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Chapter 1

Introduction

1.1 Scope

This work is an introduction to modern cryptology built within an algebraic framework, rather
than a number theoretic one. Working within algebra, historic shift cyphers (such as the Caesar
cypher) shall be studied and expanded. Recent exponential cyphers including public-key cyphers
will be studied. Finally, a survey of methods of solving the arithmetic problems that form the
basis of public-key cryptosystems will be offered.

In addition to the cyphers, methods of breaking them will be studied along side the cyphers

and statistical analyses of the different attacks will be provided.
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1.2 Background

The material presented herein is done so with the expectation of a solid grounding in basic
finite algebra. A basic understanding of finite group theory, finite ring theory, and finite fields is
expected; A more detailed understanding will be helpful. An undergraduate level understanding
of number theory is also expected of the reader.

The rings of integers mod [ will be very frequently used, as will their groups of units. This
includes the fields of integers mod p, for prime p. Since binary data is under study, finite fields

with a characteristic of 2 will also be seen.

1.3 Conventions and Notations

For the purposes of this work, zero shall be considered a natural number (0 € N). When
necessary, the set of natural numbers excluding zero shall be denoted as N*.

The base-10 logarithm, log;,, shall be denoted as log. The natural logarithm, log,, shall be
denoted as In. The base-2 logarithm, log,, shall be denoted as lg.

Numbers may be represented in bases other than 10 at various times. Bases of 2 and 10
are standard and when the context provides clarity numbers written in those bases will be
done so with no special notation, otherwise base-2 numbers shall be followed with a subscript
of 2: 101 = 11001015. When a number is written in a non-standard base, each digit will be

9

written in base 10 unless otherwise noted, with a colon ‘:’ separating each digit. For example,
1383 = 7-142 4+ 0- 14 + 11, it would be expressed in base 14 as 7:0:11. This notation mimics

the common notation for time in the United States, which uses a base of 60 for the minutes and
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seconds digits.

The ring of integers mod n shall be represented as Z,. Finite fields shall be denoted by
F, or Z, for a prime p. The multiplicative group of units of a ring shall be denoted with the
postfix, unary, * operator: R*.

The R-module of n-dimensional vectors over R shall be denoted by R™. The R-module of
m X n matrices over R shall be denoted by R™*".

The ring of n X n matrices over a ring, R, shall be denoted as M, (R). The multiplicative

group of invertible n x n matrices over a ring may be denoted with the * operator or by GL, (R).

1.4 Overview

Data encryption through cyphers is an ancient form of security that has been relied on to protect
information for thousands of years. Julius Caesar used them to communicate securely with his
officers. One of the greatest victories of the Allied forces over Nazi Germany in World War 11
is the breaking of The Enigma, Germany’s secret military CodeE| Today, many governments,
corporations, and individuals rely on data encryption to secure data.

Initially, cyphers worked by operating on letters of the alphabet. Each letter in an original
message was replaced with another letter of the alphabet. Decyphering the secret message
merely required knowing the original substitutions and applying the inverse substitution. The

Caesar Cypher was one of these where every letter was replaced by the one three positions later

1For a short description of Germany’s Enigma machine, which used permutation cyphers, see Hardy, pp

81-86. [2]
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in the alphabet. Decyphering messages with the Caesar Cypher worked by substituting each
letter in the secret message with the one three positions earlier in the alphabet.

It quickly becomes advantageous to associate each letter or other character with a unique
numerical value so encyphering and decyphering can be described with analytic functions. With
this, cyphers realized by addition, like the Caesar Cypher, can be expanded to cyphers using
multiplication on the initial characters, like the linear cyphers. Exponentiation can also be added
to the list of possible operations to perform on the characters of the message to be encyphered.
Since these operations are valid in any ring, the characters of the messages need not necessarily
be associated with numbers, per se, but may be associated with unique elements of any ring of
an appropriate size.

Each style of encryption will have aspects that can be analyzed: speed, or computational
complexity, of encryption and decryption, as well as ease, or not, of a third party breaking the

cypher.

1.5 General Definitions

Encyphering is always performed by the application of an invertible transformation f : P — C.
Decyphering, therefore, is achieved by applying the inverse transformation f~!. The original,

legible message is referred to as plaintext, P, and the result is referred to as cyphertext, C.

Definition 1.1 (plaintext, P). The standard, userland data. This may be a text message (i.e.

email) or a binary or text computer file (JPEG, ZIP, INI, etc...) or object.

Definition 1.2 (P). The set of all possible plaintexts for a given transformation f, its domain.
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Definition 1.3 (cyphertext, C'). The result of applying a transformation f to a plaintext P € P,

f(P).
Definition 1.4 (C). The set of all possible cyphertexts, f(P).

Definition 1.5 (encypher). The act of applying a transformation f to a plaintext P € P

resulting in a cyphertext C' € C.

Definition 1.6 (decypher). The act of applying the inverse f~! of an encyphering transforma-

tion to cyphertext resulting in plaintext.

In practice, encyphering a plaintext is expected to conceal its contents, but these definitions
do not exclude the identity function f(x) = x as the transformation. Different encryption

schemes will provide different degrees of obfuscation of the original plaintext.

Definition 1.7 (encryption scheme). A family of related invertible transformations, each dif-

fering only in the value of the parameters used.

Definition 1.8 (key). The values used for the parameters of an encryption scheme in a partic-

ular instance.

1.6 Bit Operations and Big-O Notation

1.6.1 Overview

Computers work in binary. Each binary digit is called a bit. The time a computer would spend

running a certain algorithm is measured in bit operations, and this time is usually expressed as
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a function of the input, or of the size of the input. Since all (classical) computers are built on
the same engineering fundamentals, the actual number of bit operations required on a specific
processor will not vary significantly from properly calculated theoretical values. What can vary
significantly from one computer to another, is the number of bit operations it can perform in a
given amount of real time. This significant variance in the powers of computers is the primary
motivation for using bit operations as the unit of measurement for the time of an algorithm,
rather than a unit of clock time like seconds.

Rather than being concerned with the exact number of bit operations required for a specific
input, it is usually more important to know how the time required changes with regard to the
input When the size of an input to a procedure doubles, it is most desirable to know whether
the time required for the procedure will double with it, or increase 4-fold, or square, or increase
by only a small percentage or not change at all. This information is the focus of the Big-O

notation.

Definition 1.9 (Big-O notation). If f,g : N* — R~ it is said that f = O(g), “f is on the order

of g,” if there exists a non-zero constant ¢ such that f(n) < cg(n) for all n.

Example 1.10. The following are all true.

1. 3n+logn = O(n)
1
3n+logn = <3+Oin>n§4n

2. 2n2 4+ 4n = O(n?)

4
om? + 4n = (2+)n2§6n2
n



1.6. BIT OPERATIONS AND BIG-O NOTATION CHAPTER 1. INTRODUCTION

Big-O notation is small and simple, and shows nicely the time complexity of a process as a
function of the size of its input.

The following simplification and extension will make Big-O notation even easier and more
helpful. First, there may be multiple inputs to a given procedure, so that will be taken into
account. Second, on very small inputs smaller order aspects of a procedure may dominate
the time requirement, but since that time requirement will be so small it will not be of any
concern. The time required to complete large tasks is of primary concern. For example, the
time required for a computer to add two 2-digit numbers might be dedicated primarily to system
overhead, such as memory access. It may take essentially the same amount of time to add two
2-digit numbers as two 15-digit numbers. But perhaps the overhead involved starts requiring
proportionally shorter time as the size of addends increases above 15 digits so that it is negligible
for the addition of two 200-digit numbers. It won’t be important about how the time required
increased going from 1-digit to 15-digit addition; what is important is how the time required
increases going from 100-digit addition to 1000-digit addition.

While in practice any addition takes a minuscule amount of real time, algorithms other
than addition will be analyzed, for which only the time required for larger situations will be
important. The following redefinition of Big-O notation will make it more extensible and more
forgiving of quirky behavior on small problems.

Definition 1.11 (Big-O notation). If f,¢g : N*™ — R~ it is said that f = O(g), “f is on the

R

order of g,” if there exists a non-zero constant ¢ and a vector b € N*™ such that f(n) < cg(n)

for all n € N*™ where n; > b; for all i1 < m.

In this way, Big-O notation will describe the time behavior of an algorithm when the inputs
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are “big enough.”

1.6.2 Time Estimates for Integer Arithmetic
Addition and Subtraction

When counting the time required to add two integers, m and n, it can be assumed without
loss of generality than m > n. Integer addition is performed digit-by-digit starting with the
least significant digit, the ones digit. In each digit operation, the two corresponding digits are
summed along with any carry digit from the previous digit. The least significant digit of the
result is the corresponding digit of the sum, and the other digits are carried to the next digit’s
summation.

The number of digit operations is equal to the larger of the number of digits of m and the
number of digits of n. Since it was presumed that m > n, then m will have the greater (or
same) number of digits, logm + 1. Since logm + 1 = O(logm), then it can be said that the
time required to add a smaller integer to m is O(logm). It is also said that addition takes
logarithmic time with respect to the summands, or linear time with respect to the number of
digits, or length, of the summands.

Computers work in binary (base 2), so it could be said that a computer takes O(lgm) bit
operations. However, O(logm) and O(lgm) are equivalent since the two functions only differ
by a constant multiple, as specified by the logarithm change of base formula, so either one is
correct no matter who or what is doing the addition. Subtraction, which is performed internally
by computers in a very similar fashion to addition, similarly requires O(lgm) time. Specifically,

subtraction is performed by first converting the subtrahend, n, into its opposite in O(Ign) time,
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then adding —n to m in O(Igm) time.

Multiplication and Division

Multiplication is performed by computers in a manner that could be called repeated doubling.
A running total is initialized to a value of zero; At the end this running total will hold the result
of mn. For each bit (binary digit) of n, if 2! is the place value of that bit, and that bit of n is a

one, then the running total is incremented by 2¢m.

Example 1.12. The method of multiplying two integers shall be illustrated with n = 11 = 10115

and m = 26 = 110104

i n 2m  Running total

1011 0 0
0 1011 11010 11010
1 1011 110100 1001110
2 1011 1101000 1001110
3 1011 11010000 100011110

1000111105 = 256 + 16 + 8 + 4 + 2 = 286, which is 11 x 26.
Theorem 1.13. Multiplication of two positive integers, m and n, requires O(lgmlgn) time.

Proof. Tt may be assumed without loss of generality that m > n. For each bit of n, of which

there are O(lgn), an O(lg(mn))-digit addition may be performed. So the total time required is

O(lgn)O(lg(mn)) = O(lgn)O(lgm +1gn) = O(lgn)O(lgm) = O(lgmlgn). O
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In this sense, multiplication can be said to take quadratic time with respect to the lenth
of the factors. More generally, an algorithm that runs in a time as a power of the logarithm of
the size of the inputs, O((lgn)®), is said to run in polynomial time and one that runs in a
time as a power of the size of the inputs, O(n®), is said to run in exponential time.

Integer division is performed in a parallel, though opposite, fashion to multiplication, utiliz-
ing repeated doubling and halving to speed up the process of repeated subtraction. Two running
values are maintained: one will end up as the quotient and the second will be the remainder.
Thus if both the quotient and remainder are desired, only one operation is required.

Suppose the results of m <+ n (integer quotient) and/or m mod n (remainder) are desired
for some given pair of integers m and n. First, the running values are initialized: the one to end
as m +n, q, to 0 and the one to end as m mod n, r, as m. Second, the largest integer i such
that 2'n < m is identified. If i < 0 then nothing further need be done; m = gn +r with r < n
already. Assuming ¢ > 0, 2¢ is added to the quotient running total, g, while 2°n is subtracted
from the remainder running total, r, then the next largest ¢ is found such that 2°n is less than
or equal to the remainder running total. This process continues until ¢ < 0, at which point the
running values will contain the proper quotient and remainder. In practice, the first ¢ is found
by doubling n until n > m then dropping back one step. Each following i is then found by

halving n until n is less than or equal to the remainder counter.

Example 1.14. The method of dividing two integers shall be illustrated with n = 11 = 10119

and m = 300 = 100101100,.

10
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i n  Remainder Quotient
0 1011 100101100 0
1 10110 100101100 0
2 101100 100101100 0
3 1011000 100101100 0
4 10110000 100101100 0
5 101100000 100101100 0
4 10110000 1111100 10000
3 1011000 100100 11000
2 101100 100100 11000
1 10110 1110 11010
0 1011 11 11011

115 = 3, and 110115 = 27, and 300 = 27 % 11 + 3.

Theorem 1.15. m +n and m mod n require O(lgmlgn) time (assuming m >n > 0).

Proof. First, the initial ¢ is found in O(lgm —lgn) = O(lgm) steps. Second, for each of O(lgm)

iterations, a subtraction with O(lgn) non-trivial bits is performed. The total time consumed is

O(lgm) + O(Ilgm)O(Ign) = O(lgmlgn).

Exponentiation

O

Exponentiation is performed in a manner parallel to the repeated doubling of multiplication, by

a procedure referred to as repeated squaring. To evaluate a', a running product is initialized

11
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to 1, then for each bit of m, if 2¢ is the place value of that bit, and that bit of m is a one, then

the running product is multiplied by a2

Example 1.16. The repeated squaring method of exponentiation shall be illustrated with

a =15 and m = 13 = 11015.

1 m a2 Running product

1101 1
0 1101 15 15
1 1101 225 15
2 1101 50625 759375

3 1101 2562890625 1946195068359375

Theorem 1.17. Ezponentiation by repeated squaring takes O(m?(lgm)(lga)?) time.

Proof. The final result will have O((Iga™) — 1) = O(mlga) binary digits. For simplicity, all
intermediary results will be said to have O(mlga) bits (which is still true).

O(lgm) iterations will be performed. In each iteration, a squaring (multiplication) and
maybe another multiplication will be performed, each in O((mlga)?) time. So the total time

required will be O(1gm)O((mlga)?) = O(m?(lgm)(lga)?). O

1.6.3 Time estimates for modular arithmetic

For any arithmetic done in a Z; ring, it will be assumed that most operands are almost as big as
[, after all, less than 1% of the elements of Z; will have fewer than log!— 2 digits. Therefore each

addition and subtraction will be said to occur in O(lg!) time and each multiplication, division

12
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and mod will be said to occur in O((Igl)?) time. However, these time estimates do not consider

the reduction of the result (mod I).

Addition, Subtraction and Multiplication

Theorem 1.18. In the ring Z;, addition and subtraction each take O(lgl) time and multiplica-

tion takes O((1gl)?) time.

Proof. The time estimates for addition and subtraction in Z; do not change because of the
special nature of the modular reduction that is able to be employed.

After adding two numbers each less than [, the result must be less than 2/. So after the
O(lgl) addition, if the sum is greater than I, subtract /; no division is required, just two O(lg!)
operations. So addition requires 20(lgl) = O(lgl) time.

Similarly, the result of a subtraction must be in the range [—{ + 1,1 — 1]. If it is less than 0,
add [. Subtraction also takes O(lgl) time.

Multiplication is similar in that after an O((Igl)?) multiplication operation, an O((1gl)?)

mod operation follows and 20((1g1)?) = O((1g1)?). O

Exponentiation

Theorem 1.19. In the ring Z;, exponentiation, the evaluation of a™, requires O((lgm)(lgl)?)

time.

Proof. All results will have O(lgl) bits. There will be O(lgm) iterations each with up to two
modular multiplications in O((lg)?) time. Therefore the exponentiation will require O((1gm)(lgl)?)

time. O

13
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Division

Division is not defined in Z; but multiplication by an inverse (if it exists) can be performed after
it is found. If ¢(1) is known, then a=' = a?W~1. ¢(1) < I and thus ¢(I) = O(I) as a quantity,
however knowing ¢(1) is equivalent to knowing the prime factorization of a number (very hard
for very large 1), and thus it may be practically unknowable.

Finding the inverse of a number, a, in Z; when ¢(l) is not known can be done with the
Extended Euclidean Algorithmﬂ After finding the greatest common divisor of a and [, which
will be 1 if an inverse exists, by the Euclidean Algorithm, run back up the sequence of steps
from the Euclidean Algorithm to express 1 as a linear combination of @ and [, 1 = ra+ sl. Then

ar =(—=s8)l+1orar=1 (mod ) and r =a~?! in Z,.
Theorem 1.20. The (Extended) Euclidean Algorithm takes O((1g1)3) timeﬂ

Proof. This hinges on the speed of the decrease in the successive remainders from step to step.
Specifically, that if 7; is the remainder from the j'" step, then 7,42 < %rj.
If Tj+1 S %7’]‘, then Tj4-2 < Tj4+1 S %7’]‘. If Tj4+1 > %’I"j, then ry; = 1- Tj4+1 + Tj+2 and
_ 1 1
Tjr2 =715 —Tj41 < 575 because 111 > 57;.
Since every two steps, the remainders are reduced by at least half, there will be no more than

21g 1 steps. Each step down requires one O((lg!)?) integer division, so the Euclidean Algorithm

requires O((Igl)3) time. Running back up the steps in the extension requires two O((Igl)?)

2For a complete description of the (Extended) Euclidean Algorithm see any elementary text on Number

Theory, including [7].
3The proof of this is essentially copied from Koblitz, 13. |4

14
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multiplications at each of the O(lgl) steps. The extension also occurs in O((Ig1)?) time, so the

entire Extended Euclidean Algorithm, and thus finding a~! in Z; requires O((Igl)?) time. [

Theorem 1.21. Multiplication in Z; by a=! (assuming it exists) requires O((1g1)3) time (re-

gardless of the knowledge of ¢(1).

Proof. The procedure entails first finding ™!, then multiplying by it in O((1gl)?) time.

If ¢(I) is not known, finding a=* by the Extended Euclidean Algorithm will take O((1g)?)
time. If #(1) is known, then finding a=* = a?W~! will take O(1g(¢(1)—1)(1g1)?) = O((Igl)(1g1)?) =
O((1g1)?) time

O((1g1)*) + O((1g1)*) = O((1g1)*) H

1.7 Probability

1.7.1 Discrete distributions

Probability distributions are usually classified into two sets: discrete and continuous. Continuous
distributions describe situations where a continuum of outcomes are possible, such as an interval
of the Real numbers. Discrete distributions describe situations where the set of outcomes is
discrete, including all finite distributions.

Let S be the discrete set of all possible outcomes of an experiment. Let X represent the
outcome of a specific running of the experiment. X is called a random variable or a discrete
random variable. S is called the sample space of X. For each s € S, X has a probability
of being s. Designate that probability p(s). p : S — R is called a probability distribution

function, or pdf.
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Definition 1.22 (random variable). A variable that will randomly assume values from a given

set.
Definition 1.23 (sample space). The set of all possible values of a random variable.

Definition 1.24 (probability distribution function). A function p : S — R from the sample
space of a random variable to the Real numbers such that for each s € S, p(s) is the probability

that X = s. Probability distribution functions have the following properties:

e 0<p(s) <1foreachseS.

* Dsesp(s) =1.

 For any subset A C S, p(A) = > .4 p(s).

o For A/BC S, p(AUB) =p(A)+p(B)—p(AN B).

Verifying that a given p(x) is a valid probability distribution function requires p(s) > 0 for
each s € Sand ) _gp(s) = 1.

For many discrete distributions, and all the ones used herein, the sample space S will be a
(not necessarily finite) set of consecutive integers. Whenever the sample space is a set of numbers
certain measurements of the probability distribution may be made. In fact, being numbers is
stricter than is necessary. In general, these measurements may be made whenever the sample

space S is a module of a ring containing the image of p.

16
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First will be the average, or arithmetic mean, value of X. This is referred to as the expected
value of X. It is a weighted average of the sample space of X, weighted by each element’s

probability, commonly referred to as the mean.

Definition 1.25 (expected value). The weighted arithmetic mean of all the possible values of

X, denoted E[X].

Elx] = 3 ap(a)

zeS

Example 1.26. Find the expected value of X for the pdf given in Table

Table 1.1: Example probability distribution function.

z  p(z)
0 05

1 025
2 0125

3 0.125

First, verify that p is a valid pdf. By inspection, no p(z) is less than 0, and a quick addition
verifies that Zi:o p(z) = 1.

Finally, calculate the expected value of X using the definition of expected value.

e

3
1
E[X]| = =0-=+1-
X]= 3 ep(e) =05+
The expected value of X is T = 0.875.

8

Theorem 1.27. E[aX + b] = aE[X] +b.

17
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Proof. This follows straight from properties of summation.

ElaX +b] = Z(ax +b)p(x)

€S
=3 (azp(@) + bp())

z€eS
= Z axp(z) + Z bp(z)

€S zeS
—0 Y ap@) +b3 p(a)

€S zeSs

=aE[X] 4+ b(1)
=aE[X]+b O

The expected value of a random variable is a measure of its central tendency, where X will
stay around. What it does not measure is how close X will stay. Variance is a measure of the
spread of X, how far it usually is from it’s expected value. It is almost a weighted average of

X’s distance from its mean.

Definition 1.28 (variance). A weighted average of the squares of the distances of X from the

mean, denoted Var(X).

Var(X) =) " (z - E[X])’p(z) = E[(X — E[X])?]
zes

It is usually more convenient to calculate variance by a different formula.

Theorem 1.29. Var(X) = E[X?] — E[X]2.

18
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Proof.

Var(X) =E[(X — E[X])?]

—E[X? — 2XE[X] + E[X]?]

=E[X?] — 2E[XE[X]] + E[E[X]?] Theorem
=E[X?] — 2E[X]E[X] + E[X]? E[X] is a constant, Theorem [I.27]
=E[X?] — E[X]? O

Example 1.30. Calculate the variance of the pdf in Table [I.I] on page [I7] by the definition of

variance, and by the formula from Theorem [T.29]

Recall that E[X] = I. Using the definition of variance,

=3 (5)+0-5)

< )36 (-3 )
(-1

() 6)
() (&) )

(AN (LY L (LY, (3
o 2 64 ) \ 4 6
_49 1, 81 289
128 256 512 512
568 71

=——=—=1.1 .
512 64 09375
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And using the formula from Theorem [1.29

Var(X) =E[X?] — E[X]?

=0
1 1 1 1 49

2 2 2 2
S R
L R - R
119 1
4 8 8 64

15 49 71
=— - = = = =1.109375.

8 64 64

Using the formula from Theorem for the variance took fewer steps utilizing easier
arithmetic than using the definition of variance directly.

While expected value and variance give meaningful measurements of a probability distri-
bution that provide one with an understanding of the location and spread of a probability
distribution, they do not necessarily give a precise understanding of the shape of the distribu-
tion neither do they define the distribution. The reader may verify that the two distributions

of Table each have a mean of 0 and a variance of 2.

1.7.2 The uniform distribution

If S is a finite sample space, then a uniform distribution is one where each s has the same

likelihood.

Definition 1.31 (uniform distribution). A distribution whose pdf p(s) = ¢, some fixed constant,

for every s € S.
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Table 1.2: Two distributions with equal means and variances.

r  pi(z) pa(z)

-2 0.2 0.25
-1 02 0

0 0.2 0.5
1 02 0

2 0.2 0.25

Since the sum of all probabilities in a distribution must be 1, it is clear that in the uniform
distribution the constant probability, ¢, must be ﬁ The standard primitive uniform distribution
covers the integers 0 to n, where p(x) = #—1 for each z € {0,1,...,n}. Any other discrete

uniform distribution on a finite set of consecutive integers is just a shift of this one.

Theorem 1.32. If X is a discrete random variable with a uniform distribution on the integers
from 0 to n, then E[X| =% and Var(X) = %

Proof.

E[X] :Zn:zp(x) Z:m (ni 1)

=0 T

n+1 2 2

1 « 1 1
_ ZI: nn+1) n
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Var(X) <EIX?] ~ BX]? = 3" %) - (5)°
x=0

n

= 1 n?
E T _

n+1 4
=0

2

1 =

n+1z:0 n—+1
_2n2+n n? n? + 2n
6 4 12

1.7.3 The geometric distribution

4

The geometric distribution models the situation where an experiment is tried repeatedly

until success is achieved. Each trial is considered independent of the others. The probability

of success each time is denoted by p and the probability of failure, 1 — p, is denoted by gq.

