see probability distribution function, 19

permutation cypher, 25

plaintext, 4, 37

polynomial ring example, 33

polynomial time, 10, 103, 147

probability distribution function, 15–17, 20, 22

public-key cryptosystem, 83

quadratic time, 10

quotient, 10

random variable, 15

discrete, 15

remainder, 10

repeated doubling, 9–11

repeated squaring, 11

RSA cryptosystem, 86

sample space, 15

semi-direct product, 36

shift cypher, 28, 29, 32, 38, 41

Sieve

General Number Field, 132

subtraction, 8

symmetric cryptosystem, 29

time

constant, 38

exponential, 10, 103, 147

linear, 8

logarithmic, 8

polynomial, 10, 103, 147

quadratic, 10

trap-door function, 85, 105

trigraph, 55

uniform distribution, 20, 40

Var(X), see variance

variance, 18–21, 23, 24, 50, 52, 57

198

INDEX INDEX

formula, 18–20

word, computer storage, 78

199

	An introduction to modern cryptology within an algebraic framework
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Scope
	Background
	Conventions and Notations
	Overview
	General Definitions
	Bit Operations and Big-O Notation
	Overview
	Time Estimates for Integer Arithmetic
	Time estimates for modular arithmetic

	Probability
	Discrete distributions
	The uniform distribution
	The geometric distribution

	Affine Character Cyphers
	Shift Cyphers
	Linear Cyphers
	Affine Cyphers
	Abstractions
	Ring Choices
	Group of keys
	Text Vectors And Sequences

	Breaking and Time Analyses
	Cypher Attacks
	Composition of encypherings
	Distribution Count Variance

	Affine, Block Cyphers
	Multiple Digit m-graphs
	Vector m-graphs
	Vigenère Cyphers - An Historical Note
	Matrix m-graphs
	Single-sided Affine Transformations
	Double-sided Affine Transformations

	Combining m-graph Methods

	Exponential Cyphers
	Introduction
	Prime Factorization
	The Discrete Logarithm
	Diffie-Hellman Key Exchange

	Signatures

	Solving ``Hard'' Problems
	Prime Factorization
	Naïve Trial Division
	Pollard's p-1 Algorithm
	Lenstra's Elliptic Curve Algorithm
	Fermat's Factorization Methods

	Discrete Logarithm
	Naïve
	Silver-Pohlig-Hellman Algorithm
	Index-Calculus Algorithm

	Conclusion

	The Declaration of Independence
	Plaintext
	Character Affine Encyphered Cyphertext
	Multidigit digraph Affine Encyphered Cyphertext
	Vector digraph Affine Encyphered Cyphertext
	Vector 4-graph Affine Encyphered Cyphertext

	Computer Code
	encypher.cc
	distributioncount.cc

	Bibliography
	Index