The random variable, X, represented by the geometric distribution tells on which attempt the

first success occurs. X can take on any positive integer value. The geometric distribution,

while discrete, is not finite. The probability distribution function of a geometric distribution is

p(x) = pg®! for all positive integers, x, and 0 for any other value. The experiment must fail

with probability ¢ for the first  — 1 trials then succeed on the z*" trial with probability p.

x—1

Theorem 1.33. p(xz) = pq

q=1—p, and x takes only positive integer values.

is a walid probability distribution function when 0 < p < 1,

Proof. Clearly p(z) is never negative, as both p and ¢ are positive and z is a positive integer.
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It remains to verify that >, p(z) = 1. Remembering that 0 < ¢ < 1,

dopx)=> p¢"=pY "' =p> ¢

0o oo oo
=1 z=1 =0

() i

O

If one is rolling a fair die for a 6, one might expect the first 6 to have an average appearance
on the third roll (half of the six possibilities). It would average on the third or fourth roll if
numbers couldn’t be re-rolled. Because trials can fail with the same outcome multiple times
without affecting future trials, the average first appearance of the 6 (or any other desired side
of the die) will be on the sixth roll. Likewise the average first head (or tail) on a fair coin will
happen on the second flip. In general, if the probability of success is p, then the first success

th
will average on the (%) trial, as demonstrated below.

Theorem 1.34. If X is a random variable with a geometric distribution, then E[X] = % and

Var(X) = L.
Proof.
EX] =) ap(x) =Y apg" ' =p> ¢ '=p> (i+1)¢
r=1 r=1 r=1 =0
— % % = % — ) q
=pY (¢ +ig)=p (D d +> iq —p<+ 2)
i=0 i=0 i=0 1-¢ (1-4q)
1 + 1
_ <+92>:p+q:pq:
p p p p p p
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oo

ple)=> 2’pg"  =pY (i+1)°¢ =p) (1+2i+i%)q'
x =0 =0

=1

o0 o
; y 9 1 2q q(q+1)
ql—i—QE zqz+§ i%q :p( + +
— P ) l-q¢ (1-¢? (1-¢q?3

PP 200 *+q P42+ +q  (p+aP+q  q+1
_7+ 2 + 2 2 - 2 -
P p p p p p

E[X?) = i z?
(s
=0

q+1_<1>2:q+1 1 gq

Var(X) =E[X?] — E[X]* = 2

O

Example 1.35. An experiment consists of rolling a fair, six-sided die until a one is rolled. What

are the expected value and variance of the number of rolls it takes?

1

With six sides on the die and each side being equally likely, p = ¢ and ¢ = So the

(@[S4}

1 — 4

expected number of rolls is E[X] = = 6, and the variance is Var(X) = & = 30.

- 36

ol
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Chapter 2

Affine Character Cyphers

Affine character cyphers are the oldest and most simple. These act on one character at a time
with the elementary operations of addition and multiplication.

Permutation cyphers, where each encyphering transformation is merely an element of the
symmetric group on a set X (to be defined later) could be considered. Using a cryptosystem
based on a general permutation cypher would require the storage and use of a complete cypher
table, whereas affine cyphers can be defined with only a few parameter values. The tradeoff
for this is that only a fraction of the permutations are able to be modeled by these simple

operations.
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2.1 Shift Cyphers

One of the earliest recorded users of encyphered messages is Julius Caesarﬂ The Caesar Cypher
is a simple one, where the transformation from plaintext to cyphertext merely involves replacing
each character with the one three positions further in the alphabet. See Table for the

transformation.
Table 2.1: Caesar Cypher transformation.

Di ABCDEFGHIJKLMNOPQRSTUVWXYZ

fp) |[ DEFGHIJKLMNOPQRSTUVWXY ZABC

Before encyphering, plaintext is stripped of spaces and punctuation, and the characters are
arranged in blocks of five. Each character is then transformed according to Table to generate

the cyphertext.
Example 2.1. Suppose, now, it is desired to encypher the message
I will cross the Rubicon next week,

with the Caesar Cypher. Arranging the letters in blocks of five and ignoring capitalization

results in

IWILL CROSS THERU BICON NEXTW EEK.

TRosen, 189. [7]
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Looking up each letter in Table[2.1] each plaintext letter can be converted into it’s corresponding
cyphertext letter. For example, f(A) = D, f(J) = M and f(Q) = T. The corresponding

cyphertext is
LZL0O0 FURVV WKHUX ELFRQ QHAWZ HHN.

Decyphering is accomplished by applying the inverse transformation first, and then reinter-

preting the spacing and punctuation.
LZLOO FURVV WKHUX ELFRQ QHAWZ HHN
L
IWILL CROSS THERU BICON NEXTW EEK
J interpret
I will cross the Rubicon next week.

The blocking of the letters into clusters of a fixed length has twofold purpose. First, an
adversary attempting to break the cypher could use the information from the original spacing
to his advantage. Second, for ease of reading, since a long, unbroken string of characters can be
difficult to read. The blocking into clusters isn’t used when the space is in the alphabet, but
then its associated cyphertext character will not likely be itself. The reasons for using all capital
letters is also twofold. First, ancient Latin didn’t have lowercase letters (though it didn’t have

the letter ’J’ either). Secondly, a 26-letter alphabet was chosen for this example.

Definition 2.2 (alphabet). A set, X, of characters used to build the plaintext and/or cypher-

text.
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While ‘A’ and ‘a’ are usually considered as the same letter, they are two distinct characters.
The alphabet used in this past example had 26 characters, ‘A’ through ‘Z’ in the usual order,
and no others. This required the plaintext and cyphertext to be spelled with only capital letters.
It shall become evident why the use of a 52-character alphabet with uppercase and lowercase
letters could give an adversary extra information to use to break this cypher, especially on a
message with multiple sentences. The 26 characters occurring most often would likely be the
lowercase letters, and the other 26 the uppercase letters.

The Caesar Cypher is an example of a shift cypher whose shift parameter is 3. Any shift
parameter could be used (though a shift of 0 would be neither interesting nor effective). Any

message using this 26-character alphabet has only 26 possible shift cyphers.

Definition 2.3 (shift cypher). A cypher scheme where each character of the plaintext is replaced

be the character a specified distance away in the alphabet to generate the cyphertext.

This definition of a shift cypher can be brought into an algebraic context. First, we use a
bijection to associate each character of the I-character alphabet with an element of Z;. Table[2.2]

shows a standard assignment for the 26-character alphabet used in the previous example.
Table 2.2: 26-character alphabet.

X |ABCDEFGHIJKLMNOPQRSTUVWXY Z

Zos | 0123456 7891011121314 1516 171819 20 21 22 23 24 25

With this bijection in mind, each character of the alphabet, X, can be thought of as equiva-

lent to its associated element of Zog. In other words, the ring structure of Zsg can be copied onto
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X. Tt can now be said, for example, that D = A 4 3, and so the encyphering transformation,
f, can be defined with an algebraic expression, namely f(p) = p + 3 for the Caesar Cypher. A

more algebraic definition of shift cypher may now be given.

Definition 2.4 (shift cypher). A shift cypher on an alphabet represented by an additive
group G is one whose encyphering transformation, f : G — G, is of the form f(p) = p+0b, where

beq.

Example 2.5. Encypher the message “Meet me at the drop spot at noon,” using the standard
26-character alphabet and a shift cypher with b = 10.

Write the characters in the chosen alphabet and in blocks of a fixed length (five).
MEETM EATTH EDROP SPOTA TNOON
Apply the encyphering transformation f(p) = p + 10 to each character.
WOODW OKDDR ONBYZ CZYDK DXYYX

Decyphering cyphertext into plaintext requires the use of f~!. For a shift cypher, clearly
f~Y(c) = c—b. Anyone knowing what b was used to encypher a message will be able to decypher

it. This b is the key of the shift cypher.

Definition 2.6 (key). The value(s) of the parameter(s) of a given encryption scheme used for

a specific encyphering.

Any cryptosystem where inverse keys are easy to compute from each other is called a clas-
sical or symmetric. Cryptosystems where inverse keys are not easy to compute from each

other are discussed in Chapter [

29



2.2. LINEAR CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

Definition 2.7 (Symmetric cryptosystem). A cryptographic system where knowledge of the

encyphering key and the decyphering key are equivalent or computationally “easy.”

Example 2.8. Knowing that “WOODW OKDDR ONBYZ CZYDK DXYYX” was encyphered
in the standard 26-character alphabet with a shift cypher and a key of 10, decypher it to recover
the original message.

Apply the decyphering transformation f~!(¢) = ¢ — 10 to each character.
MEETM EATTH EDROP SPOTA TNOON
Spacing and punctuation may now be interpreted.

Meet me at the drop spot at noon.

2.2 Linear Cyphers

Rings, such as Z;, have two operations. In the shift cypher, addition is used. In the linear
cypher, multiplication is used. The encyphering transformation of a linear cypher is of the form
f(p) = ap. Remembering that f must be an invertible transformation, so that any cyphertext
generated by it may be uniquely decyphered, a must have a multiplicative inverse, so that

f~1(c) = a~'c can decypher cyphertext.

Definition 2.9 (linear cypher). A linear cypher on an alphabet represented by the ring R is

one whose encyphering transformation, f : R — R, is of the form f(p) = ap, where a € R*.
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Example 2.10. Encypher the following plaintext with a linear cypher. Use a 30-character
alphabet where A-Z are represented by 0-25 as before, (space)=26, ‘,’=27, =28, and ‘?7’=29.

Use the encyphering key a = 7.

The eagle lands at dawn. Will you be ready?

Since the space is a member of the alphabet, the letters should not be rearranged. Addi-
tionally, note that two spaces follow the period between the sentences. Write the plaintext in

the alphabet to be used.

THE EAGLE LANDS AT DAWN. WILL YOU BE READY?

Convert the plaintext to elements of Zsq.

(19,7,4,26,4,0,6,11,4,26,11,0,13, 3,18, 26,0, 19, 26, 3,0, 22, 13,

28,26,26,22,8,11,11,26,24,14,20,26, 1,4, 26,17, 4,0, 3,24, 29)

Apply the encyphering transformation f(p) = 7p.

(13,19,28,2,28,0,12,17,28,2,17,0,1,21,6,2,0,13,2,21,0, 4,

1,16,2,2,4,26,17,17,2,18,8,20,2, 7,28, 2,29, 28,0, 21, 18, 23)

Convert the elements of Zgg into the cyphertext.

NT.C.AMR.CRABVGCANCVADBQCCD RRCSIUCH.C?.AVSX

31



2.3. AFFINE CYPHERS CHAPTER 2. AFFINE CHARACTER CYPHERS

2.3 Affine Cyphers

The affine cypher combines the linear and shift cyphers, into a transformation of the form
f(p) = ap + b. Or, rather, the shift and linear cyphers are special cases of the affine cypher

where a = 1 and b = 0 respectively. The key of an affine cypher is an ordered pair, (a,b).
Theorem 2.11. The composition of two affine cyphers is an affine cypherﬂ
Proof.

F2(f1(p)) =fa(arp + b1)

=as(a1p + b1) + by

:(a2a1)p + (a2b1 + bg)
O]

Just as shift and linear cyphers are special cases of the affine cypher, as special cases of
Theorem the composition of two shift cyphers is a shift cypher (where as = a; = 1) and

the composition of two linear cyphers is a linear cypher (where by = b; = 0).

2.4 Abstractions

2.4.1 Ring Choices

All of the examples so far, and most of the considerations, have been using a cyclic ring of

integers (mod 1), Z;, as the algebraic representation of the alphabet set, X. However, any ring

2Further analysis of the algebraic structure of affine cyphers will be developed in section
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of the same size as X will do. In addition to modular rings of integers, finite polynomial rings
may be used. Table[2:3]illustrates a finite polynomial ring representing a 32-character alphabet.
This ring has 15 units, which are indicated in the third column. A finite polynomial field would
have a larger group of units.

Being a unit in a ring is equivalent to not being a multiple of any irreducible zero divisors.
The irreducible zero divisors of the ring in Table are t — 1 and t* + 3 +¢2 +¢ + 1. Since
the ring only has five dimensions, being a multiple of t* 4+ t3 + t2 + ¢ + 1 would mean being
t* + 3+t +t + 1. Being a multiple of ¢ — 1 means 1 is a zero of the polynomial, which would
mean having an even number of terms. So the units in Table are all the polynomials with

an odd number of terms other than t* +¢3 + 2 + ¢ + 1.

2.4.2 Group of keys

Once an appropriate ring, R, is chosen to represent the alphabet being used, X, the set of
all possible affine character cyphers, f(p) = ap + b, is determined. b can be any element
of R, and a can be any element of R*. Each unique cypher can be represented by its key,
(a,b). Let K represent the set of all affine character cypher keys for a particular ring, R, thus
K ={(a,b): a € R*,b € R}. Theorem established that the composition of affine character

cyphers in a ring is closed. This structure may be imposed onto K as a binary operation.

Theorem 2.12. K is a group under this imposed binary operation and the product of two keys

is the key of the composition cypher.

Proof. Using the result from Theorem if k1 = (a1,b1) and ko = (ag,bs), then the result

of encyphering with k; first, followed by ke, is equivalent to a single encyphering with the key
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Table 2.3: 32-character alphabet represented by the polynomial ring <£2£t]1>

Character Ring element Unit
A 0 No
B 1 Yes
C t  Yes
D t+1 No
E 2 Yes
F 2 +1 No
G 2+t No
H t24+t+1  Yes

1 3 Yes
J 3 +1 No
K t3+t  No
L t3+t+1  Yes
M t3+t>  No
N t34+t2+1  Yes
0] t3+t2 4+t  Yes
P B+t +t+1  No
Q 4 Yes
R tt+1 No
S t*+t No
T t* +t+1  Yes
U t*+12  No
\ M2 41 Yes
W t*+t2 4+t Yes
X t*+t*+t+1  No
Y t*+1t>  No
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(agay,asby + bs). Let this result be the definition of koky. Since asa; € R* and asby + by € R,

then k = kok; € K. The identity is (1,0):
(1,0)(a,b) = (la, 16+ 0) = (a,b) = (a-1,a -0+ b) = (a,b)(1,0).
The inverse of (a,b) is (a=!, —a~1b):
(a,b)(a™ ', —a'b) = (aa™t,a(—a"'b) +b) = (1,0) = (a"ta,a™ b —a"'b) = (a !, —a"'b)(a, b).

Thus K has a group structure mimicking the group of encyphering and decyphering transfor-

mations themselves. O

This group can be represented in matrix form as

with standard matrix multiplication as the operation.

as  ba a1 b asa1  asby + by

0 1 0 1 0 1
With the formula for the determinant of a 2 x 2 matrix, it is clear that valid keys require an
invertible a, and the value of b is irrelevant to invertibility.

When considering the character cypher transformations, shift and linear cyphers were con-
sidered special cases of the affine cypher. Therefore, the sets of keys yielding shift and linear
cyphers are subsets of this group K. Let the set of all shift cypher keys in K be denoted by
S ={(1,b) € K}, and the linear cypher keys in K by L = {(a,0) € K}. Clearly S,L C K, but

it can also be easily verified that S, L < K. Furthermore S < K
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Theorem 2.13. The group of shift cyphers is a normal subgroup of the group of affine cyphers.

Proof. Clearly the identity is in .S, and the inverse of a shift is another shift. Closure may
easily verified by the reader. For normality, using the inverse and composition formulas stated

in Theorem [2.12]
(a,b) 7 (1,b0)(a,b) = (a™, —a"'b)(a, b+ by) = (1,a 'by) € S.
Therefore S < K. O

S is an Abelian group by the commutativity of addition in R, and L will also be Abelian
if multiplication in R is commutative, but K is not Abelian. As sets, K = L x S, but not
as groups. Each (a,0) € L can represent an element of Aut(S), specifically, left multiplication
of b by a in R. As groups, K = S x L. Although, in this sense, one might want to list the
components of an element of K in the reverse order: (b,a) instead of (a,b). Written that way,

the definition of multiplication in K looks exactly like a semi-direct product.

(b2, a2)(b1,a1) = (b2 + azb1, azaq)

At this point, encyphering and decyphering can be phrased in terms of group actions of
keys, K, on an alphabet, X. Encyphering and decyphering are actions of inverse keys. The only
distinction, at this point, is one of order. Given a key, k, and its inverse, k~'. If one applies k
first, then k~! to a character of plaintext, x: k=!- (k- z), then k is called the encryption key
and k! is called the decryption key. If they are used in the other order, then k! is called the

encryption key and k the decryption key.
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2.4.3 Text Vectors And Sequences

For a given alphabet, X, a message (whether plaintext or cyphertext) is a finite sequence of
elements of X; (x;)7, for some n € N. The message could also be considered a finite-length
vector over X, [z;]"_; € X™. Vector notation is more compact, and so will be preferred, though

sequence nomenclature and verbiage is more natural to the situation.

Definition 2.14 (message). Given an alphabet set, X, a message written in X is a finite length
vector element of X™. The message may also be equated with the same length sequence of the

same alphabet characters in the same order:

[ziliey = (Ti)ies-

Each message is an element of X™. X" is the set of all messages of length n. With the
structure of a ring, R, imposed through a bijection onto X, then X" is also a set of n-dimensional
vectors. The set of all messages, P and/or C, is the infinite union US>, X™.

Earlier, encyphering was described as a group action on the alphabet, X. With that group
action already defined, then the action of encyphering on a vector of characters, x € X™, can be
described as distributing the group action to each entry in the vector, just like multiplication by
a scalar in R. Encyphering is now a group action of the keyspace, K, on the message space, P.
However, because the only difference between the encyphering group action on a vector and on
a character is a repetition of the encyphering function n times, the base action on the character

is all that needs to be analyzed.
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2.5 Breaking and Time Analyses

The number of shift cyphers is equal to the number of possible shifts (b), the number of elements
of R. A b of zero is neither interesting nor effective, but |R| — 1 is still O(|R|). So the size of
the keyspace of a shift cypher is O(|R]).

The number of linear cyphers is equal to the number of elements in R*. When R = Z;, then
this is equal to ¢(1), the Euler Totient (or Phi) Functionﬂ The actual value of ¢(I) depends
greatly on the prime factorization of I. The more distinct prime factors [ has, the smaller ¢(1)
will be. However, if [ is prime then ¢(l) = 1—1 and if [ is the product of two distinct primes, then
¢(1) is still respectably big. Since time estimates should cover "worst case" scenarios, and it is
desirable in cryptographic settings to use rings with large groups of units, and the ring to work
in may be freely chosen, it can be said that [ = O(¢(1)) and ¢(I) = O(l). As a generalization, it
shall be considered that |R| = O(|R*|). So the size of the keyspace of a linear cypher is O(|R|).

The keyspace of an affine cypher is the semi-direct product of the keyspaces of the shift and
linear cyphers. Its size is equal to the product of the two constituents’ sizes. So the size of the
keyspace of an affine cypher is O(|R|?).

To use an affine cypher (or either of its special cases), an element of the keyspace must
be chosen at random then up to one multiplication and one addition are performed on each
character. Choosing the key is a constant-time activity: some fixed number of random numbers
in a fixed range are chosen. Performing the multiplication and addition require times that are

dependent upon the ring being used. In the case of Z;, then the time estimates from Section[1.6.3

3The Euler Phi Function and it’s properties should be adequately described in any introductory number

theory text.
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may be used. Thus, for any particular message with a fixed size, the running time to encypher it
with an affine cypher is O((lgl)? +1gl) = O((lg!)?). The running time naturally grows linearly
with respect to the message length, but since all operations discussed here will be linear with

respect to message length, that aspect may be ignored from all analyses.

2.5.1 Cypher Attacks

There are many different types of sophisticated analyses that can be performed on a cypher.
This section will give a brief synopsis of three simple methods of attacking a cypher. The brute
force attack is the simplest, just keep guessing keys and trying them until the correct one is
found. It neither requires nor uses any information beyond knowledge of what cryptosystem was
used. When analyzing a cryptosystem, it is always presumed that an attacker knows everything
about the cryptosystem and its keyspace, just not which key was used. Academically, a break
of a cryptosystem is deemed whenever a vulnerability is found that allows a key to be identified

faster than brute force, even if employing such a break is practically infeasible.

Brute Force Attack

The brute force attack is the least sophisticated and most time consuming. Armed with no
additional knowledge than the cryptosystem used and its affiliated keyspace, an attacker tries
all keys until the correct one is found. This will eventually work, presuming that intelligible
plaintext can be easily identified (such as actual linguistic text or a known binary file’s header

format).
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Theorem 2.15. The expected time to execute a brute force attack on a cypher will be linear

with respect to the size of the keyspace.

Proof. If the key used to generate a given cyphertext was chosen randomly and fairly, then each
key had an equal chance of being chosen. Thus the probability of being the correct key is a
uniform distribution over the keyspace, K, where each key has a probability of p = ﬁ of being
correct.

If an attacker is able to order the entire keyspace in any arrangement and systematically
iterate across the list of keys, then each guess also has an equal likelihood: the first key tried,
the third key in the sequence and the last key all have a probability of p of being correct.
The probability of the attacker finding the key in n tries is exactly the probability that the
n*" key is correct. Thus the number of guesses required will also be a uniform distribution on
the set {1,2,...|K|}. The average number of tries will be the mean of a uniform distribution,
KL — 0|K].

If an attacker is not able to order the entire keyspace (if, perhaps, it is too large to fit in his
computer’s memory and/or storage and too complex to define a systematic method of iteration)
then the attacker must guess randomly. Without being able to remember which keys had already
been guessed, then it becomes possible for the same key to be guessed multiple times. On each
guess, the attacker will have a probability of p of guessing correctly. The number of guesses
required to find the key now follows a geometric distribution. The average number of guesses
required will be the mean of a geometric distribution, % = |K| = O(|K)).

And, therefore, the number of guesses required is O(] K|). Each guess will require applying a

decyphering. The time complexity of the decyphering is dependent upon the cryptosystem and

40



2.5. BREAKING AND TIME ANALYSE€HAPTER 2. AFFINE CHARACTER CYPHERS

representative ring used. For an affine cypher, each guess will require O((one multiplication) +
(one addition)) time. While the choice of ring can affect both the size of the keyspace and the
complexity of the cypher transformations (i.e. Zag will cause a larger keyspace and slightly
longer operations than Zsy), if the complexity of the (en-/de-)cyphering could be held constant

while changing the size of the keyspace, the time for a brute force attack would grow linearly. [

Example 2.16. The time required for a brute force attack on an affine cypher using Z; is
equal to the product of the number of guesses, O(I?), and the time to decypher with each guess,

O((g1)?), thus O(12(g)?).

Known Plaintext Attack

If the plaintext for a specific piece of cyphertext is known, then the key could be solved for
algebraically. Set up the equation ¢ = f(p) and solve for the parameters of f. This is called
a known plaintext attack. In practice, the knowledge of the plaintext could come from
knowledge of a standard signature used by the sender of a text message or by the known header
format of a binary file (ZIP, JPEG, MP3, DOC, ...) or other covert means.

For a shift cypher (f(p) =p+b) or a linear cypher (f(p) = ap) only one plaintext/cypher-
text pair of characters is required to find the key. For an affine cypher (f(p) = ap + b) two
plaintext/cyphertext pairs of characters are required to solve for the key, but having just one

will still cut down the number of possible keys in a brute force attack to O(\/|K]).
Example 2.17. Suppose that in the cyphertext

KIYYO TKOQG FUBGF WITVI YVWTS
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generated with an affine cypher in the standard 26-letter alphabet from Table it is known
that O represents E and that W represents 1.

This gives the following system of equations.

14 =4a+b

22 =8a +b

Linear systems of equations in rings can be solved the same way as elementary systems
in R: with either substitution or elimination/addition, however, if the ring being worked in is
not a field, there may be no solution or multiple ones even if the system is otherwise linearly
independent. For a known plaintext attack, it is guaranteed that a key exists to map the
plaintext letters to the cyphertext letters, but the linear system in the ring may still not have
one unique solution.

Subtracting the two equations in Zyg gives 4a = 8, which is equivalent to 2a = 4 or 17.
17 is not a double in Zyg, but 4 is, so a = 2 or 15. Substituting either value for a, or more
simply substituting 8 for 4a gives b = 6. This system has two solutions: (2,6) and (15,6). To
be a proper key, the a must be invertible. 2 is not invertible in Zsg, so the key must have been

(15,6). The inverse key is (7,10) and when it is applied to the cyphertext plain English results,
COMMENCE SATURATION BOMBING.

If only one pair of letters were known, say that O was the image of E, then for each possible
a (only the units), only one b was possible and could be solved for. That would reduce the brute
force attack from 13 %25 = 325 possibilities to only 13, but with the extra effort required in each

try of solving for b (one modular subtraction).
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Frequency Analysis

If no piece of plaintext is actually known, it could still be possible to guess some plaintext. An
analysis of the cyphertext could imply some good guesses.

For example, the cyphertext of Example has a double Y near the beginning. Few
English letters are doubled often, so it would make sense to guess that the doubled letter was
one of those, such as E, S or T.

An analysis of the distribution of characters in the cyphertext, and a comparison of that
distribution with the already known distribution of characters in plaintext is a very common
technique. This type of attack is called a frequency analysis. Spoken languages are not
written with a uniform distribution of characters from their alphabets. In English, for example,
E and T are the most common characters and Z, X and Q are the least common. A comparison
of the cyphertext character distribution with a known character distribution of the plaintext
language will also imply some good guesses.

The character distribution of the cyphertext from Example is given in Table The
most commonly occurring character in the cyphertext is D. The most commonly occurring letter
in English is E. It could be guessed that the encyphering key was -1. Decyphering with a key

of -1 gives the following;:
XPPEX PLEES POCZA DAZEL EYZZY.

Apparently -1 was not the key. Looking at the distribution again, if the key were -1 then the
plaintext would have had to have a surprisingly large number of X’s, Y’s, and Z’s. The second

most popular letter in English is T. It could be guessed that the encyphering key was 10, and
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this second guess is correct.
Table 2.4: Character distribution of cyphertext in Example

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0115000000200040010000 2 242

Example 2.18. Suppose it is known that the cyphertext

JKXMK ZFKJJ KXMJB SJGEJ BMUOM EJGKF

was generated by an affine cypher on the standard 26-letter alphabet. A statistical analysis
on a larger portion of cyphertext revealed that 'M’ and ’J’ are the two most common letters.
Knowing that the most popular letters in English plaintext are "E’ and "T’, find the encryption
key and decrypt the previous snippet.

Assuming that f(E =4) =M =12 and f(T = 19) = J = 9 the following system of equations

(in Zag) comes out

12 = a-4 + b

9 = a-19 + Db
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Which is easily solved:

12 4 1 a
9 19 1 b
Z - I
a 4 1 12
b 19 1 9
19 7 12 5
3 24 9 18

So the encryption key was (5,18). The decyphering transformation is f~!(c) = a=!(c — b) =
a~tc —a"'b. So the decryption key is (21,14). Applying the decyphering transformation of

f~1(c) = 21c + 14 to the above cyphertext results in
TOBEO RNOTT OBETH ATIST HEQUE STION,
or rather

To be, or not to be, that is the question.

2.5.2 Composition of encypherings

Theorem [2.17] established that the composition of encypherings is closed. This is considered a
weakness in a cryptosystem. One might think that encyphering a piece of plaintext twice would
square, or at least double, the difficulty in breaking it, but when the set of keys form a group,
no matter how many times a plaintext is encyphered with how many different keys, it is still
no more difficult to break than if it was encyphered once with the single key of the encyphering

composition.
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The closure of affine encypherings under composition is with the assumption that both
encypherings were performed in the same ring with the same bijection between the alphabet
set, X, and the ring, R. If | X | = |R1| < |Rz| = |X2|, then one can generate injective maps
t1: X1 = Ry, t2: Ry = R, and t3 : Ry — X5, and the composition t3 o fa 015 0 f1 011 will be
an encyphering from the alphabet X; to the alphabet X5. This will be fully invertible as it is

the composition of injective functions.

Example 2.19. Encypher the following plaintext using the 32-letter alphabet described in
Table with two affine character transformations. Do the first encyphering in Zgzo with a key

of (5,12), and the second in <£2£t]1> with a key of (3 +¢2 +1,¢% +1).

To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,

And by opposing end them?E]

The plaintext should first be written in the chosen alphabet (all capital letters and ignore

line breaks).

TO BE, OR NOT TO BE: THAT IS THE QUESTION: WHETHER °TIS NOBLER IN THE MIND TO
SUFFER THE SLINGS AND ARROWS OF OUTRAGEQOUS FORTUNE, OR TO TAKE ARMS AGAINST A

SEA OF TROUBLES, AND BY OPPOSING END THEM?

Next, the intermediary cyphertext is computed with the first key.

4Shakespeare, William. Hamlet, Prince of Denmark, 111.1
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LSORATOSBONSLOLSORAHOLPMLOUGOLPAO.QAGLUSNHO
PALPABOCLUGONSRDABOUNOLPAOIUN, OLSOGQFFABOLPAOGDUNKGOMN , OMBBS
GOSFOSQLBMKASQGOFSBLQNATOSBDLSOLMKAOMBIGOMKMU

GLOMOGAMOSFOLBSQRDAGTOMN , OREOSXXSGUNKOAN, OLPAI?
Then, use the second key on the intermediary cyphertext to compute the final cyphertext.

ZJB’FEBJIBWJZBZJB’FHBZM, ZBGKBZMFBNTFKZGJWHBCMFZMFIB : ZGKBWJ’ SFIBGW@
ZMFBOGWPBZJBKT??FIBZMFBKSGWGKB,WPB, IIJCKBJ?BJTZI ,UFJTKB?JIZTJFEBJI

BZJBZ,XFB,I0KB,U,GWKZB,BKF,BJ?BZIJT’ SFKEB,WPB’ QBJRRJKGJUBFJPBZMFOA

If the result of a first affine encyphering is injected into a different ring of equal or greater size,
then put through a second affine encyphering, this composition will be harder to break. Assume
that the pre-images of two cyphertext characters is already known, whether by knowledge of the
form of the plaintext or a statistical analysis. What is not known is the intermediary cyphertext
characters (the image of the two known plaintext letters through only the first encyphering
transformation). For each of the possible (9(112) encryption keys for the first encyphering, there
is up to one valid second encryption key of the O(l5?) total that will map the two intermediary
cyphertext characters to the correct two final cyphertext characters. And this will require a
brute force check: for each possible decryption key for the second transformation, calculate the
images of the two known cyphertext characters, solve the 2x2 system to find the decryption key

for the first transformation (if it exists), apply the two decyphering transformations and see if

5This line break was inserted for legibility, while the previous two occurred naturally at single spaces in the

cyphertext.

6Both of these line breaks were inserted for legibility, as the final cyphertext has no spaces in it.
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Table 2.5: 32-character alphabet represented by Zss and by the polynomial ring 55{%

Character Zso %
A 0 0
B 1 1
C 2 ¢
D 3 t+1
E 4 t2
F 5 t?+1
G 6 2 4t
H 7 2 +t+1
I 8 t?
J 9 t3+1
K 10 3+t
L 11 B+t+1
M 12 t3 + 12
N 13 3 +t2 41
O 14 3+ t2 4+t
P 15 B +t2+t+1
Q 16 tt
R 17 th+1
S 18 th+t
T 19 tr+t+1
U 20 th+ 12
v 21 48 241
w22 7+t
X 23 e+t 41
Y 24 th 4¢3
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legible plaintext results. This requires the same O(I?(lgl)?) as the dumb (knowledgeless) brute

force attack described in Section 2.5.11

Example 2.20. The two most common alphabet characters in the plaintext in Example
are (space) occurring 38 times and T occurring 19 times. O occurs 18 times and E occurs 17
times. Assume that an attacker already knows two plaintext characters, say that (space) is
represented by B and that T is represented by Z in the cyphertext. What the attacker does
not know is the intermediary cyphertext characters B and L for (space) and T respectively. If
those were known, then all that would need to be done is solve two 2 X 2 systems, one in each
ring. However, without knowing those two characters, he must consider every possible pair of
intermediary characters. For example, there are 32*15=480 possible keys in the polynomial ring
and 512 possible keys in the cyclic ring. For each of the 480 keys, an attacker may calculate the
pre-image, intermediary, cyphertext characters of B and Z, then solve the system in the cyclic
ring to find the key (if it exists) that would send (space) and T to them. On average, this will

take 240 tries, based on Theorem [2.15]

2.5.3 Distribution Count Variance

The United States’ Declaration of Independence is reproduced in Appendix[A] This is a decently
sized document free of copyright. It will be a running example throughout this work. Each time it
will be considered to be in a 128-letter alphabet, encoded by the standard 7-bit ASCII standard
for the computer representation of text characters. Each uppercase letter, lowercase letter,
decimal digit, punctuation mark, and other control character (such as tabs and new lines) have a

standard numerical assignment. There are actually a number of standard character assignments
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for alphabets in different languages (ANSI, ASCII, the ISO family, the Unicode family, etc....),
most of the encodings of Latin alphabets (especially the English alphabet) agree with the ASCII
standard for most of the first 128 characters. This choice of alphabet is usually automatically
handled by the text software (word processor, web browser, email program, etc. ...) so in
application, all that really needs to be considered is bits or bytes. The 26- to 30-character
alphabets will continue to be used in small examples throughout this work for ease of human
comprehension.

The character distribution of the plaintext Declaration of Independence is shown in Fig-
ure The Declaration of Independence was encyphered with an affine character cypher, the
result of which is also presented in Appendix [A] Note the jumbling of the paragraph breaks,
as the Carriage Return and Line Feed (new paragraph) characters are considered alphabetic
elements. The character distribution of the affine cyphertext Declaration of Independence is
also shown in Figure 2.I] for comparison. Note that the net effect between the two distributions
is just a shuffling of the bars in the histogram. The characters in the cyphertext appear no more
random than in the plaintext, they are just different characters.

The statistical measures of expectation and variance can be used to measure how evenly
spread out the distribution of characters is in a plaintext or cyphertext. Actually, expectation

(average) will not indicate any of that, but it is used in the formula for variance. An average

total characters

of the counts of each character should come out as
size of alphabet

regardless of whether it is
the plaintext or the cyphertext, or of the encryption scheme used. The variance will give an

indication of how non-uniform the character distribution is. The variance is the average of the

squares of the distribution count minus the square of the average of the distribution count, per
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Figure 2.1: Character distributions of plaintext and an example affine cyphertext Declaration

of Independence.
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Theorem [1.29

Vartance =

Toex |c<a>2 ) (&T))é'cm)){

where c(a) is the count of the number of a’s in the plaintext or cyphertext.

A higher variance means that some characters are occurring more often than other char-
acters, a less uniform distribution of characters. A lower variance means that more characters
occur approximately the same number of times, a more uniform distribution of characters. The
more uniform the character distribution of a cyphertext is, the closer it appears to a random

sequence, and the harder it is to analyze for information.

Example 2.21. Find the variance of the cyphertext from Example The character distri-
bution table is reproduced here.

First find the average of the character distribution.

1+14+5+2+4+14+2+2+44+2 24 12N0923
26 T2 13

Find the average of the squares of the distribution.

L+1+25+4+16+1+4+4+16+4 76 _ 38
26 T2 13 7

Subtract the square of the average from the average of the squares.

2
38 12 494 144 350
(3) - _ 30 07

13 \13) 169 169 169

The variance of the character distributions of both the plaintext and the cyphertext of affine
character transformations are the same. For the text of the Declaration of Independence, the

variance of both distributions shown in Figure [2.1]is approximately 31707.
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Table 2.6: Character distribution of cyphertext in Example (reproduced).

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0115000000200040010000 2 242
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Chapter 3

Affine, Block Cyphers

There are a number of mutually related disadvantages with the character cyphers described
in Chapter First is the small number of possible encryption keys. Second is the ease of a
statistical analysis on the cyphertext to break it. This is because of the small alphabet, and that
every 'A’ in the plaintext gets mapped to the exact same cyphertext character. Both of these
weaknesses may be overcome by a simple alteration. Rather than encyphering one character at
a time, in a ring the size of the alphabet, blocks of m characters are associated together and
encyphering is done in a ring magnitudes larger than the size of the alphabet. Specifically, if
the alphabet has [ characters, then the ring will have I elements.

This modification drastically increases the number of possible encryption keys; the larger
rings will have a larger number of invertible elements for the multiplicative a component and a
larger number of total elements for the additive b component. This modification also diversifies

the image of each character, as encyphering happens block-by-block rather than character-by-

54



3.1. MULTIPLE DIGIT M-GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

character, thus increasing the statistical analysis required for breakage. What character any
specific "A’ in the plaintext gets mapped to by the encyphering, will now depend on where in

the block the A’ occurs and the other characters in the block.

3.1 Multiple Digit m-graphs

Definition 3.1 (m-graph). A block of m letters in a plaintext or cyphertext. 2-graphs and

3-graphs are also called digraphs and trigraphs.

One simple way to inject a block of m characters of a size [ alphabet into a cyclic ring, is by
considering that block as an m-digit number in base [. Each block of m letters will be mapped
to an element of the ring Z;=. Given a bijection from the alphabet to the ring, j : X — Z;, one
can define jp, : X™ = Zym by jm(ar1,a2,. .., am) =3 1eq a;l™ 0

Affine transformations in Z;m happen just the same as ones in Z;, except there are now
more choices for the parameters a and b. There are [™ possibilities for b and ¢(I™) = ™~ 1¢(1)
possibilities for a. So the total number of possible keys is O(I>™). The number of possible

encryption keys grows exponentially with the size of the block.
Example 3.2. Encypher the message
RUBBER BABY BUGGY BUMPERS

using the standard 26-letter alphabet from above with a multidigit affine transformation on
digraphs using the encryption key (93,521). Note that 262 = 676 and that our message has an
above average number of B’s. Character distribution tables for both the plaintext and cyphertext

appear at the end of the example.
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First write the code in blocks of two.

RU BB ER BA BY BU GG YB UM PE RS

Convert each digraph to an element of Zg7¢ with the aid of Table

17:20 1:1 4:17 1:0 1:24 1:20 6:6 24:1 20:12 15:4 17:18

462 27 121 26 50 46 162 625 532 394 460

Apply the encyphering transformation f(p) = 93p + 512.

223 328 282 235 439 67 39 510 649 659 37

Convert back to digraphs in the 26-letter alphabet.

8:15 12:16 10:22 9:1 16:23 2:15 1:13 19:16 24:25 25:9 1:11

IP MQ KW JB QX CP BV TQ YZ ZJ BL

Arrange the cyphertext in blocks of five for easy human reading.

IPMQK WJBQX CPBNT QYZZJ BL

Table 3.1: Character distributions of Example

ABCDEFGHIJKLMNOPQRSTUVWXYZ

plaintext 16 00202000001 0010310300020

cyphertext 0310000012111 1023001001112
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The character distributions for Example are in Table Example started with
a plaintext containing 6 B’s. Those 6 B’s were mapped by the encyphering transformation
to 4 different letters: M, Q, J, and C, and the three B’s that are in the cyphertext came
from three different plaintext letters: A, G, and R. The letters in the cyphertext are more
spread out than in the plaintext. This is visible in the histogram of Figure [3.1] It can also be
demonstrated by finding the variance of the counts of the letters in each. Using the formula

from Theorem [1.29| it is found that the variance in the character counts in the plaintext is

143644044 LELE9+14944 _ (22)2 ~ 1.98, but the variance in the character counts in the cyphertext

is about 0.822.
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Figure 3.1: Character distributions of Example
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That the third B in the plaintext went to a Q is a coincidence, but it is not a coincidence
that the second and sixth B’s went to the same letter. The least significant digit in an affine
transformation is not affected by the more significant digits, this is true even in base 10. The
ones digit of any multiplications and additions is only determined by the ones digits of the
components. Notice also that the first two U’s, each in the least significant digit of their
respective digraphs, each went to P.

The fact that the image of each letter in the least significant digit of each block is constant
with respect to the more significant digits is a weakness of this block cypher scheme. If the
alphabet and block size are known, which is standard, an attacker could gain information by
a statistical analysis of only the least significant digits of each block. With enough statistical
data, an attacker could determine the residue of the encryption key mod I.

For known plaintext attack, an attacker would need to know the plaintext equivalents of 2
blocks of cyphertext, just as he needed to know the plaintext equivalent of two characters of
cyphertext for an affine, character transformation. This could be more than m times harder,
because it requires two properly aligned, length-m blocks of contiguous characters to be known,
not just m times as many characters.

A statistical analysis can still be performed if enough cyphertext is available. Rather than
counting the number of each character, the number of each possible length-m block must be
counted and compared to a known m-graph distribution in the plaintext alphabet. Because the
data being counted are m times as big as with the character cyphers, and there are ™! times
as many possible data elements, it will now take at least mi{™ ! times as much cyphertext to

be able to make as accurate of a statistical analysis as it did against single character cyphers.
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Affine transformations for a multidigit m-graph now require time on the order of O((lg1™)?)
because each arithmetic operation now happens on numbers the size of [ rather than [. The
number of arithmetic operations required for a block cypher, though, is now only % as many as
for a character cypher on a message of the same length. The time required to use a multi-digit
m-graph cypher is (9(%) = O(m(lgl)?). With O(I>™) possible keys, a brute force attack

against a multi-digit, affine, m-graph cypher will take O(mi*>™(lgl)?) time. This encryption

scheme has a much better break-to-utilize time ratio than affine character cyphers.
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1200 - Affine Multidigit Digraph Cyphertext |
1000 T
- 800 |
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Character

Figure 3.2: Character distributions of plaintext and an example multidigit, digraph, affine

cyphertext Declaration of Independence

Once again, the Declaration of Independence was encyphered. This time with a multi-
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digit, digraph, affine transformation. The key used was (8567,612). The text of the resulting
cyphertext is included in Appendix [A] The character distribution histogram of the cyphertext
is graphed in Figure [3:2] The distribution of the original plaintext is included in the figure
for reference. Clearly, the cyphertext distribution shows a more even spread in the character
counts. This cyphertext has a character count variance of approximately 10100, as opposed
to the plaintext’s of approximately 31700. This smoother spread in the character distribution
indicates that a statistical analysis will require more than merely counting the characters to be
meaningful.

Notice that plaintext character 32 (space) has over 1300 occurrences, but no cyphertext
character has so many. This is because not every space in the plaintext was mapped to the same
character in the cyphertext. However, as previously mentioned, since the least significant digit
of the result of an arithmetic computation is only dependent on the least significant digits of
the operands, any space that occurred as the second character in a digraph was mapped to the
same character. Only character 68 (D) of the cyphertext has over 750 occurrences. Clearly, any
D in the cyphertext that occurs as the second character of a digraph is the image of a space in
the plaintext.

Rather than counting characters and guessing a pair of mappings based on known characters
in the plaintext alphabet, a statistical analysis on the cyphertext requires a count of the digraphs.
This count can then be compared to a list of known common digraphs in the plaintext alphabet
(such at ’th’, ’he’, and 'ng’ in English) to generate probable guesses for pair mappings to solve
for the key algebraically. The process is the same as for the single character cyphers, but

requires more data handling and computations. For this digraph example, a histogram of digraph
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frequencies could be generated for the two texts; this histogram would resemble Figure [2.1] in
the sense that the bars of the cyphertext histogram would look merely like rearrangements of
the bars of the plaintext histogram, except that there would now be 1282 = 16384 bars instead

of 128. A presentation of this histogram here would, therefore, be impractical.

3.2 Vector m-graphs

Rather than considering each component character of an m-graph as a digit, it could also be
considered as a vector component. Rather than a mapping into Z;», a mapping into Z;"™, or
any R™, is used. However, the vectors of R™ do not form a ring, for they may only be added,
not multiplied. An affine transformation will require a matrix multiplication by an invertible

element of M,,(R). It will have the form

f(p) = Ap+0,

where A € M,,,(R)* and b € R™. The benefit thereof, is that the image of every component of
each vector, p, will be determined by every other component of the vector (for a reasonably well
chosen value of A).

The multidigit m-graph method only lends itself well to rings of the form Z;, but finite-
length vectors and the matrices by which they may be multiplied can be naturally formed from
any ring. And the natural (left) multiplication of elements of R™ by elements of M,,(R) show

R™ to be a (left) Mm(R)—moduleH

Example 3.3. Encypher the message

ISee Grove, p125 [1], for a discussion of modules.
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RUBBER BABY BUGGY BUMPERS

using the standard 26-letter alphabet from above with a vector affine transformation on digraphs

using the encryption key

15 7 2

First write the code in blocks of two.
RU BB ER BA BY BU GG YB UM PE RS

Convert each digraph to an element of Zy” with the aid of Table

17 1 4 1 1 1 6 24 20 15
20 1 17 0 24 20 6 1 12 4
3 12 22
Apply the encyphering transformation f(p) = P+
15 7 2
1 11 14 25 1 5 8 2 18 11
7 24 7 17 3 1 4 5 22 21

Convert back to digraphs in the 26-letter alphabet.

BH LY OH ZR BD FB IE CF SW LV DT

Arrange the cyphertext in blocks of five for easy human reading.

BHLYO HZRBD FBIEC FSWLV DT

17

18

19

After Example a comparison was made between the variances of the character distribu-

tions of the plaintext and the cyphertext to demonstrate that block cyphers yield a cyphertext
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with a more spread out character distribution than single character cyphers. A character dis-
tribution count table for Example [3:3]is shown in Table [3:2] It was further demonstrated that
the multidigit block cyphers are not able to spread out the distribution of the characters in the
least significant positions of their respective blocks. Vector cyphers are able to spread out the
character distributions of all positions in the block. Therefore, the vector cyphers should tend
to produce cyphertext whose character distributions have an even lesser variance. To illustrate
this, a calculation of the variance in the character counts of the cyphertext from Example
results in a variance of about 0.669, less than that for either the plaintext or the multidigit

cyphertext.
Table 3.2: Character distributions of Example

ABCDEFGHIJKLMNOPQRSTUVWXYZ

plaintext 16 002020000010010310300020

cyphertext 03121202100200100111011011

With | M, (R)*| = (’)(lmQ) (for an l-letter alphabet) choices for A and |R™| = O(I™) choices
for b, there are (’)(lm2+m) possible encryption keys. Each affine transformation requires m?

multiplications in R. Each affine transformation will require O(m?(lg!)?) time and again only

1

- as many are required, so the total time to use a vector affine cypher is O(m(lg 1)?), the same
as for the multidigit cypher. A brute-force attack will, therefore, require O(ml™ +™(1g1)2) time.

The Declaration of Independence was encyphered twice with vector block cyphers, once with

digraphs and once with 4-graphs. Both cyphertexts are included in Appendix [A] The vector
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Figure 3.3: Character distribution of example vector digraph cyphertext of the Declaration of

Independence
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digraph encyphering used the key

95 5 43

97 58 99

and the vector 4-graph encyphering used the key

_ 37 68 26 95 1] 89 _
16 103 100 89 92
122 33 17 51 , 99
55 42 82 24 92

Figure [3.3| shows the resulting character distribution of the vector, digraph encyphering with
the distribution for the multidigit, digraph encyphering included for reference. Notice that
the vector encyphering produced cyphertext with a much smoother character distributions.
Figure shows the distribution of the 4-graph cyphertext with the distribution of the digraph
cyphertext for reference. The character count variances for the digraph and 4-graph cyphertexts
are approximately 515 and 261 respectively, significantly less than the 10100 of the multidigit
digraph cyphertext example. A visual inspection of the cyphertexts show a smoother look to the
paragraph breaks with the vector cyphers than the previous ones, agreeing with the numerical

measurement.

3.3 Vigenere Cyphers - An Historical Note

The Vigenere cypher was the first historical attempt at a block cypher, and was used successfully

for several centuries until cryptanalysis caught up with itE] In practice, it was an extension of a

2Koblitz, 66. [4]
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Figure 3.4: Character distribution of example vector 4-graph cyphertext of the Declaration of

Independence
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single character shift cypher to a rotating key sequence. The key sequence was usually associated
with an easily remembered key word. The first letter of the word was the shift key for the first
letter. The second letter of the word was the shift key of the second letter. When all the letters

of the key word were used, the first would be used again in a repeating cycle.

Example 3.4. If the key word being used in a Vigeneére cypher were “Petunia,” then the first
letter’s key would be P, the second letter’s key would be E, ...the seventh letter’s key would be
A, the eighth letter’s key would be P again. Suppose we wanted to encypher the message “The
king has a mistress.” with a Vigenere cypher using the keyword “Petunia.” We could write our

plaintext on one line, repeat the word ‘petunia’ under it, and cypher one letter at a time as so:

THEKI NGHAS AMIST RES S

PETUN TAPET UNIAP ETUN

ELXGV VGWEL UZQSE VXMF

The Vigenere cypher could be considered a block cypher. However, rather than the block
being encyphered together, each character of the block is encyphered separately, with a shift
cypher. This still gives the effect of smoothing the character distribution of the cyphertext, thus
prohibiting a direct statistical analysis of the entire character distribution. But once the block
size is known, the cyphertext can be fractured according to position in the block, and a simple
statistical analysis on the character distribution of each block position will lead to the discovery
of each respective key.

The Vigenére cypher may be classified as a special case of the vector m-graph transformation

where the multiplicative portion of the key, A, is the identity matrix. The keyword determines
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the entries of the shift portion, b. For example, a keyword of “Petunia” would represent a cypher

key of b= [15 4 19 20 13 8 0]~

3.4 Matrix m-graphs

3.4.1 Single-sided Affine Transformations

Rather than mapping blocks of m characters into vectors of length m, they could also be mapped
into matrices of size j X k where m = jk. If the encyphering transformation is of the form
f(P) = AP + B then A should be an element of M;(R) and b an element of R7**. This type
of scheme, however, will be little more secure than a j-graph vector cypher. When the block of
size n is broken into k sub-blocks of size j and those arranged as the k columns of the j x k
matrix P, what gets created is a vector parallel to the Vigeneére cypher: Each j-graph vector

sub-block gets encyphered with the key (A, b;) where b; cycles through the columns of B.
Example 3.5. Given a block of 9 characters mapped to the 3 x 3 matrix

P11 P12 P13

P= D21 D22 D23 |
P31 P32 D33
encypher the block with the key
a1 dai2 Qi3 b1,1 51,2 b1,3
A= ag1 Gao agz | B = | boy boo bos
as,1 asg2 G33 b1 b3 b33
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The resulting cyphertext block will be

a1,1p1,1+a1,2p2,1+a1,3p3,1+b1,1  ai1p1,2+a1,2p2,2+a1,3p3,2+bi2  ai,1p1,3+a1,2p2,3+a1,3p3,3+b1 3
az,1p1,1+az 2p2,1+a2,3p3,1+b2;1 a2 1p1,2+az2p2 2+az2 3p3,2+ba 2 az1p1,3+az 2p2,3+a23p3 3+b2 3

a3, 1p1,1+a3,2p2,1+a3,3p3,1+b3;1  asz 1pi,2+as 2p2,2+a3,3p3,2+bsz 2 asz1p1,3+asz 2p23+as 3p3,3+b3 3

The extra flexibility of choosing an arrangement of the characters into the j x k matrix
merely adds a permutation layer. This layer does not affect the statistical complexity.

If the arrangement of the m characters were not known, then the transformation could
be modeled as an m-graph vector transformation. The m-graph vector model of the same
transformation would line all m entries of the block in a vertical vector. If the length-j sub-
blocks of the m-graph vector do not correspond exactly with columns of the original j x k matrix
P, then that difference is a simple m x m permutation matrix. This same permutation matrix
would also be the difference between the original j X k matrix B and the models length-m vector
B

The vector transformation model’s A’ will be an m x m matrix. Since each element of C
was originally determined by exactly one row of A and j elements of P, then each row of A’ will
have m — j zero elements and the other j will be an arrangement of the elements from one row
of A. Since each row of A originally contributed to exactly k elements of C, then each row of
A will be represented by exactly k& rows of A’. Each of A’s j rows will populate k rows of A’,

accounting for all m = jk rows of A’.
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Only kj? entries of A are (likely) non-zero, and those contain only j2 (permittedly) unique
values, each occurring k times. Furthermore, the kj2 non-zero entries will be distributed equally
over the jk rows, j in each row, with none of the j2 distinct entries occurring twice on the same
row. Note that if the original j x j A has multiple entries of the same value, then that value

will occur the same number of times as often in the m x m A’.

Example 3.6. Transform the 3 x 3 matrix transformation into a 9-graph vector transformation
and verify that the new 9 x 9 matrix in the vector transformation will also be invertible if the
original 3 x 3 A is.

The length-9 vectors P’ and B’ will be

T
/
P {pl,l b2,1 P31 P12 P22 P32 P1,3 P23 p3,3] )

and

T
Blz[bm b1 b31 bia baa b32 b1z bag3 53,3] :
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To compute a properly corresponding C’ of

c' =

€11 €21 €31 Ci2 C22 C32 C13 C23 C33

a1,1p1,1 +a1,2P2,1 +a13p31 + b
a2,1p1,1 + G2,2P2,1 + G2,3p3.1 + b1
a3,1p1,1 + a32p2,1 + a33p3;1 + b3 1
a1,1p1,2 + G1,2P2,2 + G1,3P3,2 + b1 2
= | ag1p1,2 +azopro +az3p3o +baa |
a3 11,2 + as 222 + as3ps 2 + b3
a1,1P1,3 + @1,2P2,3 + a1,3p3,.3 + b13

a2,1P1,3 + G2,2P2,3 + A2,3p3.3 + ba 3

a3,1p1,3 + az2p2,3 + az3ps3 + b33

requires the use of

a1 ai2 a3 0 0 0 0 0 0
@21 Q22 a23 0 0 0 0 0 0

az;1 asz as;s 0 0 0 0 0 0

A= 0 0 0 a1 a2 azz O 0 0
0 0 0 as1 asz2 ass 0 0 0
0 0 0 0 0 0 a1 a2 a3

0 0 0 0 0 0 az1 a2 G23

0 0 0 0 0 0 asi as2 ass3
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Or, more concisely, starting with

P:[M P2 p3}

and similarly

BZ[bl by bg}

and a
C= [ c1|co|cs }
such that
C=AP+B= [ Ap1 +b1 | Ap2 + b2 | Aps + b3 } ,
then if one wants to restructure P as
p1
Pr=1p |
L p3 .
and similarly B as ) ;
by
B=|y |
N
and C as : :
C1
o= |
o
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then A must be restructured as

A 0 O
A=10 4 0
0 0 A
The reader may easily verify that if C = AP + B, then C' = A'P' + B'.

Lastly, |A’| = |AJ?, so A’ will be invertible if, and only if, A is.

Example demonstrates what could be called a standard mapping of a character block
into a matrix, where each column, from left to right, is filled from top to bottom. Any other
arrangement can be converted into a vector block, like in Example and if the coefficient
matrix A’ and constant shift vector B are multiplied by appropriate permutation matrices, then
the message vectors P’ and C’ can be equated with message blocks in the standard, same-order

sequence manner.

3.4.2 Double-sided Affine Transformations

Rather than a transformation of the form f(P) = AP + B, a matrix transformation could also
use a transformation of the form f(P) = APB + C, where if P € R™*", then A € GL,,(R),
B € GL,(R), and C € R™*™. The key space is now GL,(R) X GL,(R) x R™*™, the size of
which is O(|R|™+n +mn),

This type of transformation is, also, able to be converted to one of a simpler form like the
single-sided transformation above was. While, in general, it is not possible to convert a right-

hand multiplication like PB into a left-hand of the form B’P with a fixed B’ and variable P, the

73



3.4. MATRIX M-GRAPHS CHAPTER 3. AFFINE, BLOCK CYPHERS

double-sided m x n matrix affine transformation can be converted into a single-sided length-mn
vector transformation just like the single-sided matrix transformation above.

For this, we'll introduce some extra notation. First, the act of vectorizing a matrix, M, by
stacking its columns on top of each other will be notated with the vec operator. Thus if M is an
n X m matrix, then vec M is an mn-length column vector. Additionally, the column of a matrix
shall be denoted with a single subscript in the following.

A new matrix product, known as the Kronecker Product, shall be denoted with the ®

operator.

Definition 3.7 (Kronecker Product). If A is a k x | matrix and B is an m X n matrix, then the

Kronecker product A ® B is a km X In matrix formed by left distributing B to each element of

A. _ _ _ _
11 Gir2 - Qi a1,1B al,QB s al,lB
a1 Q2 -+ Qg a1 B a2B - a9;B

® B =
ap1 Qk2 0 Qg a1 B ap2B - apB

Theorem 3.8. A matriz transformation of the form f(P) = APB + C where A € GL,,(R),
B € GL,(R), and P,C € R™*™ is convertible to one of the form f(P) = A'P' + C' where

A" € GLynn(R) and P',C" € R™ [

3The proof of this is essentially copied from Horn and Johnson, 254-255. [3|
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Proof. We'll first examine the k™ column of the product APB.

(APB), = A(PB), =APB,

n
Zi:1 pl,ibi,k

n
Zi:1 pm,ibi,k

n
Y i bikp1i

n
Zi:l bi,kpm,i

bi,kpl,i
n
=AY
i=1
bi,kpm,i
Pi,i

=A Zn: bik
i=1

Pm,i

a4 (Z bi,kpi>
i=1
= Zn: Ab; 1 P,
=1

This distribution of A into the summation will eventually become a Kronecker product of a

matrix with A. At this point we may reinterpret the summation as a vector inner product and
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continue like so:

Py
n P2
ZAbz,sz = |: Abl’k Abgﬁk s Abmk :|
i=1
Py
= { birA bopA oo by A ]vccP

=(Bx" @ A) vec P

Remember that this is just the k" column of APB. The vectorization of APB will result in

stacking these columns on top of each other.

(BT @ A)vec P

(BT ® A)vec P
vec APB =

(B,T @ A)vec P

(BT @ A)
(BQT ® A)
= . [vec P)

(B," ® A)
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But since vec P is already a vector, [vec P] = vec P.

(B, @ A)

(BQT ® A)
vec APB = vec P

= ® A | vec P

(BT @ A)vec P

And so, not only do we know that a transformation exists to vectorize P and C, but we also
know the form of the transformation. The important part is that the same vector-based analysis
may be used by an attacker whether the actual transformation is a vector, single-sided matrix
or double-sided matrix transformation. Note also, that the single-sided matrix vectorization of
Example [3.6] is a special case of the double-sided one where the right-hand matrix is just an

identity, 1. O

The time involved in using a double-sided matrix transformation on a plaintext message is

2n multiplications in R when multiplying

dominated by the matrix multiplications. There are m
by A and mn? multiplications in R when multiplying by B. If R = Z;, then each multiplication

requires O((lg)?) time, but there are only - of them. The full transformation will therefore
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require O((m + n)(lgl)?) time. With a keyspace of O(lm2+"2+m"), a brute-force attack would
require O(I™*+7*+mn (i 4 n)(1g1)2) time.
Compare this with the time requirements for an mn vector transformation: O(mn(lgl)?)

transformation time and (’)(l(m")z“‘”m)—size keyspace. The vector transformation has a usage

2,2
mn m2n24mn

m+n

requirement times harder, and a keyspace = [P =m*—n® imes larger, the

m2+n2+mn

2

. . 2 — 27 2 . . .
breakage requirement is ;% - (™™ 7™ 7" times harder. A vector transformation with the

same block size seems favorable to a matrix transformation.

3.5 Combining m-graph Methods

Different m-graph methods may also be used together. The most simple combination would be
to use multiple digit mi-graphs as the base ring elements in a vector or matrix meo-graph. This
is especially true with computers.

Computers use the byte (8-digit binary numbers) as their base unit of storage. This produces
a natural 256-letter alphabet with a natural mapping to Zass. However, the base unit (or perhaps
more properly called the optimal unit) for mathematical operations may be 2, 4, or 8 bytes,
depending on architecture, and is called a word. On a computer that can natively (in hardware)
handle 32-bit operands (4 bytes), it would be very convenient to use multiple digit 4-graphs
mapped to Zsgs2. Even more convenient, is the fact that arithmetic operations will naturally
wrap around from 232 — 1 to 0, easing the requirements for a mod operation to always followEI

A 32-bit arithmetic processor will naturally work with integers mod 232.

4Computer programmers refer to this “feature” as overflow when modular computations are not desired.
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Once the characters of a plaintext message are grouped into words of length 4 (for example),
Zy32 may then be used as the base ring to form m-graphs (of words now, not characters) into
vectors or matrices.

Section discussed the composition of affine encypherings and demonstrated that it was
only beneficial when a different ring was used for each encyphering. With all these different
m-~graph techniques, it is not hard to find two or more different rings in which to work. Even
using the same m-graph technique with different sizes of blocks will suffice. And while the net
result will be a block cypher with a block size of the lem of each of the component block cyphers,
the resultant cypher may not be representable as an affine cypher, and the associated keyspace

would then not form a group structure.

Example 3.9. Take the notes of Twinkle, Twinkle, Little Star (in the key of C-Major), written

in the seven-character alphabet X = {A4,...G} (neglecting note lengths):

CCGGAAGFFEEDDCGGFFEEDGGDDEEDCCGGAAGFFEED

D C.

Let the notes be represented by the ring Z; in alphabetical order with A = 0 and G = 6. First
encypher the sequence as multidigit 2-graphs (in the ring Z.» with the key (45,8). First collect
the message in groups of two and then convert the groups of two to elements of Z49 considering

the first element of each pair as the 7’s digit.

CC GG AA GF FE ED DC GG FF EE DG GF FE ED CC GG AA GF FE ED DC

16 48 0 47 39 31 23 48 40 32 27 47 39 31 16 47 0 47 39 31 23
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Next apply the affine transformation ¢ = 45p+ 8 then convert the resulting elements of Z,9 back

to character pairs.

42 12 8 16 48 31 14 12 44 27 47 16 48 31 42 12 8 16 48 31 14

GA BF BB CC GG ED CA BF GC DG GF CC GG ED GA BF BB CC GG ED CA

Next collect the characters into groups of three and convert them to elements of Zzs.

GAB FBB CCG GED CAB FGC DGG FCC GGE DGA BFB BCC GGE DCA

295 253 118 325 99 289 495 261 340 189 85 65 340 161

Then encypher them with the key (177,140) in Z;s and convert back to tri-graphs.

219 331 103 41 170 186 12 32 295 322 93 326 295 168

EDC GFC CAF AFG DDC DFE ABF AEE GAB GEA BGC GEE GAB DDA

These two encypherings in series have the effect of a 6-graph encyphering. However it is certainly
not a multidigit, 6-graph affine cypher. As 6-graphs, the first two blocks of the final cyphertext
would correspond to the values 75,448 and 35,370 in Zzs respectively. The first two blocks of
the original plaintext correspond to the values 40,768 and 114,789 in Zrs respectively. Using

these two blocks, a known plaintext attack yields the system of equations

75,448 =40, 768a + b

35,370 =114, 789a + b
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Using a computerized algebra software such as Sageﬂ or Maximaﬂ because working by hand in
a ring this big is tedious, yields a solution of the key (17912,86375). The next two blocks of
cyphertext correspond to the values 58,496 and 4148 respectively and the next two blocks of
plaintext correspond to the values 57,615 and 78,202 respectively. Setting up a system of equa-
tions and solving for the key again gives 7 possible keys that work with this pair: {(6495,90540),
(23302, 6505), (40109,40119), (56916, 73733), (73723,107347), (90530, 23312), (107337,56926)}
(like the system in Example this one need not have a single unique solution because it is
only over a ring and not a field), none of which match the key that works for the first pair of

6-graphs.

Shttp://www.sagemath.org/

Shttp://maxima.sourceforge.net/
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Chapter 4

Exponential Cyphers

4.1 Introduction

The encyphering systems of Chapters [2] and [3| belong to the class of symmetric cryptosystems.

The cryptosystems of this chapter are asymmetric.

Definition 4.1 (Asymmetric cryptosystem). A cryptographic system where knowledge of one
of the pair of keys is “easily” computable from knowledge of the second, but knowledge of the

second is computationally “difficult” from knowledge of the first.

The affine transformations of Chapters |2 and [3| all have relatively easily computed inverses,
and the encyphering transformations themselves are just as easily computed from their inverses.
With asymmetric cryptosystems, the key from which the other can be “easily” computed is con-
sidered the decyphering key and the key from which it would be “difficult” to compute the other

is considered the encyphering key. In practice, a participant in an asymmetric cryptosystem
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makes his encyphering key publicly available, and keeps his decyphering key private. The two
keys, therefore, are commonly referred to as the public key and the private key. And by virtue
of this public key, asymmetric cryptosystems are commonly called public-key cryptosystems.

The security of an interaction between two parties using a symmetric cryptosystem is de-
pendent upon the pre-existing knowledge of the encryption keys by both parties and the secrecy
of those same keys from all other (or at least all untrusted) parties. For both interested parties
to already know the secret key, it would have to have been agreed upon at an earlier meeting.
For no third parties to know the key, the meeting where it was agreed upon must have been
absolutely secure and the key must not have been cracked by an eavesdropper. For example, if
Alice and Bob want to pass notes to each other in English class, but because they sit in opposite
corners of the room and don’t want anyone else to be able to read their notes decide to encrypt
their messages with a symmetric encryption, they must agree on a key sometime before class,
somehow so that no one else in class knows the key.

A third party would only need to crack the key once, and discover either the encyphering or
the decyphering key. Once one is known the other may be easily computed and the third party
will have covertly gained full privileges to the secret conversation. With this knowledge, the
third party could continue eavesdropping (now in knowledge of the correspondence), decrypt
saved messages that had been encyphered with the key before he cracked it, and/or impersonate
one or both of the members of the secret conversation. The third party is now capable of sending
encrypted messages to the legitimate participants (alleging to be the other legitimate member),
and could fully hijack the conversation if he is capable of intercepting the legitimate messages

and blocking their delivery.
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With a symmetric cryptosystem, a group of parties may all share one key for secret messages
amongst themselves, but if two parties of the group wish to converse without the others, they
must share a separate key for just themselves. If every distinct pair of parties sets up a symmetric

w) Furthermore, if every possible set

key, then there will be as many keys as handshakes (
of 3 parties, and every possible set of 4 parties, and every possible set of 5 parties, etc...want
to set up a symmetric key to be able to communicate to the exclusion of the rest of the group,
then the number of required keys will be close to 2.

In asymmetric cryptography, when one party desires to send a message to a second, he
transforms the message with his private key, which only he knows, then transforms that result
with the intended recipients public key, which had been made public knowledge. Upon receipt,
the recipient transforms the cyphertext with his private key, which only he knows, inverting the
senders second transformation, then transforms that result with the senders public key, which
had been made public knowledge, inverting the senders first transformation. Suppose party
A’s public key performs the transformation f4 and private key performs the transformation
f 4L and party B’s public key performs the transformation fp and private key performs the

transformation fp~'. When party A wants to send a message to party B, party A encyphers

the plaintext message with
C = fo(fa” (P)).

Upon receipt, party B decyphers the cyphertext with

falfsHC) = falfs™ (fu(fa~ " (P))) = fa(fa~ " (P)) = P.

For example, if Alice and Bob decide to use an asymmetric cyptosystem for passing notes
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in English class, they may agree in front of everyone (except perhaps the teacher) to do so,
each go to his/her seat and generate a key pair, then share their public keys publicly. When
Alice uses fp in encyphering a message to Bob she knows that only Bob will be able to invert
(decypher) it, and when Bob uses f4 in decyphering the message he knows that only Alice
could have encyphered it. The messages are both secure (only the recipient will get them) and
authenticated (the sender is verified to be as claimed).

With an asymmetric cryptosystem, only one key (public-private pair) is needed for each
individual party, and any pair of parties may then communicate to the exclusion of everyone
else. However, sharing messages among more than two parties requires a separate encyphering for
each recipient. In practice, nearly all encrypted conversations involve only two parties anyway.

In general, an encyphering transformation is considered practical if encyphering with f and
decyphering with f~! take time no longer than on the order of a polynomial in logn where n is
the size of the ring used. The transformation is considered asymmetric if decyphering a message
knowing only f (cracking the key) requires time at least on the order or a polynomial in nE|
Such a transformation, f, is called a trap-door function, because a message could be easily
encyphered (fall through the trap door) by anyone with Alice’s public key, but it could not be
easily decyphered (escape back out through the trap door) except by Alice who has the private

key.

Definition 4.2 (Trap-door function). A trap-door function is an invertible function f: X — Y

such that

o f(z) is “easy” to evaluate for any x € X and

1Koblitz, 88. [4]
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o y= f(x) is “difficult” to solve for z given a y € Y.

Such trap-door functions are best found in historically difficult problems. The two histori-
cally difficult problems whose derived cryptosystems will be described here are that of factoring

an integer into prime factors and evaluating the discrete logarithm.

4.2 Prime Factorization

Given two or more prime integers, it is fairly simple to compute their product. However, given
a composite integer, it can be very difficult to compute its prime factorization. The difficulty
of factoring an integer into it’s prime factors is the basis for the security of the RSA public-key
cryptosystem.

The process of generating a key pair for RSA encryption proceeds as follows: First, two
prime numbers are chosen at random, p and q. Their product is calculated, n = pq. The size
of the group of units of Z,, is calculated, ¢(n) = (p — 1)(¢ — 1). An invertible element of Zy)
is chosen at random, e. The inverse of e in Zy(,) is calculated, d. The public key is K = (e, n)
and the private key is K~! = (d,n). Encyphering involves mapping m-graphs into Z, and

transforming them with the function
C = f(P)=P° mod n.
Decyphering is performed with the inverse function

P=f1C)=C% modn=P* modn=P" modn.
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These functions are inverses because e and d were chosen so that they would be. For any
x € Zy, unit or not, the multiplicative, cyclic group or semi-group, respectively, (z) will have
an order dividing ¢(n). Therefore, because ¢(n) divides (ed — 1), |{x}| will also divide (ed — 1)
and 2°? = z. As a side note, knowing the structure of Z,, = F, x F,, ed need only be congruent
to 1 (mod ged(p — 1,9 — 1)). It would, therefore, be advisable that when choosing one’s p and
g, one chose a pair whose p — 1 and ¢ — 1 have the fewest common multiples possible. (As they
are both odd, a common factor of 2 will be unavoidable.)

The RSA cryptosystem is dependent of the difficulty of factoring integers, because if the
factorization of n were known, then the inverse of any number in Zg,) could be easily calculated

with the Extended Euclidean Algorithm.
Example 4.3. Encypher and then decypher the message
Call me Ishmael.

in a 33-character alphabet by appending ‘"’=32 to the 32-character alphabet in Table on
page [48| with the encryption key (3, 33).
Note that 33 =311, ¢(33) =2-10 =20 and 37! =7 (mod 20).

First, convert the characters to their representatives in Zss.
(2, o, 11, 11, 26, 12, 4, 26, 8, 18, 7, 12, 0, 4, 11, 28)
Then, raise each element to the third power in Zs3.
(8, o, 11, 11, 20, 12, 31, 20, 17, 24, 13, 12, 0, 31, 11, 7)

And convert each element of Zsz back to a character of the chosen alphabet.
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IALLUM:RUYNMA:LH

Decyphering will follow the reverse steps backwards. Convert the cyphertext to elements of

Zs33.
(8, o, 11, 11, 20, 12, 31, 20, 17, 24, 13, 12, 0, 31, 11, 7)
Raise each element to the seventh power.
(2, 0, 11, 11, 26, 12, 4, 26, 8, 18, 7, 12, 0, 4, 11, 28)
And convert each element back to a character to reveal the plaintext.
CALL ME ISHMAEL.

Example [£.3] is unrealistic for multiple reasons. First, the chosen modulus is too small to
be secure, though this was done intentionally so that the procedure could be the focus of the
example. Second, the encyphering was performed on single characters, rather than blocks. And
finally, the size of the alphabet was the same as the key’s modulus.

The reason it is unrealistic for the modulus and alphabet size to be the same, is that every
participant should have a different modulus. Each participants modulus is the product of their
secret pair of prime numbers. If any two also had the same modulus, they would know the
factorization of each others modulus and be able to decypher messages intended for the other.

For participants to send each other messages, they need an agreed-upon alphabet and block
size. But if the moduli of the participants are all different, then how could the alphabets and
block sizes be the same? This is handled by selecting a larger alphabet and/or block size for

the cyphertext messages than the plaintext messages. Each participant chooses their p and q
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such that the product is between the moduli for the two text bases. If Ip and I¢ are the sizes of
the plaintext and cyphertext alphabets respectively and mp and m¢ are the block sizes of the
plaintext and cyphertext messages respectively, then each participant chooses his p and ¢ such
that Ip™?7 < mn = pg < I¢"™°. The blocks of text each get interpreted as multidigit m-graphs.
The order in which transformations are applied is determined by modulus size.

Suppose Alice has a modulus of n4 and Bob has a modulus of ng. When Alice sends Bob
a message she applies the transformations in the order of increasing modulus. If n4 < npg, then
Alice first applies her private key (mod n4), then applies Bob’s public key (mod ng), and sends

Bob

C = fa(fa="(P)).

If ng < ma, then Alice first applies Bob’s public key (mod ng), then applies her private key

(mod n4), and sends Bob
C = fa” (f5(P)).

When Bob receives the message he applies the transformations in the order of decreasing mod-
ulus. If ng < np, then Bob first applies his private key (mod np), then applies Alice’s public

key (mod n4) and reduces that result (mod Ip™7) to read

fa(fs=1(C)) = falfs  (fB(fa~ (P)))) = fa(fa™'(P)) = P.

If ng < ma, then Bob first applies Alice’s public key (mod n4), then applied his private key

(mod np) and reduces that result (mod I»™7”) to read

fBHfA(0) = f5~  (falfa  (fB(P))) = f5~ ' (fB(P)) = P.

89



4.2. PRIME FACTORIZATION CHAPTER 4. EXPONENTIAL CYPHERS

The flow of events will look either like

-1
P — mp-graphs — Z; mp Ja L, ELN Ly — Zigme — me-graphs — C

—1
C — me-graphs — Zj,me — Znp,, ELERN L, , Ja, Zipmp — mp-graphs — P,

or like
fa™?t

P — mp-graphs — Z;,mp Iz, Ly ~—— L, = ZLyyme — me-graphs — C

—1
C — me-graphs — Zygme — Z, 225 oy, 22— Zymp — mp-graphs — P.

Example 4.4. Use the standard 26-letter alphabet from Table for both the plaintext and
cyphertext. Use 3 character blocks for plaintext and 4 character blocks for cyphertext. Use a
private key of (78701 = 10171,124931 = 271 - 461) and encypher the following message for a

recipient with a public key of (101,122431).
0 ROMEO O ROMEQ WHEREFORE ART THOU ROMEO
The plaintext should first be grouped into 3-graphs and converted into elements of Zogs.

ORO MEO ORO MEO WHE REF ORE ART THO URO MEO

(14:17:14, 12:4:14, 14:17:14, 12:4:14, 22:7:4, 17:4:5, 14:17:4, 0:17:19,

19:7:14, 20:17:4, 12:4:14)
(9920, 8230, 9920, 8230, 15053, 11601, 9910, 461, 13040, 13966, 8230)

Since the recipient’s key has the smaller modulus, his will be used first. Each entry in the

latest vector shall be raised to an exponent of 101 (mod 122431). Exponentiation by repeated
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squaring will be demonstrated here in a Z; ring on the first entry only. See Section for the

description of the procedure.

99202 Running product

i 101 (mod 122431) (mod 122431)

1
0 1100101 9920 9920
1 1100101 94307 9920
2 1100101 55116 96305
3 1100101 15484 96305
4 1100101 34358 96305
5 1100101 114893 68740
6 1100101 13460 29333

(29333, 43110, 29333, 43110, 9902, 30040, 110028, 43397, 75323, 46988, 43110)
Now each entry gets raised to an exponent of 78701 (mod 124931).
(3138, 55108, 3138, 55108, 124825, 64615, 10857, 33987, 17985, 16826, 55108)
Then convert to 4-graphs in the 26-letter alphabet.

(0:4:16:18, 3:3:13:14, 0:4:16:18, 3:3:13:14, 7:2:16:25, 3:17:15:5, 0:16:1:15,

1:24:7:5, 1:0:15:19, 0:24:23:6, 3:3:13:14)
AEQS DDNO AEQS DDNO HBQZ DRPF AQBP BYHF BAPT AYXG DDNO

According to Theorem in Section each exponentiation will require O((lg e)(Ign)?)

or O((lgd)(lgn)?) time. Each of d and e are elements of Zg(,) and thus have magnitudes of
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O(¢p(n)) = O(n). And n = O(l¢™°). If the plaintext and cyphertext use the same alphabet (it
is standard that each computer byte is an element of Zssg) then the subscript on the [ can be
dropped. And once [ is fixed then mp and m¢ differ by a fixed multiple, so the subscript on
the m may also be dropped. Now, each exponentiation will require O((1g1™)?) = O(m3(Igl)?)
time. For any specific plaintext, only O(%) as many exponentiations will be required, thus using
this exponential cypher requires O(m?(Igl)?) time. This is one order of magnitude larger than

a vector transformation, which requires O(m(lgl)?) time, of the same block size, which makes

perfect sense as exponentiation is repeated multiplication.

4.3 The Discrete Logarithm

Another arithmetic operation that historically has been computationally difficult is the discrete
logarithm: the evaluation of the logarithm of an element in a discrete field.

In the Real Numbers and in discrete fields, exponential functions are (relatively) easy to
evaluate. The repeated squaring method keeps evaluation time down. The exponential function’s
inverse, however, is not so simple.

In the case of the Real Numbers, exponential functions are smooth and continuous. Real
logarithms tend to be irrational numbers but can be approximated with several calculus-based
methods. This ease comes from the niceness of an exponential curve, as depicted in Figure [{.1]

Exponential functions in discrete fields have a much more random appearance to them. This
makes estimation of a logarithm in a discrete field “difficult.” The proximity of two inputs to an

exponential function appears to have little relation to the proximity of the outputs. Examine
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2.5e+09

2e+09

1.5e+09 - -

le+09

5e+08

Figure 4.1: Exponential function in R.
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the function y = 6% in Figure Notice that while 5 and 6 differ by only one, 6° and 6° differ

by 10 (or 3). On the other hand, 6% and 6 differ by only one, as do 6' and 6”.

y=6"
12 ®

10 - [ .

Figure 4.2: Exponential function in Z3.

This random appearance can be seen more clearly in larger fields. Figure [£.3]shows y = 12*
in Zi39. This exponential function clearly illustrates that estimating discrete logarithms is
probably impossible, and calculating them is rather “difficult.” This apparent randomness of

the discrete exponential function is utilized in the generation of pseudo-random numbersﬂ

2Menezes, §5.5, p. 185-187.
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y=12%

120

100

80

60

40

Figure 4.3: Exponential function in Zj39.
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4.3.1 Diffie-Hellman Key Exchange

As exponentiation is an order of magnitude more (computationally) expensive than multiplica-
tion, public-key cryptosystems using it are also significantly more expensive to use than classical,
symmetric-key cryptosystems. As such, public key systems require significantly more time to
use than classical systems. For this reason, public key systems are usually employed as an
augmentation to a classical system, rather than as a replacement for one.

The Diffie-Hellman key exchange is a method by which two previously unacquainted parties
may publicly agree to a classical cryptosystem’s key, under the security of a public key system.

First the two parties agree to a discrete field and a generator, g, of a cyclic subgroup, (g), of
the multiplicative group of units. Preferably, g is chosen to generate the entire group of units,
so as to permit the greatest number of possible classical system keys. A mapping from the
generated group to the classical systems’ keyspace is agreed upon. Each party then selects a
random integer, o and 3 respectively (these are their private keys), in the range [0,|(g)|) and
calculate the respective powers of g. The parties trade their powers of g, g® and g? (these are
their public keys). The key to be used in their classical cryptosystem communiqués is the one
represented by ¢®?, which each may calculate by raising the other parties power of ¢ to their

own power. Let’s illustrate this exchange with an example.

Example 4.5. Suppose Alice and Bob wish to initiate a classical cryptosystem-encoded con-
versation with a secret key decided by a Diffie-Hellman key exchange.

Alice and Bob have agreed to use the 26-letter alphabet of Table[2:2]with an affine, character
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transformation of the form

f(p) = ap +0.

Alice and Bob agree to use the field Zg77 with g = 2, which is a generator of the group of
units. The group of units Zg77* has exactly 676 = 262 elements, which, very conveniently, is the
exact same size as the keyspace, Zog>. It is not necessary to get a 1-1 correspondence between
the generating field and the keyspace, but a roughly equal chance of each key is important for
security.

Alice and Bob agree to a mapping of g*? to (a,b), i.e. from Zg77* to Zos2. The mapping from
the field’s group of units to the key space will begin by reducing the obtained g** (mod 676) (if
necessary). The element of Zog: will be converted to an element of Zgg? by writing it in base-26,
the digits of which will be the 2 elements of the key.

If the obtained a is not an invertible element of Zsg then Alice and Bob will choose two new
random exponents.

Alice and Bob choose random exponents, o and f3, less than 676: Alice chooses 674 and
Bob chooses 136 at random.

Alice and Bob each calculate their public key (¢ and ¢” respectively) by raising the gen-
erator g to their respective powers (o and 3) in Zgr7: Alice calculates g = 267 = 508 and Bob
calculates g? = 2136 = 148.

Alice and Bob trade their individual public keys and each calculate their shared private key,
g“P: Alice calculates g = (¢”)* = 14857 = 189 and Bob calculates g*# = (g*)” = 508136 =
189.

Alice and Bob, individually, each write 189 in base-26 (no reduction mod 676 is necessary
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this time) as 7:7. They each verify that 7 is an invertible element of Zag, so they will use the
encryption key (7,7). They can each calculate the decryption key with relative ease from the

encryption key to decode each other’s messages.

This example used a numeric field of prime size. It is also common in practice to use a
Galois field with polynomial representation and map the coefficients into the key elements.

If a weak classical system is used after a Diffie-Hellman key exchange, then it would be
easily broken. However, if a reasonably strong classical system is used, and a different key is
chosen randomly for each conversation between two parties, then their keys will not be easily
broken. An adversary will have a significantly reduced chance of accumulating enough cyphertext
by the same key for an accurate statistical analysis attack and will have to resort to a more
computationally intensive attack against the classical cypher or the discrete logarithm.

The security of the Diffie-Hellman key exchange depends not only on the difficulty of solving
the discrete logarithm but the difficulty of the related problem of computing ¢g¢® from only g¢
and ¢°. While, clearly, with a solution to the discrete logarithm to the base g, a and b can be
computed separately and then ¢* computed, but it remains an open question whether ¢* could
practically be computed directly from ¢% and ¢ without solving the discrete logarithm It is
commonly assumed that such a computation would be equally difficult, if not even equivalent

to solving the logarithm.

Definition 4.6 (Diffie-Hellman Assumption). It is computationally infeasible to compute g

knowing only ¢ and g°.

3Koblitz, 99. 4]
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4.4 Signatures

Signatures provide a digital method of source verification. Rather than information security
or secrecy, the purpose of signatures is information authenticity. A message’s signature affirms
that whom the message claims as its author is actually the message’s author.

Signatures are useful when it isn’t important for a message to be secret, but it is important
that it not be tampered with during transmission. This is becoming more common as more
media is being purchased digitally and downloaded over the Internet. It may not be important
to encrypt an ebook, song, video, or piece of software, but it is important to know that the file
downloaded is exactly the same as was sent: that an interlocutor has not injected a virus or
other malware or in any other way tampered with the recently purchased merchandise.

Signatures use a type of cryptographic function called a hash function.

Definition 4.7 (Hash function). Let P be the set of all plaintext messages and S a finite set.

Then a hash function, f: P — S, is a function such that
o f(P), for P € P, is “easy” to compute.
o y= f(P), for a fixed y € S, is “difficult” to solve for P.

The primary difference between a hash and a trap-door from Page [8F] is that a hash is
many-to-one, while the trap-door functions are one-to-one. Being many-to-one, means that the
word “solve” must be used in a more broad sense. It must be “difficult” to find a message for a
given hash, find a message whose hash matches a given message, or find any two messages with
the same hash. When two inputs to a hash function have the same output it is called a hash

collision.
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Example 4.8. Polynomials are well-known by elementary algebra students to be easy to eval-

uate but hard to solve. Consider p(z) = 7x? + 92 + 15 € %;gi[f; which we intend to use for
messages in our standard 26-character alphabet of Table [2.2] to generate hashes three characters
long. We will use this polynomial in the following manner: We will initialize the running hash,
hg, to 0, then for each character, x, of a message, we compute the next running hash value with

the formula h; = p(h;—1 + x) (in Zag:).

Let us use this hash function to calculate a hash for the message

START.

i T i =plhi—1 + ) h; as text

1 S=18 p(18) = 7(182) + 9(18) + 15 = 2445 DQB
2 T=19 p(2445+ 19) = 7(24642) + 9(2464) + 15 = 4919  HHF
3 A=0 p(4919+40) = 7(49192) + 9(4919) + 15 = 5149  HQB
4 R=17 p(5149+ 17) = 7(5166%) + 9(5166) + 15 = 8945 NGB

5 T=19 p(8945+ 19) = 7(89642) + 9(8964) + 15 = 16307 YDF

The final hash of the message is “YDF.” Naturally, this example hash is not strong enough for
real-world use. It’s small size makes a brute-force search for messages whose hashes collide a

short exercise and the use of a quadratic p make direct algebraic solving attempts practical.

Real-world hashes are significantly longer (256 to 1024 bits) and tend to make heavy use

of vectors of words (16-, 32- or 64-bits each), with bitwise operations (or, and, not and xor),
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bitwise rotations, and permutations being performed on the elements of the running hash (state)
vector and message block vector.

The general method used to sign a message starts with the author generating the hash,
h = f(P), of the plaintext message, performing a private-key encyphering on the hash value, and
sending the encyphered hash with the message. The recipient computes the hash of the received
plaintext, possibly after decyphering the cyphertext, uses the author’s public key to decypher
the signature, and compares the two values. If the two values match then the authenticity of

the received message is confirmed.
Example 4.9. Suppose Alice wants to send the message
Once more

to Bob. She plans to use the standard 26-character alphabet of Table To ensure that the
message cannot be tampered with or forged, she will sign her message with her RSA private
key of (7,143 = 11-13). Her public key (103, 143) is already known to Bob who is expecting all
messages from Alice to be signed using her key. Alice and Bob also planned to use the hash of
Example [1.8

Alice does not plan on encyphering the whole message. In this case it is not important to
be secret, as long as Bob can be guaranteed of the authenticity of any message claiming to be
from Alice.

Alice first calculates the 3-character hash of the message using the same method described
above. This comes out to IHB. Alice may then encypher the hash (going from 1-graphs in Zag

to 2-graphs in Zog2), and get the signature of CFAGAB. Alice appends the signature to the
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message and either sends them as-is, or may encypher the whole packet with Bob’s public key.

Bob recieves the message. If Alice encyphered with his public key, he decyphers with his
private key. He segregates the signature from the message. He hashes the message to get IHB.
He applies Alices public key to the signature and also gets IHB. Since the hashes match, he may

consider the message to be authentic.

There are only two ways that a plaintext message could be tampered with such that the
signature matches. First, an imposter could resign the tampered message with the “author’s”
key, but that would require breaking the “author’s” key, which is “difficult.” Second, the imposter
could modify the message in a way that leaves the hash unchanged, but that would require a
solution to the hash function, which is also “difficult.” Thus, signatures affirm the authenticity

of a received message.
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Chapter 5

Solving “Hard” Problems

This chapter explores a small sample of the known ways to solve the two “hard” problems
from Chapter [4] upon which the security of the related private-key cryptosystems depends. A
“success” is considered when a method is found that grows logarithmically with the length of
the inputs, i.e. when a method runs twice as long when the input is squared, rather than when
the input is doubled. Success is also counted when the time requirement for an algorithm is
a polynomial of the logarithm of the input, e.g. O((Inn)¥). These are labeled as running in
polynomial time, being referenced to the logarithm of the input. Failures, whose running time
of a polynomial of the inputs, are labeled as running in exponential time, also with regard to

the logarithm of the input, e.g. O(n*).
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5.1 Prime Factorization
RSA encryption depends on the difficulty of factoring large integers. One that possesses an-
other’s public key, but not private, knows a composite integer n, but not any of its factors.

Definition 5.1. The integer factorization problem. Given a composite integer n, find a (not

necessarily prime) 1 < p < n such that p is a factor of n.

By repeatedly finding proper divisors, the full prime factorization will eventually be found.

A sample of common methods of integer factorization follows.

5.1.1 Naive Trial Division

Naive factoring works rather quickly on very small integers (less than 20 digits or so). It has no
initial setup or overhead, and jumps straight into the work. The principle is simple: try dividing
the integer, n, by every prime less than its square root, /n. Some implementations forgo the

effort of identifying prime numbers by trying to divide by every odd integer.

Example 5.2. Factor 611 by trial division.

P
2 305.5
3 203.66
) 122.2
7 87.28...

11 55.54

13 47
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Thus, 611 = 13 x 47.

Again, that may not seem so bad for such a small n (or more particularly, for an n with
such small factors), but when n is 123463, then the first prime divisor found won’t be until 331.
In an RSA application, n has only two factors that differ in length by only a few digits. The

running time will then grow roughly with the square root of n.

5.1.2 Pollard’s p — 1 Algorithm

Pollard’s p — 1 factoring algorithm depends on Fermat’s Little Theorem and the Chinese Re-

mainder Theorem.

Theorem 5.3 (Chinese Remainder Theorem). If R is a Principal Ideal Domain (which 7 is),
{u1,u2,...,up} are pairwise relatively prime (i # j = (u;) N (u;) = (wu;)) and w = uiug - - - Up,

then
R R

~

R
& — XX
2)

(w)  (u1)  (u

R

The isomorphic transformation from left to right is simply reduction mod w; at each coor-
dinate. The transformation from right to left is much trickier. It usually occupies the bulk of
the discussion of the Chinese Remainder Theorem in an introductory text on number theory,
and the formulas involved in solving such a system of modular congruences is irrelevant to this
theoretical discussion. This vast difference in difficulties in navigating the isomorphism in the
two directions make this a trap-door function.

The Chinese Remainder Theorem may be stated more simply with regard to an RSA appli-
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cation:

Lipg & Ly X Ly,

where

a— (@ mod p,a mod q).

Fermat’s Little Theorem, when stated in a number theoretic context, can look rather im-

pressive.

Theorem 5.4 (Fermat’s Little Theorem). If p is a prime integer and a is relatively prime to p

(gcd(a, p) = 1), then a?~* =1 (mod p), or in other words, p divides aP~1 — 1.

In an algebraic context, Fermat’s Little Theorem merely says that the order of each element
of the group of units of the ring Z,, divides p — 1 if p is prime. But if p is prime then Z, is
a field and the size of its group of units is p — 1. LaGrange’s Theorem says the order of each
element of a group divides the size of the group.

There are composite numbers, n, such that every a € Z,,* has an order dividing n — 1, even
though n — 1 # |Z,*|. This will happen whenever n is the product of distinct primes and each
p — 1 divides n — 1 Ifn= Hizl p; then every a € Z,* will have an order dividing ged({p;})
which itself divides n — 1 because each p — 1 does. For example, 561 = 3 - 11 - 17 is one such n:
¢(561) = 2-10- 16 where each p — 1 divides 560.

Pollard’s p — 1 method of factoring works best when one of the factor fields is smooth: its
group of units has many subgroups. Specifically, for an RSA number n = pq, either p — 1 or

¢ — 1 has only small prime factors. Suppose n = pq and p — 1 is smooth. Let a be any integer

IKoblitz, 128. |4]
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strictly between 1 and n. Let k be a product of lots of small prime numbers, for example k = K|
or k =1lem(1,2,...,K). Then a* — (a,,ay)* = (a,*, a,*). If p—1 divides k but ¢ — 1 does not,
then a,* will equal 1 (in Z,), a,” probably won’t (in Z,), so a¥ — 1 will be a multiple of p (in
Zy). Thus p = ged(n,a® — 1) and a factoring of n has been found. If p — 1 does not divide k

either, then ged(n,a® — 1) = 1 and a larger (with more bigger factors) k should be tried.

Example 5.5. Factor n = 123463 with Pollard’s p — 1 method.

First, pick an a from {2,...,n — 1}. This may be done randomly or systematically. Let us
use a = 2. Quickly check the ged of @ and n in case of a lucky guess. In this case the ged is 1,
so 2 is not a factor of 123463.

Second, find a product of a lot of small numbers. Let’s use k = lem(1,2,...,4) = 12.

Calculate a* —1 in Z,,. In practice this is done using the repeated squaring method described
in Section in O((Igk)(Ign)?) time. 2!2 — 1 = 4095.

Calculate the ged of a* — 1 and n. This can be done in O((Ign)?) time with the Euclidean
Algorithm as shown in Theorem gcd (4095, 123463) = 1.

The ged came out to 1. This means that the k used was too small, it is missing at least one
factor of p — 1. Let’s try again with a larger k. Let’s use k = lem(1,2,...,8) = 840.

Calculate a® — 1 in Z,,. 2840 — 1 = 72820.

Calculate the ged of a* — 1 and n. ged(72820, 123463) = 331.

If the ged is strictly between 1 and n, then a non-trivial factor was found. Divide n by that
factor to find the other factor. n = 331 x 373.

If the ged is n, then try a smaller k or a different a. We might have tried a = 3 next had

our first try been unsuccessful. This example would require a very large k£ to end up with a ged
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of 123463. 372 factors into 22 - 3 - 31. So k would have to be a multiple of 31 before the gcd

would be 123463. In fact, since 2 generates Zz73™, k would have to be a multiple of 4, 3 and 31.

The three major time-consuming steps are the calculations of k, a* and the ged. Calculating
k involves roughly K multiplications of size K x k, running in O(K (g K)(lg k)) time. Calculating
a* runs in O((Igk)(Ign)?) time. And calculating the ged runs in O((Ign)?) time. Since k =
O(eX), the whole algorithm runs in O(K?(1g K) + K(lgn)? + (Ign)3) time. Simplifying this
estimate requires a relationship between K and n.

The actual K required can vary greatly depending on the smoothness of both n and p — 1
for each prime factor p. A smoother n has more prime factors, meaning that they will tend to
be smaller (at least one will have to be), and a smaller p means a smaller p — 1. And smaller
p — 1’s mean smaller factors of p — 1 which require a smaller k¥ and/or K. For each p | n, the
largest factor of p — 1 is the critical one in determining the required K.

If R is the set of greatest prime factors of the p — 1’s, and r is the least of these greatest
prime factors, then this r is the key determining factor and the running time will be (9(7’11’;11—7;)
multiplications, according to Menezesﬂ The worst case running time for Pollard’s p—1 algorithm
is when n = pq (only two factors, exactly what RSA is), and p — 1 and ¢ — 1 each have
a very large factor, being of the form 2 - r. The smallest r, a required factor of k, will be
roughly equal to %\/ﬁ This case is not very likely, but still a possible worst-case, with a
running time of O(n3lgn + /n(lgn)? + (Ign)*) = O(nlgn). Plugging in r = /n to Menezes’
estimate and multiplying by the time of each multiplication would give O(y/n(lgn)?) if it were

presumed that each multiplication were mod n, or at least on the order of n, which is slightly

2Menezes, 93. 5]
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better than our estimate. Menezes actually gives a slightly more efficient method of computing
k = lem(1,2,...,K) and a* that does keep each multiplication on the order of n, while our
estimate of multiplications on the order of K x k to calculate the lcm is higher and ended up

dominating our estimate.

5.1.3 Lenstra’s Elliptic Curve Algorithm

The points of an elliptic curveE| including ones over finite fields, form an additive group structure.
The group of points of an elliptic curves over Z,, are isomorphic to the cross product of the
groups of points of the elliptic curves over Z, and Z,. This allows the equivalent of Pollard’s p—1
algorithm to be used on the group of points on an elliptic curve over Z,, to find a factorization:
with multiples of a chosen point replacing powers of a.

The computations involved in working with points on an elliptic curve are more intense
than computing with integers, but this extra computational intensity is made up for by a key
difference in the group structures of elliptic curves and integral groups of units. The size of the
group of units of a field Z, is always p — 1, and that is why Pollard’s p — 1 algorithm depends
on at least one smooth p — 1 from the factors of n, which is not often enough the case. The size
of an elliptic curve over the field Z;, can vary from p+1—2,/ptop+ 1+ Qﬁﬁ and will vary
within this range over different curves even for the same p.

This freedom in the actual size of the curve over Z, increases the chance of finding an elliptic

curve whose number of points is a smooth enough number to permit a successful factoring with

3For an easy introduction to elliptic curves and a detailed explanation of Lenstra’s Elliptic Curve Factoring

Algorithm, please see Silverman’s Rational Points on Elliptic Curves. |8|
4Silverman, 107-110. (8]
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a significantly smaller K than would be required by Pollards p — 1 Algorithm. This increased
chance, however, is not a guarantee, so, while it is significantly more efficient than Pollard’s
p — 1 algorithm, Lenstra’s Elliptic Curve Algorithm still has a running time dependent on the
nature of the factors of n and will run too slowly on non-preferred values of n. In it’s worst case,

where n is the product of two prime factors of very close size, this algorithm’s running time is

O(eV/Inmn(n n)))

5.1.4 Fermat’s Factorization Methods

The running times of Naive Trial Division, Pollard’s p—1 Algorithm and Lenstra’s Elliptic Curve
Algorithm are dependent on the character of the factorization of the integer in question. Because
of this, they tend to lose effectiveness on larger numbers, where such special characteristics
become rarer, and are thus considered special purpose algorithms. Their running times grow
with either the smoothness of n or of the groups involved (p — 1 or the smoothest size of a used
elliptic curve over Z,), rather than directly with the size of n.

Fermat’s Factorization Method serves as the framework for the currently used general pur-
pose algorithms. The running times of these algorithms tend to be more dependent on the size
of n than on the characterization of its factorization. This is beneficial for attacks on RSA keys,
where the p and ¢ are intentionally chosen so that special purpose factoring algorithms like the
ones previously described are impractical in an attack.

The basis of Fermat’s Factorization Method is the Difference of Squares special form bino-

5Menezes, 94. 5]
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mial:

a® —b* = (a+b)(a—0b).

All odd numbers can be expressed as a difference of squares, 2k + 1 = (k + 1) — k2.
(“Trial” division can extract all factors of 2 quite easily.) Once such a difference-of-squares
expression is found, then the number can be factored as a difference of squares. In practice an
2_p2

exact difference of squares representation, n = a , is not needed, but merely a congruence of

squares, a®?—b% = 0 (mod n), such that a and b themselves are neither congruent nor congruently
opposite (a 2 +b), otherwise one of the two factors would be congruent to n.

Once an appropriate congruence of squares is found, a?> = b? (mod n) where a # +b
(mod n), then a proper factorization is found. Since a Z +b (mod n), then n will divide neither
a+ b nor a —b. But since (a + b)(a —b) = 0 (mod n) n does divide their product. Therefore,

each of the difference-of-squares factors contains a proper factor of n, which can be found by

finding the ged of the factor and n.

Example 5.6. The number 15 =3 x 5 is odd.

15 may be expressed as 16 — 1 =42 —12=(4+1)(4 —1)=5-3.

15 may also be expressed as 64 — 49 = 8% — 72 = (8 + 7)(8 — 7) = 15 - 1. However, this
expression of 15 as a difference of squares will not yield a factorization because 8 = —7 (mod 15),
8+ 7=0 (mod 15).

The congruence of squares 49 = 4 (mod 15) holds. 45 =49 —4 =72 -22 = (74+2)(7-2) =
9-5. Once we have this factoring, calculating ged(9,15) = 3 which properly divides 15 and

ged(5,15) = 5 which also properly divides 15.
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The congruence of squares 49 = 484 (mod 15) holds. 435 = 484 — 49 = 222 — 7% =
(22 +7)(22 = 7) = 29 - 15. Calculating the ged’s reveals 1 and 15. This was because 22 = 7

(mod 15) and therefore 22 — 7 =0 (mod 15).

Naive Search

If p and q are close to each other, then they are also each close to \/n (as v/n is the geometric
mean of p and ¢). Then a quick search along the sequence (a? —n), vm will find a square, b2,
such that a? — b? = 0 (mod n). Knowing this, RSA pairs of primes are chosen so that p and
q differ in size by at least a couple digits, rendering such a naive search a linear-time pursuit.
Thus, merely searching the sequence (i — n);- v for a square is considered a special purpose
algorithm ultimately on par with trial division on worst-case running time, yet with significantly

higher rates of worst-case occurrencesﬂ

Example 5.7. Factor 123463 by naively searching for a difference of squares representation.

Start with a = [1/123463] = 352.

3522 — 123463 = 441 =32 %72

Therefore 123463 factors as (352 — 21)(352 + 21) = 331 % 373.

This example aptly demonstrates the ease by which a number may be factored with a naive
Fermat factorization search when p and ¢ are close. When p and ¢ are not close a naive search

will be impractical. In such cases a congruence of squares may be found by multiplying an

6Pomerance, 1474. [6]
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2

appropriately chosen set of a®> = a®> — n (mod n) relations. Clearly the product of the first

components, which are all squares, will also be one. Finding a subset of pairs whose product of
a;? —n (mod n) € Z, is a square is usually accomplished by factoring them in Z and inspecting
the parity (even vs. odd) of the exponents on their prime factorizations. A set whose product
contains only even exponents in the prime factorization will yield a congruence of squares relation

which, if the roots are not themselves equal or opposites in Z,,, will allow a factoring of n in Z

as a difference of squares.

Example 5.8. Factor 36181 with Fermat Factorization.
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Start searching with ag = [v/36181] = 191.

1912 = 300 = 2%-3-52
1922 = 683 = 683
1932 = 1068 = 22 - 3-89
194? = 1455 = 3-5- 97
1952 = 1844 = 22 - 461
1962 = 2235 = 3-5- 149
197% = 2628 = 22 -32 .73
1982 = 3023 = 3023
199% = 3420 = 22-32.5-19
200% = 3819 = 3-19 - 67
2012 = 4220 = 22.5- 211
2022 = 4623 = 3-23- 67
203% = 5028 = 2% -3-419
2042 = 5435 = 5 - 1087
2052 = 5844 = 2% .3 - 487
206% = 6255 = 32 - 5139
207% = 6668 = 22 - 1667
208% = 7083 = 3% - 787
209% = 7500 = 2% -3 - 5*

A congruence of squares is found with only 2 relations: ¢ = 191 and ¢ = 209. Thus

(1912)(2092) = (22 -3-52)(22 - 3-5%) = 24.32. 5% (mod 36181). 191 - 209 = 3738 (mod 36181)
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and 22-3-5% = 1500, which are neither equal nor opposite (mod 36181), so a helpful congruence
of squares is found and a proper factoring follows. ged(3738—1500,36181) = 373 and ged(3738+

1500, 36181) = 97. Therefore 36181 = 97 - 373.

Often times, for at least two reasons, when looking for a congruence of squares, a “small”
set of primes is chosen as a factor base, and only the a? — n that factor over this set of primes
are retained to find an appropriate subset to multiply together. First, the point of this Fermat
Factorization is to avoid factoring large prime factors out of a number, it would be costly to
factor large primes out of the reductions of the a?. Second, by restricting the search to a? whose
reductions factor over a predetermined set of primes one limits the difficulty of finding a set
whose product is a square.

This allows each a? — n to be represented by a finite-length vector of the exponents of its
prime factorization. And since only the parity of the exponents is a concern, they may be
reduced mod 2 and considered members of F5"™ where m is the number of primes in the factor
base. Now finding a set of relations whose product is a square is equivalent to finding a set of

exponent vectors in Fo™ whose sum is 0, or, in other words, is linearly dependent.

Example 5.9. Let’s factor n = 1234589 by finding a system of prime factorizations to multiply
together. Notice that n = 277 - 4457. These two factors are separated enough that a linear
search for a straight a® — b> = n will take a long time. Trial division, actually, would work
very quickly with such a small factor as 277. But let’s collect the factorizations of the modular
residues of a? that have no prime factors over 50, to find a square product thereof.

Start searching with ag = [v/1234589] = 1112. But only record when the prime factorization
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after the modular reduction has only factors less than 50.

11122

1955 =5-17-23

11132 = 4180 =2%-5-11-19

11292 40052 = 22-17-19- 31
11322 = 46835 =5-17-19-29

11422 69575 = 52112 - 23

11572 = 104060 = 2% -5-112 - 43

11582 = 106375 = 5 - 23 - 37

11652 = 122636 = 22 - 23 - 31 -43

12082 = 224675 = 5% - 11-19 - 43

1217% = 246500 = 2% .53 - 17-29

12272 = 270940 = 22.5-19-23- 31

At this point a square congruence is found with the following lines:

11122 =5-17-23
11292 = 22-17-19- 31
12272 =2%2.5.19-23- 31

giving the congruence
(1112-1129 - 1227)% = (22 -5-17-19-23-31)* (mod 1234589).
But 1112-1129-1227 =22.5-17-19-23 - 31 (mod 1234589) so the search continues.

12432 = 310460 = 22-5-19% - 43
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Quickly another congruence is found with 1157 and 1243, (1157-1243)2? = (22-5-11-19-43).
This time the two roots are not congruent or congruently opposite, so a proper factorization

will follow.

ged(1157- 1243 — 225 11+ 19 - 43,1234589) =277

ged(1157 - 1243 + 2% - 5- 11 - 19 - 43, 1234589) =4457

The factor base may be freely chosen. There are trade-offs between large and small factor
bases, and an efficient balance is desirable. Too small a factor base will yield very few a;2 — n
that factor completely over the factor base, lengthening the time of that search. It would have
required a lot more searching to find congruences that factored into primes only up to 11 or 19 in
Example [5.9] Too large a factor base will increase the number of congruences necessary to find
a linearly dependent set, not necessarily increasing the length of the search for the congruences,
as more tried elements of the sequence will be factorable over the base, but certainly increasing
the size of the linear system and, thus, the computations required to solve it. There would
have been many more congruences in Example if factoring into primes as high as 100 were
allowed, but then the system would have been much harder to deal with in searching for a set
to multiply.

An exploration into the time complexity of this algorithm is beyond the scope of this paper.
Pomerance discusses the running times of these more advanced factorization algorithms. The

time does depend on the chosen factor base, and will be too long if the factor base is either too

small or too large. The running time will be minimized when the chosen factor base is the set of
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all primes less than or equal to approximately P = ez Vn2vnInIn2vn 414 that minimal running

time will be O(e‘/m)

The Quadratic Sieve

The Quadratic Sieve is an efficient means of identifying which elements of the sequence a;>

(mod n) factor completely over the chosen factor base. Rather than trial dividing each a;>
(mod n) by all elements of the factor base, all the elements of a pre-compiled range of a;2
(mod n) that can be divided by each prime are identified, and that prime is divided out from
all of them.

A set of a;’s are chosen ahead of time, as is the factor base. Koblitz recommends a factor
base of B = {p < P} where P is approximately eYmnnInn and the set of a;’s of {|v/n] +
1L, |vn] +2,...]v/n] + A} where P < A < P2E| After running through all of the primes in
the factor base, B, any a;?> (mod n) that end up divided all the way down to 1 factors over the
factor base and passes to the next stage to find a square product.

Considering whether a? (mod n) is divisible by a prime p is equivalent to considering when
p|a®—nor a®> =n (mod p). Therefore, if n is not a square in Z,, then p cannot divide a’®—n
for any a. This means that only the primes for which n is a square need to be retained in the
factor base. This piece of information could be used in the previous algorithm to reduce the
number of primes by which to trial divide, here it will be used to limit the number of sieving

steps.

"Pomerance, 1477,1478. (6]
8Koblitz, 161. [4]
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Limiting the factor base this way will roughly cut the size of the factor base in half, as
half of all elements of a field (of odd characteristic) are squares. Also, limiting the factor base
this way is only valid if all a’s used are between /n and v/2n, where the reduction of a? is
equivalent to subtracting n. If any a’s are used where xn < a? < (k + 1)n then those would
have to be sieved with kn (mod p) in the following manner rather than just n. Having to use
a’s all the way to v/2n would end up with a running time of at least %o(y/n) in which case trial
division would have been just as well. This may only happen for small enough n where a simpler
algorithm would be faster. For large enough n, the asymptotic running time given at the end
of this section will be better than %o(y/n).

Further a?> = n (mod p) < a = £/n (mod p). Thus a® (mod n) will be divisible by p if,

and only if, a is congruent to one of the square roots of n (mod p). The congruence 2

=n
(mod p) need only be solved once for each prime. Then for each root, z;, identify an a; that
is congruent to it (mod p). Not only will that ;2 (mod n) be divisible by p, but so will every
a; + kp® (mod n) be divisible by p. Thus roughly % of all the a;? (mod n) can be divided by
each prime, and they can all be easily (faster than by trial division) identified. “Trial” divisions
now need only be done when divisibility is already known, and are thus no longer “trial.”

The above will identify only one factor of each prime. To identify prime factors of higher
multiplicities (such as the 4 that divides 60), the above steps should be repeated, for each prime,
modulo each successive power of the prime, until a power « is found for which no a; is congruent
to a square root of n (mod p*). Once p is divided out for all a;’s congruent to a v/n (mod p),

the search should be repeated for a;’s that are congruent to a \/n (mod p?) and a second p

divided from their entries. Repeat this for p? and so on, until a power is reached for which no
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more congruent a;’s are found. After which, move on to the next prime.

It is a basic fact of number theory that for the odd primes, being a square in any particular
Zpe guarantees being a square in all Zp«, thus the same set of primes are to be checked regardless
of power. This will have two important implications for us. Firstly, that if (the reduction of) n
is a square in Zy, then it is also a square in Z,, meaning that once the set of primes are set
for the factor base considering the primes’ first powers, no extras are needed for higher powers.
Secondly, once we find square roots mod p, we should keep looking for, and will keep finding
square roots mod each successive p® until they’ve spread far enough out that no more are found

in the chosen range of a;’s.

Theorem 5.10. For any odd prime, p, if n (not a multiple of p) is a square in one Zpe then
it is a square in all Zpo. Only 1 is a square is Zy, Z4 and Zg, and being a square in one Zge is

equivalent to being a square in all other Zoo for a > 3.

Proof. This will be a simple proof by induction on «. First we’ll show that if n is a square in
Zype then it is a square in Zy. This includes p = 2.

If n is a square in Z,o then there exists an z such that 2? = n (mod p®) = p® | 22 — n.
That also means that p | 2 — n and so n is also a square in Z,.

And now the inductive step: if n is a square in Z,« then it is also a square in Zpa+1, when
p is an odd prime.

If n is a square in Zpy« then there exists an z such that > = n (mod p*) = p® | 2% — n.
But that x is not unique, any number congruent to & (mod p®) will also work, so we can say
that p® | (z + kp®)? — n for any k € Z. For the following simplification, we’ll use the fact that

p® divides 22 — n to write 22 — n in the form p*I.
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P |(z +kp*)? —n
=22 4 20kp® + kK*p** —n
= p®l + 2xkp® + k*p*®

= p*(I + 2xk + k*p®)

Because 2 and x are units in Z,, k may be chosen so that 2zk = —I, or in other words
p | I + 2xk. Therefore, an additional p may be factored out from (I + 2zk + k?p®) and p** |
(z + kp®)? — n. Therefore n is also a square in Zja+1.

In Zs, 1 is the square of itself. In Z,4, 1 is the square of 1 and 3. In Zg, 1 is the square of
1, 3, 5 and 7. Thus, while all odd n will be squares in Zs (n =1 (mod 2)), only half of those
will be squares in Z4 (n =1 (mod 4), but not 3), and only half of those will be squares in Zg
(n =1 (mod 8), but not 5), though they will have 4 square roots.

The inductive step above only worked for odd primes because 2 is not a unit in Zoa. The
above inductive step will only yield a square in Zya+1 if [ is even, if n were already a square in
Zoot1: 22 —n =12% = 52‘”1.

Suppose now that [ is odd. Note that z is also odd. Let k be another odd number and
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consider

(x+ k27N —n = 2? 4 20k207 1 £ k22272 gy
=2 —n + xk2* 4 2222
=12% 4+ 2k2* + k?2°%72

= (14 zk)2 + k?2%2272,

Because [, z and k are all odd, [+xk is even and so contains another factor of 2. If 2aa—2 > a+1,
which happens whenever o > 3, then the entire expression will be a multiple of 2!, Therefore
201 | (x + k2712 — n, meaning that (z + k2°71)2 = n (mod 2°*1), than n is a square in

Liga+tr. L]

As primes are divided out of the a;2’s, record should be kept of how many of each prime in
the factor base were divided out, and the remaining quotient after all primes in the factor base
are divided out. The set of all a; which factor completely over the factor base (leave a quotient
of 1 after all primes in the base have been fully divided out during the sieving) should then be
segregated out for further computations. These are the a;’s whose prime factorizations of a;?
should be examined for a set whose product is a square.

Being a square means that all of the exponents in the prime factorization are all even. When
sets of congruences are multiplied together, the exponents of the prime factors get added. In
identifying which ones will multiply to a square (only even exponents) only the mod 2 reductions
of the exponents need to be considered: p? is as much a square as p* and as p®, likewize p is as

much not a square as p® and p®.
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The simplest way to find the set of prime factorizations which is a square, is by converting
the prime factorizations into vectors of the exponents (mod 2). At that point, all that needs
to be found is a linearly independent set of vectors whose sum is the zero vector. Once that is
found, then those vectors included in the sum will correspond precisely with the factorizations

whose product is a square.

Example 5.11. Use the quadratic sieve to filter the congruences when factoring 36181.

First a factor base should be chosen. As mentioned earlier, a good choice is the set of all

primes less than or equal to B = ¢3VIn2V36I8I I 2V36I81 o, 5 09 So our factor base will be
all primes less than or equal to 5 for which 36181 has quadratic residue, which is all of them
because 36181 = 1 mod each of them. For out set of a;’s, a quick glance up at Example [5.8
shows that only 18 were needed, which is in the earlier stated range, but for pedagogical reasons,

let us choose A = 25 for maximum impact. Thus, our table would start as follows.
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a; a;’
191 300 =
192 683 =
193 1068 =
194 1455 =
195 1844 =
196 2235 =
197 2628 =
198 3023 =
199 3420 =
200 3819 =
201 4220 =
202 4623 =
203 5028 =
204 5435 =
205 5844 =
206 6255 =
207 6668 =
208 7083 =
209 7500 =
210 7919 =
211 8340 =
212 8763 =
213 18488 =
214 9615 =
215 10044 =
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Sieving shall be performed by increasing primes. 36181 is congruent to 1 (mod 2) and is also
congruent to 1 (mod 4), but to 5 (mod 8). 36181 is congruent to 1 (and is therefore a square)
mod 2 and 4, but not 8. For each a; congruent to 1 (mod 2) (which are the square roots of n

2

in Zs, which are all the odd a;, a;* — n will be divisible by 2. Next, for each a; congruent to

1 or 3 (mod 4) (which are the square roots of 1 in Zj), also all the odd a;, a;> — n is divisible
by another 2. However, since 5 is not a quadratic residue (mod 8), no a;> — n is divisible by

a third 2. Therefore 22 can be factored out of every other entry leaving odd cofactors behind.

The table may be updated as follows.
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a; ai2
191 300= 2275
192 683 = 683
193 1068 = 22.267
194 1455 = 1455
195 1844 = 22.461
196 2235 = 2235
197 2628 = 2%.657
198 3023 = 3023
199 3420 = 22.855
200 3819 = 3819
201 4220 = 221055
202 4623 = 4623
203 5028 = 221257
204 5435 = 5435
205 5844 = 22.1461
206 6255 = 6255
207 6668 = 22 - 1667
208 7083 = 7083
209 7500 = 22 . 1875
210 7919 = 7919
211 8340 = 222085
212 8763 = 8763
213 918K6 22.2297
214 9615 = 9615
215 10044 = 22 - 2511
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Because 36181 = 1 (mod 3), for any a; that is congruent to 1 or 2 (mod 3), a;? — 36181 will
be divisible by 3: 191 + 3k and 193 + 3k. 36181 is also congruent to 1 (mod 9), so a second 3
can be factored out for the ones congruent to 1 and 8: 197 + 9k and 199 + 9k. 36181 is also
congruent to 1 (mod 27), so a third 3 can be factored out for 215, which is congruent to 26 (mod
27). 215 is also congruent to 53 (mod 81), whose square, 55, is congruent to 36181, so a fourth
3 can be factored out for 215. 36181 is congruent to 217 (mod 3° = 243), whose square roots
are 109 and 134. None of the a; are congruent to 109 or 134 (mod 243), so no more 3s can be

factored. The quadratic sieve table now looks as follows.
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a; a;’

191 300= 2%2-3-25
192 683 = 683
193 1068 = 22.3-89
194 1455 =  3-485
195 1844 =  22.461
196 2235 = 3-745
197 2628 = 22.32.73
198 3023 = 3023
199 3420 = 22-3%.95
200 3819 = 3.1273
201 4220 = 2%2.1055
202 4623 = 3-1541
203 5028 = 2%2-3-419
204 5435 = 5435
205 5844 = 22.3.487
206 6255 = 32695
207 6668 = 221667
208 7083 =  32.787
209 7500 = 22-3-625
210 7919 = 7919
211 8340 = 22-3-695
212 8763 = 3-2921
213 918428 22.2297
214 9615 = 3-3205

215 10044 = 22.3%*.31
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Proceeding the same way with powers of 5, a 5 can be factored out for 191+5k and 194+ 5k.
36181 is congruent to 6 (mod 25), whose square roots are 9 and 16, so a second 5 can be factored
out for 191 and 209. 36181 is congruent to 56 (mod 125), whose square roots are 41 and 84, so
a third 5 can be factored out for 209. 36181 is also congruent to 556 (mod 625), whose square
roots are 209 and 416, so a fourth 5 can be factored out for 209. But the square roots of 36181

(mod 5%) are 834 and 2291, so no more 5s can be factored out.
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a; a;?
191 300 = 22.3.52
192 683 = 683
193 1068 = 22.3-89
194 1455 = 3-5-97
195 1844 = 22 . 461
196 2235 = 3-5-149
197 2628 = 2%2.32.73
198 3023 = 3023

199 3420 = 22.32.5-19
200 3819 = 3-1273
201 4220 = 2%2.5-211
202 4623 = 31541
203 5028 = 22.3.419
204 5435 = 5- 1087
205 5844 =  22.3-487

206 6255 = 32-5-139

207 6668 =  2%.1667
208 7083 = 3%.787
209 7500 = 22.3.5%
210 7919 = 7919

211 8340 =22-3-5-139
212 8763 = 3-2921
213 9188 30 22.9297
214 9615 = 3-5-641

215 10044 = 22.3%*.31
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The sieving is done. Any entry still containing a factor that is not a member of the factor
base, will not factor over the factor base and will be discarded. The factorizations presented
in this final table are not necessarily prime factorizations, even though many of them are. The
final factor is merely the product of all the prime factors that are not members of the factor
base. Dropping all entries that do not factor over the chosen factor base leaves the following

two lines.

a; 111'2

191 300 =2%.3-52

209 7500 = 22-3 .54

In an actual RSA scale application, there will be tens of thousands of lines with tens of
thousands of prime factors. This example is interesting in that there are not enough lines to
guarantee a linearly dependent set of exponent vectors, though such a set does exist, notably
because both exponents of 2 and 5 are even. When rewritten as a matrix of exponents reduced

mod 2, the following equation arises.

0 0
Z191 0
11 =
2209 0
0 0
Clearly the not-trivial solution is
1
1

implying that 1912 - 2092 = 24 . 32 . 5%, yielding the factoring described above.
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The Quadratic Sieve algorithm has a running time of O(e (Inn)(In(In ”))) to factor the inte-
ger nﬂ While this growth rate is the same as for Lenstra’s Elliptic Curve Algorithmm actual
running times will differ by a constant factor. The Quadratic Sieve algorithm has faster prac-
ticals, and so gains the benefit of the constant factor between the two running times. This is
mostly due to the fact that the Quadratic Sieve is working in a much easier group, basic integers

in a Z; as opposed to two-dimensional points on an elliptic CurveE

The General Number Field Sieve

The Quadratic Sieve algorithm has now been superseded by the General Number Field Sieve
with better asymptotic behavior. Its fanciness and complexity are beyond the scope of this
paper, but a brief overview will be given.

One chooses a degree, d, and builds an irreducible, monic polynomial, f, whose coefficients
are in the range of ¥/n, and an integer, m, such that m is also in the range of ¥/n and f(m) =0
(mod n). Then take one of the polynomial’s complex roots, «, the extension ring Z[«a], and the
natural ring homomorphism ®: Z[a] — Z, by a — m mod n.

With these tools in hand, a set of {(a —ab)} is chosen/found such that [[(a — ab) is a square
in Z[a]. Once this set is found, then a natural, and hopefully helpful, congruence of squares
follows. The properties of ® guarantee that ®([[(a — ab)) = [[ ®(a — adb) = [[(a — mb), and if

[1(a — ab) is a square, then so will be [[(a — mb)B

9Pomerance, 1478. [6]

10See Section [5.1.3
' Menezes, 97. |5
123ee Pomerance [6] and his references for additional practical concerns such as how to identify squares in Z[a]

and, once recognized, finding their square roots.
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1 2
The General Number Field Sieve has a asymptotic running time of O(e(% Inn)3 (In(lnn))s)
to factor the integer nH This is a significant improvement over the Quadratic Sieve method,

but the extra complexities over the Quadratic Sieve render it’s use to larger n, from around 150

digits and largerE

5.2 Discrete Logarithm

The difficulty of computing logarithms in a discrete field was touched upon in Section 4.3
Solving a discrete logarithm involves finding the exponent required to raise a base to obtain a

given element.

Definition 5.12 (The Discrete Logarithm Problem). Given a cyclic group (b) and an arbitrary

member, g € (b), find a natural number k& € N such that b* = gbuti <k =b'#g

In cryptographic applications, a finite field is usually used and a b is found that generates
all of F* as the cyclic group. This maximizes the size of the group being used, which is desirable
for the security of the cryptosystem being implemented.

A sample of common methods of solving the discrete logarithm problem follows.

5.2.1 Naive

Just as an integer may be factored by trial division, the logarithm of g = b* may be found by
evaluating all powers of b until the desired one is found, commonly known as trial multiplication.

This will require k—1 multiplications. If b generates all of F* and g is a random non-zero member,

3Pomerance, 1482. [6]
14 Koblitz, 164. |4]
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then roughly %|IE‘| multiplications will be required on average, which puts the running time of

trial multiplication at O(|F|).

5.2.2 Silver-Pohlig-Hellman Algorithm

The Silver-Pohlig-Hellman algorithm requires the knowledge of the size of (b), which is usually
known when b is a generator of the group of units of a known field, and the factorization of the
size. For a field of size g, the ease of finding the factorization of ¢ — 1 depends on the size and/or
smoothness of ¢ — 1 The efficiency of the Silver-Pohlig-Hellman algorithm also depends on
the smoothness of ¢ — 1. This algorithm will work best when ¢ — 1 is smooth.

The Silver-Pohlig-Hellman algorithm works by finding the residues of k¥ mod each maximal
prime power dividing ¢ — 1 then computes k& by the Chinese Remainder Theorem. Write the
prime factorization of ¢ — 1 as Hizl p;¥. Then if the least positive residue of k mod each p;“¢,
kp, can be found, then k can be calculated from the {k,} by the Chinese Remainder Theorem.

The details can get murky, so we’ll demonstrate a simple example before describing the

algorithm, then show a more involved example.

Example 5.13. We'll use the field Zq;. 100 = 2252. At this point, many of the calculations

become too tedious to perform by hand, so an advanced calculator or computer algebra software

100
5

would be handy. To find a generator, b, we need b2 =150 and b'5" = b2 to each not equal 1.

250 =100

220 —g5

158ee Section
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Thus 2 is a generator of Z191*. Let’s find logy 25 in Zig;.

First we find the sets of square and fifth roots of unity. We’ll label the primitive roots ry
and 75, and the elements of the set as 7, ; = rpj where j < p. Because 2 is a generator of Z1g1™,
2% = 250 will be a primitive square root of unity and 2'8° = 220 will be a primitive fifth root

of unity.

250 = 100
220 = 95
210 — 36
200 = 87
280 — 84
Tp.j 2 5
0o 1 1
1]100 95
2 - 36
3 - 87
4 - 84

We're trying to find the value of k where 25 = 2¥. First we’ll find k = k (mod 4)

We start finding ko = k& (mod 4) by first thinking of ko as a base-2 number: z; : o =

550

zo + 2x1. We'll find zg by evaluating 2 and comparing the result with the square roots of
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unity.

2550 =1= 72,0-
Therefore xo = 0. If it had been non-zero, then we would have divided 2 off of 25 before finding
xZq.

To find x; we’ll evaluate 252° and compare the result with the square roots of unity.
2525 =1= 7"270.

Therefore x; = 0 also. This means that k2 = 0, that £ =0 (mod 4).

We'll do the same work to find ks = k& (mod 25). ks as a base-5 number would look like
z1 : 20 = 20 + 5x1. We'll find zg by evaluating 25%° and comparing the result with the fifth
roots of unity.

2520 = 87 = 75 3.
2k=3,

Therefore zo = 3. Before finding z; we’ll have to divide 23 off of 25 to get

2
®_n
8

To find z; we’ll evaluate 41* and compare the result with the fifth roots of unity.
41 = 84 = r5 4.

Therefore x1 = 4. This means that ks = xg + 5x1 =3+ 5-4 = 23.
ko = 0 and ks = 23 gives the following system of congruences.
k= 0 (mod4)
k=23 (mod 25)

This system has the solution k = 48 (mod 100). We can verify this by evaluating 248 = 25.
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To find each k,, the p' roots of unity must be calculated. These may be found as ), ; =

j(a—1)
o for j=0,1,...p; — 1. Observe that this would require a large table for any large primes

dividing ¢ — 1, hence the desire for a smooth ¢ — 1. Each k,, may then be written as an o;-digit

number in base p;.

. . . . — a;—1
kp, =Ta,—1:Ta;—2: X1 1T =To+T1P; +* + Ta,—1Pi""

To find g compute

(a=1) k(g—1) kp; (a=1)
g r =b r = Py

The denominator cancels out with all parts of k,, except the xy leaving

(g—1) zp(g—1)
g Pi =b P

the result of which is one of the p** roots of unity and may be compared with the entries in the
table of roots of unity and x is the corresponding j.

Then let g1 = g - b~*°. This subtracts xg from £ and k,, so that the next digit may be
found. At this point gl% would be 1 because g1 is a p;-multiple power of b: g = bPi™ for
some m. Finding z; will require p;2 in the denominator of the exponent. Compute

(g—1) (k—zqg)(a—1) (kp; —z0)(a—1) 21 (g—1)
g1 7> =b Pi2 =b P2 = P =Ty,

to find x; and let go = g1 - b~*Pi. Continue in this manner with increasing powers of p; until
all of k,, is found.

Repeat the above to find each k,,, then use the Chinese Remainder Theorem to compute
k. Note that if the same group and generator thereof is used multiple times, then the table of

prime roots of unity need only be generated once.
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Example 5.14. Let Fyy = <t2[F7[t]

E—aira) and let b = ¢, a generator of Fye*. Find the discrete

logarithm of g = 641 to the base t in Fy9. As above, all computations should be performed with
algebra software for expediency, otherwise make good use of the method of repeated squaring.
Let’s verify that t is a generator by ensuring that neither the square nor cube root of t*® is

1. 48 =2%.3.
t2 =2t -3
tt=(2t -3 =3t -3
8= (3t—3)>=3
t7 =416 =32 =9

48

tz =t =115 =2.3=6

And, indeed, 62 = 1 and 2% = 1. If ¢t were not a generator of Fy9*, it would have generated a
subgroup whose order divides 48 and one of those two powers of ¢t would have equaled 1. So ¢
is a generator of Fyg™.

Next, we find the p'* roots of unity for each prime dividing 48: 2 and 3. The square roots

0(48) 1(48) 1(48)
are rg0 =t 2 =1landrg; =t"2 =6 = —1. The cube roots are r3g =1, 73, =t"3 =2
268, .
and r3o =t73 = 2% = 4. Thus our lookup table is as follows.
’I“pyj 2 3
0|1 1
116 2
2| - 4
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To find ko, we first think of it as z¢ +x1 -2+ 2 - 22+ 23 - 2% and compute the “digits” of this

“base-2 number.” First, compute g% =(6t+1)* =1=ry0,8020=0. Let g = -& = % =

t¥0 — 0

6t + 1. Second, compute gljzlig =(6t+1)12=1=ry0,50 21 =0. Let go = = 6t—f‘1 =6t + 1.

Third, compute 92% = (6t+ 1) =6 =121, so z2 = 1. Let g3 = tl%g = o4l — g;—ﬂ = 2.

48
1

Lastly, compute g32* =23 =1 =1y, so z3 = 0. Now,

]4}2=$0+I1'2+1‘2'22+$3~23
=0+0-2+1-2°+0-2°

=4

To find k3, we merely calculate g% = (6t + 1)'® =4 = r3 5, so k3 = 2. Nothing more with
higher powers of 3 needs to be calculated, because 3 divides into 48 only once.
To summarize the events so far, k = 8 (mod 2*) and k = 2 (mod 3). This gives the following

system of congruences.
k=4 (mod 16)
k=2 (mod 3)
By the Chinese Remainder Theorem, this k, which clearly equals 20, is unique (mod 48).

Therefore 6t + 1 = t2°. This can be verified by evaluating it to check.

Presuming that ¢ — 1 can be easily factored into ¢ — 1 = Hle p;¢, then this algorithm has

a running time of O (Zle ei (In(g—1) + \/171))

16 Menezes, 108. |5)
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5.2.3 Index-Calculus Algorithm

The Index-Calculus Algorithm for solving the discrete logarithm problem bears a striking re-
semblance to the Quadratic Sieve integer factoring algorithm. The Index-Calculus Algorithm
also uses a factor base and establishes linear relations of exponents of factorings over the se-
lected base. In solving the equation g = b* for ¢ € G = (b) the following steps constitute the

Index-Calculus Algorithm:

1. Select a factor base B = {p;} such that a “significant proportion” of the elements of G

will factor over it.

2. Select random (or systematic) k’s to find ones such that b* factors over B, b¥ = []p:*,
to generate the linear relations of the form k = 3 e;log, p; until a dependent system is

found with which to solve for the log p;.
3. Solve the system to solve for the logarithms of the factor base elements.

4. Select random (or systematic) k’s until one is found such that gb* factors over the factor

base, indicating that k + log, g = > k; log, p;.
5. Evaluate logy, g.

While step [3] depends on step [2] just like in the Quadratic Sieve Algorithm, and the individual
relations of step[2]can be found in parallel, just like in the Quadratic Sieve Algorithm, a factoring
of a gb* in step M| can be found in parallel with the other two. And, similarly to the Quadratic
Sieve Algorithm, the Index-Calculus Algorithm also has a trade-off between the size of the factor

base, and therefore of the linear system, and the ease of filling the linear system.
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Example 5.15. Take the field F3s represented by (tgfit[tj_n where t generates Fss*. Find the
log,(t* — 3 + 12—t +1).

We compute t?2 = —t3 —t2 4 ¢t + 1 and t'2! = —1 to verify that ¢ does generate all of F3s*.
3% — 1 =242 = 2-112, so if t wasn’t a generator then one of those powers of ¢ would have been
1.

It is customary to choose a factor base that is the set of all irreducible polynomials up to a
certain degree. It would be simple to try using a factor base of just the linears, but that turns
out to allow no more than 11 linearly independent factorizations of powers of ¢: -1 is the only
constant that can be counted, and has order 2. The modulus polynomial clearly indicates that
t5 =t — 1, which gives one linear relation of exponents (in fact it gives the log,(t — 1) = 5, but
also prevents higher powers of (t — 1) being useful for generating independent linear relations, as
log(t — 1)* = 5a. Since much time could be spent looking in a field of 243 elements for one that
is a power of (t+ 1) up to 4 or an opposite thereof, a larger factor base should be considered.

Allowing irreducible monic quadratics adds t? + 1, t2 4+t — 1, and ¢ —t — 1 to the factor
base. With a total of 6 irreducibles in the factor base, an element of F3s that factors thereover
could be found by selecting up to 4 of the six base elements (not even counting multiplicity),
which yields at least (?) + (g) + (g) + (461) = 56 elements, which might be substantial enough.

Our factor base is B = {—1,t & 1,#* + 1,t> & ¢ — 1} and has 6 elements.

The first step is to find at least 6 k’s such that ¢* factors over B. In practice, extras are
usually found to compensate for the probable discovery of dependent relations. The first four
powers of ¢ offer no information, so we’ll start at 5. We’ll also skip over any powers that give no

information, those will be the powers where there is no modular rollover (through a > =t — 1)
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from the preceding power.

t° = t—1=

t9 = 4t —1=—-(t+1) -2+t +1)
10 = 2+t+1=(t—1)2

3 = B3 +t—1=F+D(E2+t-1)
= th+tt—1=

5 = th—1=(@t-1)?

t7 = —t2+t—1=—(t+1)?

20 = -t —t+1=(t—1)*

2l = -2 —t—1=—(t*+2+t+1)

22 = -2 t+1=—(t—-1)(t+1)?

= P B2 1= (B 24t 1)

% = -2+ 1=+ 1) —t+1)
26 = =t —t—1= (1) (> —t—1)
27 = —tt =2 —1=—(t+1)*(t—1)?

28 = 3 rt+l=—(t3—t-1)

30 = B2 —t+1=

32 = PB4t —1=

B = P4 -1=—(t-1)—t—1)
34 = B +t+1=(t+1)*

35 = th4t2—t—1=0-1)(+t2—t+1)
36 = -t —1=(t+1)(t*+t-1)
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Eight k’s have been found that are not higher powers of ¢t — 1 and yield the following linear

relations of logarithms.

5=log(t—1)
13 =log(t* +1) +log(t* +t — 1)
17 =log(—1) + 2log(t + 1)
22 =log(—1) +log(t — 1) 4+ 2log(t + 1)
26 = log(t* + 1) + log(t* —t — 1)
27 =log(—1) + 2log(t — 1) + 2log(t + 1)
34 =4log(t+1)

36 = log(t + 1) + log(t* +t — 1)

One of these logarithms, however, is already known. log(—1) was discovered when t was verified
to be a generator of the group of units at the beginning of this example and is 121. This

simplifies the system of equations to the following in only 5 unknowns.

143



5.2. DISCRETE LOGARITHM CHAPTER 5. SOLVING “HARD” PROBLEMS

5 =log(t —1)
13 =log(t* + 1) + log(t* +t — 1)
138 = 2log(t + 1)
143 =log(t — 1) + 2log(t + 1)
26 = log(t? + 1) + log(t* —t — 1)
148 = 2log(t — 1) + 2log(t + 1)
34 =4log(t+1)
36 = log(t + 1) + log(t* +t — 1)
This system now has a pair (third and seventh) that are linearly dependent so one of them

may be discarded. We’ll discard the one in the seventh position. Our linear system of seven

equations now has the following matrix equation in Zoys.

_0 100 0_ _ 5_
00 1 10 log(t+ 1) 13
2 0000 log(t — 1) 138
2 1.0 00 log(t? + 1) =1 143
001 01 log(t* +1—1) 26
2 2 0 0 0 log(t? —t —1) 148
1 0010 36
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This system’s augmented matrix reduces in Zsogo to

001 0 1| 46
00 0 1 —-1/229

0 0 0O 21202

which gives the solution as one of

_ log(t+ 1) _ - 49 —log(t? —t — 1) _
log(t — 1) 5
log(t? + 1) = 26 — log(t? —t — 1)
log(t? 4+t — 1) 229 + log(t? —t — 1)
log(t? —t —1) 101 or 222

One quick trial of 191 £ ¢2 — ¢ — 1 reveals the solution to be

_ log(t + 1) _ _ 69 _
log(t —1) 5
log(t? 4+ 1) =1 46
log(t? +t—1) 209
log(t? —t —1) 222

Now that the logarithms of the factor base elements are known. A search begins for another k
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such that (t* — 3 +t2 — t + 1)t* factors over B.
=B+t —t+ Dt =t -t —1=—(t+ D)t -2 -t —1)
And by quite a stroke of luck, such a k was found very quickly. Therefore

log((t* —° + 1% —t + 1)t) = log((—1)(t + 1)(t = 1)(t* —t — 1)
log(t' —t* +#* —t +1) + 1 =121 + 69 + 5 + 222
log(t* —t3 + 12 —t+1) = 174

The running time of the Index-Calculus Algorithm depends on the selected factor base. A
judicious selection of a factor base is highly dependent on the working field. But if a optimal
factor base can be chosen, then the Index-Calculus Algorithm has an expected running time
of O(eeVImnInnn) “where n is the size of the working field and ¢ is known to vary between
about 1.5 and 2 for the common fields of Fom and Z, respectivelym Notice how similar this
algorithm is to the Fermat factorization with a factor base, their running times even have the

same asymptotic behavior (see page [118)

5.3 Conclusion

As stated at the beginning of this chapter (see page success in the algorithms presented
here is considered to be when the running time can be expressed as a polynomial of the length
(number of bits/digits) of the inputs, a polynomial of the logarithm of the inputs. While some
of the best algorithms known have been presented, none of them are successful in this regard.

Nor are any of their more complex slightly faster superiors successful in this regard either.

17Menezes, 112. (5]
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No algorithm is known yet for either of these problems whose running time can be expressed
like O((Inn)*). Though, neither are these more efficient algorithms considered failures, for their
running times are not polynomial in the inputs, they are not of the form O(n*). These algorithms
have running times that are faster than exponential, but still slower than polynomial, in the
log of the input. They have been written O(e(r™)"(nln 7l)lfa). When written in this form, an
exponential-time algorithm will have an « of 1 while a polynomial-time will have an « of 0. The
better algorithms shown here and their superiors not examined here have running times with
a’s of % or %

The difficulty of finding successful methods of solving these factorization and logarithm
problems has helped enforce these problems’ use as the foundations of our modern cryptosystems.
Without such earnest and fervent attempts, our trust in these systems would be unfounded. And,

yet, with such attempts, our trust may eventually be betrayed. It is still yet unknown whether

a polynomial-time algorithm is possible for either of these problems.
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Appendix A

The Declaration of Independence

A.1 Plaintext

When in the Course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another, and to
assume among the powers of the earth, the separate and equal station to which

the Laws of Nature and of Nature’s God entitle them, a decent respect to the
opinions of mankind requires that they should declare the causes which impel
them to the separation.

We hold these truths to be self-evident, that all men are created equal, that
they are endowed by their Creator with certain unalienable Rights, that among

these are Life, Liberty and the pursuit of Happiness. --That to secure these
rights, Governments are instituted among Men, deriving their just powers
from the consent of the governed, --That whenever any Form of Government

becomes destructive of these ends, it is the Right of the People to alter or
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to abolish it, and to institute new Government, laying its foundation on such
principles and organizing its powers in such form, as to them shall seem
most likely to effect their Safety and Happiness. Prudence, indeed, will
dictate that Governments long established should not be changed for light and
transient causes; and accordingly all experience hath shewn, that mankind
are more disposed to suffer, while evils are sufferable, than to right
themselves by abolishing the forms to which they are accustomed. But when a
long train of abuses and usurpations, pursuing invariably the same Object
evinces a design to reduce them under absolute Despotism, it is their right,
it is their duty, to throw off such Government, and to provide new Guards for
their future security. --Such has been the patient sufferance of these
Colonies; and such is now the necessity which constrains them to alter their
former Systems of Government. The history of the present King of Great
Britain [George III] is a history of repeated injuries and usurpations, all
having in direct object the establishment of an absolute Tyranny over these
States. To prove this, let Facts be submitted to a candid world.
has refused his Assent to Laws, the most wholesome and necessary for the
public good.
has forbidden his Governors to pass Laws of immediate and pressing importance,
unless suspended in their operation till his Assent should be obtained; and
when so suspended, he has utterly neglected to attend to them.
has refused to pass other Laws for the accommodation of large districts of
people, unless those people would relinquish the right of Representation in
the Legislature, a right inestimable to them and formidable to tyrants only.
has called together legislative bodies at places unusual, uncomfortable, and
distant from the depository of their public Records, for the sole purpose of

fatiguing them into compliance with his measures.
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He has dissolved Representative Houses repeatedly, for opposing with manly
firmness his invasions on the rights of the people.

He has refused for a long time, after such dissolutions, to cause others to be
elected; whereby the Legislative powers, incapable of Annihilation, have
returned to the People at large for their exercise; the State remaining in
the mean time exposed to all the dangers of invasion from without, and
convulsions within.

He has endeavoured to prevent the population of these States; for that purpose
obstructing the Laws for Naturalization of Foreigners; refusing to pass
others to encourage their migrations hither, and raising the conditions of
new Appropriations of Lands.

He has obstructed the Administration of Justice, by refusing his Assent to Laws
for establishing Judiciary powers.

He has made Judges dependent on his Will alone, for the tenure of their offices,
and the amount and payment of their salaries.

He has erected a multitude of New Offices, and sent hither swarms of Officers to
harass our people, and eat out their substance.

He has kept among us, in times of peace, Standing Armies without the consent of
our legislatures.

He has affected to render the Military independent of and superior to the Civil
power.

He has combined with others to subject us to a jurisdiction foreign to our
constitution and unacknowledged by our laws; giving his Assent to their Acts
of pretended Legislation:

For Quartering large bodies of armed troops among us:

For protecting them, by a mock Trial, from punishment for any Murders which they

should commit on the Inhabitants of these States:
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For cutting off our Trade with all parts of the world:

For imposing Taxes on us without our Consent:

For depriving us, in many cases, of the benefits of Trial by Jury:

For transporting us beyond Seas to be tried for pretended offences:

For abolishing the free System of English Laws in a neighbouring Province,
establishing therein an Arbitrary government, and enlarging its Boundaries so

as to render it at once an example and fit instrument for introducing the
same absolute rule into these Colonies:

For taking away our Charters, abolishing our most valuable Laws, and altering
fundamentally the Forms of our Governments:

For suspending our own Legislatures, and declaring themselves invested with power

to legislate for us in all cases whatsoever.

He has abdicated Government here, by declaring us out of his Protection and
waging War against us.

He has plundered our seas, ravaged our Coasts, burnt our towns, and destroyed the

lives of our people.

He is at this time transporting large Armies of foreign Mercenaries to compleat
the works of death, desolation and tyranny, already begun with circumstances
of Cruelty and perfidy scarcely paralleled in the most barbarous ages, and
totally unworthy the Head of a civilized nation.

He has constrained our fellow Citizens taken Captive on the high Seas to bear
Arms against their Country, to become the executioners of their friends and
Brethren, or to fall themselves by their Hands.

He has excited domestic insurrections amongst us, and has endeavoured to bring on

the inhabitants of our frontiers, the merciless Indian Savages, whose known
rule of warfare, is an undistinguished destruction of all ages, sexes and

conditions.
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In every stage of these Oppressions We have Petitioned for Redress in the most

Nor

humble terms: Our repeated Petitions have been answered only by repeated
injury. A Prince whose character is thus marked by every act which may define
a Tyrant, is unfit to be the ruler of a free people.
have We been wanting in attentions to our British brethren. We have warmned
them from time to time of attempts by their legislature to extend an
unwarrantable jurisdiction over us. We have reminded them of the
circumstances of our emigration and settlement here. We have appealed to
their native justice and magnanimity, and we have conjured them by the ties
of our common kindred to disavow these usurpations, which, would inevitably
interrupt our connections and correspondence. They too have been deaf to the
voice of justice and of consanguinity. We must, therefore, acquiesce in the
necessity, which denounces our Separation, and hold them, as we hold the rest
of mankind, Enemies in War, in Peace Friends.
therefore, the Representatives of the united States of America, in General
Congress, Assembled, appealing to the Supreme Judge of the world for the
rectitude of our intentions, do, in the Name, and by the Authority of the
good People of these Colonies, solemnly publish and declare, That these
United Colonies are, and of Right ought to be Free and Independent States;
that they are Absolved from all Allegiance to the British Crown, and that all
political connection between them and the State of Great Britain, is and
ought to be totally dissolved; and that as Free and Independent States, they
have full Power to levy War, conclude Peace, contract Alliances, establish
Commerce, and to do all other Acts and Things which Independent States may of
right do. And for the support of this Declaration, with a firm reliance on
the protection of divine Providence, we mutually pledge to each other our

Lives, our Fortunes and our sacred Honor.
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A.2 Character Affine Encyphered Cyphertext

QV7TnNTnRV7n-IGhI7nIlnVG_cTn7 <7 TRIjnNRn¥7MI_7InT7M7IIch [n1IhnIT7n~7I~*7nRInCNIII
*<7nRV7n~I*NRNMc*n¥cTCInqVNMVnVc <7
nMITT7MR7CnRV7 _nqNRVncTIRV7hjncTCnRIncIIG_7nc_IT!'nRV7n~
Iq7hIinI1nRV7n7chRVjnRV7ni7~chcR7ncTCn73Gc*niRcRNITnRIngVNMVDRV7n

cqinIlntcRGh7ncTCnIlntcRGh7ainAICn7TRNR*7nRV7 _jncnC7M7TRnh71~7MRnRINRV7nI ~
NTNITIinIln_cTuNTCnh73GNh7IinRVcRnRV7 [niVIG*CnC7M*ch7nRV7nMcGIi7inqVNMVnN_~7%
nRV7_nRINRV7ni7~chcRNITTn ‘Q7nVI*CnRV7I7nRhGRVINRINY7ni7*187<NC7TRjnRVcRnc**
n_7Tnch7nMh7cR7Cn73Gc* jnRVcRnRV7 [nch7n7TCIq7Cn¥ [nRV7{hn -
h7cRIhngNRVnM7hRcNTnGTc*N7TcV*7nHN! VRIjnRVcRnc_IT!nRV7I7nch7n

N17jn

N¥7hR [ncTCnRV7n~GhIGNRnI1n6c~~NT7IITn§§2VcRNRInI7MGh7nRV7I7nhN ! VRIjnAT <7
hT_7TRInch7nNTIRNRGR7Cnc_IT!n?7TjnC7hi<NT!nRV7Nhn@GIRn~
Iq7hinlhI_nRV7nMITI7TRnI1nRV7n!I<7hT7Cjn§§2VcRnqV7T7 <7hncT [nLIh_nIlnAI<7
hT_7TRn¥7MI_7InC7iRhGMRN <7nI1nRV7i7n7TCIjnNRnNInRV7nHN! VRRI1lnRV7n~7I~*7nRInc*
R7hnIhnRIncYI*NIVnNRjncTCnRInNNTIRNRGR7nT7qnAI <7hT_7TRjn*c [NT!
Iq7hInNTnIGMVnlIh_jncInRInRV7_niVc**ni77_n_IIRn*Nu7*[nRIn7117MRnRV7Nhn}cl7R[
ncTCn6c~~NT7IiTn " hGC7TM7jnNTC77CjnqN **nCNMRCcR7nRVCcRnAI <7hT_7TRIn*IT!'n7IRcY*
NIv7CnIVIG*CnTIRnY7nMVcT!7CnlThn*N! VRucTCnRhcTIN7TROMcGI7IEncTCncMMIKCNT 1% [ne
**n7&~7hN7TM7nVcRVnIV7qTjnRVcRn_cTulNTCnch7n_Ih7nCNi~II7CnRIniG117hjnqVi*7n7<N
*Inch7niGl17hc¥*7 jnRVcTnRInhN ! VRnRV7 _I7*<7In¥ [ncVI*NIVNT!
nRV7nlIh_InRInqVNMVnRV7 [nch7ncMMGIRI_7CTnxGRnqV7Tncn*IT!
nRhciTnIlnc¥Gi7incTCnGiGh~cRNITIjn~GhiGNT ' nNT<chlNcY*[nRV7nic_7n)¥@7MRn7<
NTM7IincnC7IN! TnRInh7CGM7nRV7 _nGTC7hnc¥II*GR7nb7i~IRNI_jnNRnNIinRV7Nhnhi!
VRjnNRoNInRV7NhnCGR [jnRInRVhIqnI1llniGMVnAI <7hT_7TRjncTCnRIn~hI<

NE7nT7qnAGchCinlIhnRV7Nhn1GREh7nI7MGhNR [Tn§§}EMVnVcin¥77TnRV 70~
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cRN7TRnIGL117hcTM7nIlnRV7i7n-I*ITN7IEncTCniGMVnNInTIqnRV7nT7M7IINR [
nqVNMVnMITIRhcNTInRV7 _nRInc*R7hnRV7NhnlTh_7hn}[IR7_InIlnAI<7
hT_7TRTn2V7nVNIRIh [nI1lnRV7n~h7I7TRnUNT !nI1lnAh7cRoxhNRcNTn%A7IN!7
nkkkRnNIincnVNIRIh [nI1nh7~7cR7CnNT@GhN7incTCnGiGh~cRNITIjnc**nVc<NT!
nNTnCNh7MRRIY@7MRnRV7n7IRcY*NIV_7TRnIlncTnc¥II*GR7n2 [hcTT [nI<7hnRV7I7n}
RcR7ITn2In~hI<7nRVNIjn*7RnLcMRInY7niGY_NRR7CnRIncnMcTCNCnqIh*CTn ‘67
nVcinh71Gi7CnVNInCIi7TRnRIn

cqIjnRV7n_IIRnqVI*7II_7ncTCnT7M7iich[n1IhnRV7n~G¥*NMn!IICTn ‘67
nVcinlThV¥NCC7TnVNInAI <7hTIhinRIn~ciin

cqinIlnf__7CNcR7ncTCn~h7IINT !nN_~IhRcTM7jnGT*71iniGI~7TC7CnNTnRV7NhnI ~7hcRNITRRN
*%nVNInCIi7TRRIVIG*Cn¥7nI¥RcNT7CEncTCnqV7TniIniGi~7TC7CjnV7nVcinGRR7h*[nT7 1 %7
MR7CnRIncRR7TCnRINRV7 _Tn ‘67nVcinh71GI7CnRIn~cIinIRV7hn

cqinlThnRV7ncMMI__ICcRNITnIln*ch!7nCNIRhNMRInI1ln~7I~*7 jnGT*7IInRVII7n~7I~*7nqIG*

T3GNIVnRV7nhN!VRnI1nH7 ~h7I7TRcRNITnNTnRV7n

=

Cnh7x*

718i*cRGh7jncnhN! VRoNT7IRN_c¥*7nRInRV7_ncTCnlIh_NCc¥*7nRInR[hcTRInIT*[Tn 67
jncTCnCNiRcTRN1WI_nRV7nC7~IINRIh [nI1nRV7Nhn~G¥*NMnH7MIhCIjnlThnRV7nII*7n~Gh~
Ii7nI1n1cRN!GNT ! nRV7_nNTRIDMI_~*NcTM7nqNRVnVNin_7ciGh7iTn ‘67nVcinCNIiiI*<7CnH7
~h7I7TRcRN<7n6IGI7inh7~7cR7C*[jnlIhnI~~IINT!'nqNRVn_cT*[nlNh_T7IinVNInfNT<
cINITInITnRV7nhN ! VRInI1nRV7n~7I~%7Tn ‘67nVcinh71Gi7Cnllhncn*IT!
nRN_7jnclR7hniGMVnCNIII*GRNITIjnRInMcGI7nIRV7hInRInY7n7*7MR7CEnqV7h7Y [nRV7n

T1Hi*cRN<7n~Iq7hijnNTMc~cV¥*7nIlnCTTNVN*cRNITjnVc <7nh7RGhT7CnRINRV7n~7I~*7ncRn*ch
17n1ThnRV7Nhn7&7hMNI7EnRV7n}RcR7nh7 _cNTNT ! nNTnRV7n_7cTnRN_7n7&~I17CnRInc*x*
nRV7nCcT!7hinI1lnNT<ciNITnlhI_nqNRVIGRjncTCnMIT <G*INITingNRVNTTn ‘67nVcin7TC7c<
IGh7CnRIn~h7 <7 TRRV7n~I~G*cRNITnI1nRV7I7n}RcR7IEn1ThnRVcRn~Gh~II7nI¥IRhGMRNT!
nRV7n

cqinlThntcRGhc*NRcRNITnI1nLIh7N!T7hiEnh71GINT!nRIn~cIinIRV7hIinRIn7TMIGhc!7
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nRV7Nhn_N!hcRNITInVNRV7hjncTCnhcNINT ! nRV7nMITCNRNITInI1nT7qnC~~hI~
hNcRNITInIln

cTCiTn “67nVcinI¥IRhGMR7CnRV7nCC_NTNIRhcRNITnIln GIRNM7jn¥ [nh71GINT!
nVNinCII7TRnRIn

cqinlIhn7iRc¥*NIVNT!n GCNMNch[n~Iq7hiTn ‘67nVcin_cC7n GC!7InC7~7TC7TRNITnVNInQN **
nc*IT7jnlIhnRV7nR7TGh7nI1nRV7NhnI118M7IjncTCnRV7nc_IGTRncTCn-~c[
_7TRnI1lnRV7Nhnic*chi7iTn ‘67nVcin7h7MR7Cncn_G*RNRGC7nIlnt7qn)
110M71jncTCni7TRAVIRV7hniqch_InIln) 118M7hInRInVchcIinIGhn~7I~%7
jncTCn7cRnIGRNRV7NhnIGYIRcTM7Tn ‘67nVeinu7~Rnc_IT!nGIjnNTnRN_7InIln-~7cM7jn}
RcTCNT ! nCh_N7ingNRVIGRnRV7nMITI7TRnI1nIGhn*7! Ni*cRGh7ITn ‘67
nVcincl17MR7CnRInh7TC7hnRV7n?N*NRch [nNTC7~7TC7TRnI1ncTCniG~7hNIhnRINRV7n -N<l*
n~Iq7hTn ‘67nVcinMI_VYNT7CnqNRVnIRV7hIinRInIGY@7MRnGIinRIncn@GhNICNMRNITn1Ih7N!
TnRInIGhnMITIRNRGRNITncTCnGTcMuTIq*7C!17CnY [nIGhn*cqiEn! N<NT!
nVNIinCII7TRRRInRV7NhnCMRInIln~h7R7TC7Cn

71Hi*cRNITPn ‘LIhnSGchR7hNT !n*ch!7nYICN7inIlnch_7CnRhII~inc_IT!nGiPn ‘LIhn~hIR7MRNT
'nRV7_jn¥ [ncn_IMun2hNc*jnlhI_n~GTNIV_7TRn1IhncT [n?GhC7hinqVAMVnRV7 [nIVIG*
CnMI__NRnITnRV7nkTVcYNRcTRInI1nRV7iI7n}RcR7iPn ‘LIhnMGRRNT!
nI11nIGhn2hcC7nqNRVnc**n~chRInI1nRV7nqIh*CPn ‘LIhnN_~IINT!n2c&7
inITnGingNRVIGRNnIGhn -ITI7TRPn ‘LIhnC7 ~hN<NT!nGijnNTn_cT[
nMci7ijnIlnRV7n¥7T718RInI1n2hNc*n¥ [n Gh[Pn‘LIhnRhcTi~IhRNT!'nGin¥7 [ITCn}7
cInRInY7nRhN7Cn1Ihn~h7R7TC7CnI117TM7iPn ‘LIhncYI*NIVNT ! nRV701h77n} [IR7 _nI1lnUT
1%xNivn

cqInNTnenT7N ! V¥IGhNT ! n"hI<NTIM7jn7IiRcY*NIVNT ! nRV7h78TncTnCh¥NRhch [n!I<7
hT_7TRjncTCn7T*ch!NT ! nNRInxIGTCchN7iniIncinRInh7TC7hnNRncRRITM7ncTn7&c_~*7
ncTCnlNRoNTIRhG _7TRn1IhnNTRRIGGMNT ! nRV7nic_7ncYII*GR7nhG*7nNTRInRV7I7n-Ix
ITN7iPn ‘LIhnRcuNT!ncqc [nIGhn-VchR7hIjncYI*NIiVNT!nIGhn_IiRn<c*Gc¥*7n

cqijncTCnc*R7hNT ! n1GTCc_7TRc**[nRV7nLIh_InIlnIGhnAI<7hT_7TRIPn ‘LIhniGi-~7TCNT!
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nIGhnIqTn
710i*cRGh7IjncTCnC7M*xchNT ! nRV7 _17%<7InNT<7IR7CnqNRVn~Iq7hnRIn*7!Nix*
cR7n1ThnGInNTnc**nMcI7IinqVcRII7 <7hTn ‘67nVcincVCNMcR7CnAI <7hT_7TRnV7h7jn¥ [nC7M

*chNT!nGIinIGRnI1nVNIn"hIR7MRNITncTCnqc!NT!'nQchnc! cNTIRnGIiTn ‘67nVcin~*

QX

TC7h7CnIGhni7cijnhc<c!7CnIGhn-IcIRIjnYGhTRNIGhnRIQTIjncTCnC7IRhI [7CnRV7n*N<7
InIlnIGhn~7I~%7Tn ‘67nNincRnRVNInRN_7nRhcTI~IhRNT !n*ch!7nCh_N7inIlnlIh7K!Tn?7
hM7TchN7InRInMI_~%7cRnRV7nqlhuinIlnC7cRVijnC7II*cRNITncTCnR [heTT [jnc*h7cC[n¥7!

GTngNRVnMNAMG_fRcTM7inIln-hG7*R[ncTCn~7h1NC [nIMchM7 *[n~chc**7*7
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Appendix B

Computer Code

The following C++ computer programs were used to perform encyphering and distribution

counting for the Declaration of Independence examples.

B.1 encypher.cc

//encypher.cc
//runs example cypherings for thesis examples

//by John Szwast

#include <cmath>
#include <stdlib.h>
//#include <stdio.h>
#include <string.h>

#include <iostream>
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//#include <string>

#include <fstream>

#define NUMENCYPHERINGS 4

using namespace std;

int UsageMessage (char* runname) ;

int FileError (char type);

int main(int argc, char*x argv)
{
ifstream readfile;
ofstream writefile [NUMENCYPHERINGS];
string fileprefix,readfilename,writefilename;
string writefiles [NUMENCYPHERINGS]={"affine", "digraph", "vector4graph", "
vector2graph"};
char ReadChar, WriteChar;
size_t BytesRead;
unsigned int p, c, dip[2], dic[2], qupl[4], quc[4], octp[8], octd[8], octv[8], i
> Js K
unsigned int v2p[2], v2c[2], v2i; //vector2graph variables
unsigned long int 1ldip, 1ldic;

div_t IntDiv;

//Check Usage

if (argec != 2)
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return UsageMessage (argv[0]);

fileprefix = argv[1];

readfilename = fileprefix + ".plaintext.text";

cout << "File name: " << readfilename << endl;

//open input file
readfile.open(readfilename.c_str(), fstream::in | fstream::binary);
if (!readfile.is_open())

return FileError (1);

for (int counter=0; counter < NUMENCYPHERINGS; counter++)
{
writefilename = fileprefix + ’.’ + writefiles[counter] + ".text";
writefile[counter].open(writefilename.c_str(), fstream::out | fstream::binary
)
if (!writefile[counter].is_open())

return FileError (1);

i=j=k=v2i=0;
while (readfile.good ())
{
ReadChar = readfile.get();
if (readfile.good ())

{
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//Read the next character
p = (unsigned)ReadChar;
dip[il=p;

qup[jl=p;

v2p[v2i]l=p;

//Encypher single character.

c = (53%p + 78) I 128;

WriteChar = (char)c;

if (writefile [0].good (D)
writefile [0].put (WriteChar);

else

return FileError (3);

//1f a digraph is ready, encypher it.
i++;
if (i==2)
{
i=0;
1dip=128%dip [0]+dip [1];
1dic=(((8567*1dip) %16384) + 612) I 16384;
dic[1] = 1ldic % 128;
ldic = (ldic - dic[1]) / 128;
dic [0] = 1dic;
if (writefile [1].good ())

for(int counter=0; counter < 2; counter++)

{
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WriteChar = (char)dic[counter];
writefile [1].put(WriteChar);
}
else

return FileError (3);

//1f a 4-graph is ready, encypher it.

443
if(j == 4)
{
j = 0;
quc [0] = (37*qup[0] + 68*qup[1] + 26*qup[2] + 95*xqup[3] + 89) ¥ 128;
quc [1] = (16*qup[0] + 103*qup[1] + 100*qup[2] + 89*qup[3] + 92) % 128;
quc [2] = (122*qup[0] + 33*qup[1] + 17xqup[2] + 51xqup[3] + 59) % 128;
quc [3] = (55%qup[0] + 42*xqup[1] + 82xqup[2] + 24*xqupl[3] + 92) % 128;

if (writefile [2].good ())

for(int counter=0; counter < 4; counter++)

{
WriteChar = (char)quc[counter];
writefile [2].put(WriteChar);
¥
else

return FileError (3);
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B.1. ENCYPHER.CC APPENDIX B. COMPUTER CODE

//1f a digraph is ready, encypher the vector2graph (some redundancy with

multidigit digraph above)

v2i++;

if(v2i == 2)

{
v2i=0;
v2c[0] = (95 * v2p[0] + 5 * v2p[1] + 43) 7 128;
v2c[1] = (97 * v2p[0] + 58 * v2p[1] + 99) % 128;

if (writefile [3].good ())

for(int counter=0; counter < 2; counter++)

{
WriteChar = (char)quc[counter];
writefile [3].put(WriteChar);
}
else

return FileError (3);

readfile.close();
for(int counter=0; counter < NUMENCYPHERINGS; counter++)

writefile[counter].close();

return O0;
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B.1.

ENCYPHER.CC

APPENDIX B. COMPUTER CODE

int UsageMessage (char* runname)

{

cerr << "Usage:

" << runname << " <fileprefix>\n" << "

plaintext.text must exist\n";

return 1;

int FileError (char type)

{

if (type 1)

cerr << "File
return 2;

}

else if (type ==

{
cerr << "File
return 3;

}

else if (type ==

{

"File

cerr <<

return 4;

input error.\n";

2)

syntax error.\n";

3)

output error.\n";
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B.2. DISTRIBUTIONCOUNT.CC APPENDIX B. COMPUTER CODE

B.2 distributioncount.cc

//distributioncount.cc
//counts the character distribution of a text file under a specified alphabet

//by John Szwast

//#include <cmath>
#include <stdlib.h>
//#include <stdio.h>
#include <string.h>
#include <iostream>
//#include <string>

#include <fstream>

using namespace std;

int UsageMessage (char* runname) ;

int FileError (char type);

int main(int argc, char*x argv)

{

ifstream readfile;
string filename;
const char AlphabetMap[3][256] = { 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O,

0,
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0,65,66,67,68,69,70,71,
72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87, 88,89,90, 0, 0, 0,
0, 0,

0,65,66,67,68,69,70,71,
72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87, 88,89,90, 0, 0, O,
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0, //26-1letter (A-Z)

32, o0, 0, 0, 0, O, 0,39, 0, O,

0,65,66,67,68,69,70,71,

72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87, 88,89,90, 0, O, O,

0, 0,

0,65,66,67,68,69,70,71,

72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87, 88,89,90, 0, O, O,
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0, //32-1letter (A-Z ,.7°:)

9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,
24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,
56,57 ,58,59,60,61,62,63,
64,65,66,67,68,69,70,71,
72,73,74,75,76,77,78,79,
80,81,82,83,84,85,86,87,
88,89,90,91,92,93,94,95,
96,97,98,99,100,101,102,103,
104,105,106 ,107,108,109,110,111,
112,113,114 ,115,116,117,118,119,

120,121,122,123,124,125,126,127,
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o, o, o, 0o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
0}; //128-letter (0-127)
int AlphabetDistribution [256];
char ReadChar;
size_t BytesRead;
int Alphabet;
int PrintBounds [3][2] = {64, 93, 32, 93, 0, 127}; //lower and upper bounds on
each alphabet to be printed
//This helps generate a clean gnuplot histogram.

//Check Usage
if (argc != 3)

return UsageMessage (argv[0]);

Alphabet = atoi(argv[1]);
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filename = argv[2];

cout << "# File name:

//open input file

readfile.open(filename.c_str (), fstream::i

if (!readfile.is_open())

return FileError (1);

for (int i=0; 1i<256; i++)

AlphabetDistribution[i] = 0;

while(readfile.good())
{
ReadChar = readfile.get();

if (readfile.good())

" << filename << endl;

fstream::binary);

AlphabetDistribution[AlphabetMap [Alphabet] [ReadChar]]++;

for(int i=PrintBounds[Alphabet][0];
{
//if (i%6 ==0)
cout << ij;
//else

// cout << 7

cout << ’\t’ << AlphabetDistribution[i] <<
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readfile.close();

return 0;

int UsageMessage (char* runname)

{
cerr << "Usage: " << runname << " <alphabet> <filename>\nAlphabet: 0 - 26-
letter (A-Z)\n"
<< " 1 - 32-letter (A-Z ,.7’:)\n"
<< " 2 - 128-letter (0-127)\n";
return 1;
}

int FileError (char type)
{

if (type == 1)

cerr << "File input error.\n";

return 2;

}

else if (type == 2)

{
cerr << "File syntax error.\n";
return 3;

}
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expected value, [I7] 20} 21} 23] 24 (0]
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Extended Euclidean Algorithm,

factor base, [I15]
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function
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trap-door,

General Number Field Sieve, [132]

geometric distribution, 22}

hash collision,

hash function, [99]

Julius Caesar, [3]
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Keyspace, {5 [0} 57 [
known plaintext attack, [} 58
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linear cypher, [30} 32] [38]
linear time,

log, see logarithms

logarithmic time,
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discrete, [I5]
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repeated squaring,
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shift cypher,
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symmetric cryptosystem, [29]

time
constant, [38]
exponential, [T0} 103} [147]
linear,

logarithmic,

polynomial, [I0} [I03] [147]

quadratic,
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